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2. Des
ription of the s
ientifi
 a
hievement

In addition to papers [H1-H5℄, some of my other papers [P1-P13℄ are also 
ited

in this des
ription. Their lists 
an be found in paragraphs 3.1 and 3.2. The list of

papers of other authors is given at the end of this autopresentation.

2.1. Introdu
tion.

The mapping 
lass group of a 
ompa
t 
onne
ted nonorientable surfa
e N , de-

noted by M(N), is the group of isotopy 
lasses of homeomorphisms of N equal to

the identity on the boundary ∂N if it is non-empty:

M(N) = Homeo(N, ∂N)/Homeo0(N, ∂N).

Here Homeo0(N, ∂N) denotes the subgroup of Homeo(N, ∂N) 
onsisting of the

homeomorphisms isotopi
 to the identity, and by an isotopy we understand a ho-

motopy H : N × [0, 1] → N su
h that H(−, t) ∈ Homeo(N, ∂N) for t ∈ [0, 1]. The
mapping 
lass group of a 
ompa
t 
onne
ted orientable surfa
e is de�ned analo-

gously as the group of isotopy 
lasses of orientation preserving homeomorphisms:

M(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).

When a �nite set P of points is distinguished on the surfa
e, then in the above

de�nition we additionally assume that all homeomorphisms permute P , and we

denote the mapping 
lass group by M(N,P ) or M(S, P ).
A 
ompa
t 
onne
ted surfa
e for whi
h we neither assume that it is orientable

nor nonorientable will be denoted by F , and its mapping 
lass group by M(F ) or
M(F, P ) in 
ase of distinguishes points. We will also use the notation Ng,n, Sg,n,

Fg,n for a surfa
e of genus g with n boundary 
omponents, dropping n if n = 0.
Thus Ng,n denotes a surfa
e homeomorphi
 to the 
onne
ted sum of g proje
tive

planes, from whi
h the interiors of n pairwise disjoint dis
s have been removed.

Mapping 
lass group plays a remarkably important role in low-dimensional

topology (in
luding the theory of 3- and 4-dimensional manifolds), the theory of

fun
tions of a 
omplex variable, algebrai
 geometry and geometri
 group theory. It

attra
ts great interest of many mathemati
ians and is an obje
t of intense studies

uninterruptedly for more than �fty years. Nevertheless, there are still many open

problems related to this group.

The study of mapping 
lass group was initiated in the 1920s independently by M.

Dehn and J. Nielsen; but the truly dynami
 development of this theory begun only

in the 1960s and was propelled over the next de
ades by ground-breaking works

of mathemati
ians su
h as W. B. R. Li
korish, J. S. Birman, W. P. Thurston,

J. L. Harer, N. V. Ivanov, D. Johnson, B. Wajnryb. Theorems and methods

developed by these authors are to this day basi
 tools in this �eld. Moreover, some

of these methods, espe
ially those 
oming from Thurston, have been su

essfully

applied in the study of other, related groups, like the braid group and the group

of automorphisms of a free group.

One of the reasons for the great importan
e of the group M(Sg) is its role

in the 
onstru
tion of the moduli spa
e of Riemann surfa
es, where this group
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a
ts properly dis
ontinuesly as the full isometry group of the Tei
hmüller spa
e

Teich(Sg), and the orbit spa
e M(Sg) = Teich(Sg)/M(Sg) of this a
tion is the

above-mentioned moduli spa
e of 
ompa
t Riemann surfa
es of genus g (g ≥ 2), a

entral obje
t of the theory of fun
tions of a 
omplex variable and the theory of

algebrai
 
urves. By allowing antyholomorphi
 transition fun
tions between 
harts

one obtains the notion of a dianaliti
 stru
ture of Klein surfa
e on a nonorientable

surfa
e Ng. This 
on
ept was already 
onsidered by Klein himself. Its systemati


des
ription 
an be found in the modern monograph [1℄, and the methodology of

their study was developed in [18℄. The moduli spa
e M(Ng) of su
h stru
tures

is again the orbit spa
e of the a
tion of the mapping 
lass group M(Ng) on the

Tei
hmüller spa
e Teich(Ng).
Every 
ompa
t Klein surfa
e is the orbit spa
e S/〈σ〉 for a unique pair (S, σ),

where S is a Riemann surfa
e, and σ : S → S its symmetry, that is an anty-

holomorphi
 involution. Under the well known fun
torial bije
tive 
orresponden
e

between 
ompa
t Riemann surfa
es and smooth, irredu
ible, 
omplex proje
tive


urves, symmetri
 surfa
es 
orrespond to 
urves having real equations. A pair

(S, σ) is usually 
alled a real algebrai
 
urve [1℄.

Sin
e Teich(F ) is a manifold (homeomorphi
 to a ball in an eu
lidean spa
e),

M(F ) has the stru
ture of an orbifold, whose singular points 
orrespond to Rie-

mann or Klein surfa
es having nontrivial automorphisms. The group M(F ) en-

odes most of the topologi
al features of the spa
e M(F ) and 
onversely, invariant

su
h as the homology of M(F ) are determined by the topology of M(F ). As ex-
amples of the above relationship let us mention the proofs of simple 
onne
tivity

of the moduli spa
es of Riemann and Klein surfa
es [64℄, [P1℄, Harer's theorem

[31℄ on stability of the (
o)homology groups of M(S) and M(S), or the Madsen-

Weiss theorem [65℄ proving the Mumford's 
onje
ture about the stable 
ohomology

groups of M(S). Analogous theorems for nonorientable surfa
es were proved by

N. Wahl [82℄.

The se
ond, after the Tei
hmüller spa
e, fundamental obje
t on whi
h the group

M(F ) a
ts is the 
urve 
omplex C(F ) de�ned by Harvey [35℄. It is a simpli
ial


omplex, whose k-simpli
es are the isotopy 
lasses of families of k + 1 pairwise

disjoint and pairwise nonisotopi
 simple 
losed 
urves on F . This 
omplex pays a

key role in the works of Harer [31, 32℄, Ivanov [43℄ and Wahl [82℄ 
on
erning the

(
o)homology of M(F ). After the proof of the hyperboli
ity of C(S) by Masur and

Minsky [66℄, the study of the mapping 
lass group a
quired a new dynamism. In

our nonorientable 
ase, the hyperboli
ity of the 
urve 
omplex C(N) was proved
by Bestvina and Fujiwara [7℄ using the work of Bowdit
h [12℄, and also by Masur

and S
hleimer [67℄ by a di�erent method. The involvement of the authors of this


lass in the studies indi
ates the rank of this subje
t. In the papers [H1, H5℄ we

used the a
tion of M(N) on the 
urve 
omplex to �nd a �nite presentation for

this group.

The �rst papers devoted entirely to the mapping 
lass group of a nonorientable

surfa
e were written already in the 1960s by Li
korish [61, 62℄, Chillingworth [19℄

and Birman-Chillingworth [9℄. Then there was a thirty years long stagnation ended
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by the papers of Korkmaz [52, 53℄, and from that moment on the subje
t of the

mapping 
lass group of a nonorientable surfa
e enjoys an in
reasing interest.

Every nonorientable surfa
e N admits a 
overing of degree 2 by an orientable

surfa
e S. By the theorem of Birman and Chillingworth [9℄, the group M(N) is
isomorphi
 to the subgroup of M(S) of in�nite index 
onsisting of the elements


ommuting with the 
overing involution. As a 
onsequen
e of this relationship,

some properties of M(S) automati
ally pass to M(N) - for example all kinds

of residual properties. On the other hand, in�niteness of the index is a serious

obsta
le in problems su
h as, for examaple, �nding a �nite presentation. Thus,

although the theorem of Birman-Chillingworth is very important, its usefulness is

rather limited. Furthermore, many results about M(S) use the orientability in a

fundamental way, so that their simple adaptation for the 
ase of a nonorientable

surfa
e is impossible and new ideas are needed.

Many important theorems aboutM(S) have got their 
ounterparts for a nonori-
entable surfa
e proven, like the above-mentioned theorems of Harer, Madsen-Weiss

and Masur-Minsky, or the no less famous theorem of Ivanov [46℄ about the auto-

morphism group of C(S), whi
h has been re
ently transplanted to nonorientable

surfa
es by Atalan and Korkmaz [3℄. Until re
ently, one of the major ex
eptions

to the above rule was Wajnryb's theorem [83, 86℄ providing a simple presentation

for M(S) by generators and relations. The la
k of su
h a presentation for the

group M(F ) was �lled in the paper [H5℄, whi
h I 
onsider as my most important

a
hievement.

I 
lose this introdu
tion with a short des
ription of my main results obtained in

the papers [H1-H5℄, in order of their importan
e in my opinion.

• The papers [H1, H5℄ are devoted to the problem of �nding a �nite pre-

sentation for the groups M(Ng,n). In [H1℄ I found su
h a presentation for

(g, n) = (4, 0), and in [H5℄, jointly with L. Paris, for n ∈ {0, 1} and all g
su
h that g + n > 3. In the problem of obtaining �nite presentations for

M(Ng,n) the most signi�
ant 
ase is n = 0, be
ause starting from a presen-

tation of M(Ng,0) one 
an indu
tively 
al
ulate presentations of M(Ng,n)
for all n by a method based on the Birman exa
t sequen
e, as in the paper

[60℄ in the 
ase of orientable surfa
es.

• In the paper [H4℄ I des
ribed all nontrivial homomorphisms M(Ng) →
GL(m,C) for g ≥ 5 and m ≤ g−1. In this way I extended, to the 
ase of a

nonorientable surfa
e, the results re
ently obtained by J. Franks, M. Han-

del and M. Korkmaz, and 
ompleted the understanding of low-dimensional

linear representations of mapping 
lass groups of surfa
es. The paper [H4℄

represents a signi�
ant 
ontribution towards su
h understanding, be
ause

for nonorientable surfa
es the situation is more 
ompli
ated than for ori-

entable ones. As an appli
ation, I proved that for h < g and g ≥ 5 any

nontrivial homomorphism M(Ng) → M(Nh) has the image isomorphi
 to

Z2 or Z2 × Z2, where the latter 
ase is possible only for g ∈ {5, 6}.
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Figure 1. The 
urve γI for I = {i1, i2, . . . , ik}.

• The papers [H2, H3℄ are devoted to the level 2 mapping 
lass group, denoted

by Γ2(Ng) and de�ned as the subgroup of M(Ng) 
onsisting of the isotopy

lasses of homeomorphisms indu
ing the identity on H1(Ng,Z2). In [H2℄ I

proved that Γ2(Ng) is generated by so-
alled Y-homeomorphisms de�ned

by Li
korish in 1963, and also that it is generated by involutions (elements

of order 2). In [H3℄ I found a �nite generating set for this group.

In the following I will des
ribe the above results in more detail, on the ba
k-

ground of works of other authors.

2.2. Presentation by generators and relations. [H1, H5℄

M
Cool [70℄ gave the �rst algorithm for �nding a �nite presentation for M(Sg,1)
for any g. His approa
h is purely algebrai
 and no expli
it presentation has been

derived from this algorithm. In their ground-breaking paper [37℄ Hat
her and

Thurston gave an algorithm for 
omputing a �nite presentation for M(Sg,1) from
its a
tion on a 
ertain simply 
onne
ted 2-dimensional CW-
omplex. By this

algorithm, Harer [30℄ obtained a �nite, but very unwieldy, presentation forM(Sg,1)
for any g. This presentation was simpli�ed by Wajnryb [83, 86℄, who also found a

presentation for M(Sg,0). Using Wajnryb's result, Matsumoto [68℄ obtained other

presentations for M(Sg,1) and M(Sg,0), and Gervais [26℄ found a presentation

for M(Sg,n) for arbitrary g ≥ 1 and n. Labruère and Paris [60℄ 
omputed a �nite

presentation forM(Sg,n, P ) for arbitrary g ≥ 1, n and P . Benvenuti [6℄ and Hirose

[38℄ independently re
overed the Gervais presentation from the a
tion of M(Sg,n)
on the Harvey's 
urve 
omplex [35℄, instead of the Hat
her-Thurston 
omplex.

Before the papers [H1, H5℄ �nite presentations of M(Ng,n) were known only for

a few nonorientable surfa
es of genus g ≤ 3, in
luding M(N2,0) ∼= Z2×Z2 [61℄ and

M(N3,0) ∼= GL(2,Z) [9, 27℄. Using results of Li
korish [61, 62℄, Chillingworth [19℄

found a �nite generating set for M(Ng,0) for all g ≥ 3. This result was extended
to nonorientable surfa
es with distinguished points [53℄ and boundary [77℄.

In order to formulate the main result of the papers [H1, H5℄ let us �x a model of

a nonorientable surfa
e. For Ng,1 (respe
tively Ng,0) this will be a 2-dimensional

dis
 (resp. sphere), from whi
h g pairwise disjoint dis
s have been removed, and

then antipodal points have been identi�ed on ea
h of the resulting boundary 
om-

ponents, or equivalently: Möbius bands have been sewn in the pla
e of the removed

dis
s. In Figure 1 the interiors of the removed dis
s are shaded and numbered from

1 to g. For every nonempty subset I ⊆ {1, 2, . . . , g} let γI denote the simple 
losed
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γ

δ

Tγ

−→

Figure 2. Dehn twist about a two-sided 
urve γ.

i i+ 1

ui−→

Figure 3. Cross
ap transposition ui.


urve on N shown in Figure 1. Note that this 
urve is one-sided if I has odd


ardinality, and two-sided otherwise. With every two-sided simple 
losed 
urve γ
on N one 
an asso
iate a Dehn twist about γ, that is an isotopy 
lass of a home-

omorphism de�ned as follows. Choose an oriented 
losed regular neighbourhood

A ⊂ N of the 
urve γ, whi
h we identify we the standard annulus S1 × [0, 1] (Fig.
2). Dehn twist Tγ is equal to the identity outside A, and its a
tion on A is as

shown in Figure 2: the interval δ is transformed into the spiral ar
, a

ording to

the formula

Tγ(x) =

{

x for x /∈ A

(e2iπ(θ+r), r) for x = (e2iπθ, r) ∈ A = S1 × [0, 1].

For I ⊆ {1, 2, . . . , g} of even 
ardinality we denote by TI Dehn twist about γI in
the dire
tion indi
ated by the arrows in Figure 1. We also set:

ai = T{i,i+1} for i = 1, 2, . . . , g − 1;
bj = T{1,2,...,2j+2} for 1 ≤ j ≤ (g − 2)/2.

For i = 1, 2, . . . , g − 1 we de�ne a homeomorphism ui swapping two 
onse
utive

Möbius bands as shown in Figure 3 and equal to the identity outside a one-holed

Klein bottle 
ontaining these bands. The isotopy 
lass of ui is denoted by the

same symbol and 
alled 
ross
ap transposition. Now we are ready to state the

main results of the paper [H5℄.

Twierdzenie 1 (Paris-Szepietowski [H5, Theorem 3.5℄). For g ≥ 3 the group

M(Ng,1) admits a presentation with generators ui, ai for 1 ≤ i ≤ g − 1, bj for

0 ≤ j ≤ (g − 2)/2 and relations:

(A1) aiaj = ajai for |i− j| > 1,
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a1 a2
a3 a4

b1

a5 a6

b2 bρ−1

ag−1
a1 a2

a3 a4

b1

a5 a6

b2

ag−2
ag−1

bρ−1 bρ

Figure 4. The 
urves on an orientable subsurfa
e of genus ρ =
⌊g−1

2
⌋ de�ning the generators ai, bj .

(A2) aiai+1ai = ai+1aiai+1 for 1 ≤ i ≤ g − 2,
(A3) aib1 = b1ai for i 6= 4 if g ≥ 4,
(A4) b1a4b1 = a4b1a4 if g ≥ 5,
(A5) (a2a3a4b1)

10 = (a1a2a3a4b1)
6

if g ≥ 5,
(A6) (a2a3a4a5a6b1)

12 = (a1a2a3a4a5a6b1)
9

if g ≥ 7,
(A7) b0 = a1,
(A8) bi+1 = (bi−1a2ia2i+1a2i+2a2i+3bi)

5(bi−1a2ia2i+1a2i+2a2i+3)
−6

for 2 ≤ 2i ≤ g − 4,
(A9) b g−2

2

ag−5 = ag−5b g−2

2

if g is even and g > 6,

(A10) b2b1 = b1b2 if g = 6.

(B1) uiuj = ujui for |i− j| > 1,
(B2) uiui+1ui = ui+1uiui+1 for i = 1, . . . , g − 2.

(C1) a1ui = uia1 for i = 3, . . . , g − 1,
(C2) aiui+1ui = ui+1uiai+1 for i = 1, . . . , g − 2,
(C3) ai+1uiui+1 = uiui+1ai for i = 1, . . . , g − 2,
(C4) a1u1a1 = u1,
(C5) u2a1a2u1 = a1a2,
(C6) (u3b1)

2 = (a1a2a3)
2(u1u2u3)

2
if g ≥ 4,

(C7) u5b1 = b1u5 if g ≥ 6,
(C8) a4u4(a4a3a2a1u1u2u3u4)b1 = b1a4u4 if g ≥ 5.

Dehn twists ai, bj are de�ned by 
urves lying on an orientable subsurfa
e home-

omorphi
 to Sρ,r, where r ∈ {1, 2} and g = 2ρ + r (Fig. 4). These generators,

together with relations (A1-A10) 
onstitute a presentation of the group M(Sρ,r)
[H5, Theorem 3.1℄. If g is odd, then there are no relations (A9) and (A10), and one


an remove from the presentation the generators bj for j = 0 and j > 1 and rela-

tions (A7, A8). The remaining generators ai, i = 1, . . . , g− 1 and b1 together with
relations (A1-A6) 
onstitute the presentation ofM(Sρ,1) found by Matsumoto [68℄.

If g is even, then one 
ould also rule out bj for j 6= 1. But then in (A9, A10) b g−2

2

would have to be repla
ed by an expression in terms of the generators ai and b1.
Finding su
h an expli
it expression would 
onsiderably simplify our presentation.

The generators ui, i = 1, . . . , g − 1 together with relations (B1, B2) 
onstitute

the well known presentation of the braid group Bg. Thus Theorem 1 says that

M(Ng,1) is isomorphi
 to the quotient of the free produ
t M(Sρ,r) ∗ Bg by the



8

relations (C1-C8). To obtain a presentation of M(Ng,0) we need to add three

more relations.

Twierdzenie 2 (Paris-Szepietowski [H5, Theorem 3.6℄). For g ≥ 4 the group

M(Ng,0) is isomorphi
 to the quotient group obtained by dividing M(Ng,1), with
the presentation given in Theorem 1, by the relations:

(B3) (u1u2 · · ·ug−1)
g = 1,

(B4) (u1u2 · · ·ug−2)
g−1 = 1.

(D) a1(a2a3 · · · ag−1ug−1 · · ·u3u2)a1 = a2a3 · · · ag−1ug−1 · · ·u3u2.

By setting g = 4 in Theorem 2 we obtain a presentation of the group M(N4,0)
di�erent from that given in [H1, Theorem 2.1℄. In [H5, Se
tion 4℄ we show that

these presentations are equivalent, thus performing the base step of the indu
tive

proof of Theorem 2. Thus we 
an say that the paper [H1℄ 
ontains a part of the

proof of Theorem 2.

The proof of Theorems 1 and 2 are indu
tive with respe
t to the genus g, with
Theorem 1 being proved under the assumption that Theorem 2 holds. The proof

of Theorem 2 uses a theorem of K.S. Brown [16℄ whi
h allows for 
omputation of

a �nite presentation of a group a
ting on a simply-
onne
ted CW-
omplex X by

permuting its 
ells, provided that:

• the stabilizer of ea
h vertex of X is �nitely presented;

• the stabilizer of ea
h edge of X is �nitely generated;

• the number of orbits of 
ells of dimension ≤ 2 is �nite.

We apply Brown's theorem to the a
tion of M(N), where N = Ng,0, g ≥ 4, on
the ordered 
omplex of 
urves Cord(N) de�ned in [6℄ similarly as Harvey's 
urve


omplex. Two ordered k-tuples of pairwise disjoint and unisotopi
 simple 
losed


urves on N , (γ1, γ2, . . . , γk) and (γ′1, γ
′
2, . . . , γ

′
k), are equivalent if γi and γ′i are

isotopi
 (as unoriented 
urves) for i = 1, . . . , k. Equivalen
e 
lasses of su
h k-
tuples are (k − 1)-simpli
es of the 
omplex Cord(N). Obtaining a presentation of

M(N) by using its a
tion on Cord(N) requires a 
al
ulation of presentations of

the stabilizers of verti
es, 
hoosing one representative from ea
h orbit of verti
es.

The stabilizer Stab[γ] of a vertex [γ] is very 
lose to the mapping 
lass group of

the 
ompa
t surfa
e Nγ obtained by 
utting N along the 
urve γ. In parti
ular,

one 
an easily obtain a presentation of Stab[γ] from a presentation of M(Nγ),
whi
h 
an in turn be 
omputed re
ursively, as Nγ has smaller genus than N . The

situation is 
ompli
ated by the fa
t that Nγ has nonempty boundary, in 
ontrast

to N .

In [P4℄ I proposed an algorithm, based on the above-mentioned Brown's theorem,

of 
omputing a �nite presentation of M(N). The presentation resulting from this

algorithm is �nite but enormous; it 
ontains re
ursively 
omputed presentations

of stabilizers of verti
es of the 
omplex Cord(N), and many relations 
orresponding

to 
ells of dimension 1 and 2. To obtain an expli
it presentation of M(N) with
reasonable numbers of generators and relations, we need to apply this algorithm

in a subtle way, so that the presentations obtained in the intermediate steps are
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not too big. In [H1℄ this was a
hieved for g = 4, and the ultimate goal, that is

an expli
it �nite presentation of M(Ng) for all g, was rea
hed in [H5℄. Thanks to

having the 
ase g = 4 solved in the earlier paper [H1℄, in [H5℄ we 
ould use the

ground-breaking idea of repla
ing the 
omplex Cord(N) by its sub
omplex build

only from nonseparating 
urves, whi
h is simply-
onne
ted for g ≥ 5. In the


ase g ≥ 7 we used an even smaller sub
omplex, whi
h 
onsiderably redu
ed the

presentation resulting from Brown's theorem.

Starting from the presentation of M(Ng,0) one 
an indu
tively 
al
ulate presen-

tations of M(Ng,n, P ) for arbitrary n and P by a method based on the Birman

exa
t sequen
e, as in the paper [60℄ in the 
ase of orientable surfa
es. Finding

su
h a presentation in the general 
ase is an interesting resear
h 
hallenge.

From the presentations given in Theorems 1 and 2 one 
an quite easily rule out

the generators ui for i > 1. This was done by Stukow [78℄, who obtained in this

way presentations ofM(Ng,1) andM(Ng,0) with smaller numbers of generators and

relations, and by using these presentations he 
omputed the �rst homology group

of M(Ng,n) with 
oe�
ients in H1(Ng,n;Z) for n ≤ 1 [79℄. Re
ently, Omori posted

to the arXiv repository an interesting preprint [72℄, providing in�nite presentations

of the groups M(Ng,1) and M(Ng,0) with very simple relations. Generators in this

presentations are all Dehn twists and all Y-homeomorphisms (also 
alled 
ross
ap

slides and des
ribed below in Se
tion 2.4). The proof of the main result of [72℄

uses Stukow's presentation [78℄, and thus, indire
tly, also Theorems 1 and 2.

It is worth adding that a presentation of M(Ng,n) with only Dehn twists as

generators is impossible. Indeed, the subgroup of M(Ng,n) generated by all Dehn

twists has index 2 [62, 76℄.

2.3. Linear representations and other homomorphisms. [H4℄

The a
tion of the group M(Sg,n) on H1(Sg,Z) preserves the algebrai
 interse
-
tion pairing, whi
h is a symple
ti
 form. The indu
ed surje
tive homomorphism

Φ: M(Sg,n) → Sp(2g,Z),


alled standard symple
ti
 representation, is an important tool in the study of

the mapping 
lass group of an orientable surfa
e. In re
ent years, J. Franks, M.

Handel and M. Korkmaz [23, 57, 58℄ proved that for g ≥ 3 the smallest degree

of a nontrivial representation M(Sg,n) → GL(m,C) is m = 2g, and that the

standard symple
ti
 representation is the unique, up to 
onjugation in C, 
omplex

representation of M(Sg,n) of degree 2g. In the paper [H4℄ I proved analogous

results for the mapping 
lass group of a non-orientable surfa
e.

We say that two group homomorphisms f1, f2 from G to H are 
onjugate if

there exists y ∈ H su
h that f1(x) = yf2(x)y
−1

for all x ∈ G. The image of a

homomorphism f is denoted by Im(f).
Let us �x a double 
overing P : Sg−1 → Ng. By the theorem of Birman and

Chillingworth [9℄, M(Ng) is isomorphi
 to the subgroup of M(Sg−1) 
onsisting of

the orientation preserving lifts of homeomorphisms of Ng. Thus we have an a
tion

of M(Ng) on H1(Sg−1,Z). We denote by Kg the kernel of the homomorphism
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P∗ : H1(Sg−1,Z) → H1(Ng,Z)/Z2 indu
ed by the 
overing P , where Z2 denotes

the torsion subgroup of H1(Ng,Z). The group Kg is invariant under the a
tion of

M(Ng) on H1(Sg−1,Z). Furthermore, Kg and H1(Sg−1,Z)/Kg are free Z-modules

of rank g − 1, and hen
e we obtain two representations of M(Ng) of rank g − 1

Ψ1 : M(Ng) → GL(Kg), Ψ2 : M(Ng) → GL(H1(Sg−1,Z)/Kg),

whi
h, after �xing bases, will be treated as homomorphisms to GL(g − 1,C). It

turns out that they are not 
onjugate, although ker Ψ1 = kerΨ2 [H4, Lemma

4.1℄. The �rst result of the paper [H4℄ says, that g − 1 is the smallest degree of a

nontrivial (nonabelian) representation of M(Ng).

Twierdzenie 3 (Szepietowski [H4, Theorem 1.3℄). Let n ≤ 1, g ≥ 5, m ≤ g − 2
and suppose that f : M(Ng,n) → GL(m,C) is a nontrivial homomorphism. Then

Im(f) is isomorphi
 either to Z2 or Z2 × Z2, and the latter 
ase is possible only

for g = 5 or 6.

The above result was proved by Korkmaz in [57℄ under the additional assumption

that m ≤ g − 3 if g is even. The novelty of Theorem 3 
onsist in the fa
t that it

also 
overs the 
ase m = g−2 for even g. As an appli
ation of Theorem 3 I proved

the following result, whi
h solves Problem 3.3 in [56℄

Twierdzenie 4 (Szepietowski [H4, Theorem 1.4℄). Suppose that g ≥ 5, h < g
and f : M(Ng) → M(Nh) is a nontrivial homomorphism. Then Im(f) is as in

Theorem 3.

The analogous theorem for mapping 
lass groups of orientable surfa
es was

proved by Harvey and Korkmaz [36℄. Theorems 3 and 4 both fail for g = 4,
as I showed that there is a homomorphism from M(N4) to M(N3) ∼= GL(2,Z),
whose image is isomorphi
 to the in�nite dihedral group [H4, Corollary 6.2℄. To


onstru
t su
h a homomorphism I used the presentation of the group M(N4) from
the papers [H1, H5℄.

Suppose that g ≥ 7. Then the abelianization of M(Ng) is isomorphi
 to Z2

[52℄. We denote by ab: M(Ng) → Z2 the 
anoni
al proje
tion and for i = 1, 2
we de�ne Ψ′

i : M(Ng) → GL(g − 1,C) by the formula Ψ′
i(x) = (−1)ab(x)Ψi(x) for

x ∈ M(Ng). The next result of the paper [H4℄ is the following.

Twierdzenie 5 (Szepietowski [H4, Theorem 1.5℄). Let g ≥ 7, g 6= 8 and sup-

pose that f : M(Ng) → GL(g − 1,C) is a nontrivial homomorphism. Then either

Im(f) ∼= Z2, or f is 
onjugate to one of the homomorphisms Ψ1, Ψ
′
1, Ψ2, Ψ

′
2.

For g = 8 I proved analogous theorem [H4, Theorem 1.6℄. In this 
ase we have an

additional homomorphism M(N8) → GL(7,C) related to the fa
t that there is an

epimorphism fromM(N8) onto Sp(6,Z2), and the last group admits an irredu
ible

representation in GL(7,C).

2.4. Level 2 mapping 
lass group. [H2, H3℄

By 
omposing the standard symple
ti
 representation of the group M(Sg) with
the homomorphism of redu
tion modulo m, for some natural m ≥ 2, we obtain a
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surje
tive representation M(Sg) → Sp(2g,Zm), whose kernel is denoted by Γm(Sg)
and 
alled level m mapping 
lass group of the surfa
e Sg. The group Γm(Sg) may

also be des
ribed as the group of isotopy 
lasses of homeomorphisms of Sg indu
ing

the identity on H1(Sg,Zm). Summarising, we have an exa
t sequen
e

1 → Γm(Sg) → M(Sg) → Sp(2g,Zm) → 1.

The groups Γm(Sg) have been intensively studied, among others by Hain [29℄ and

Ivanov [45℄, and from more re
ent results it is worth mentioning the 
omputation

of their abelianization [74, 75℄.

In the 
ase of a nonorientable surfa
e Ng, the algebrai
 interse
tion pairing

on H1(Ng,Z) is de�ned only modulo 2. For this reason it is very natural to


onsider the a
tion of M(Ng) on H1(Ng,Z2) and its kernel Γ2(Ng). The group of

automorphisms ofH1(Ng,Z2) preserving the algebrai
 interse
tion form is denoted,

after Korkmaz [52℄, by Iso(H1(Ng,Z2)). By �xing the standard basis of H1(Ng,Z2)
we have the isomorphism

Iso(H1(Ng,Z2)) ∼= {A ∈ GL(g,Z2) | AA
t = I}.

M
Carthy and Pinkall [69℄, and also Gadgil and Pan
holi [24℄ proved that the map-

ping M(Ng) → Iso(H1(Ng,Z2)) is a surje
tion. We thus have an exa
t sequen
e

1 → Γ2(Ng) → M(Ng) → Iso(H1(Ng,Z2)) → 1.

The papers [H2, H3℄ are devoted to the group Γ2(Ng). For the formulation of their

results, the notion of a Y-homeomorphism is needed.

In 
ontrast to M(Sg), the group M(Ng) is not generated by Dehn twists. This

was proved by Li
korish [61℄, who gave the �rst example of an element of M(Ng)
whi
h is not a produ
t of Dehn twists, namely the Y-homeomorphism, also 
alled


ross
ap slide. Let g ≥ 2 and suppose that α and β are simple 
losed 
urves on

Ng, interse
ting in one point, and su
h that α is one-sided and β two-sided. Let

K ⊂ Ng be a regular neighbourhood of α∪ β, homeomorphi
 to a one-holed Klein

bottle. Denote by M a regular neighbourhood of α, whi
h is a Möbius band. The

Y-homeomorphism Yα,β may be des
ribed as the e�e
t of pushing M on
e along β
keeping ea
h point on the boundary of K �xed, and equal to the identity outside

K (Fig.5).

α
K

β

Yα,β

Figure 5. Y-homeomorphism or 
ross
ap slide.

Li
korish proved that for g ≥ 2 the group M(Ng) is generated by Dehn twists

and one Y-homeomorphism, and the subgroup generated by all Dehn twists has
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index 2 [61, 62℄. We denote by Y(Ng) the subgroup of M(Ng) generated by all

Y-homeomorphisms. It is easy to 
he
k that every Y-homeomorphism indu
es the

identity on H1(Ng,Z2), and hen
e Y(Ng) ⊆ Γ2(Ng). In the paper [H2℄ I proved

the equality Y(Ng) = Γ2(Ng).

Twierdzenie 6 (Szepietowski [H2, Theorem 5.5℄). Let g ≥ 2. An element f ∈
M(Ng) indu
es the identity on H1(Ng,Z2) if and only if f is a produ
t of Y-

homeomorphisms.

In parti
ular, Y(Ng) is a proper subgroup of M(Ng) of �nite index. For I, J ⊆
{1, 2, . . . , g} we denote YγI ,γJ by YI;J , where γI , γJ are the 
urves from Figure

1, provided that these 
urves satisfy the assumptions of the de�nition of a Y-

homeomorphism. I proved that Y(Ng) is the normal 
losure in M(Ng) of one Y-
homeomorphism Y{1};{1,2} [H2, Lemma 3.6℄, whi
h is the produ
t of two involutions

belonging to Y(Ng). Thus I proved the following theorem.

Twierdzenie 7 (Szepietowski [H2, Theorem 3.7 i Corollary 5.7℄). For g ≥ 2 the

group Γ2(Ng) is generated by involutions.

It follows from the last theorem that the abelianization of Γ2(Ng) is a Z2-module.

Sin
e M(Ng) is �nitely generated, so is Γ2(Ng) as a subgroup of �nite index.

Therefore, it is a natural problem to �nd a �nite generating set for Γ2(Ng). I

solved this problem in the paper [H3℄.

Twierdzenie 8 (Szepietowski [H3, Theorem 3.2℄). For g ≥ 3, the group Γ2(Ng)
is generated by the following elements:

(1) Y{i};{i,j} for i ∈ {1, 2, . . . , g − 1}, j ∈ {1, 2, . . . , g}, i 6= j;
(2) Y{i,j,k};{i,j,k,l} for i < j < k < l, if g ≥ 4.

Let us add, for 
ompleteness, that Γ2(N1) = M(N1) = {1} and Γ2(N2) ∼= Z2.

In Theorem 8, every generator Y{i,j,k};{i,j,k,l} of type (2) 
an be repla
ed by

T 2
{i,j,k,l}, where T{i,j,k,l} is Dehn twist about γ{i,j,k,l} [H3, Remark 3.9℄. Note that

there are (g − 1)2 generators of type (1) and

(

g

4

)

generators of type (2). In the

�nal se
tion of the paper [H3℄ I proved that the number of generators of Γ2(Ng)
from Theorem 8 is minimal for g = 3 and 4. The a
tion of M(N3) on H1(N3,Z)
indu
es an isomorphism M(N3) → GL(2,Z), whi
h maps Γ2(N3) on the level 2
prin
ipal 
ongruen
e subgroup of GL(2,Z) [H3, Corollary 4.2℄. The next theorem

says that the number of generators of Γ2(N4) from Theorem 8 is equal to the rank

of the abelianization of this group, and hen
e is minimal.

Twierdzenie 9 (Szepietowski [H3, Theorem 4.3℄). The group H1(Γ2(N4),Z) is

isomorphi
 to Z10
2 .

The proof of Theorem 9 uses Theorems 7 and 8, and also the presentation of

M(N4) from the paper [H1℄. For g > 4 the generating set of Γ2(Ng) from Theorem

8 is not minimal. Hirose and Sato [41℄ showed that it 
ontains a subset of 
ardinal-

ity

(

g+1
3

)

, whi
h also generates Γ2(Ng), and then they proved that H1(Γ2(Ng),Z)
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has rank

(

g+1
3

)

, whi
h is a generalisation of the above Theorem 9. For their 
om-

putation of the abelianization of Γ2(Ng) Hirose and Sato use my Theorems 7 and

8.

The paper [H2℄ 
ontains an important 
onstru
tion of the homomorphism 
ross-


ap pushing map

ψ : π1(Ng−1, x0) → M(Ng),

where Ng−1 is obtained by removing from Ng a Möbius band, and gluing a dis


with a distinguished point x0 in its pla
e. If α ∈ π1(Ng−1, x0) is a homotopy 
lass

represented by a simple 
losed 
urve then ψ(α) is either a Y-homeomorphism if

α is one-sided, or a produ
t of two Dehn twists if α is two-sided. This allows for

obtaining relations in M(Ng) of the form

(1) ψ(αβ) = ψ(α)ψ(β),

where on ea
h side of the equality there are Y-homeomorphisms or Dehn twists,

provided that α, β and αβ are represented by simple 
urves (here the produ
t αβ in

π1(Ng−1, x0) means �rst β, and then α). Certain relations appearing in the �nite

presentations of the groups M(Ng) and M(Ng,1) found in the papers [H5℄ and

[78℄ were obtained in this way, by using the 
ross
ap pushing map. Furthermore,

(1) is one on the de�ning relations in Omori's in�nite presentation [72℄. The


ross
ap pushing map ψ is a basi
 tool for studying Y-homeomorphisms, used in

the papers [H2, H3℄, and also in works of other authors, in
luding [42℄ and the

above-mentioned papers [72, 78℄. I believe that this tool has a big potential, as the

study of Y-homeomorphisms is an important part of the theory of the mapping


lass group of a nonorientable surfa
e.

The group Γ2(Ng) may be seen as 
ertain approximation of the Torelli subgroup

I(Ng) 
onsisting of the elements of M(Ng) indu
ing the identity on H1(Ng,Z).
On the one hand this approximation is very ina

urate as I(Ng) is a subgroup of

Γ2(Ng) of in�nite index. On the other hand however, the �nite generating set of

Γ2(Ng) appearing in Theorem 8 and redu
ed in [41℄ is one of the ingredients of the

proof of the main theorem of the paper [42℄, in whi
h Hirose and Kobayashi found


ertain in�nite generating set of I(Ng). Their result is analogous to the 
lassi-


al theorem of Powell [73℄ about generators of the Torelli group of an orientable

surfa
e. It is worth adding that, as of now, no �nite generating set of I(Ng) is

know.

Theorems 6 and 8 have also been used in the proof of the main theorem of the

paper [40℄ providing a ne
essary and su�
ient 
ondition for a homeomorphism of

a nonorientable surfa
e, embedded in a 
ertain standard way in the 4-sphere S4
,

to extend to a homeomorphism of S4
.
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[P5℄ B. Szepietowski, On the 
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a
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genus, Glasgow Mathemati
al Journal 57 (2015), 211�230.
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es, Revista de la Real A
ademia

de Cien
ias Exa
tas, Físi
as y Naturales, Serie A, Matemáti
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Below I des
ribe the main results of the above papers, starting from those de-

voted stri
tly to mapping 
lass groups. Then I will des
ribe the papers 
on
erning

other subje
ts, written in 
ollaboration with other mathemati
ians, in whi
h I

managed to use my experien
e from the study of the mapping 
lass group. These

are 4 papers on topologi
al 
lassi�
ation of a
tions of �nite groups on surfa
es [P6,

P11, P12, P14℄ and one paper about the 
onne
tivity of the bran
h lo
us of the

moduli spa
e of Klein surfa
es [P10℄.

3.3. Finite index subgroups of the mapping 
lass group of a nonori-

entable surfa
e. [P9℄

By Grossman's theorem [28℄, the group M(Sg,n) is residually �nite, and sin
e

M(Ng,n) is isomorphi
 to a subgroup of M(Sg−1,2n), it is residually �nite as well.

This means that mapping 
lass groups have a ri
h supply of �nite index subgroups.

It is worth remarking that to every su
h subgroup 
orresponds 
ertain �nite degree


overing of the appropriate moduli spa
e. On the other hand, A. J. Berri
k, V.

Gebhardt and L. Paris [8℄ proved that for g ≥ 3 the minimum index of a proper

subgroup of M(Sg,n) is 2g−1(2g − 1). More spe
i�
ally, it is proved in [8℄ that

M(Sg,n) 
ontains a unique subgroup of index m−
g = 2g−1(2g−1) up to 
onjugation,

a unique subgroup of index m+
g = 2g−1(2g + 1) up to 
onjugation, and all other

proper subgroups of M(Sg,n) have index stri
tly greater than m+
g (and at least

5m−
g if g ≥ 4).
For g ≥ 2 the minimum index of a proper subgroup of M(Ng,n) is 2, and if

g ≥ 7 then the subgroup generated by all Dehn twists, denoted by T (Ng,n), is the
unique subgroup of M(Ng,n) of index 2. Suppose that g ≥ 7, n ∈ {0, 1} and set

h = ⌊(g − 1)/2⌋. Let G denote either M(Ng,n) or T (Ng,n). In [P9, Theorem 1.1℄

I proved that G 
ontains a unique subgroup of index m−
h = 2h−1(2h − 1) up to


onjugation, a unique subgroup of index m+
h = 2h−1(2h + 1) up to 
onjugation,

and all other proper subgroups of G have index stri
tly greater than m+
h (and at

least 5m−
h if h ≥ 4). In parti
ular, the minimum index of a proper subgroup of

T (Ng,n) is m
−
h .

For 2 ≤ g ≤ 6 the minimum index of a proper subgroup of T (Ng,n) is 2. For

g ∈ {5, 6} I proved [P9, Theorem 4.1℄, that T (Ng,n) 
ontains a unique subgroup

of index 2, two subgroups of index m−
2 = 6 and one subgroup of index m+

2 = 10
up to 
onjugation, and all other proper subgroups of T (Ng,n) gave index greater

than 10. Sin
e the abelianization of T (N4,0) is isomorphi
 to Z × Z2 [76℄, every

positive integer is the index of some subgroup of T (N4,n).

3.4. Embeddings of the braid group in mapping 
lass groups. [P7℄

When two two-sided simple 
losed 
urves α, β on a surfa
e F do not interse
t,

then the 
orresponding Dehn twists 
ommute: TαTβ = TβTα; whereas if α and β
interse
t in one point, then the twits satisfy inM(F ) the braid relation: TαTβTα =
TβTαTβ (provided that the dire
tions of the twists agree at the interse
tion point.

Thus, to ea
h 
hain α1, α2, . . . , αn−1 of two-sided simple 
losed 
urves on F , where
αi∩αj = ∅ for |i− j| > 1 and αi interse
ts αi+1 in one point for i = 1, 2, . . . , n−2,
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orresponds a homomorphism from the braid groupBn on n strands to the mapping


lass group M(F ). Su
h a homomorphism is in general inje
tive. The paper [P7℄

was motivated by a question of B. Wajnryb [87℄ about existen
e of �nongeometri
�

embeddings Bn → M(F ), su
h that the images of the standard generators of

Bn are not Dehn twists. In the paper [P7℄ I proved that mapping the standard

generators of Bg on the 
ross
ap transpositions ui (Fig. 3), i = 1, . . . , g−1 de�nes

an embedding

ϕ : Bg → M(Ng,1).

In the same paper I extended the theorem of Birman and Chillingworth to sur-

fa
es with boundary by proving that M(Ng,n) is isomorphi
 to a subgroup of

M(Sg−1,2n), whi
h allowed for de�ning

ψ : Bg → M(Sg−1,2)

by lifting the ui from Ng,1 to the double 
over Sg−1,2. Both embeddings ϕ and

ψ have the property that the images of the standard generators of Bn are not

Dehn twists. Bödigheimer and Tillmann [11℄ proved that the embedding ψ in-

du
es the zero map between the homology groups of positive degrees, as long as

the genus of the underlying surfa
e is large enough relative to the degree. Also the

standard geometri
 embeddings have this property, as well as some other nongeo-

metri
 embeddings of the braid group in the mapping 
lass group of an orientable

surfa
e des
ribed in [11℄. In 
ontrast, the map ϕ∗ : Hk(Bg;Z2) → Hk(M(Ng,1);Z2)
indu
ed by the embedding ϕ is inje
tive for g ≥ 7 and 0 < k ≤ g/3 [11℄.

3.5. Dehn twist as a 
ommutator. [P5℄

The subgroup of a group G generated by all 
ommutators [a, b] = aba−1b−1
,

a, b ∈ G is denoted by [G,G]. For x ∈ [G,G] let clG(x) denote the smallest

number k su
h that x is a produ
t of k 
ommutators, and let sclG(x) be the limit

sclG(x) = lim
n→∞

cl(xn)

n
.

The numbers clg(x) and sclG(x) are 
alled respe
tively the 
ommutator length and

the stable 
ommutator length of the element x in the group G.
Suppose that S is a 
losed orientable surfa
e of genus g ≥ 3. The mapping 
lass

group M(S) is perfe
t, i.e. [M(S),M(S)] = M(S) [73℄. Let α be a simple 
losed


urve on S, not 
ontra
tible to a point, and let Tα be Dehn twist about α. Then
clM(S)(Tα) = 2 [59℄ and sclM(S)(Tα) ≥

1
18g−6

[20, 54℄. In parti
ular, the sequen
e

clM(S)(T
n
α ), n ∈ Z is unbounded. The extended mapping 
lass group M⋄(S) is

de�ned as the group of isotopy 
lasses of all homeomorphisms of S, in
luding
those reversing orientation. In the paper [P5℄ I proved that T n

α is equal to a single


ommutator of elements of M⋄(S) for every n ∈ Z. Hen
e clM⋄(S)(T
n
α ) = 1 and

sclM⋄(S)(Tα) = 0.
Suppose that N is a 
losed nonorientable surfa
e of genus g ≥ 7. Then we

have [M(N),M(N)] = T (N) = [T (N), T (N)], where T (N) is the subgroup of

M(N) of index 2 generated by all Dehn twists [52℄. In the paper [P5℄ I proved
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that clM(N)(T
n
α ) = 1 for every two-sided simple 
losed 
urve α on N and all n ∈ Z,

and under 
ertain additional assumptions about α and N also clT (N)(T
n
α ) = 1.

3.6. Growth fun
tion and density of pseudo-Anosov elements in the

mapping 
lass group of the proje
tive plane with 3 pun
tures. [P8℄

A group G with a �xed generating set A 
an be equipped with a metri
 
alled

word metri
. In this metri
, the length of an element x is the minimum number

of fa
tors needed to express x as a produ
t of generators from the set A. For any
subset X of G we 
an de�ne a power series, whose 
oe�
ient an is equal to the

number of elements of X of length n. This series is 
alled growth series, and the

fun
tion it de�nes is 
alled growth fun
tion. Density of the set X is de�ned as the

limit

lim
n→∞

|B(n) ∩X|

|B(n)|
,

where B(n) denotes the set of elements of G of length at most n.
Let N be a nonorientable surfa
e with a �nite set P of distinguished points

(pun
tures). The pure mapping 
lass group PM(N,P ) is de�ned as the group of

isotopy 
lasses of homeomorphisms of N �xing every point of P and preserving

lo
al orientation in every point of P . In the paper [P8℄ I 
onsider the group

PM(N,P ), where (N,P ) is the proje
tive plane with 3 pun
tures, equipped with

the word metri
 indu
ed by a 
ertain �xed generating set. I 
omputed the growth

fun
tions of the sets of redu
ible and pseudo-Anosov elements. These fun
tions

turned out to be rational. I also proved that the set of pseudo-Anosov elements

has density 1.
Analogous results were obtained in [2℄ for the sphere with 4 pun
tures, and in

[81℄ for the torus. The des
ribed results give a partial answer to Question 3.13

and 
on�rm Conje
ture 3.15 in [22℄ in a spe
ial 
ase.

3.7. Other papers devoted to the mapping 
lass group of a nonorientable

surfa
e. [P1-P4,P13℄

The paper [P1℄ 
ontains the main results of my master thesis, whereas the papers

[P2, P3, P4℄ are the 
ore of my Ph.D. thesis, although [P4℄ appeared two years

after my Ph.D.

Let Ng denote a 
losed nonorientable surfa
e of genus g ≥ 3. In the paper [P1℄

I proved that the mapping 
lass group M(Ng) is generated by involutions. As

an important appli
ation of this result, I proved simple 
onne
tivity of the mod-

uli spa
e M(Ng) of Klein surfa
es homeomorphi
 to Ng, following the proof of

simple 
onne
tivity of the moduli spa
e of Riemann surfa
es given by Ma
la
hlan

[64℄. In [P2℄ I proved that the group M(Ng, P ), where P is a �nite set of dis-

tinguished points on Ng, is also generated by involutions. In [P3℄ I proved that

M(Ng) is generated by three elements, and also is generated by four involutions.

The paper [P3℄ was inspired by the arti
les [13, 50, 55, 84℄ 
ontaining similar re-

sults for the mapping 
lass group of an orientable surfa
e. In [P4℄ I proposed a

re
ursive algorithm for obtaining a �nite presentation of the mapping 
lass group
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M(Ng,n) by using its a
tion on the 
urve 
omplex. This algorithm was used in

the papers [H1, H5℄. In [P4℄ I found �nite presentations of the groups M(Ng,n)
for (g, n) ∈ {(1, 3), (1, 4), (2, 2), (2, 3), (3, 1)}. For these surfa
es the 
urve 
omplex

is not simply 
onne
ted.

In the paper [P13℄, as yet unpublished, we proved, jointly with F. Atalan, that

if N is a 
losed nonorientable surfa
e of genus g ≥ 5 with a �nite (possibly empty)

set of distinguished points P , then every automorphism of the group M(N,P ) is
inner. Analogous theorem for the mapping 
lass group of an orientable surfa
e

is due to Ivanov [44℄. He prove that if S is an orientable surfa
e of genus g ≥ 3
with a �nite set of distinguished points P , then every automorphism of M(S, P )
is indu
ed by a homeomorphism of S, not ne
essarily orientation preserving one.

3.8. Topologi
al 
lassi�
ation of �nite group a
tions on 
ompa
t suraf
es.

[P6, P11, P12, P14℄.

By an a
tion of a group G on a surfa
e F we understand an embedding of G in

Homeo(F ), and two su
h a
tions are 
alled topologi
ally equivalent if their images

are 
onjugate in Homeo(F ). Classi�
ation of �nite group a
tions on 
ompa
t

surfa
es up to topologi
al equivalen
e is a 
lassi
al problem, going ba
k to Nielsen,

with a vast literature, espe
ially in the 
ase of orientable surfa
es.

In the papers [P6, P11, P12, P14℄ we use the methods of 
ombinatorial theory

of noneu
lidean 
rystallographi
 groups, NEC groups in short, whi
h are dis
rete

and 
o
ompa
t subgroups of the group of isometries of the hyperboli
 plane H,

initiated by Ma
beath [63℄. An a
tion of a �nite group G on a 
ompa
t surfa
e F
of negative Euler 
hara
teristi
 
an be realised by an analyti
 or dianalyti
 a
tion,

with respe
t to some stru
ture of a Riemann or Klein surfa
e on F . This means

that su
h an a
tion 
an be de�ned by a smooth epimorphism θ : Λ → G, where
Λ is a 
ertain NEC group, and whose kernel is also a NEC group, torsion-free if

F is 
losed, or 
ontaining no orientation preserving isometries of �nite order if

F is a surfa
e with boundary. The point is, that the topology of the a
tion of

G is determined by algebrai
 features of θ and Λ. Thus, in the study of �nite

group a
tions we 
an restri
t ourselves to algebra and 
ombinatori
s, and forget

about the analyti
 aspe
ts. In this language, two a
tions of a group G on F
are topologi
ally equivalent if and only if the 
orresponding smooth epimorphisms

θi : Λi → G, i = 1, 2, �t in the 
ommutative diagram

(2)

Λ1
θ1−−−→ G





y

α





y

β

Λ2
θ2−−−→ G

where α and β are 
ertain isomorphisms. To tell if two given smooth epimorphism

Λ → G de�ne topologi
ally equivalent a
tions, we thus need to know the group

of automorphisms of the NEC group Λ. At this point we use a 
lose relationship

between the group Out(Λ) of outer automorphisms of Λ and appropriately de-

�ned mapping 
lass group M(H/Λ) of the orbifold H/Λ. Knowing generators of
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M(H/Λ) we 
an easily obtain generators of Out(Λ), and if the order of the group

G is large enough relative to the genus of the surfa
e, then the groups M(H/Λ)
are Out(Λ) �nite, whi
h allows for an e�e
tive study of topologi
al equivalen
e of

group a
tions given by smooth epimorphisms.

The series of papers [P11, P12, P14℄ is devoted to a
tions of �nite 
y
li
 groups

of big order on 
losed surfa
es . At the end of the XIX 
entury Wiman [89℄

proved that the order of an orientation-preserving automorphism of a Riemann

surfa
e of genus g ≥ 2 is at most 4g + 2, and Harvey [33℄ proved that this bound

is attained for all g ≥ 2. Analogous results about the maximum orders of an

orientation-preserving periodi
 homeomorphism and a periodi
 homeomorphism of

a nonorientable surfa
e were obtained in the papers [17, 21, 88℄. A natural question

is to what extent the order of a periodi
 homeomorphism of a surfa
e determines

its 
onjuga
y 
lass. In the 
ase of orientation-preserving homeomorphisms of Sg it

was known that the order determines the 
onjuga
y 
lass, as long as this order and

the genus g are large enough [4, 39℄. In the papers [P11℄ and [P12℄ we 
onsider

the analogous problem respe
tively for homeomorphisms of Ng, g ≥ 3 and for

orientation-reversing homeomorphisms of Sg, g ≥ 2. In [P11℄ (respe
tively [P12℄ )

we 
omputed the numbers of topologi
ally inequivalent a
tions of a 
y
li
 group Zn

on Ng (resp. on Sg 
ontaining orientation-reversing homeomorphisms), depending

on the type of the orbifold Ng/Zn, for n > g − 2 (resp. Sg/Zn, for n > 2g −
2). In parti
ular, we proved that the a
tions of maximal order are unique up

to topologi
al equivalen
e, with the ex
eption of a non-orientable surfa
e of even

genus g, on whi
h we have two di�erent topologi
al types of an a
tion of maximal

order n = 2g. It worth emphasising that although in the theorems stated in

[P11, P12℄ we give only the numbers of topologi
al types of a
tions of big order,

in the proofs we obtain the 
orresponding smooth epimorphisms, and thus we

obtain their topologi
al 
lassi�
ation. The paper [P14℄, in preparation, 
ontains

analogous 
lassi�
ation of Zn-a
tions on surfa
es with boundary, su
h that n >
p− 2, where p is the algebrai
 genus of the surfa
e. In parti
ular, we 
lassify the

a
tions realizing the solutions of the so 
alled minimal genus and maximal order

problems for surfa
es with boundary, found thirty years ago in [18℄.

In the paper [P6℄ we 
lassi�ed, up to topologi
al equivalen
e, all a
tions of

groups of �nite order at least 6 on 
ompa
t surfa
es with boundary of algebrai


genus p for 2 ≤ p ≤ 6. In the 
ase of orientable surfa
es without boundary, the

analogous 
lassi�
ation was 
arried out for surfa
es of genus 2 and 3 by Broughton

[15℄ and 4 by Bogopolski [10℄ and Kimura [51℄. In order to �nd all possible smooth

epimorphisms Λ → G for a given group Λ, we used here the 
omputer software

MAGMA. For p = 5 and 6 we obtained respe
tively 273 and 216 nonequivalent

a
tions. In [P6, Se
tion 3℄ we 
onsider also a
tions of groups of order smaller than

6, but they are too numerous for a 
omplete 
lassi�
ation. Instead, for every group

of order at most 5 we found all topologi
al types of bordered surfa
es of any genus

on whi
h this group a
ts. We also obtained the analogous result for all groups of

prime order.
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As I already wrote in the introdu
tion, to every 
ompa
t Klein surfa
e fun
-

torially 
orresponds 
ertain proje
tive real algebrai
 
urve, usually understood as

a 
omplex 
urve de�ned by a real equation. In view of this 
orresponden
e, the

results obtained in the papers [P6, P11, P14℄ 
an be interpreted as a topologi
al


lassi�
ation of �nite group a
tions on real 
urves.

3.9. Bran
h lo
us of the moduli spa
e of nonorientable Klein surfa
es.

[P10℄

Let F be a 
losed surfa
e of negative Euler 
hara
teristi
. The moduli spa
e

M(F ) of Riemann or Klein surfa
es homeomorphi
 to F is the orbit spa
e of a

properly dis
ontinues a
tion of the mapping 
lass group M(F ) on the Tei
hmüller

spa
e Teich(F ). Sin
e Teich(F ) is a manifold, homeomorphi
 to a ball in an eu-


lidean spa
e, M(F ) has the stru
ture of an orbifold. The singular points of M(F )

orrespond to Riemann or Klein surfa
es admitting nontrivial automorphisms. The

set of all singular points of M(F ) is 
alled bran
h lo
us and is denoted by B(F ).
The study of the bran
h lo
us B(Sg) of the moduli spa
e of Riemann surfa
es of

genus g ≥ 2 is a 
lassi
al problem, whose history goes ba
k to the 1960s. The vast

literature devoted to this subje
t 
ontains a series of papers about 
onne
tivity of

B(Sg). The �nal result is that B(Sg) is a 
onne
ted subset of M(Sg) if and only if

g ∈ {3, 4, 7, 13, 17, 19, 59} [5℄.

In the paper [P10℄ we study the bran
h lo
us B(Ng) of 
losed nonorientable

Klein surfa
es of genus 3 ≤ g ≤ 5. As the main result we proved that B(Ng) is
a 
onne
ted subset of M(Ng) for g = 4 and g = 5. Conne
tivity of B(N3) was

already known. It follows from the fa
t that all Klein surfa
es of genus 3 are

hyperellipti
, and hen
e they admit a nontrivial automorphism.

Similarly as in [5℄, our proof of 
onne
tivity of B(Ng) is based on a well know

strati�
ation of the moduli spa
e, des
ribed for example in [14, 34℄. With respe
t

to this strati�
ation, B(Ng) is the union of 
ertain 
onne
ted subsets of M(Ng),

orresponding to topologi
al equivalen
e 
lasses of �nite group a
tions onNg. Thus

the study of 
onne
tivity of B(Ng) is related to the subje
t des
ribed in Se
tion

3.8. This resear
h thread should be 
ontinued, in order to �nd all values of g, for
whi
h B(Ng) is a 
onne
ted subset of M(Ng).

4. Resear
h plans

I 
lose this autopresentation with a des
ription of my resear
h plans in a long

time perspe
tive, fo
using on the initial steps of ea
h parti
ular thread, where I

already have some quite 
on
rete ideas and plans. I will mainly 
ontinue my work

on the mapping 
lass group of a nonorientable surfa
e, in the dire
tions partially

outlined in the des
ription of my s
ienti�
 a
hievements. I am also thinking about

expanding my resear
h area to natural appli
ations, requiring various skills and

tools. Therefore I am 
ounting on a parti
ipation of 
ollaborators in the realisation

of parti
ular goals, having the preliminary 
onsent of many of them. This will

mainly be a 
ollaboration within the existing resear
h group in my home University

of Gda«sk (�rst of all G. Gromadzki and M. Stukow). The proje
t also assumes
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parti
ipation of future Ph.D. students, and its ultimate goal is the foundation

of a resear
h group working on a few broad subje
ts based on the knowledge of

mapping 
lass groups of surfa
es.

4.1. The Torelli group of a nonorientable surfa
e. One of the most impor-

tant subgroups of the mapping 
lass group of a surfa
e F is the Torelli subgroup

I(F ) 
onsisting of the isotopy 
lasses of homeomorphisms indu
ing the identity

on H1(F,Z). In the 
ase of an orientable surfa
e, the basi
 results and tools of

the study of the Torelli subgroup are due to D. Johnson [47, 48, 49℄. Very little

is known about the Torreli group of a nonorientable surfa
e. The �rst signi�
ant

result about I(N) was obtained only re
ently by Hirose and Kobayashi [42℄, who

found 
ertain generating set of I(N). This set is in�nite and one of my goals will

be to �nd a �nite generating set of I(N) and to develop, in the nonorientable

setting, an analogue of Johnson's theory of the group I(S). One of the �rst spe-

i�
 goals will be the de�nition of �Johnson's homomorphism� for I(N), as a step

towards the 
omputation of the abalianization of this group in a longer perspe
-

tive. It seems that the this goal 
an be approa
hed in the spirit of the paper [H4℄,

using the orientable double 
over Sg−1 → Ng. By Gastesi's theorem [25℄, whi
h


an be obtained as a 
orollary from my Lemma 4.1 in [H4℄, I(Ng) is isomorphi


to a subgroup of I(Sg−1), and hen
e we 
an restri
t the Johnson's homomorphism

de�ned on I(Sg−1) to a homomorphism I(Ng) → ∧3H1(Sg−1,Z). The natural

questions appear, about the image and generators of the kernel of the above ho-

momorphism. I will also try to de�ne the Johnson's homomorphism for I(N)
without referring to orientable surfa
e. It is worth remarking that Hirose and Sato

[41℄ used the Johnson's homomorphism modulo 2, de�ned on the level 2 mapping


lass group Γ2(N) of a nonorientable surfa
e, in their 
omputation of the abelian-

ization of that group, where I also have my own experien
e and from the papers

[H2, H3℄. For April 2016 I am planning a one week long visit to the University of

Tokyo, at the invitation of professor Nariya Kawazumi and entirely funded from

his grant. Professor Kawazumi is an expert on Johnson's homomorphism and I

am 
onvin
ed that a dis
ussion with him will be inspiring. In short, I am 
ounting

on a 
ollaboration with experts like S. Hirose and N. Kawazumi in this thread.

4.2. Torsion generators. It is known that the mapping 
lass group of a 
losed

surfa
e is generated by elements of �nite order. An important property of su
h

elements is that they 
an be represented by 
onformal automorphisms of a Riemann

surfa
e, with respe
t to some analyti
 stru
ture, whi
h allows their analysis by

methods of hyperboli
 geometry and 
ombinatorial group theory, thanks to the

Riemann uniformization theorem. This is a very powerful method, by whi
h C

Ma
la
hlan proved simple 
onne
tivity of the moduli spa
e of 
omplex algebrai



urves [64℄, and I obtained in [P1℄ an analogous result for purely imaginary real

algebrai
 
urves (these are 
omplex 
urves having real equations but no R-rational

points). In this subje
t I also have some experien
e from my Ph.D. thesis. In the

paper [P3℄ I proved that for g ≥ 3 the group M(Ng) is generated by 4 involutions,
and also is generated by 3 elements, two of whi
h have in�nite order. It is an
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open question, whether this group is generated by 2 elements or by 3 involutions.

Another question whi
h I would like to answer is whether M(Ng) is generated by

elements of maximal �nite order. If yes, then what is the minimum number of

su
h generators? This question is motivated by a theorem of Korkmaz [55℄, who

proved that the group M(Sg) is generated by 2 elements of maximal �nite order

4g + 2. This thread does not have a high priority for me personally, but I think

that it 
ould be a good material for a future Ph.D. student supervised by me.

4.3. Simpli
ial 
omplexes asso
iated with nonorientable surfa
es. By the

famous theorem of Ivanov [44℄, the group of automorphisms of the 
urve 
omplex

C(S) on an orientable surfa
e S is isomorphi
 to the extended mapping 
lass group

M⋄(S). This theorem has been generalized to various other simpli
ial 
omplexes

asso
iated to an orientable surfa
e, and re
ently also to the 
ase of a nonorientable

surfa
e [2℄. The last result is a motivation for the study of automorphisms and

geometri
 properties of various 
omplexes whi
h 
an be asso
iated with a nonori-

entable surfa
e. I have on mind mainly some natural sub
omplexes of the 
urve


omplex, su
h as, for example, the 
omplex of separating 
urves, one-sided 
urves

with nonorientable 
omplement, 
urves representing a �xed homology 
lass. This

again, in my opinion, 
an be a good material for a future Ph.D. thesis under my

supervision.

4.4. 3-dimensional manifolds - �nite group a
tions on handlebodies. Tak-

ing up the subje
t of 3-dimensional manifolds is for me a natural step, 
onsidering

the role of mapping 
lass groups of surfa
es in this theory (it is enough to men-

tion the Heegaard splittings or the open book de
ompositions of 3-manifolds). In

the �rst pla
e I will fo
us my attention on handlebodies, where I will 
onsider also

nonorientable handlebodies obtained by atta
hing twisted handles to a 3-ball. One

of the long term goals of this resear
h tread is the development of new methods

of 
onstru
tion and 
lassi�
ation of �nite group a
tions on handlebodies. This is

a 
lassi
al subje
t with a vast literature in the orientable 
ase. I am going to try

my hand at this subje
t, in
luding also the 
ase of nonorientable manifolds, using

the experien
e from my work on �nite group a
tions on surfa
es (Se
tion 3.8) and


ontinuing the fruitful 
ollaboration with G. Gromadzki. In the realization of this

proje
t I am also 
ounting on a 
ollaboration with M. Stukow, who is an expert on

the mapping 
lass group of a nonorientable surfa
e like me, and also R. Hidalgo

from Chile, who is an expert on S
hottky groups.

We will look for an algebrai
 
riterion that 
ould be used to answer two kinds

of questions. First, whether an a
tion of a �nite group G on a 
losed surfa
e F ,
given by a smooth epimorphism (as des
ribed in Se
tion 3.8), extends to an a
tion

on a handlebody whose boundary is F ? Se
ondly, when two di�erent extensions

of the same a
tion are topologi
ally 
onjugate? Our �rst task, whi
h we treat as

a testing ground, will be a 
lassi�
ation, up to topologi
al 
onjugation, of �nite

group a
tions on orientable handlebodies of low genus 2, 3 and 4. The staring

point for this task is the 
lassi�
ation, up to isomorphism, of �nite groups a
ting

on su
h handlebodies, found in [71℄, as well as the results 
on
erning the topologi
al
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lassi�
ation of �nite group a
tions on 
losed orientable surfa
es of genera 2, 3 and

4 due to Broughton [15℄, Kimura [51℄ and Bogopolski [10℄, who has expressed his

interest in parti
ipation in this task. The involvement of O. Bogopolski, who is an

outstanding expert in the 
ombinatorial group theory, is important for our plans

of extension, to the nonorientable setting, of the 
lassi
al method of 
onstru
ting

a
tions on handlebodies of the fundamental group of a graph of groups, due to D.

M
Cullough, A. Miller and B. Zimmermann [71℄.

4.5. Mapping 
lass group of a nonorientable handlebody. Another goal of

global nature is the study of algebrai
 properties of the mapping 
lass of a nonori-

entable handlebody, whose boundary is a nonorientable surfa
e of even genus.

Examples of spe
i�
 tasks in
lude obtaining a �nite generating set of this group,

and then a �nite presentation, by methods similar to those that led to analogous

results for orientable handlebodies [80, 85℄, and by using the experien
e from my

work on presentations of mapping 
lass groups of surfa
es. Also in this thread I

am 
ounting on a fruitful 
ollaboration with S. Hirose, already initiated during his

visit to Gda«sk in June 2015. This subje
t is essentially 
ompletely new, and I

think that there is also a lot of spa
e for a future Ph.D. student.
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