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2.1. Introduction.

The mapping class group of a compact connected nonorientable surface N, de-
noted by M(N), is the group of isotopy classes of homeomorphisms of N equal to
the identity on the boundary ON if it is non-empty:

M(N) = Homeo(N, ON) /Homeoy (N, ON).

Here Homeoy(N,ON) denotes the subgroup of Homeo(N,0N) consisting of the
homeomorphisms isotopic to the identity, and by an isotopy we understand a ho-
motopy H: N x [0,1] — N such that H(—,t) € Homeo(N,0N) for ¢ € [0,1]. The
mapping class group of a compact connected orientable surface is defined analo-
gously as the group of isotopy classes of orientation preserving homeomorphisms:

M(S) = Homeo™ (S, dS) /Homeoy (S, AS).

When a finite set P of points is distinguished on the surface, then in the above
definition we additionally assume that all homeomorphisms permute P, and we
denote the mapping class group by M(N, P) or M(S, P).

A compact connected surface for which we neither assume that it is orientable
nor nonorientable will be denoted by F', and its mapping class group by M(F’) or
M(F, P) in case of distinguishes points. We will also use the notation N, Syn,
F, , for a surface of genus g with n boundary components, dropping n if n = 0.
Thus Ny, denotes a surface homeomorphic to the connected sum of g projective
planes, from which the interiors of n pairwise disjoint discs have been removed.

Mapping class group plays a remarkably important role in low-dimensional
topology (including the theory of 3- and 4-dimensional manifolds), the theory of
functions of a complex variable, algebraic geometry and geometric group theory. It
attracts great interest of many mathematicians and is an object of intense studies
uninterruptedly for more than fifty years. Nevertheless, there are still many open
problems related to this group.

The study of mapping class group was initiated in the 1920s independently by M.
Dehn and J. Nielsen; but the truly dynamic development of this theory begun only
in the 1960s and was propelled over the next decades by ground-breaking works
of mathematicians such as W. B. R. Lickorish, J. S. Birman, W. P. Thurston,
J. L. Harer, N. V. Ivanov, D. Johnson, B. Wajnryb. Theorems and methods
developed by these authors are to this day basic tools in this field. Moreover, some
of these methods, especially those coming from Thurston, have been successfully
applied in the study of other, related groups, like the braid group and the group
of automorphisms of a free group.

One of the reasons for the great importance of the group M(S,) is its role
in the construction of the moduli space of Riemann surfaces, where this group
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acts properly discontinuesly as the full isometry group of the Teichmiiller space
Teich(S,), and the orbit space M(S,) = Teich(S,)/M(S,) of this action is the
above-mentioned moduli space of compact Riemann surfaces of genus g (g > 2), a
central object of the theory of functions of a complex variable and the theory of
algebraic curves. By allowing antyholomorphic transition functions between charts
one obtains the notion of a dianalitic structure of Klein surface on a nonorientable
surface IV,. This concept was already considered by Klein himself. Its systematic
description can be found in the modern monograph [1], and the methodology of
their study was developed in [18]. The moduli space 2 (V,) of such structures
is again the orbit space of the action of the mapping class group M(N,) on the
Teichmiiller space Teich(N,).

Every compact Klein surface is the orbit space S/(c) for a unique pair (S, 0),
where S is a Riemann surface, and o: S — S its symmetry, that is an anty-
holomorphic involution. Under the well known functorial bijective correspondence
between compact Riemann surfaces and smooth, irreducible, complex projective
curves, symmetric surfaces correspond to curves having real equations. A pair
(S,0) is usually called a real algebraic curve [1].

Since Teich(F') is a manifold (homeomorphic to a ball in an euclidean space),
M(F) has the structure of an orbifold, whose singular points correspond to Rie-
mann or Klein surfaces having nontrivial automorphisms. The group M(F') en-
codes most of the topological features of the space 9¥(F') and conversely, invariant
such as the homology of M(F') are determined by the topology of M(F'). As ex-
amples of the above relationship let us mention the proofs of simple connectivity
of the moduli spaces of Riemann and Klein surfaces [64], [P1], Harer’s theorem
[31] on stability of the (co)homology groups of M(S) and 9(S), or the Madsen-
Weiss theorem [65] proving the Mumford’s conjecture about the stable cohomology
groups of M(S). Analogous theorems for nonorientable surfaces were proved by
N. Wahl [82].

The second, after the Teichmiiller space, fundamental object on which the group
M(F') acts is the curve complex C(F) defined by Harvey [35]. It is a simplicial
complex, whose k-simplices are the isotopy classes of families of £ 4+ 1 pairwise
disjoint and pairwise nonisotopic simple closed curves on F'. This complex pays a
key role in the works of Harer [31, 32|, Ivanov [43] and Wahl [82] concerning the
(co)homology of M(F). After the proof of the hyperbolicity of C(S) by Masur and
Minsky [66], the study of the mapping class group acquired a new dynamism. In
our nonorientable case, the hyperbolicity of the curve complex C(N) was proved
by Bestvina and Fujiwara |7] using the work of Bowditch [12], and also by Masur
and Schleimer |67] by a different method. The involvement of the authors of this
class in the studies indicates the rank of this subject. In the papers [H1, H5| we
used the action of M(NN) on the curve complex to find a finite presentation for
this group.

The first papers devoted entirely to the mapping class group of a nonorientable
surface were written already in the 1960s by Lickorish |61, 62|, Chillingworth [19]
and Birman-Chillingworth [9]. Then there was a thirty years long stagnation ended
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by the papers of Korkmaz |52, 53|, and from that moment on the subject of the
mapping class group of a nonorientable surface enjoys an increasing interest.

Every nonorientable surface N admits a covering of degree 2 by an orientable
surface S. By the theorem of Birman and Chillingworth [9], the group M(N) is
isomorphic to the subgroup of M(S) of infinite index consisting of the elements
commuting with the covering involution. As a consequence of this relationship,
some properties of M(S) automatically pass to M(N) - for example all kinds
of residual properties. On the other hand, infiniteness of the index is a serious
obstacle in problems such as, for examaple, finding a finite presentation. Thus,
although the theorem of Birman-Chillingworth is very important, its usefulness is
rather limited. Furthermore, many results about M(.S) use the orientability in a
fundamental way, so that their simple adaptation for the case of a nonorientable
surface is impossible and new ideas are needed.

Many important theorems about M(S) have got their counterparts for a nonori-
entable surface proven, like the above-mentioned theorems of Harer, Madsen-Weiss
and Masur-Minsky, or the no less famous theorem of Ivanov [46] about the auto-
morphism group of C(S), which has been recently transplanted to nonorientable
surfaces by Atalan and Korkmaz [3|. Until recently, one of the major exceptions
to the above rule was Wajnryb’s theorem |83, 86| providing a simple presentation
for M(S) by generators and relations. The lack of such a presentation for the
group M(F') was filled in the paper [H5|, which I consider as my most important
achievement.

I close this introduction with a short description of my main results obtained in
the papers [H1-H5]|, in order of their importance in my opinion.

e The papers |H1, H5| are devoted to the problem of finding a finite pre-
sentation for the groups M(N,,). In [H1] I found such a presentation for
(g,n) = (4,0), and in [H5|, jointly with L. Paris, for n € {0,1} and all g
such that ¢ +n > 3. In the problem of obtaining finite presentations for
M(N,,,) the most significant case is n = 0, because starting from a presen-
tation of M(N, () one can inductively calculate presentations of M(N, )
for all n» by a method based on the Birman exact sequence, as in the paper
[60] in the case of orientable surfaces.

e In the paper [H4| I described all nontrivial homomorphisms M(N,) —
GL(m,C) for g > 5 and m < g—1. In this way I extended, to the case of a
nonorientable surface, the results recently obtained by J. Franks, M. Han-
del and M. Korkmaz, and completed the understanding of low-dimensional
linear representations of mapping class groups of surfaces. The paper |H4|
represents a significant contribution towards such understanding, because
for nonorientable surfaces the situation is more complicated than for ori-
entable ones. As an application, I proved that for h < g and g > 5 any
nontrivial homomorphism M(N,) — M(N},) has the image isomorphic to
Zs or Zo X Zs, where the latter case is possible only for g € {5,6}.



FIGURE 1. The curve v; for I = {iy,ia,...,ix}.

e The papers |H2, H3| are devoted to the level 2 mapping class group, denoted
by I's(V,) and defined as the subgroup of M(N,) consisting of the isotopy
classes of homeomorphisms inducing the identity on Hy(Ny, Zs). In [H2| I
proved that I'y(NN,) is generated by so-called Y-homeomorphisms defined
by Lickorish in 1963, and also that it is generated by involutions (elements
of order 2). In [H3] I found a finite generating set for this group.

In the following I will describe the above results in more detail, on the back-
ground of works of other authors.

2.2. Presentation by generators and relations. |H1, H5|

McCool |70] gave the first algorithm for finding a finite presentation for M(S, 1)
for any g. His approach is purely algebraic and no explicit presentation has been
derived from this algorithm. In their ground-breaking paper |37] Hatcher and
Thurston gave an algorithm for computing a finite presentation for M(S, ;) from
its action on a certain simply connected 2-dimensional CW-complex. By this
algorithm, Harer [30] obtained a finite, but very unwieldy, presentation for M(S, )
for any g. This presentation was simplified by Wajnryb [83, 86|, who also found a
presentation for M(S, ). Using Wajnryb’s result, Matsumoto [68] obtained other
presentations for M(S,1) and M(Sy), and Gervais [26] found a presentation
for M(S,,,) for arbitrary ¢ > 1 and n. Labruére and Paris |60 computed a finite
presentation for M(S, ,,, P) for arbitrary ¢ > 1, n and P. Benvenuti |6] and Hirose
|38] independently recovered the Gervais presentation from the action of M(S,,,)
on the Harvey’s curve complex |35|, instead of the Hatcher-Thurston complex.

Before the papers [H1, H5| finite presentations of M (N, ,,) were known only for
a few nonorientable surfaces of genus ¢ < 3, including M (N2 ) = Zy X Zs [61] and
M(Nsp) = GL(2,Z) |9, 27]. Using results of Lickorish [61, 62, Chillingworth [19]
found a finite generating set for M(N,) for all ¢ > 3. This result was extended
to nonorientable surfaces with distinguished points |53] and boundary [77].

In order to formulate the main result of the papers [H1, H5| let us fix a model of
a nonorientable surface. For Ny (respectively N, ) this will be a 2-dimensional
disc (resp. sphere), from which g pairwise disjoint discs have been removed, and
then antipodal points have been identified on each of the resulting boundary com-
ponents, or equivalently: Mobius bands have been sewn in the place of the removed
discs. In Figure 1 the interiors of the removed discs are shaded and numbered from
1 to g. For every nonempty subset I C {1,2,...,¢g} let 7; denote the simple closed



FIGURE 2. Dehn twist about a two-sided curve 7.
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FIGURE 3. Crosscap transposition u;.

curve on N shown in Figure 1. Note that this curve is one-sided if / has odd
cardinality, and two-sided otherwise. With every two-sided simple closed curve
on N one can associate a Dehn twist about ~, that is an isotopy class of a home-
omorphism defined as follows. Choose an oriented closed regular neighbourhood
A C N of the curve v, which we identify we the standard annulus S* x [0, 1] (Fig.
2). Dehn twist T, is equal to the identity outside A, and its action on A is as
shown in Figure 2: the interval ¢ is transformed into the spiral arc, according to
the formula

Tﬁ,(x):{x | forx ¢ A

(ezm(ew)’r) for r = ( 227r0 ) cA=S!x [ ]

For I C {1,2,..., g} of even cardinality we denote by 7; Dehn twist about v; in
the direction indicated by the arrows in Figure 1. We also set:

a; =Ty fore=1,2,...,9 -1,

bj = T{1,2,...,2j+2} for 1 S] S (g — 2)/2
For:=1,2,...,9 — 1 we define a homeomorphism wu; swapping two consecutive
Mobius bands as shown in Figure 3 and equal to the identity outside a one-holed
Klein bottle containing these bands. The isotopy class of wu; is denoted by the
same symbol and called crosscap transposition. Now we are ready to state the
main results of the paper [H5|.

Twierdzenie 1 (Paris-Szepietowski [H5, Theorem 3.5|). For g > 3 the group
M(N,1) admits a presentation with generators w;, a; for 1 < i < g—1, b; for
0<j<(g9—2)/2 and relations:

(Al) ;0 = Q;Q; fOT' ‘Z — j| > 1,



FIGURE 4. The curves on an orientable subsurface of genus p =
| 1] defining the generators a;, b;.

(A2) A 1Q; = Qi1 A;A541 fO’f’ 1 S ) S g — 2,

(A3) a;by = bia;  fori#4if g >4,

(A4) b1a4b1 = &4()1&4 ng 2 5,

(A5) (&2&3&4b1)10 = (a1a2a3a4b1)6 ng 2 5,

(A6) (a2a3a4a5a6b1)12 = (&1&2&3&4&5&6b1)9 ng 2 7,

(A7> b(] = day,

(AS) biv1 = (bz‘—la2ia2i+1a2i+2a2i+3bi)5(bi—1a2ia2i+1a2i+2a2i+3)_6
for2<2i<g—4,

bg— a-20g5 = Gg 5bg22 if g is even and g > 6,

(AlO bgbl = blbg ’Lfg = 0.

=
©

wiu; = uzu;  for |i—j| > 1,
Ui Uy = Ui Uiy fori=1,...,9— 2.

)
)
(B1)
(B2)
(C1) aqyu; = u;aqy  fori=3,...,9—1,

(CQ) QUi 1 U; = Ui 1 Ui Q41 fOT’ L= ]-7 e g 27

(C3> Qi1 UiUip1 = U104 fOT i=1,... g — 2,

(C4) aiu;a; = Uy,

(C5) U2a1A2UT = Q1079,

(C6) (U3b1) (a1a2a3)2(u1u2u3)2 ng Z 4,

(C?) U5b1 = b1U5 ng > 6

(08) &4U4(&4&3&2&1U1U2U3U4)b1 = b1a4u4 ng Z 5.

Dehn twists a;, b; are defined by curves lying on an orientable subsurface home-
omorphic to S,,, where r € {1,2} and g = 2p + r (Fig. 4). These generators,
together with relations (A1-A10) constitute a presentation of the group M(S, )
[H5, Theorem 3.1]. If g is odd, then there are no relations (A9) and (A10), and one
can remove from the presentation the generators b; for 7 = 0 and j > 1 and rela-
tions (A7, A8). The remaining generators a;, ¢ = 1,...,g— 1 and b; together with
relations (A1-A6) constitute the presentation of M(S, ) found by Matsumoto |68].
If g is even, then one could also rule out b; for j # 1. But then in (A9, A10) b¥
would have to be replaced by an expression in terms of the generators a; and b;.
Finding such an explicit expression would considerably simplify our presentation.

The generators u;, ¢ = 1,...,g — 1 together with relations (B1, B2) constitute
the well known presentation of the braid group B,. Thus Theorem 1 says that
M(Ny1) is isomorphic to the quotient of the free product M(S,,) * B, by the
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relations (C1-C8). To obtain a presentation of M(N,) we need to add three
more relations.

Twierdzenie 2 (Paris-Szepietowski [H5, Theorem 3.6|). For g > 4 the group
M(Nyp) is isomorphic to the quotient group obtained by dividing M(Ng.), with
the presentation given in Theorem 1, by the relations:

(BB) (Ul’lLQ ce Ug_l)g = 1,
(B4) (u1u2 s ug_2)9_1 =1.
(D) ay (aga,g e ag_lug_l s UgUg)CLl = a9oag - - ag_lug_l s U3US.

By setting ¢ = 4 in Theorem 2 we obtain a presentation of the group M(Ny)
different from that given in [H1, Theorem 2.1|. In [H5, Section 4] we show that
these presentations are equivalent, thus performing the base step of the inductive
proof of Theorem 2. Thus we can say that the paper [H1| contains a part of the
proof of Theorem 2.

The proof of Theorems 1 and 2 are inductive with respect to the genus g, with
Theorem 1 being proved under the assumption that Theorem 2 holds. The proof
of Theorem 2 uses a theorem of K.S. Brown [16| which allows for computation of
a finite presentation of a group acting on a simply-connected CW-complex X by
permuting its cells, provided that:

e the stabilizer of each vertex of X is finitely presented;
e the stabilizer of each edge of X is finitely generated;
e the number of orbits of cells of dimension < 2 is finite.

We apply Brown’s theorem to the action of M(N), where N = Ny, g > 4, on
the ordered complex of curves C4(N) defined in [6] similarly as Harvey’s curve
complex. Two ordered k-tuples of pairwise disjoint and unisotopic simple closed
curves on N, (7v1,72,...,7%) and (74,75, ..,7), are equivalent if ; and ~} are
isotopic (as unoriented curves) for ¢ = 1,..., k. Equivalence classes of such k-
tuples are (k — 1)-simplices of the complex C*¢(N). Obtaining a presentation of
M(N) by using its action on C(N) requires a calculation of presentations of
the stabilizers of vertices, choosing one representative from each orbit of vertices.
The stabilizer Stab[y] of a vertex [y] is very close to the mapping class group of
the compact surface IV, obtained by cutting N along the curve ~. In particular,
one can easily obtain a presentation of Stab[y] from a presentation of M(N,),
which can in turn be computed recursively, as N, has smaller genus than N. The
situation is complicated by the fact that IV, has nonempty boundary, in contrast
to N.

In [P4] I proposed an algorithm, based on the above-mentioned Brown’s theorem,
of computing a finite presentation of M(N). The presentation resulting from this
algorithm is finite but enormous; it contains recursively computed presentations
of stabilizers of vertices of the complex C°"¢(NV), and many relations corresponding
to cells of dimension 1 and 2. To obtain an explicit presentation of M(N) with
reasonable numbers of generators and relations, we need to apply this algorithm
in a subtle way, so that the presentations obtained in the intermediate steps are
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not too big. In [H1| this was achieved for g = 4, and the ultimate goal, that is
an explicit finite presentation of M(NV,) for all g, was reached in |[H5|. Thanks to
having the case g = 4 solved in the earlier paper |[H1|, in |[H5| we could use the
ground-breaking idea of replacing the complex C°"4(NN) by its subcomplex build
only from nonseparating curves, which is simply-connected for ¢ > 5. In the
case g > 7 we used an even smaller subcomplex, which considerably reduced the
presentation resulting from Brown’s theorem.

Starting from the presentation of M (N, ) one can inductively calculate presen-
tations of M(N,,, P) for arbitrary n and P by a method based on the Birman
exact sequence, as in the paper |60] in the case of orientable surfaces. Finding
such a presentation in the general case is an interesting research challenge.

From the presentations given in Theorems 1 and 2 one can quite easily rule out
the generators u; for ¢ > 1. This was done by Stukow [78|, who obtained in this
way presentations of M(N, ) and M(N, ) with smaller numbers of generators and
relations, and by using these presentations he computed the first homology group
of M(N,,,) with coefficients in Hy(Ny,; Z) for n <1 [79]. Recently, Omori posted
to the arXiv repository an interesting preprint 72|, providing infinite presentations
of the groups M(N, 1) and M(N, ) with very simple relations. Generators in this
presentations are all Dehn twists and all Y-homeomorphisms (also called crosscap
slides and described below in Section 2.4). The proof of the main result of |72]
uses Stukow’s presentation |78|, and thus, indirectly, also Theorems 1 and 2.

It is worth adding that a presentation of M(Ny,) with only Dehn twists as
generators is impossible. Indeed, the subgroup of M(N, ) generated by all Dehn
twists has index 2 [62, 76].

2.3. Linear representations and other homomorphisms. [H4]

The action of the group M(S, ) on Hy(S,, Z) preserves the algebraic intersec-
tion pairing, which is a symplectic form. The induced surjective homomorphism

o: M(S,,) = Sp(29,2Z),

called standard symplectic representation, is an important tool in the study of
the mapping class group of an orientable surface. In recent years, J. Franks, M.
Handel and M. Korkmaz [23, 57, 58] proved that for ¢ > 3 the smallest degree
of a nontrivial representation M(S,,) — GL(m,C) is m = 2g, and that the
standard symplectic representation is the unique, up to conjugation in C, complex
representation of M(S,,,) of degree 2¢g. In the paper [H4| I proved analogous
results for the mapping class group of a non-orientable surface.

We say that two group homomorphisms fi, fo from G to H are conjugate if
there exists y € H such that fi(x) = yfo(z)y~! for all z € G. The image of a
homomorphism f is denoted by Im(f).

Let us fix a double covering P: S,_; — N,. By the theorem of Birman and
Chillingworth [9], M(N,) is isomorphic to the subgroup of M(S,_1) consisting of
the orientation preserving lifts of homeomorphisms of N,. Thus we have an action
of M(N,) on Hy(S4-1,Z). We denote by K, the kernel of the homomorphism
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P.: Hi(Sy-1,Z) — Hy(Ny,Z)/Zy induced by the covering P, where Z, denotes
the torsion subgroup of Hy(Ny,Z). The group K, is invariant under the action of
M(N,) on Hy(Sy—1,Z). Furthermore, K, and Hy(S,_1,Z)/ K, are free Z-modules
of rank g — 1, and hence we obtain two representations of M(N,) of rank g — 1

U M(N,) — GL(K,),  W¥y: M(N,) = GL(H.(S,-1,7)/K,),

which, after fixing bases, will be treated as homomorphisms to GL(g — 1,C). It
turns out that they are not conjugate, although ker ¥; = ker U, [H4, Lemma
4.1]. The first result of the paper [H4| says, that g — 1 is the smallest degree of a
nontrivial (nonabelian) representation of M(N,).

Twierdzenie 3 (Szepietowski [H4, Theorem 1.3]). Let n <1, g > 5, m < g — 2
and suppose that f: M(N,,) — GL(m,C) is a nontrivial homomorphism. Then
Im(f) is isomorphic either to Zo or Zo X Zs, and the latter case is possible only
for g =>5 or 6.

The above result was proved by Korkmaz in 57| under the additional assumption
that m < g — 3 if g is even. The novelty of Theorem 3 consist in the fact that it
also covers the case m = g —2 for even g. As an application of Theorem 3 I proved
the following result, which solves Problem 3.3 in [56]

Twierdzenie 4 (Szepietowski [H4, Theorem 1.4]). Suppose that g > 5, h < g
and f: M(N,) — M(Ny) is a nontrivial homomorphism. Then Im(f) is as in
Theorem 3.

The analogous theorem for mapping class groups of orientable surfaces was
proved by Harvey and Korkmaz [36]. Theorems 3 and 4 both fail for g = 4,
as I showed that there is a homomorphism from M (N,) to M(N3) = GL(2,7Z),
whose image is isomorphic to the infinite dihedral group [H4, Corollary 6.2|. To
construct such a homomorphism I used the presentation of the group M(N,) from
the papers [H1, H5|.

Suppose that g > 7. Then the abelianization of M(NV,) is isomorphic to Z
[52]. We denote by ab: M(N,;) — Zy the canonical projection and for i = 1,2
we define ¥/: M(N,) — GL(g — 1,C) by the formula ¥}(z) = (—1)**@W,(z) for
x € M(N,). The next result of the paper |H4| is the following.

Twierdzenie 5 (Szepietowski |[H4, Theorem 1.5|). Let g > 7, g # 8 and sup-
pose that f: M(N,) = GL(g — 1,C) is a nontrivial homomorphism. Then either
Im(f) = Zsy, or [ is conjugate to one of the homomorphisms Wy, W, WUy, W,

For g = 8 I proved analogous theorem [H4, Theorem 1.6]. In this case we have an
additional homomorphism M(Ng) — GL(7, C) related to the fact that there is an
epimorphism from M (Ng) onto Sp(6,Zs), and the last group admits an irreducible
representation in GL(7,C).

2.4. Level 2 mapping class group. |[H2, H3]|

By composing the standard symplectic representation of the group M(S,) with
the homomorphism of reduction modulo m, for some natural m > 2, we obtain a
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surjective representation M(S;) — Sp(2¢, Z,,), whose kernel is denoted by I',,(.S,)
and called level m mapping class group of the surface S,. The group I',,(S,) may
also be described as the group of isotopy classes of homeomorphisms of S, inducing
the identity on H;(Sy, Z,,). Summarising, we have an exact sequence

1 —= I (Sy) = M(S,) — Sp(29, Z,,) — 1.

The groups I',,,(S,) have been intensively studied, among others by Hain [29] and
Ivanov [45], and from more recent results it is worth mentioning the computation
of their abelianization 74, 75]|.

In the case of a nonorientable surface Ny, the algebraic intersection pairing
on Hy(Ny,Z) is defined only modulo 2. For this reason it is very natural to
consider the action of M(N,) on Hy(N,, Zy) and its kernel I';(N,). The group of
automorphisms of H; (N, Z,) preserving the algebraic intersection form is denoted,
after Korkmaz [52], by Iso(H1(Ny, Zy)). By fixing the standard basis of Hq (N, Z2)
we have the isomorphism

Tso(Hy(N,, 7)) = {A € GL(g, Z) | AA! = I}.

McCarthy and Pinkall [69], and also Gadgil and Pancholi [24] proved that the map-
ping M(N,) — Iso(H1(Ny, Zs)) is a surjection. We thus have an exact sequence

1— FQ(Ng) — M(Ng) — ISO(Hl(Ng,ZQ)) — 1.

The papers [H2, H3| are devoted to the group I's(NN,). For the formulation of their
results, the notion of a Y-homeomorphism is needed.

In contrast to M(S,), the group M(N,) is not generated by Dehn twists. This
was proved by Lickorish [61], who gave the first example of an element of M (V)
which is not a product of Dehn twists, namely the Y-homeomorphism, also called
crosscap slide. Let g > 2 and suppose that «a and § are simple closed curves on
N,, intersecting in one point, and such that « is one-sided and 3 two-sided. Let
K C Ny be a regular neighbourhood of aU 8, homeomorphic to a one-holed Klein
bottle. Denote by M a regular neighbourhood of «, which is a M6bius band. The
Y-homeomorphism Y, 3 may be described as the effect of pushing M once along 3
keeping each point on the boundary of K fixed, and equal to the identity outside
K (Fig.5).

slo)=(c8

FIGURE 5. Y-homeomorphism or crosscap slide.

Lickorish proved that for g > 2 the group M(N,) is generated by Dehn twists
and one Y-homeomorphism, and the subgroup generated by all Dehn twists has
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index 2 |61, 62]. We denote by Y(N,) the subgroup of M(N,) generated by all
Y-homeomorphisms. It is easy to check that every Y-homeomorphism induces the
identity on H;(N,,Zs), and hence Y(N,) C I'y(N,). In the paper [H2| I proved
the equality Y (N,) = I'a(NVy).

Twierdzenie 6 (Szepietowski [H2, Theorem 5.5]). Let g > 2. An element f €
M(Ny) induces the identity on Hy(Ny,7Zs) if and only if f is a product of Y-

homeomorphisms.

In particular, Y(N,) is a proper subgroup of M(N,) of finite index. For I, J C
{1,2,...,9} we denote Y,, ., by Yr.;, where 77, v, are the curves from Figure
1, provided that these curves satisfy the assumptions of the definition of a Y-
homeomorphism. I proved that Y(N,) is the normal closure in M(N,) of one Y-
homeomorphism Y{1y,71,2y [H2, Lemma 3.6], which is the product of two involutions
belonging to Y(N,). Thus I proved the following theorem.

Twierdzenie 7 (Szepietowski [H2, Theorem 3.7 i Corollary 5.7]). For g > 2 the
group I'y(N,) is generated by involutions.

It follows from the last theorem that the abelianization of I's(V,) is a Zy-module.

Since M(N,) is finitely generated, so is I';(N,) as a subgroup of finite index.
Therefore, it is a natural problem to find a finite generating set for I'y(N,). I
solved this problem in the paper [H3|.

Twierdzenie 8 (Szepietowski |[H3, Theorem 3.2|). For g > 3, the group I's(N,)
s generated by the following elements:

(1) }/?{Z},{Z,]} fO’f’Z S {172779_ 1}’ j S {172779}7 l ;é.])
(2) Yiijrygigeny fori<j <k <l if g>4.

Let us add, for completeness, that I'y(Ny) = M(Ny) = {1} and I'y(Ny) = Zo.

In Theorem 8, every generator Y{;iyfi ks Of type (2) can be replaced by
T¢, kay> Where Ty is Dehn twist about g ;0 [H3, Remark 3.9]. Note that
there are (g — 1)* generators of type (1) and (Z) generators of type (2). In the
final section of the paper |H3| I proved that the number of generators of I'y(N,)
from Theorem 8 is minimal for ¢ = 3 and 4. The action of M(N3) on H;(N3,Z)
induces an isomorphism M(N3) — GL(2,Z), which maps I's(/N3) on the level 2
principal congruence subgroup of GL(2,7Z) [H3, Corollary 4.2]. The next theorem
says that the number of generators of I'y(N,) from Theorem 8 is equal to the rank
of the abelianization of this group, and hence is minimal.

Twierdzenie 9 (Szepietowski [H3, Theorem 4.3|). The group Hy(TI'3(N4),Z) is
isomorphic to Zi°.

The proof of Theorem 9 uses Theorems 7 and 8, and also the presentation of
M(N,) from the paper [H1|. For g > 4 the generating set of I'y(NV,) from Theorem
8 is not minimal. Hirose and Sato [41] showed that it contains a subset of cardinal-
ity (g-§1), which also generates I'y(IV,), and then they proved that Hy(I'2(V,), Z)
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has rank (9_51), which is a generalisation of the above Theorem 9. For their com-
putation of the abelianization of I'y(/V,) Hirose and Sato use my Theorems 7 and
8.

The paper [H2| contains an important construction of the homomorphism cross-
cap pushing map

¥ m(Ng—1,20) = M(Ny),

where N,_; is obtained by removing from N, a Mobius band, and gluing a disc
with a distinguished point zy in its place. If a € m(Ny_1,20) is a homotopy class
represented by a simple closed curve then ¥ («) is either a Y-homeomorphism if
« is one-sided, or a product of two Dehn twists if « is two-sided. This allows for
obtaining relations in M(N,) of the form

(1) (af) = v(a)v(B),

where on each side of the equality there are Y-homeomorphisms or Dehn twists,
provided that v, 8 and af are represented by simple curves (here the product af in
m1(Ng—1, o) means first 4, and then «). Certain relations appearing in the finite
presentations of the groups M(N,) and M(N,;) found in the papers [H5] and
[78] were obtained in this way, by using the crosscap pushing map. Furthermore,
(1) is one on the defining relations in Omori’s infinite presentation [72]. The
crosscap pushing map 1 is a basic tool for studying Y-homeomorphisms, used in
the papers [H2, H3|, and also in works of other authors, including [42] and the
above-mentioned papers |72, 78|. I believe that this tool has a big potential, as the
study of Y-homeomorphisms is an important part of the theory of the mapping
class group of a nonorientable surface.

The group I's(N,) may be seen as certain approximation of the Torelli subgroup
Z(N,) consisting of the elements of M(N,) inducing the identity on H;(N,,Z).
On the one hand this approximation is very inaccurate as Z(V,) is a subgroup of
['9(N,) of infinite index. On the other hand however, the finite generating set of
I'y(N,) appearing in Theorem 8 and reduced in [41] is one of the ingredients of the
proof of the main theorem of the paper [42], in which Hirose and Kobayashi found
certain infinite generating set of Z(N,). Their result is analogous to the classi-
cal theorem of Powell |73] about generators of the Torelli group of an orientable
surface. It is worth adding that, as of now, no finite generating set of Z(N,) is
know.

Theorems 6 and 8 have also been used in the proof of the main theorem of the
paper [40] providing a necessary and sufficient condition for a homeomorphism of
a nonorientable surface, embedded in a certain standard way in the 4-sphere S*,
to extend to a homeomorphism of S*.
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Below I describe the main results of the above papers, starting from those de-
voted strictly to mapping class groups. Then I will describe the papers concerning
other subjects, written in collaboration with other mathematicians, in which I
managed to use my experience from the study of the mapping class group. These
are 4 papers on topological classification of actions of finite groups on surfaces |P6,
P11, P12, P14| and one paper about the connectivity of the branch locus of the
moduli space of Klein surfaces [P10].

3.3. Finite index subgroups of the mapping class group of a nonori-
entable surface. [P9]

By Grossman’s theorem |28|, the group M(S,,,) is residually finite, and since
M(N,,,) is isomorphic to a subgroup of M(S;_12,), it is residually finite as well.
This means that mapping class groups have a rich supply of finite index subgroups.
It is worth remarking that to every such subgroup corresponds certain finite degree
covering of the appropriate moduli space. On the other hand, A. J. Berrick, V.
Gebhardt and L. Paris [8] proved that for ¢ > 3 the minimum index of a proper
subgroup of M(S,,,) is 2971(29 — 1). More specifically, it is proved in [8] that
M(Sy,n) contains a unique subgroup of index m, = 2971(29 —1) up to conjugation,
a unique subgroup of index m; = 2971(29 + 1) up to conjugation, and all other
proper subgroups of M(S,,,) have index strictly greater than m; (and at least
Smy if g > 4).

For g > 2 the minimum index of a proper subgroup of M(N,,) is 2, and if
g > 7 then the subgroup generated by all Dehn twists, denoted by 7 (N,.,), is the
unique subgroup of M(N,,) of index 2. Suppose that ¢ > 7, n € {0,1} and set
h=1(9 —1)/2]. Let G denote either M(N,,,) or T(N,,). In [P9, Theorem 1.1|
I proved that G contains a unique subgroup of index m; = 2"=1(2" — 1) up to
conjugation, a unique subgroup of index m;” = 2"=1(2" 4+ 1) up to conjugation,
and all other proper subgroups of G have index strictly greater than m; (and at
least 5m;, if h > 4). In particular, the minimum index of a proper subgroup of
T(Nyn) is m; .

For 2 < g < 6 the minimum index of a proper subgroup of T(N,,) is 2. For
g € {5,6} I proved [P9, Theorem 4.1], that 7(N,,) contains a unique subgroup
of index 2, two subgroups of index m, = 6 and one subgroup of index mj = 10
up to conjugation, and all other proper subgroups of T(N,,) gave index greater
than 10. Since the abelianization of T (Ny) is isomorphic to Z x Zy [76], every
positive integer is the index of some subgroup of 7 (Ny,,).

3.4. Embeddings of the braid group in mapping class groups. [P7]

When two two-sided simple closed curves «, § on a surface F' do not intersect,
then the corresponding Dehn twists commute: T, T3 = T3T,; whereas if a and 3
intersect in one point, then the twits satisfy in M (F') the braid relation: 7,737, =
T5T,Ts (provided that the directions of the twists agree at the intersection point.
Thus, to each chain aq, as, ..., a,_1 of two-sided simple closed curves on F', where
a;Na; =0 for |i —j| > 1 and «; intersects a1 in one point for i = 1,2,...,n—2,



16

corresponds a homomorphism from the braid group B,, on n strands to the mapping
class group M(F'). Such a homomorphism is in general injective. The paper [P7]
was motivated by a question of B. Wajnryb [87] about existence of ,nongeometric”
embeddings B, — M(F), such that the images of the standard generators of
B,, are not Dehn twists. In the paper [P7] I proved that mapping the standard
generators of B, on the crosscap transpositions u; (Fig. 3),7=1,...,9—1 defines
an embedding
©: Bg — M(Ng’l).

In the same paper I extended the theorem of Birman and Chillingworth to sur-
faces with boundary by proving that M(N,,) is isomorphic to a subgroup of
M(S,-1.2n), which allowed for defining

w: Bg — M(Sg_l’Q)

by lifting the u; from N,; to the double cover S,_;,. Both embeddings ¢ and
v have the property that the images of the standard generators of B, are not
Dehn twists. Bodigheimer and Tillmann [11] proved that the embedding v in-
duces the zero map between the homology groups of positive degrees, as long as
the genus of the underlying surface is large enough relative to the degree. Also the
standard geometric embeddings have this property, as well as some other nongeo-
metric embeddings of the braid group in the mapping class group of an orientable
surface described in [11]. In contrast, the map ¢.: Hy(By; Zao) = Hiy(M(Ny1); Zs)
induced by the embedding ¢ is injective for ¢ > 7 and 0 < k < g/3 [11].

3.5. Dehn twist as a commutator. |P5|

The subgroup of a group G generated by all commutators [a,b] = aba~'b71,
a,b € G is denoted by [G,G]. For z € [G,G] let clg(x) denote the smallest
number k such that  is a product of k£ commutators, and let sclg(z) be the limit

sclg(x) = lim M
n— 00 n
The numbers cly(x) and sclg(z) are called respectively the commutator length and
the stable commutator length of the element x in the group G.

Suppose that S is a closed orientable surface of genus g > 3. The mapping class
group M(S) is perfect, i.e. [M(S), M(S)] = M(S) [73]. Let o be a simple closed
curve on S, not contractible to a point, and let 7, be Dehn twist about «. Then
clasy(Tw) = 2 [59] and sclaysy(Ta) > Wl_fj [20, 54]. In particular, the sequence
clpms)(Th), n € Z is unbounded. The extended mapping class group M°(S) is
defined as the group of isotopy classes of all homeomorphisms of S, including
those reversing orientation. In the paper [P5] I proved that 77" is equal to a single
commutator of elements of M®(S) for every n € Z. Hence clpp(s)(T3) = 1 and
SCZMQ(S) (Ta> = 0.

Suppose that N is a closed nonorientable surface of genus g > 7. Then we
have [M(N), M(N)] = T(N) = [T(N),T(N)], where T(N) is the subgroup of
M(N) of index 2 generated by all Dehn twists [52]. In the paper [P5] I proved
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that clyn (1) = 1 for every two-sided simple closed curve o on N and all n € Z,
and under certain additional assumptions about « and N also clrn (T2) = 1.

3.6. Growth function and density of pseudo-Anosov elements in the
mapping class group of the projective plane with 3 punctures. [P§]

A group G with a fixed generating set A can be equipped with a metric called
word metric. In this metric, the length of an element z is the minimum number
of factors needed to express = as a product of generators from the set A. For any
subset X of G we can define a power series, whose coefficient a,, is equal to the
number of elements of X of length n. This series is called growth series, and the
function it defines is called growth function. Density of the set X is defined as the
limit

N OLE]
noo  |B(n)
where B(n) denotes the set of elements of G of length at most n.

Let N be a nonorientable surface with a finite set P of distinguished points
(punctures). The pure mapping class group PM(N, P) is defined as the group of
isotopy classes of homeomorphisms of N fixing every point of P and preserving
local orientation in every point of P. In the paper [P8] I consider the group
PM(N, P), where (N, P) is the projective plane with 3 punctures, equipped with
the word metric induced by a certain fixed generating set. I computed the growth
functions of the sets of reducible and pseudo-Anosov elements. These functions
turned out to be rational. I also proved that the set of pseudo-Anosov elements
has density 1.

Analogous results were obtained in [2] for the sphere with 4 punctures, and in
[81] for the torus. The described results give a partial answer to Question 3.13
and confirm Conjecture 3.15 in [22] in a special case.

3.7. Other papers devoted to the mapping class group of a nonorientable
surface. |[P1-P4,P13]

The paper |P1] contains the main results of my master thesis, whereas the papers
|P2, P3, P4] are the core of my Ph.D. thesis, although |P4| appeared two years
after my Ph.D.

Let N, denote a closed nonorientable surface of genus g > 3. In the paper [P1]
I proved that the mapping class group M(N,) is generated by involutions. As
an important application of this result, I proved simple connectivity of the mod-
uli space M(NV,) of Klein surfaces homeomorphic to Ny, following the proof of
simple connectivity of the moduli space of Riemann surfaces given by Maclachlan
|64]. In |P2| I proved that the group M(N,, P), where P is a finite set of dis-
tinguished points on Ny, is also generated by involutions. In [P3| I proved that
M(Ny) is generated by three elements, and also is generated by four involutions.
The paper [P3| was inspired by the articles [13, 50, 55, 84| containing similar re-
sults for the mapping class group of an orientable surface. In [P4] I proposed a
recursive algorithm for obtaining a finite presentation of the mapping class group
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M(N,,,) by using its action on the curve complex. This algorithm was used in
the papers [H1, H5|. In [P4| I found finite presentations of the groups M(N,,,)
for (g,n) € {(1,3),(1,4),(2,2),(2,3), (3,1)}. For these surfaces the curve complex
is not simply connected.

In the paper [P13|, as yet unpublished, we proved, jointly with F. Atalan, that
if N is a closed nonorientable surface of genus g > 5 with a finite (possibly empty)
set of distinguished points P, then every automorphism of the group M(N, P) is
inner. Analogous theorem for the mapping class group of an orientable surface
is due to Ivanov [44|. He prove that if S is an orientable surface of genus g > 3
with a finite set of distinguished points P, then every automorphism of M (S, P)
is induced by a homeomorphism of S, not necessarily orientation preserving one.

3.8. Topological classification of finite group actions on compact surafces.
[P6, P11, P12, P14].

By an action of a group G on a surface F' we understand an embedding of G in
Homeo(F), and two such actions are called topologically equivalent if their images
are conjugate in Homeo(F). Classification of finite group actions on compact
surfaces up to topological equivalence is a classical problem, going back to Nielsen,
with a vast literature, especially in the case of orientable surfaces.

In the papers |[P6, P11, P12, P14] we use the methods of combinatorial theory
of noneuclidean crystallographic groups, NEC groups in short, which are discrete
and cocompact subgroups of the group of isometries of the hyperbolic plane H,
initiated by Macbeath |63]. An action of a finite group G on a compact surface F
of negative Euler characteristic can be realised by an analytic or dianalytic action,
with respect to some structure of a Riemann or Klein surface on F'. This means
that such an action can be defined by a smooth epimorphism 6: A — G, where
A is a certain NEC group, and whose kernel is also a NEC group, torsion-free if
F' is closed, or containing no orientation preserving isometries of finite order if
F' is a surface with boundary. The point is, that the topology of the action of
G is determined by algebraic features of # and A. Thus, in the study of finite
group actions we can restrict ourselves to algebra and combinatorics, and forget
about the analytic aspects. In this language, two actions of a group G on F
are topologically equivalent if and only if the corresponding smooth epimorphisms
0;: N\; — G, 1=1,2, fit in the commutative diagram

AlL)G

(2) la lﬁ

Ay 25 @
where a and [ are certain isomorphisms. To tell if two given smooth epimorphism
A — G define topologically equivalent actions, we thus need to know the group
of automorphisms of the NEC group A. At this point we use a close relationship
between the group Out(A) of outer automorphisms of A and appropriately de-
fined mapping class group M(H/A) of the orbifold #/A. Knowing generators of
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M(H/A) we can easily obtain generators of Out(A), and if the order of the group
G is large enough relative to the genus of the surface, then the groups M(H/A)
are Out(A) finite, which allows for an effective study of topological equivalence of
group actions given by smooth epimorphisms.

The series of papers [P11, P12, P14] is devoted to actions of finite cyclic groups
of big order on closed surfaces . At the end of the XIX century Wiman [89]
proved that the order of an orientation-preserving automorphism of a Riemann
surface of genus g > 2 is at most 4¢ + 2, and Harvey [33] proved that this bound
is attained for all ¢ > 2. Analogous results about the maximum orders of an
orientation-preserving periodic homeomorphism and a periodic homeomorphism of
a nonorientable surface were obtained in the papers [17, 21, 88]. A natural question
is to what extent the order of a periodic homeomorphism of a surface determines
its conjugacy class. In the case of orientation-preserving homeomorphisms of Sy it
was known that the order determines the conjugacy class, as long as this order and
the genus ¢ are large enough [4, 39]. In the papers [P11] and [P12] we consider
the analogous problem respectively for homeomorphisms of Ny, ¢ > 3 and for
orientation-reversing homeomorphisms of S;, g > 2. In [P11] (respectively [P12] )
we computed the numbers of topologically inequivalent actions of a cyclic group Z,
on Ny (resp. on S, containing orientation-reversing homeomorphisms), depending
on the type of the orbifold N,/Z,, for n > g — 2 (vesp. S,;/Z,, for n > 2g —
2). In particular, we proved that the actions of maximal order are unique up
to topological equivalence, with the exception of a non-orientable surface of even
genus ¢, on which we have two different topological types of an action of maximal
order n = 2¢g. It worth emphasising that although in the theorems stated in
[P11, P12] we give only the numbers of topological types of actions of big order,
in the proofs we obtain the corresponding smooth epimorphisms, and thus we
obtain their topological classification. The paper |P14|, in preparation, contains
analogous classification of Z,-actions on surfaces with boundary, such that n >
p — 2, where p is the algebraic genus of the surface. In particular, we classify the
actions realizing the solutions of the so called minimal genus and maximal order
problems for surfaces with boundary, found thirty years ago in [18].

In the paper [P6] we classified, up to topological equivalence, all actions of
groups of finite order at least 6 on compact surfaces with boundary of algebraic
genus p for 2 < p < 6. In the case of orientable surfaces without boundary, the
analogous classification was carried out for surfaces of genus 2 and 3 by Broughton
|15] and 4 by Bogopolski [10] and Kimura [51]. In order to find all possible smooth
epimorphisms A — G for a given group A, we used here the computer software
MAGMA. For p = 5 and 6 we obtained respectively 273 and 216 nonequivalent
actions. In [P6, Section 3| we consider also actions of groups of order smaller than
6, but they are too numerous for a complete classification. Instead, for every group
of order at most 5 we found all topological types of bordered surfaces of any genus
on which this group acts. We also obtained the analogous result for all groups of
prime order.
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As T already wrote in the introduction, to every compact Klein surface func-
torially corresponds certain projective real algebraic curve, usually understood as
a complex curve defined by a real equation. In view of this correspondence, the
results obtained in the papers [P6, P11, P14| can be interpreted as a topological
classification of finite group actions on real curves.

3.9. Branch locus of the moduli space of nonorientable Klein surfaces.
[P10]

Let F' be a closed surface of negative Euler characteristic. The moduli space
M(F) of Riemann or Klein surfaces homeomorphic to F' is the orbit space of a
properly discontinues action of the mapping class group M(F') on the Teichmiiller
space Teich(F'). Since Teich(F') is a manifold, homeomorphic to a ball in an eu-
clidean space, M(F) has the structure of an orbifold. The singular points of 9(F)
correspond to Riemann or Klein surfaces admitting nontrivial automorphisms. The
set of all singular points of M(F') is called branch locus and is denoted by B(F).

The study of the branch locus B(S,) of the moduli space of Riemann surfaces of
genus g > 2 is a classical problem, whose history goes back to the 1960s. The vast
literature devoted to this subject contains a series of papers about connectivity of
B(S,). The final result is that B(S,) is a connected subset of M(.S,) if and only if
g €{3,4,7,13,17,19,59} [5].

In the paper [P10] we study the branch locus B(N,) of closed nonorientable
Klein surfaces of genus 3 < g < 5. As the main result we proved that B(N,) is
a connected subset of M(N,) for ¢ = 4 and g = 5. Connectivity of B(N3) was
already known. It follows from the fact that all Klein surfaces of genus 3 are
hyperelliptic, and hence they admit a nontrivial automorphism.

Similarly as in [5], our proof of connectivity of B(1V,) is based on a well know
stratification of the moduli space, described for example in [14, 34]. With respect
to this stratification, B(N,) is the union of certain connected subsets of M(N,),
corresponding to topological equivalence classes of finite group actions on V,. Thus
the study of connectivity of B(N,) is related to the subject described in Section
3.8. This research thread should be continued, in order to find all values of g, for
which B(N,) is a connected subset of M(N,).

4. RESEARCH PLANS

I close this autopresentation with a description of my research plans in a long
time perspective, focusing on the initial steps of each particular thread, where I
already have some quite concrete ideas and plans. I will mainly continue my work
on the mapping class group of a nonorientable surface, in the directions partially
outlined in the description of my scientific achievements. I am also thinking about
expanding my research area to natural applications, requiring various skills and
tools. Therefore I am counting on a participation of collaborators in the realisation
of particular goals, having the preliminary consent of many of them. This will
mainly be a collaboration within the existing research group in my home University
of Gdansk (first of all G. Gromadzki and M. Stukow). The project also assumes
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participation of future Ph.D. students, and its ultimate goal is the foundation
of a research group working on a few broad subjects based on the knowledge of
mapping class groups of surfaces.

4.1. The Torelli group of a nonorientable surface. One of the most impor-
tant subgroups of the mapping class group of a surface F' is the Torelli subgroup
Z(F) consisting of the isotopy classes of homeomorphisms inducing the identity
on Hi(F,Z). In the case of an orientable surface, the basic results and tools of
the study of the Torelli subgroup are due to D. Johnson [47, 48, 49|. Very little
is known about the Torreli group of a nonorientable surface. The first significant
result about Z(N) was obtained only recently by Hirose and Kobayashi [42|, who
found certain generating set of Z(N). This set is infinite and one of my goals will
be to find a finite generating set of Z(N) and to develop, in the nonorientable
setting, an analogue of Johnson’s theory of the group Z(S). One of the first spe-
cific goals will be the definition of “Johnson’s homomorphism” for Z(N), as a step
towards the computation of the abalianization of this group in a longer perspec-
tive. It seems that the this goal can be approached in the spirit of the paper [H4|,
using the orientable double cover S,_; — N,. By Gastesi’s theorem [25|, which
can be obtained as a corollary from my Lemma 4.1 in [H4|, Z(N,) is isomorphic
to a subgroup of Z(S,_1), and hence we can restrict the Johnson’s homomorphism
defined on Z(S,-1) to a homomorphism Z(N,;) — A*H;(S,_1,Z). The natural
questions appear, about the image and generators of the kernel of the above ho-
momorphism. I will also try to define the Johnson’s homomorphism for Z(N)
without referring to orientable surface. It is worth remarking that Hirose and Sato
|41 used the Johnson’s homomorphism modulo 2, defined on the level 2 mapping
class group I'y(V) of a nonorientable surface, in their computation of the abelian-
ization of that group, where I also have my own experience and from the papers
[H2, H3|. For April 2016 I am planning a one week long visit to the University of
Tokyo, at the invitation of professor Nariya Kawazumi and entirely funded from
his grant. Professor Kawazumi is an expert on Johnson’s homomorphism and I
am convinced that a discussion with him will be inspiring. In short, I am counting
on a collaboration with experts like S. Hirose and N. Kawazumi in this thread.

4.2. Torsion generators. It is known that the mapping class group of a closed
surface is generated by elements of finite order. An important property of such
elements is that they can be represented by conformal automorphisms of a Riemann
surface, with respect to some analytic structure, which allows their analysis by
methods of hyperbolic geometry and combinatorial group theory, thanks to the
Riemann uniformization theorem. This is a very powerful method, by which C
Maclachlan proved simple connectivity of the moduli space of complex algebraic
curves [64], and I obtained in |[P1] an analogous result for purely imaginary real
algebraic curves (these are complex curves having real equations but no R-rational
points). In this subject I also have some experience from my Ph.D. thesis. In the
paper [P3] I proved that for g > 3 the group M(N,) is generated by 4 involutions,
and also is generated by 3 elements, two of which have infinite order. It is an
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open question, whether this group is generated by 2 elements or by 3 involutions.
Another question which I would like to answer is whether M(XV,) is generated by
elements of maximal finite order. If yes, then what is the minimum number of
such generators? This question is motivated by a theorem of Korkmaz [55], who
proved that the group M(S,) is generated by 2 elements of maximal finite order
4g + 2. This thread does not have a high priority for me personally, but I think
that it could be a good material for a future Ph.D. student supervised by me.

4.3. Simplicial complexes associated with nonorientable surfaces. By the
famous theorem of Ivanov [44], the group of automorphisms of the curve complex
C(S) on an orientable surface S is isomorphic to the extended mapping class group
M?°(S). This theorem has been generalized to various other simplicial complexes
associated to an orientable surface, and recently also to the case of a nonorientable
surface [2]. The last result is a motivation for the study of automorphisms and
geometric properties of various complexes which can be associated with a nonori-
entable surface. I have on mind mainly some natural subcomplexes of the curve
complex, such as, for example, the complex of separating curves, one-sided curves
with nonorientable complement, curves representing a fixed homology class. This
again, in my opinion, can be a good material for a future Ph.D. thesis under my
supervision.

4.4. 3-dimensional manifolds - finite group actions on handlebodies. Tak-
ing up the subject of 3-dimensional manifolds is for me a natural step, considering
the role of mapping class groups of surfaces in this theory (it is enough to men-
tion the Heegaard splittings or the open book decompositions of 3-manifolds). In
the first place I will focus my attention on handlebodies, where I will consider also
nonorientable handlebodies obtained by attaching twisted handles to a 3-ball. One
of the long term goals of this research tread is the development of new methods
of construction and classification of finite group actions on handlebodies. This is
a classical subject with a vast literature in the orientable case. I am going to try
my hand at this subject, including also the case of nonorientable manifolds, using
the experience from my work on finite group actions on surfaces (Section 3.8) and
continuing the fruitful collaboration with G. Gromadzki. In the realization of this
project I am also counting on a collaboration with M. Stukow, who is an expert on
the mapping class group of a nonorientable surface like me, and also R. Hidalgo
from Chile, who is an expert on Schottky groups.

We will look for an algebraic criterion that could be used to answer two kinds
of questions. First, whether an action of a finite group G on a closed surface F,
given by a smooth epimorphism (as described in Section 3.8), extends to an action
on a handlebody whose boundary is F'? Secondly, when two different extensions
of the same action are topologically conjugate? Our first task, which we treat as
a testing ground, will be a classification, up to topological conjugation, of finite
group actions on orientable handlebodies of low genus 2, 3 and 4. The staring
point for this task is the classification, up to isomorphism, of finite groups acting
on such handlebodies, found in [71], as well as the results concerning the topological
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classification of finite group actions on closed orientable surfaces of genera 2, 3 and
4 due to Broughton [15|, Kimura [51] and Bogopolski [10], who has expressed his
interest in participation in this task. The involvement of O. Bogopolski, who is an
outstanding expert in the combinatorial group theory, is important for our plans
of extension, to the nonorientable setting, of the classical method of constructing
actions on handlebodies of the fundamental group of a graph of groups, due to D.
McCullough, A. Miller and B. Zimmermann [71].

4.5. Mapping class group of a nonorientable handlebody. Another goal of
global nature is the study of algebraic properties of the mapping class of a nonori-
entable handlebody, whose boundary is a nonorientable surface of even genus.
Examples of specific tasks include obtaining a finite generating set of this group,
and then a finite presentation, by methods similar to those that led to analogous
results for orientable handlebodies [80, 85|, and by using the experience from my
work on presentations of mapping class groups of surfaces. Also in this thread I
am counting on a fruitful collaboration with S. Hirose, already initiated during his
visit to Gdansk in June 2015. This subject is essentially completely new, and I
think that there is also a lot of space for a future Ph.D. student.
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