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Characterization and detection of multipartite
entanglement

1 Summary

The aim of this Thesis is to investigate the structure of multipartite entangle-
ment, and to find efficient criteria for its experimental detection, and its impact
on practical applications.

If one considers many subsystems, quantum correlations can be distributed
in several different ways, and in the case of more than two subsystems, n-
partite entanglement is not in one-to-one correspondence with n-partite corre-
lations. This complicates the analysis. In this Thesis we apply a geometric
approach. The structure of a multipartite quantum state is mapped into a mul-
tidimensional real euclildean space of correlations. Such an approach has two
advantages. First, a theoretical one: one can use simple geometrical tools, like
metrics and inner products. This makes the considerations much simpler than
a direct analysis on the level of a Hilbert space. The second advantage is purely
practical. Namely the basic objects in this analysis – the correlations – are di-
rectly measurable in experiments. We propose several correlation-based criteria
for detection of multipartite entanglement, which, in contrast to earlier criteria,
demand very limited number of measurements.

Further, we analyze the role of a multipartite entanglement as a basic re-
source in the field of quantum metrology and quantum distributed computing.
We show that multipartite GHZ states enable better than classical scaling of
precision in parameter estimation in the presence of decoherence, and can reduce
computation complexity of distributed computing.
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2 Quantum entanglement and quantum correla-
tions – introduction

Quantum entanglement, almost 80 years after it was first discussed [1, 2], can be
treated as a trademark of quantum physics, being called the essence of quantum
mechanics in numerous papers. In modern terms the phenomenon of entangle-
ment can be described in terms of information: two particles are entangled if
their state contains more information about the entire system than about the
separate subsystems [3].

In quantum mechanics, the state of a composite system can be at the same
time pure – that is with maximal possible knowledge – and correlated. This
situation is impossible in classical physics, where the state is either pure or cor-
related [4]. Therefore classical correlations always arise due to some ignorance
about the global state, which is not the case for pure entangled states. This
fact indicates that the nature of quantum correlations is completely different
from that of classical ones. The non-classicality of quantum correlations can be
considered from two different perspectives: within the formalism of quantum
theory and from outside.

The nature of states and observables in quantum formalism is revealed by
two properties. First, in quantum physics, the composite system is described by
a tensor product of subsystems, and not by the Cartesian product as in the clas-
sical counterpart. Second, quantum observables, as opposite to classical ones,
can be noncommutative. Both features are essential for the entanglement to ex-
ist, since entangled states exist only in the theory which assumes noncommuting
observables for each separate subsystem [5, 6].

Non-classicality of quantum correlations can be described without resort to
quantum formalism in terms of violation of Bell inequalities [7, 8]. They provide
restrictions on probabilistic or information theoretic description of outcomes
of measurements performed on separated subsystems. For example the most
famous CHSH inequality [9] is expressed in terms of correlation functions. Its
violation, indicating non-classical behaviour of the system, is related to the
non-existence of a joint probability distribution for measurement outcomes of
all possible measurements. In case of violation of inequalities expressed in terms
of Shannon entropy [10] or Kolmogorov complexity [11], more subtle classical
properties are not fulfilled [12].

Quantum incompatibility [13, 14, 15] is a general property which connects
the above discussed ways of understanding non-classicality of quantum entan-
glement. Every commutatitve set of observables can be endowed with classical
probabilistic model: there exists joint probability distribution for outcomes of
all possible measurements from this set. However, two or more different sets
of such a kind can be mutually incompatible. This implies that mixing the
corresponding models for measurements on entangled states inevitably leads to
contradictions on probabilistic and logical level [15, 14]. These contradictions
have provoked a long debate on their impact for the structure, foundations and
philosophical implications of quantum theory. This debate is still continuing
[16].

Quantum entanglement has been put in the context of computation and
communication tasks, giving rise to a new interdisciplinary field of quantum
information science. This field covers a very broad class of problems, and the
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results lead to many applications, such as quantum communication [17, 18,
19, 20], quantum cryptography [21], quantum metrology [22] and perhaps in a
remote future quantum computation [23].

3 Detailed description of results

In this section I present a summary of results of my research projects published
in works [A],[B],[C],[D],[E],[F].

3.1 The structure of multipartite entanglement and mul-
tipartite correlations

Multipartite entanglement can be thought of as a manifestation of quantum
inseparability in the case of many subsystems. Intuitively, entanglement between
n parties indicates some sort of strong non-classical correlations between all of
them. Whereas this intuition turns out to be perfectly valid in the case of
pure states, it breakes down when mixed states are considered [24], [25], [C].
Therefore, in a general case a multipartite entanglement has to be defined by
rejecting separability of investigated state. In this chapter we describe a general
characterization of a partial separability. Further on, we investigate the relation
between multipartite entanglement, lower order correlations and possibility of
simulating these correlations with classical models.

3.1.1 Geometrical characterization of partial separability

In general terms separability is a property of a composite system indicating that
the overall state is a convex probabilistic mixture of pure states that are product
with respect to some partitions [26]. In case of a bipartite system this reduces
to a convex mixture of bi-product states. Operationally, this means that every
possible correlation function of local measurements can be simulated by local
operations and shared randomness, but without communication.

For more than two parties, the notion of separability is much richer, because
the system can be partitioned into subsystems in many ways. The most natural
extension of the notion of separability is partial separability with respect to a
partition [27, 4]. An n-partite state ρ is called k-separable with respect to a
partition S of n particles into k subsystems {s1, . . . , sk}, if it can be expressed
as a probabilistic mixture of pure states |ψ(k−pr|S)〉 =

⊗k
l=1 |ψrl∈sl〉, which are

k-product with respect to S:

ρ(k−sep|S) =
∑
i

pi|ψi(k−pr|S)〉〈ψ
i
(k−pr|S)|, (1)

where subscripts ’k–sep’ and ’k–pr’ denote ’k–separable’ and ’k–product’, re-
spectively. The operational interpretation of the above is in a direct analogy to
the one from the bipartite case. Unfortunatelly, partial separability (1) does not
give rise to partially ordered classes of separability. Therefore it cannot be used
to quantify the degree of separability, since different classes are incomparable.
To avoid this difficulty we consider the unconditioned k-separability. Namely,
we say that the n-partite state ρ is called k-separable if it can be expressed as

3



a probabilistic mixture of pure k-product states |ψk−pr〉 = |ψr1〉 ⊗ . . .⊗ |ψrk〉:

ρk−sep =
∑
i

pi|ψik−pr〉〈ψik−pr|. (2)

The difference with respect to the previous definition is that now the pure states
entering the mixture can be k-product with respect to different partitions. Sets
Sk−sep of k-separable states are convex and partially ordered by inclusion:

Sn−sep ⊆ S(n−1)−sep ⊆ . . . ⊆ S3−sep ⊆ S2−sep. (3)

Testing whether given state is k-separable directly from the definition (2)
is analytically hard and in many cases intractable. There were given several
sufficient conditions for testing k-separability in case of qubits [27]. For systems
of arbitrary dimensions only full separability has been completely characterized
[28].

In [A] we give a general characterization of k-separability for arbitrary finite
dimensional systems. It has a form of a necessary and sufficient geometrical
condition for refuting k-separability of a given state. Since the k-separable
states form a partially ordered familly of sets (3), our condition gives a complete
characterization.

Our condition is expressed in terms of the so called generalized correlation
tensor of a quantum state, which in case of qubits is defined as:

Tµ1,...,µn = 〈σµ1 ⊗ ...⊗ σµn〉ρ = Tr (ρ σµ1 ⊗ ...⊗ σµn) , (4)

where σµ for µ = 1, 2, 3 denotes Pauli matrices, and σ0 denotes identity matrix.
For non-zero indices this object transforms like a tensor. In case of states of
arbitrary dimension one can use any Hermitian operator basis (eg. generalized
Gell-Mann matrices) instead of {σµ}3µ=0 to define the correlation tensor. The
generalized correlation tensor gives a unique description of a quantum state:

ρ =
1

2n

∑
µ1,...,µn=0,1,2,3

Tµ1,...,µn
σµ1
⊗ ...⊗ σµn

. (5)

For the sake of simplicity we will often denote Tµ1,...,µn
as T~µ.

Using correlation tensors instead of density matrices has two main advan-
tages. First, their elements, as expectation values of Hermitian operators, are
directly measureable. Second, correlation tensors belong to a family of real inner
product spaces, with generalized inner products defined as:

(X,Y )G =
∑
~µ,~ν

X~µG~µ~νY~ν , (6)

where G is a positive semidefinite operator acting on a vector space of correlation
tensors. This inner product induces a G-seminorm1:

||T ||2G = (T, T )G. (7)

1A seminorm is a non-negative function of a vector space, which is absolutely homogeneous,
and fulfills the triangle inequality, but need not to separate points, which means ||T ||G = 0
does not necesserilly imply T = 0. In fact correlation tensor T of a quantum state is never a
zero vector, however for suitably chosen metric it can happen, that ||T ||G = 0.
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In this sense a space of correlation tensors with fixed G is a pseudo-metric space.
We will refer to operators G simply as metrics, having in mind that they define
a pseudo-metric.

The machinery of an inner product space allows to formulate a very simple
condition for refuting that a given vector ~a belongs to a set S [29]:

max
~b∈S

~a ·~b < ~a · ~a =⇒ ~a /∈ S. (8)

Applying this condition to the set of k-separable states we obtain the following
condition, which generalizes the full separability condition in [29]:

If there exists a metic G, for which:

maxTk-sep(T k-sep, T )G < ||T ||2G, (9)

the state described by correlation tensor T is not k-separable.

This condition is in a sense tautological, since it demands optimization over all
k-separable states to prove that some state is not in this class. However, due to
convexity of this set we have:

max
Tk-sep

(T k-sep, T )G = max
{{pi},Tk-pr}

(∑
i

piT
k-pr
(i) , T

)
G

≤ max
Tk-pr

(T k-pr, T )G, (10)

which allows to perform the maximization in (9) over pure k-product states.
The set of k-product states can be uniquely decomposed into the set of states,
which are k-product with respect to all k-partitions S. Therefore, the condition
(9) can be reformulated, such that the maximization is performed separately for
each partition:

If for every partition S there exists a metric GS such that:

maxT (k-pr|S)(T (k-pr|S), T )GS < ||T ||2GS , (11)

the state described by correlation tensor T is not k-separable.

Moreover, we show in [A], that the above condition is also a necessary one,
which means, that for every non-k-separable state ρ, and every k-partition S
there exists a metric GS , such that the inequality (11) is fulfilled. This leads to
a general characterization of k-separability [A]:

An n-partite state endowed with correlation tensor T is not k-separable

if and only if for every partition S into k subsystems,

there exists a metric GS such that the following inequality holds:

maxT (k-pr|S)(T (k-pr|S), T )GS < (T, T )GS . (12)

The above characterization is very important, since it gives a complete de-
scription of the degree of separability, and a partial characterization of multi-
partite entanglement. Indeed, since k-separable states form a partially oredered
sets (3), they naturally characterize the degree of separability: the most sep-
arable states are n-separable ones, also called fully separable, and the least
separable states are biseparable. States which are fully separable contain no
entanglement, states that are not k-separable contain entanglement between at
least d n

k−1e parties, and states that are not biseparable, are genuinely n-partite
entangled.
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3.1.2 Multipartite entanglement deduced from bipartite correlations

In the case of multipartite systems there is no one-to-one correspondence be-
tween entanglement and correlations, namely, states that are n-partite entangled
need not give rise to n-partite correlations [24, 25]. In [B] we investigate to what
extent multipartite entanglement of pure states can be derived from bipartite
correlations. The considerations are based on the phenomenon called monogamy
of correlations, which relies on the fact, that if many systems are correlated, the
distribution of these correlations is strongly bounded by physical properties of
the entire system. In the case of three qubits this phenomenon implies, that
if any two of the systems are strongly quantumly correlated, they cannot be
strongly correlated with the third subsystem [30]. This intuition is the basic
idea behind device-independent quantum cryptography [31, 32, 33].

In our considerations we use the correlation tensor representation (5) of a
quantum state of n qubits. The elements of a correlation tensor (4), which con-
tain only k non-zero indices correspond to k-partite correlations. Single particle
expectations (Tx, Ty, Tz) form a three dimensional real vector. We convention-
ally call the local measurements of σx, σy and σz as measurements in x̂, ŷ and
ẑ direction respectively.

Our characterization of multipartite entanglement of pure qubit states is
based on the following monogamy relation:

For any n-qubit state (pure or mixed) the following tight bound holds:

M =
∑

1≤k<l≤nMkl ≤

{
2 if n = 2(
n
2

)
if n ≥ 3

, (13)

with Mkl =
∑
i,j=1,2 T

2
0,...,0,i(k),0,...,0,j(l),0,...,0

, where subscripts (k) and (l) de-
note k-th and l-th subsystem, and i, j are two pairs of Cartesian coordinate
indices. For simplicity, we shall assume that they always represent coordinates
related with measurement directions x̂ and ŷ.

The condition (13) states that the sum of squares of all possible bipartite cor-
relations in an n qubit state with respect to two different orthogonal directions
i, j is bounded by the factor

(
n
2

)
, which is 4 times less than the algebraic bound

of this expression. In this form the proposition is useless for detection of en-
tanglement, sinceM contains terms related to classical correlations. To remove
them, we define a preffered basis for the k-th observer, as a measurement basis
in which the local Bloch vector is pointing in ẑ direction. The quantity M in
these new coordinates, which we denote byM(pb) gives rise to two entanglement
criteria:

For n ≥ 5, and for any n-qubit pure state |ψ〉, if:

M(pb)(|ψ〉) >
(
n−1
2

)
(14)

then |ψ〉 is genuinely n-partite entangled. For n=3 and n=4 we have:

M(pb)(|ψ〉) > 2 =⇒ |ψ〉 is genuinely 3-partite entangled.

M(pb)(|ψ〉) > 4 =⇒ |ψ〉 is genuinely 4-partite entangled.
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and:

For any n-qubit pure state |ψ〉, with n ≥ 5,

and for any m ≤
⌊
n
2

⌋
− 1 the following holds:

if M(pb)(|ψ〉) >
(
m
2

)
+
(
n−m

2

)
+ δm,2, (15)

where δm,2 denotes the Kronecker delta,

the state |ψ〉 is genuinely m–partite entangled.

We illustrate the above criteria using Dicke states [34]:

|De
n〉 =

1√(
N
e

) ∑
π

|π(1 . . . 10 . . . 0)〉 , (16)

where π denotes permutations of local subsystems and e is the number of ex-
citations (states |1〉). Applying condition (14) we obtain, that states D1

3 and
D2

5 are genuinely multipartite entangled, whereas applying condition (15) we
get that states D(n−1)/2

n , where n is odd, contain entanglement between at least
(n+ 3)/2 parties.

These results, although not optimal from the point of view of entanglement
detection (it is known that all Dicke states are truly n-partite entangled) are
nevertheless quite important. First, they do not follow usual intuitions about
Dicke states. Namely, Dicke states De

n are known to be the only states com-
patible with its 2e-qubit reduced states [35]. Therefore intuitively the greater
is the number of excitations e, the more dependent De

n are on higher-partite
correlations. However condition (15), based solely on bipartite correlations,
detects higher-partite entanglement for higher e. This shows that quantifying
multipartite entanglement is completely different task from the so called quan-
tum marginal problem [36], that is determining unique global state given its
marginals. Second, condition (15) applied to Dicke states gives an interesting
illustration of quantum de Finetti theorem [37], which in the simplest version
states, that the reduced k-partite state of every permutationally invariant fi-
nite dimensional state of n parties is for sufficiently large n arbitrary close to a
separable state. Condition (15) detects entanglement of D(n−1)/2

n for arbitrary
n, however the efficiency of this condition tends to zero with n → ∞. This is
in accordance with quantum de Finetti theorem which indicates, that bipartite
reduced states of De

n are asymptotically separable, hence asymptotically they
should not contain any information about entanglement of De

n.

3.1.3 Incompatibility of classical models for multipartite entangled
states

As mentioned in the introduction, the characterization of multipartite quan-
tum correlations can be done without resort to quantum formalism. This is
done by investigating, to what extent correlations arising from measurements
on quantum particles can be described with classical statistical models [15]. The
impossibility of the classical description can be confirmed by a violation of a
Bell inequality [8], as it is derivable under the assumption that such a model
exists. The necessary condition for non-existence of such models for measure-
ments on quantum particles, is that the particles are entangled and the sets

7



of measurements of at least two observers are non-commuting. However, this
condition is not sufficient, as shown by Werner [26].

Let us consider a distributed scenario, called n-partite Bell-type scenario
with m settings per observer, in which n parties perform local binary2 measure-
ments, and k-th party locally chooses her observable from the set A[k]

1 , . . . ,A[k]
m .

We say that there exists a classical model for probabilities of measurement out-
comes in defined scenario, if and only if every observableA[k]

x[k] can be represented
as a random variable on a global sample space of all possible events, and this
assignment is noncontextual, which means that it does not depend on which of
the observables are chosen to be measured in a given experiment. It is assumed
that all these random variables admit a joint probability distribution. This
model is a simple example of a Kolmogorovian probabilistic model [38, 15], and
has (at least) three different interpretations:

• local hidden variable (LHV) model [7, 39, 8]; here we assume, that the
joint probability distribution of outcomes y[1], . . . , y[n] on condition the
local measurements A[1]

x[1] , . . . ,A
[n]

x[n] were chosen can be presented in the
form [26, 8]:

p(y[1], . . . , y[n]|x[1], . . . , x[n]) =
∫
λ∈O

ρ(λ)·p(y[1]|x[1], λ)·. . .·p(y[n]|x[n], λ) dλ;

(17)
this corresponds to the original notion of classicality, that has arisen after
the original EPR [1] and Bell [7] discussions; it emphasizes the role of λ
as a hidden parameter not present in quantum formalism, which affects
the probabilities of local events; the idea assumes that when the physical
system is initially prepared, it is assigned some value of λ, and after the
system is already distributed in space, all its parts carry the information
about λ; moreover λ can have different values at each preparation round;
this is described by the distribution ρ(λ);

• local realistic model [39]; the classical model is understood as coming from
joint assumptions of realism, which guarantees the existence of all values
of all involved observables, and locality, which justifies the noncontextual
assignment; it is a special, extremal case of the local hidden variable model
(in which the values are hidden variables).

• randomized algorithm in distributed computational model [39],[F]; this in-
terpretation is the most operational one; n distributed processors with un-
bounded local computational capabilities share random sequences λ and
are given distributed inputs x[1], . . . , x[n]; it is assumed that there exists
an algorithm, such that the processors output bit values y[1], . . . , y[n] with
desired probability distribution (17); the output bits depend only on their
local inputs and the shared random numbers λ, whereas no communication
between the processors is allowed.

To avoid endless disputes on the problem which of the above three interpre-
tations is the most appropriate one, we will simply refer to (17) as a classical
model.
2We use the convention, that binary observables take values {−1, 1} instead of bit values

{0, 1}.
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We can define a weaker version of the classical model in the above sense,
called a classical model for correlations [26, 40], the existence of which, in several
important cases, is much easier to check. Namely we say that such a model exists
if and only if the correlation function of the measurement outcomes is given by:

E(x[1], . . . , x[n]) = 〈A[1]

x[1] . . .A
[n]

x[n]〉ρ =
∫
λ∈O

ρ(λ) · I [1]
x[1](λ) · . . . · I

[n]

x[n](λ) dλ, (18)

where the binary functions I [k]
x[k](λ), called response functions [41, 26], denote

(predefined) outcomes of the observables A[k]

x[k] measured by the k-th observer
for a given value of λ.

The difference between the conditions (17) and (18) is that (17) is much more
restrictive. For a given definite scenario, existence of a model for probabilities
(17) uniquely determines the model for correlations (18), however the converse is
not true. Given a model for correlations one can always determine (usually not
unique) hidden probability distribution for all possible outcomes [42], however
this distribution, when treated as a joint probability distribution, can give rise
to wrong correlations between fewer number of parties.

A theorem by Żukowski and Brukner [42] gives a sufficient condition for
existence of such a model, when the measurements are performed on qubits.
Let us consider an n-partite Bell-type scenario, in which each observer can
choose between two different projective measurements on a qubit. If for any
set of local orthogonal coordinate systems {x1, . . . , xn} the following condition
holds [42]: ∑

x1,...,xn=1,2

T 2
x1,...,xn

≤ 1, (19)

then the correlation function for arbitrary local measurements in this scenario
admits a classical description in terms of (18).

When characterizing the nonclassicality of multipartite quantum correla-
tions, one usually investigates the non-existence of a global model for probabil-
ities (17) or a model for full n-partite correlations (18). As we show in [C] this
approach is insufficient to reveal the entire structure of nonclassical correlations.

Let us consider the following class of mixed entangled states:

ρen =
1

2
|De

n〉 〈De
n|+

1

2
|Dn−e

n 〉〈Dn−e
n |, (20)

where |De
n〉 denotes Dicke states (16). States ρen are genuinely n-partite entan-

gled, although for odd n they have vanishing correlations between odd number of
subsystems, including the n-point ones. This means, that correlations between
odd number of subsystems trivially admit classical models for correlations (18).
However, as we point out in [C], the state ρ25 admits a classical models for cor-
relations (18) between any two subsystems, and between any four subsystems.
This can be directly proven using the condition (19). Therefore, the state ρ25 ad-
mits classical models for correlations between any fixed number of subsystems,
however the global classical model for probabilities (17) does not exist for this
state, which we verified numerically.

Operationally this means, that for each subset of observers {ai1 , . . . , aik},
where k ≤ 5 it is possible to construct a procedure, which allows to simulate
k-partite correlations arising from measurements on ρ25, and uses only the local
inputs (the settings) and some shared random numbers.

9



Since the global classical model for probabilities in Bell scenario with two
settings per observer does not exist in this case, the classical models for cor-
relations between any fixed number of parties must be mutually incompatible.
This means, that the hidden probability distributions arising from these models
cannot be extended to a single model for probabilities (17). This incompatibility
can arise inbetween models for bipartite and four-partite correlations, as well
as inbetween models for a fixed number of parties but for different choices of
subsystems. The incompatibility can be directly proven by demonstrating a vi-
olation of a Bell inequality involving both bipartite and four-partite correlations
for all possible permutations of subsystems:

Eπ(11110) + Eπ(22220) + Eπ(12220) − Eπ(21110) − Eπ(11000) − Eπ(22000) ≤ 6, (21)

where the subscripts 1 and 2 denote settings for given observers, subscripts
0 denote σ0 ”measurements” (that is lower order correlations) and Eπ(ijklm)

denotes the sum of all correlation functions obtained by permuting positions of
the settings i, j, k, l,m. We have found settings:

~s1 = (cos π5 ,− sin π
5 , 0), (22)

~s2 = (cos π
20 , sin

π
20 , 0), (23)

which give rise to a violation of (21). The left-hand-side of (21) for ρ25 equals
7.7831, which is almost equal to the maximal value, which we have found nu-
merically to be 7.8217.

The discussed example shows that if one investigates multipartite entangled
states from the perspective of classical models, their nonclassicality is a very
subtle point. Even though ρ25 is genuinely 5-partite entangled, and as such highly
non-classical, its correlations between any fixed number of parties in a scenario
of two settings per observer are classical in terms of (18). This indicates, that
correlations do not give a full description of quantum incompatibility, and in
some cases direct investigation of the classical models for probability (eg. using
the software described in [43]) is necessary.

3.2 Efficient experimental detection of multipartite entan-
glement with non-linear entanglement identifiers

The main difficulty in detecting multipartite entanglement stems from the fact
that sets of k-partite entangled states are not convex. In general proving that
some vector belongs to a non-convex set is a hard task. It is therefore much
more efficient to characterize relation of a given state with respect to sets of
k-separable states (3). By rejecting different classes of k-separability (3), we
get information about entanglement, namely an n-partite state which is not
k-separable must involve entanglement between at least d n

k−1e parties.
Precise geometrical characterization of Sk−sep is difficult. Since this set is

not a polytope – it cannot be effectively described by a finite number of linear
equations. On the other hand, due to Hahn-Banach theorem, such a set can be
characterized using a continuous set of linear functionals, called in this context
entanglement witnesses [44, 4]. Every such functional can be represented by
an Hermitian operator3, hence is directly measureable, at least in principle.
3This happens since the set of all linear continuous functionals on the space of trace class

operators is isomorphic to algebra of bounded operators on a system’s Hilbert space.
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In practice, this method is very problematic for several reasons. First, the
operator representing the witness has to be decomposed into locally measurable
observables [4] in such a way, that the number of local measurements needed for
detection of entanglement is reasonably small. Second, the witness has to be
precisely adjusted to the state under investigation, which demands some initial
knowledge about the state. The first problem has been solved only for a few
low-dimensional cases [45, 46], whereas the second one has been partially solved
in a bipartite case by non-linear improvements to the witness [47].

In works [A] and [D] we propose a much more versatile method of entan-
glement detection, based on condition (12). First, our method is by definition
adjusted to the scenario of local measurements performed on arbitrary num-
ber of subsystems. Second, our entanglement identifiers have form of nonlinear
functionals, which makes them more universal and less dependent on the initial
knowledge of the state. Finally, our method often requires only few measure-
ments to detect entanglement.

In [A] we derived several nonlinear entanglement identifiers directly based
on condition (12). In the case of three qubits, we derived criteria, which are
unbiased with respect to any family of entagled states. Using the inner product
(6) based on the metric G~µ~ν (7) in the standard form of a Kronecker delta, we
obtained:

If the following inequality holds:

maxπ,π(Ô⊗Ô′,11)

√∑3
i=1

(∣∣Tπ(11i) − Tπ(22i)∣∣+ |Tπ(33i)|)2 < ||T ||2, (24)

then the state described by T is genuinely 3-partite entangled.

The maximization of the left-hand-side is performed over all permutations π of
the indices, and over local rotations applied to fixed indices for a given permu-
tation. This condition is very versatile, since it allows for detection of genuine
3-partite entanglement of both GHZ and W states, despite the fact, that they
belong to two completely different families of states, and their entanglement is
of a very different nature [48].

We can modify the metric (hence also the norm (7)) to get rid of terms of
the Tπ(33i) type, thus we put:

||T ||2π =

3∑
i,j,k=1

T 2
ijk −

3∑
l=1

T 2
π(33l). (25)

In this way we obtain a condition with fewer number of measurements:

If the following inequalities hold:

∀πmaxπ(Ô⊗Ô′,11)

√∑3
i=1

(
Tπ(11i) − Tπ(22i)

)2
< ||T ||2π, (26)

where ||T ||2π =
∑3
i,j,k=1 T

2
ijk −

∑3
l=1 T

2
π(33l),

then the state described by T is genuinely 3-partite entangled.

Since the square root in (26) is not greater than 2, the former condition can be
simplified to a weaker one:

∀π||T ||2π > 2,
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which is experimentally very efficient. Namely one measures the components of
T which enter ||T ||2π untill for all permutations π the sum (25) exceeds 2. In
this way a 3-partite entanglement can be confirmed with few measurements.

We also provide an example of condition that favours generalized GHZ states
of n qubits:

|GHZα〉 = cosα |0 . . . 0〉+ sinα |1 . . . 1〉 , (27)

Our condition with a diagonal metric G~µ~ν = δ~µ,~ν |GGHZ
~µ |, where GGHZ

~µ denotes a
correlation tensor of a GHZ state (27), but with GGHZ0,...,0 = 0, leads to an optimal
detection of a genuine multipartite entanglement of noisy GHZ states. Namely,
generalized GHZ state mixed with white noise:

ρ = v|GHZ〉〈GHZ|+ (1− v) 1

2n
11. (28)

is n-partite entangled for v > 2n cos2 α−1
2n−1 . Note that this state is fully separable

only for α = 0, which indicates a very interesting feature of sets of k-separable
states, that in an infinitesimal neighbourhood of the fully separable states there
are states with entanglement between an arbitrary number of subsystems.

The criteria presented in [A] do not demand the exact knowledge of the state
which is experimentally tested, hence they can be used for testing entanglement
without any knowledge of the preparation procedure. However, one often faces
a different experimental problem, in which one aims at producing a definite
entangled state, and wants to check, whether the noise that appeares during this
stage spoiles the entanglement. As we discussed before, the earlier approach of
entanglement witnesses encounters several difficulties. In [D] we proposed an
approach to the witness method, which can be applied succesfully, whenever we
can find a nearest separable (or in general k-separable) state, further denoted
as ρ0, to the state ρ under investigation.

The construction comes from the ”only if ” part of condition (12), which
states that for each state ρ, that is not k-separable, there exists a metric G,
such that for every partition S of the subsystems, the inequality (12) is fulfilled.
Such a metric is given by:

G~µ~ν = D~µD~ν (29)

where vector indices denote coordinates in some Hermitian operator basis, and
D~µ is a correlation tensor (4) of operator ρ − ρ0. Putting this specific metric
into the condition (12) we obtain the following criterion:

max
Tk−pr

∑
~µ~ν

T~µD~µD~νT
k−pr
~ν <

∑
~µ~ν

T~µD~µD~νT~ν . (30)

The value LG of the left-hand-side gives us the following entanglement identifier:∑
~µ~ν

T~µD~µD~νT~ν > LG =⇒ ρ described by T is not separable, (31)

which in the case of rejecting full separability is equivalent to a standard en-
tanglement witness [29]. The numbers entering this condition can be negative,
thus all the corresponding correlations have to be measured. This assumption
can be relaxed by erasing all off-diagonal terms of the metric G, which defines
a new metric:

H~µ~ν = D2
~µδ~µ~ν (32)

12



where δ~µ~ν = δµ1ν1 · . . . ·δµnνn denotes the product of point-wise Kronecker deltas
of all possible pairs of coordinates. The new metric H gives rise to an analogous
condition:

max
Tk−pr

∑
~µ

T~µD
2
~µT

k−pr
~µ <

∑
~µ

T 2
~µD

2
~µ. (33)

If we calculate the numerical value of the left-hand-side, LH , we obtain a
quadratic generalization of an entanglement witness:∑

~µ

T 2
~µD

2
~ν > LH =⇒ ρ described by T is not separable. (34)

The sensitivity of this condition with respect to the white noise is different than
in the case of standard witnesses. In contradistinction to (31), it contains sum-
mation of positive numbers only. This allows an efficient experimental detection
of entanglement, since once the condition is fulfilled we do not need to perform
further measurements, as they can only increase the left-hand-side of (34). Our
work [D] includes applications of the above two identifiers (31) and (34) for
several states, which are interesting from quantum information perspective.

The presented approach to entanglement witnesses is very general. It works
for states of arbitrary dimension, and it can be used to test if a given state does
not belong to any other class of convex states, like PPT ones [4].

3.3 Applications of multipartite entanglement in various
physical scenarios

Here we present an analysis of applications of multipartite entanglement in the
context of metrology and distributed computing.

3.3.1 Precise parameter estimation

One of the most significant applications of multipartite entanglement is quantum
metrology [22]. This field originates from investigations on precise phase-shift
estimation in interferometers [49] and has been generalized to a theory of precise
estimation of more general physical parameters. Nowadays a development of
these techniques is crucial in atomic spectroscopy [50], in constructing atomic
clocks [51] and in detection of gravitational waves [52].

General metrological setup is theory-independent, and consists of four stages:
three experimental ones and one theoretical. In the experiment, one first pre-
pares an initial system of n particles – the probe. Then the system undergoes a
local unitary evolution, which depends on some unknown parameter ω, which is
estimated. Finally, the evolved system undergoes some local POVM measure-
ments4, and the results are processed so as to estimate the parameter ω, with
the best possible precision.

Intuitively, the bigger the initial system, the higher the precision of esti-
mation. It turns out, that when the initial system consists of n classically
correlated particles, the best possible precision of estimation scales like 1/

√
n,

which is a direct consequence of a Cramer-Rao bound [53, 54] in estimation
theory. However, when the initial state is multipartite entangled, it turns out

4This assumption is not restrictive, since it is proved that global measurements do not
enhance the precision of estimation.
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that the precision of estimation can achieve scaling of 1/n, called the Heisenberg
limit. The intuitive reason for this improvement is that the correlation function
of local measurements on a highly entangled state is much more sensitive to a
unitary dynamics than the classical correlation function. Unfortunatelly this
quantum gain in precision is extremely fragile to decoherence. Let us assume
that each qubit from the initial n-partite system undergoes a local unitary ω-
dependent rotation and simultaneously is exposed to a general local noise. This
kind of evolution is formally described by the Kossakowski-Lindblad equation
[55, 56]:

∂ρ (t)

∂t
= −i[H, ρ] + L (ρ) , (35)

where the Hamiltonian H = 1
2ωσ~r is a generator of unitary rotation around axis

~r, whereas the Liouvillian:

L(ρ) = −1

2
γ [ρ− αxσxρσx − αyσyρσy − αzσzρσz] , (36)

describes a noise generated by {σx, σy, σz}. The entire evolution can be trans-
formed into the quantum channel formalism [57, 58, 59]:

ρ(t) =

4∑
i=1

Ki(t)ρK
†
i (t), (37)

where the evolution operators Ki are called Kraus operators. Recently it has
been shown that an arbitrary noise described by full rank channels (which means
all Kraus operators in (37) are non-zero) reduces the scaling of precision to 1/

√
n

[60], which is the classical scaling. Thus, realistic quantum metrology turns out
to be very limited.

In [E] we propose a slightly modified metrological scenario, which allows
to overcome this problem in a special case, of the generator of noise, which is
perpendicular to the generator of evolution. Our idea is based on the following
observation. The uncertainty of estimation of a parameter ω fulfills the quantum
Cramer-Rao bound [61]:

δω ≥ 1√
(F(ρω) · T )/t

, (38)

where T is the total time of the experiment, t is a time of a single round (which
is the time the system evolves) and F(ρω) is the so called quantum Fisher in-
formation (QFI) [62]. QFI is a function of the evolved state and describes the
amount of information about the parameter ω that can be extracted from mea-
surements on the final state, assuming that the entire estimation procedure is
optimal. Typically one assumes, that T and t are fixed, and one maximizes the
QFI over input states. Then it turns out, that taking eg. n-partite GHZ state
as an input state, the quadratic scaling F(ρω) ∝ n2 of the QFI as a function
of input size can be attained, which gives the best quantum gain in precission.
Unfortunatelly, in this case also the no-go result of Ref. [60] holds, which states,
that in the presence of any decoherence, such that the entire quantum channel
(37) is full-rank, the classical scaling F(ρω) ∝ n is assymptotically unavoidable.
To cope with this problem we utilize a modified approach to parameter estima-
tion, in which only the entire experiment time T is fixed, whereas the evolution
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time t is optimized for each n separately, so as to maximize5 F(ρω)/t. This
approach has been considered before in a very restricted case of collinear noise
and evolution generators [50, 63].

We show [E], that if the generator of noise is perpendicular to the generator of
evolution, the initial n-partite GHZ state gives rise to QFI scaling asymptotically
as F(ρω) ∝ n

5
3 . This implies the uncertainty δω ∝ n−

5
6 , which beats the

classical scaling, though not achieving the quantum Heisenberg limit.
In our investigations we assume that the generator of evolution is σz, whereas

the generator of noise in (36) is set to be σx. The input state is an n-partite
GHZ state (27) with α = π

4 . We find analytic form of Kraus operators (37) for
this channel. Although we obtained analytic form of the QFI, we were forced
to calculate maxt F(ρω)/t numerically, because of the very complicated and
intractable form of F(ρω). Performing the t-maximization for n = 2, . . . , 5000

we numerically found the precision scaling to be δω ∝ n− 5
6 . We confirmed this

scaling for n up to 108, using the numerical channel extension method proposed
in [60, 64].

We also investigated the case, in which the generator of noise is slightly
deviated from the direction perpendicular to the evolution generator σz, namely
we assumed αx = 1− ε and αz = ε in (36). In this case, our numerical analysis
shows that the uncertainty of the frequency estimation δω initially scales super-
classicaly, however for higher n the scaling goes back to a classical one. We
found numerically, that the critical n, for which the scaling starts to return to
a classical one can be approximated by ncrit ≈ 3ω/(8γε3/2).

Our analysis gives a strong numerical evidence, that if the noise is perpen-
dicular to the evolution, the precision of frequency estimation scales better than
classically for n→∞, however an arbitrarilly small deviation from this perpen-
dicularity brings the precision scaling back to the classical one. Although we do
not have a formal analytical proof, and the result seems very restrictive from
the experimental perspective, it allows to treat quantum metrology not only
as a pure theoretical exercise, and gives a motivation for finding new effective
realistic protocols for an ultra precise parameter estimation [65].

3.3.2 Quantum Distributed Computing

Distributed computing is a broad class of computational models, the common
feature of which is the existence of several autonomous computational units,
which have local memories and can communicate with each other in order to
solve some common problem. In [F] we focus on a distributed graph models
called LOCAL models [66]: such models assume that one has n distributed pro-
cessors (nodes), which operate in synchronous rounds, each round consisting of a
local computation and communication with nodes linked as nearest neighbours.
The local computational power of each node and the amount of communication
between adjacent nodes are unbounded. The input is defined as a labeled graph
Gx and has two tasks: it defines a local numerical inputs x(v) and the topology
of communication links between the nodes. The output is simply defined as a
vector of local variables y(v) given by each node. A problem is defined as a
map from the inputs Gx into the set of acceptable outputs. The complexity of
a problem is measured by the minimal number of rounds needed to obtain an

5Note that F(ρω) is an implicit funtion of t, via dependence on ρω .
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acceptable output with certainty.
Several works produced over the last few years attempt to incorporate quan-

tum effects, like entanglement or quantum communication, to the scenario of
distributed computing, and the set of these hybrid models is referred to as
quantum distributed computing [67]. All these attempts are lacking a consis-
tent framework, which leads to an overestimation of the role of quantumness in
solving some distributed problems6[69, 70, 71].

In [F] we systematically introduced several quantum extensions of a LOCAL
model and found a hierarchy of these extensions with respect to their compu-
tational power. We have also defined a resource-independent model ϕ-LOCAL,
containing all the quantum extensions, which represents the intuition of physical
locality in a distributed computational scenario.

Round-based distributed computing is one of the three basic computational
models, in which adding quantum resources significantly decreases complexity
of solving particular problems. The nature of this quantum reduction in com-
plexity is even today not fully understood, however some intuitive approaches
have been suggested. Namely, in the decision tree model of computations, which
involves the most famous quantum algorithms, like Deutsch-Jozsa algorithm
[72] or Simon’s algorithm [73], the quantum gain is thought to come from the
fact, that the quantum oracle can be fed with lengthy superposition of com-
putational basis states [74]. In the communication complexity scenario [75, 20],
which is a model of distributed systems, in which the complexity is measured by
the minimal number of total communication between the nodes, the quantum
reduction in communication complexity comes in two different scenarios. In the
first one, the power of quantum communication is compared with the classical
communication and the fairness of this comparison is based on Holevo bound
[76], which states, in the simplest version, that by communicating n qubits one
can directly communicate at most n bits of classical message. In the second
scenario one compares the computational power of a distributed system with
classically communicating nodes with and without access to entangled quantum
particles. Here, the reduction in communication complexity can be treated as a
manifestation of nonclassicality of quantum correlations [39].

We show that in the model of round based distributed computing, the quan-
tum reduction in the number of rounds can be attributed to reduction in com-
munication complexity in both above discussed versions. Although we do not
prove any sort of equivalence between these two different notions of complex-
ity in distributed systems, we indicate a deep conection between them, which
demands further analysis. We also demonstrate, that the computational power
of all quantum extensions is significantly bounded by the principle of physical
locality.

At first stage we define [F] two extensions of LOCAL model which introduce
aditional resources at the initialization of the distributed algorithm, that is
before the input Gx is given to the nodes. In the first extension, LOCAL+S,
we assume that the set of initial states of each processor is chosen randomly
according to some probability distribution. In physical terms this corresponds
to a creation of a separable state shared by the nodes, whereas in computational
terms it can be interpreted as a shared randomness. Note that the LOCAL
6Note that a similar problem occured in the context of so called Static Quantum Games,

cf. [68].
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model does not assume any bounds on local memory and local computational
procedures, hence the amount of shared randomness in the LOCAL+S model is
unbounded. In the second extension, LOCAL+E , each node is equipped with a
quantum register of arbitrary dimension, and the initialization relies on creating
an n-partite, possibly entangled state, which is shared by all the parties.

The second type of extension, LOCAL+Q allows for unbounded commu-
nication of quantum particles inbetween nodes which are connected by a link,
according to the input graph Gx.

Let us denote by LOCAL[t] the complexity class of problems, that can be
solved within a LOCAL model in at most t rounds of computation. Analogically
we define complexity classes for LOCAL+S[t], LOCAL+E [t] and LOCAL+Q[t].
The hierarchy of the above defined models can be determined by the following
intuitive arguments:

• LOCAL ( LOCAL+S; trivially all problems in LOCAL[t] belong to
LOCAL+S[t] with trivial initialization; however, the problem of assigning
unique node identifiers to all the processors assuming empty input, cannot
be solved in LOCAL[t] for any t, but can be solved in LOCAL+S[0].

• LOCAL+S ( LOCAL+E ; trivially any problem in LOCAL+S belongs to
LOCAL+E by choosing a separable state at the initialization; however,
the 3-partite modulo-4 problem [77, 78] in the setting with empty initial
graph, cannot be solved in LOCAL+S[t] for any t, whereas it can be
solved in LOCAL+E [0] by preparing a 3-partite GHZ state inbetween
the nodes; this fact can be seen as a distributed-computing version of a
GHZ paradox [79]; note that this argument can be understood in terms
of communication complexity, namely that the correlations of GHZ state
cannot be simulated by a locally computable functions with access to
unbounded shared randomness, but without communication.

• LOCAL ( LOCAL+Q; trivially all problems in LOCAL[t] belong to
LOCAL+Q[t] without quantum communication; consider now a problem
defined on n = 3k + 1 nodes, and the input graph as a uniformly sub-
divided star with central node of degree 3; the problem relies on solving
a modulo-4 problem by 3 external nodes of the star; within LOCAL+Q
this can be done in k rounds by creating a GHZ state in the central node
and sending it to three external nodes by quantum communication links;
this process cannot be simulated by communicating arbitrary number of
classical information from the central node, and needs direct communi-
cation between the three leaves of the star which demands 2k rounds; in
this example, the discrepancy inebetween the models can be attributed
to quantum communication complexity argument, that sending away en-
tangled qubits cannot be simulated by sending away arbitrary number of
correlated bits.

• LOCAL+Q ( LOCAL+E ; the distributed modulo-4 problem with empty
graph, which is in LOCAL+E [0] cannot be solved in LOCAL+Q[t] since
there is no communication between the nodes; on the other hand, quan-
tum communication links can be simulated in the LOCAL+E model by
quantum teleportation [19], hence every problem solvable in LOCAL+Q[t]
can be solved in LOCAL+E [t].
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• LOCAL+Q and LOCAL+S are incomparable.

All of the above extensions are fully consistent with the intuitive notion of
physical locality, which in the context of LOCAL model means, that the input of
each node v after t rounds of executing an algorithm can affect the probabilities
of outcomes of nodes, which are within distance of at most t edges from the node
v, and this property must hold for arbitrary input graph Gx. This intuition
corresponds to the notion of a finite speed of propagation of information in
lattice models with nearest-neighbour interaction [80]. We define ϕ-LOCAL
model as the set of all models that preserve the above defined notion of locality.
In the extended version of the article [81] we show that the models LOCAL,
LOCAL+S, LOCAL+Q and LOCAL+E belong to ϕ-LOCAL and leave as an
open question, whether this inclusion is strict. Note that the ϕ-LOCAL model
is defined in a theory-independent way, that is it does not directly specify the
allowed resources. The definition of ϕ-LOCAL restricted to t = 0 is equivalent
to the notion of non-signalling in generalized probabilistic teories [82].

The introduction of ϕ-LOCAL model, apart from its intuitive meaning, sig-
nificantly simplifies proving lower bounds on computation complexity of several
problems within quantum extensions. Namely, it is much easier to prove, that
every solution to a given problem after k rounds violates physical locality, than
directly prove, that the problem cannot be solved by some quantum extension
within k rounds of computation. In this way we prove, that distributed con-
sensus[83]7 /∈ ϕ-LOCAL[0], which implies it cannot be solved by any quantum
extension without communication, since existence of such a solution would imply
violation of physical locality.

Apart from this intuitive exposition, in an extended version [81] of the work
[F], we provide a formal mathematical characterization of all the quantum ex-
tensions. This is done in the language of local C∗ algebras, and is motivated
by the approach presented in [84, 80, 85]. Within this formalization we provide
a general proof of the fact, that all considered extensions of a LOCAL model
belong to ϕ-LOCAL.
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