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Abstract

Glycosaminoglycans (GAGs) are linear anionic polysaccharides composed of
repeating disaccharide units made up of a hexosamine and a uronic acid with
varying degrees and patterns of sulfation. They are essential components of the
extracellular matrix and are pivotal in numerous cellular processes by interacting
with various proteins. Disruptions in these interactions can cause severe health
conditions including neurodegenerative and in�ammatory diseases.
The speci�city of interactions between GAGs and proteins, i.e. the ability of
the receptor (protein) or ligand molecule (GAG) to distinguish between similar
targets and preferentially form interactions with one or a few selected binding
partners, is largely governed by the structural and chemical properties of GAGs,
including their sulfation patterns, charge distribution, length, and �exibility,
as well as the protein's structural features. Disruptions in binding speci�city
caused by protein mutations, alterations in GAG structure, or changes in the
cellular environment can result in protein dysfunction, dysregulated signaling,
and disease. Therefore, understanding binding speci�city is crucial for developing
GAG mimetics for therapeutic use to recreate, enhance, or modify natural GAG
binding.
Isolating structurally homogeneous fragments of unbound GAGs is di�cult due
to the variations in their chain length, sugar composition, and sulfation pattern.
Once GAGs bind to proteins, their increased conformational �exibility and tran-
sient interactions become the chief obstacles to structural analysis. The dynamic
multivalent nature of protein/GAG interactions, often driven by electrostatics,
can result in multiple binding poses with comparable a�nities, which complicates
the detailed characterization of speci�city of individual binding sites in vitro.
A combination of experimental and computational methods is bene�cial to
address these challenges and provide a thorough understanding of protein/GAG
speci�city.
Computational methods elucidate binding mechanisms and the e�ects of speci�c
molecular features of GAGs at the molecular level. Mapping the electrostatic
potential using theoretical models helps to identify protein regions that are likely
to interact with GAGs. Molecular docking and molecular dynamics simulations
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are used to identify potential binding sites and poses, and to characterize inter-
action stability and conformational changes within the protein/GAG complex.
All-atom simulations provide atomistic detail while coarse-grained simulations
are able to capture larger scales over extended timescales owing to the grouping
of atoms into "beads". By quantifying the energetic cost or gain of binding, free
energy calculations provide quantitative insight into the thermodynamic favor-
ability of protein/GAG binding. Other approaches, such as machine learning,
can classify interactions based on the structural properties of both proteins and
GAGs, revealing hidden patterns in their binding mechanisms and highlighting
key features driving binding speci�city.
The research presented in this thesis aimed to explore areas currently beyond
experimental reach in the study of protein/GAG binding speci�city using com-
putational methods. The employed computational models were integrated with
and validated against experimental data to provide a comprehensive, multi-
scale understanding of protein/GAG interactions. Using Poisson�Boltzmann
calculations, I quanti�ed how di�erent GAGs a�ect the protein's near-surface
electrostatic �eld and validated these changes by comparing the computed maps
with measurements from a novel paramagnetic-probe NMR technique. Next,
I performed atomistic molecular dynamics simulations of protein/GAG and
protein/peptide complexes to explore the in�uence of electrostatic interactions
versus other physicochemical properties on binding speci�city. Free energy
calculations decomposing the binding energy into separate contributions and
analysis of ligand �exibility distinguished GAG interactions from acidic peptides.
Furthermore, I implemented, �ne-tuned, and validated a coarse-grained model of
heparin. Finally, I performed MD simulations of GAGs with di�erent sulfation
patterns in combination with unsupervised learning to establish links between
GAG structural features and binding speci�city.
By utilizing computational chemistry techniques, the research presented in
this thesis made key contributions to understanding the speci�city of pro-
tein/GAG interactions. Innovative tools and analysis pipelines were designed for
coarse-grained simulations, enhancing the e�ciency of protein/GAG interaction
modeling. This research demonstrated the complementary nature of compu-
tational and experimental methods in studying protein/GAG complexes. The
developed computational approaches support large-scale simulations and o�er a
robust framework for future studies on protein/GAG binding speci�city relevant
to therapeutic design.



Streszczenie

Glikozaminoglikany (GAGi) to liniowe anionowe polisacharydy zbudowane z
powtarzaj¡cych si¦ jednostek dwucukrowych, skªadaj¡cych si¦ z heksozaminy
i kwasu uronowego, wykazuj¡cych zró»nicowany stopie« i wzór sulfatacji. S¡
istotnymi skªadnikami macierzy pozakomórkowej i odgrywaj¡ kluczow¡ rol¦ w
licznych procesach komórkowych poprzez oddziaªywania z ró»nymi biaªkami.
Specy�czno±¢ oddziaªywa« mi¦dzy GAGami a biaªkami, czyli zdolno±¢ recep-
tora lub ligandu do rozró»niania podobnych do siebie partnerów wi¡zania i
zdolno±¢ preferencyjnego tworzenia interakcji z jednym lub kilkoma wybranymi
molekuªami zale»y w du»ej mierze od wªa±ciwo±ci strukturalnych i chemicznych
GAGów, a tak»e od cech strukturalnych samego biaªka. Zmiany wpªywaj¡ce
na specy�czno±¢ wi¡zania mog¡ powodowa¢ zaburzenia w sygnalizacji mi¦dzy- i
wewen¡trzkomórkowej i wywoªywa¢ rozwój chorób takich jak choroby neurode-
genracyjne, nowotworowe, czy autoimmunologiczne. Zrozumienie mechanizmów
wi¡zania ma zatem kluczowe znaczenie dla opracowania mimetyków GAGów
do zastosowa« terapeutycznych, które mogªyby odtwarza¢, wzmacnia¢ lub
mody�kowa¢ oddziaªywania GAGów z biaªkami.
Zªo»ono±¢ strukturalna GAGów utrudnia eksperymentaln¡ izolacj¦ jednorod-
nych strukturalnie fragmentów, natomiast ich konformacyjna elastyczno±¢ i
przej±ciowy charakter oddziaªywa« z biaªkami dodatkowo utrudniaj¡ analizy
strukturalne. Szczegóªowa charakterystyka specy�czno±ci poszczególnych miejsc
wi¡zania GAGów in vitro jest utrudniona dla oddziaªywa« biaªko/GAG z powodu
obierania przez cz¡steczki GAGów wielu pozycji w przestrzeni o porównowalnych
powinowactwach. Poª¡czenie metod eksperymentalnych i obliczeniowych jest
wi¦c korzystne dla uzyskania peªniejszego zrozumienia specy�czno±ci interakcji
biaªko/GAG.
Metody obliczeniowe pozwalaj¡ na wyja±nienie mechanizmów wi¡zania oraz
wpªywu okre±lonych cech GAGów na poziomie molekularnym. Mapowanie
potencjaªu elektrostatycznego za pomoc¡ modeli teoretycznych pozwala na
identy�kacj¦ regionów biaªka, które s¡ prawdopodobnymi miejscami oddziaªy-
wa« z GAGami z uwagi na dominuj¡c¡ rol¦ elektrostatyki w ich interkacjach.
Dokowanie oraz symulacje dynamiki molekularnej mog¡ posªu»y¢ do identy�kacji
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potencjalnych miejsc wi¡zania oraz do charakterystyki stabilno±ci oddziaªywa«
i zachodz¡cych w wyniku wi¡zania zmian konformacyjnych. Podczas gdy atom-
istyczna dynamika molekularna opisuje ruch i interakcje ka»dego pojedynczego
atomu, podej±cia gruboziarniste grupuj¡ kilka atomów w reprezentatywne
"ziarna", zachowuj¡ce kluczowe cechy �zykochemiczne i umo»liwiaj¡c tym
redukcj¦ kosztów obliczeniowych. Powinowactwo wi¡zania GAGów z biaªkami
mo»na oszacowa¢ obliczaj¡c energi¦ swobodn¡ towarzysz¡c¡ ich oddziaªywaniom,
co pozwala na poznanie termodynamiki wi¡zania. Inne podej±cia, takie jak
uczenie maszynowe, pozwalaj¡ na klasy�kowanie interakcji na podstawie cech
strukturalnych zarówno biaªek, jak i GAGów, ujawniaj¡c przy tym ukryte wzorce
w mechanizmach wi¡zania.
Badania przedstawione w niniejszej rozprawie miaªy na celu eksploracj¦ z
wykorzystaniem metod obliczeniowych obszarów obecnie niedost¦pnych dla
bada« eksperymentalnych w zakresie specy�czno±ci wi¡zania biaªko/GAG.
Zastosowane modele obliczeniowe zostaªy zintegrowane z i poddane wery�kacji
w oparciu o dane eksperymentalne, aby uzyska¢ kompleksowy obraz oddzi-
aªywa« biaªko/GAG. Wpªyw wi¡zania ró»nych typów GAGów na potencjaª
elektrostatyczny powierzchni biaªka przeanalizowano metodami obliczeniowymi
i porównano z wynikami spektroskopii NMR z u»yciem sond paramagnety-
cznych. Nast¦pnie przeprowadzone zostaªy symulacje atomistycznej dynamiki
molekularnej kompleksów biaªko/GAG oraz biaªko/peptyd w celu zbadania
wpªywu oddziaªywa« elektrostatycznych w porównaniu do innych wªa±ciwo±ci
�zykochemicznych na specy�czno±¢ wi¡zania. Obliczenia energii swobodnej
wraz z analiz¡ elastyczno±ci ligandów pozwoliªy odró»ni¢ interakcje z GAGami
od tych z anionowymi peptydami. Zaimplementowano i sparametryzowano
gruboziarnisty model heparyny w celu symulacji struktury i dynamiki ªa«cuchów
heparyny o ró»nej dªugo±ci oraz wery�kacji skuteczno±ci modelu w odtwarzaniu
biologicznego zachowania tych cz¡steczek. Przeprowadzone zostaªy równie»
symulacje dynamiki molekularnej GAGów o ró»nych wzorach sulfatacji w
poª¡czeniu z nienadzorowanym uczeniem maszynowym, aby powi¡za¢ cechy
strukturalne GAGów ze specy�czno±ci¡ wi¡zania.
Badania przedstawione w tej rozprawie miaªy znacz¡cy wkªad w zrozumienie
specy�czno±ci oddziaªywa« biaªko/GAG. Opracowano innowacyjne narz¦dzia
i schematy analizy dla symulacji gruboziarnistych, zwi¦kszaj¡c efektywno±¢
modelowania oddziaªywa« biaªko/GAG, a zastosowane podej±cia obliczeniowe
stanowi¡ podstaw¦ dla przyszªych bada« nad specy�czno±ci¡ wi¡zania bi-
aªko/GAG.
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2 1 Introduction

1.1 Glycosaminoglycans

Glycosaminoglycans (GAGs) are a family of linear anionic polysaccharides com-
posed of repeating disaccharide units typically consisting of an amino sugar and
either a uronic acid or galactose [1]. The glycosidic linkages between these sugars
confer structural �exibility to GAG chains, a property essential for their biological
functions. The unique sulfation patterns of GAGs, i.e., the distinctive arrange-
ments of sulfate groups along their chains, function as a sulfation code that
selects protein partners and modulates essential biological processes [2]. Together
with epimerization and other modi�cations, this code enhances the functional di-
versity of GAGs across cell types and tissues [3]. Disruptions in the enzymatic
processes that establish and regulate these patterns are associated with various
genetic and metabolic disorders [3].
GAGs are ubiquitously produced by all mammalian cells and are either secreted
into the extracellular matrix (ECM) or displayed on the cell surface, predomi-
nantly in the form of proteoglycans made up of a core protein and associated GAG
chains such as aggrecans, small and leucine-rich decorins, and the transmembrane
syndecans [1]. Four major classes of GAGs are recognized, each characterized by
unique features regarding molecular structure, charge, and size: Hyaluronic Acid
(HA), Heparan Sulfate/Heparin (HS/HP), Chondroitin Sulfate/Dermatan Sul-
fate (CS/DS), and Keratan Sulfate (KS) [1, 4]. These GAGs are synthesized
and modi�ed in the Golgi apparatus and endoplasmic reticulum, with the ex-
ception of HA, which is synthesized at the plasma or cytoplasmic membrane [5].
Degradation of GAGs primarily occurs in lysosomes, involving speci�c enzymes
that cleave bonds within GAG chains [6]. Mutations in the genes encoding these
enzymes can result in mucopolysaccharidoses (MPS), a group of disorders char-
acterized by the accumulation of partially degraded GAGs.
The basic properties and disaccharide unit sequences of the GAG classes are sum-
marized in Table 1-1 and Figure 1-1.
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Figure 1-1: Chemical structures of the six major GAG types: hyaluronic acid,
chondroitin sulfate, heparan sulfate, dermatan sulfate, heparin, and
keratan sulfate. Key functional groups attached to the molecules are
highlighted using colors: red for carboxyl groups (-CO−

2 ), violet for
sulfate groups (-SO−

3 ), light blue for acetyl groups (-COCH3), green
for amino groups (-NH2), and orange for hydroxyl groups (-OH).
Red "R" symbols indicate potential sites for sulfate group addition.
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Table 1-1: Characteristics of the six major GAG types: charge per disaccharide
unit, chemical composition and glycosidic linkage type in the disac-
charide units, sulfation group position, typical size of the molecule in
vivo expressed in degree of polymerization (dp).

Monosaccharide legend: GlcA � β-D-glucuronic acid; IdoA � α-L-iduronic
acid; GlcN � D-glucosamine; GlcNS � N-sulfated D-glucosamine; GlcNAc � N-
acetyl D-glucosamine; Gal � D-galactose; GalNAc � N-acetyl D-galactosamine.

Name
Charge per Chemical Sulfation

Typical size:
disaccharide composition groups

Hyaluronic Acid
-1

GlcNAc (β1 → 4)
None 15-30 × 104 dp

(HA) GlcA (β1 → 3)
Heparan Sulfate

-1 to -4
GlcN (α1 → 3) N- & 3-,6-O

50 - 400 dp
(HS) GlcA/IdoA (α1 → 4) 2-O

Heparin
-4

GlcNS (α1 → 4) N- & 3-,6-O
20 - 100 dp

(HP) IdoA (α1 → 4) 2-O
Chondroitin Sulfate

-2 or -3
GalNAc (β1 → 4) 4-,6-O

80 - 200 dp
(CS) GlcA (β1 → 3) 2-O

Dermatan Sulfate
-2

GalNAc (β1 → 4) 4-O
100 - 400 dp

(DS) IdoA (α1 → 3) 2-O
Keratan Sulfate

-2
GlcNAc (β1 → 4)

6-O 10 - 70 dp
(KS) Gal (β1 → 4)
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1.1.1 Hyaluronic Acid

HA is a unique GAG composed of non-sulfated disaccharide units of glucuronic
acid (GlcA) and N-acetylglucosamine (GlcNAc), linked by alternating β-1,4 and
β-1,3 glycosidic bonds [7]. Unlike other GAGs, HA has a notably high degree
of polymerization with considerable variability in chain lengths, and it does not
form covalent attachments to proteoglycan core proteins [7]. Under most physio-
logical conditions, HA assumes a sti� random coil conformation, contributing to
its stability and functional versatility [7].
HA plays an essential structural role in connective tissues by enhancing the vis-
coelastic properties of the ECM [8]. In joint synovial �uid, it serves as a lubricant,
facilitating smooth movement and minimizing friction in articulating joints [9].
HA also contributes to the resilience of cartilage, allowing it to withstand com-
pressive forces [10].
In addition to its mechanical functions, HA participates in several important bi-
ological processes. It interacts with cell surface receptors such as CD44 and the
Receptor for Hyaluronan-Mediated Motility (RHAMM), playing roles in cellular
signaling, tissue repair, and immune modulation. HA is also involved in reg-
ulating cell migration and proliferation through CD44, and contributes to the
in�ammatory response by interacting with Toll-like receptors (TLR2 and TLR4)
[7].

1.1.2 Heparan Sulfate and Heparin

Owing to its immense structural variability, HS can be considered as a family
of related GAGs of varying sequence and sulfation patterns which mediate spe-
ci�c binding [11]. HS consists predominantly of repeating units of GlcA or its
epimer iduronic acid (IdoA) together with GlcNAc, linked by α-1,4 and β-1,4
glycosidic bonds [1]. HS molecules undergo a variety of modi�cations, includ-
ing N -deacetylation and N -sulfation of GlcNAc residues to N -sulfo-glucosamine
(GlcNS), resulting in a mixture of N -acetylated and N -sulfated regions along the
HS chain (NA and NS domains, respectively) [12, 13]. The NS domains serve
as starting points for further modi�cations, such as epimerization of GlcA to
IdoA and sulfation of IdoA and GlcNAc/GlcNS residues. Sulfate groups can
be attached also to oxygen atoms at di�erent positions of IdoA and GlcNS,
resulting in 2-O-sulfated IdoA (IdoA(2S)), 6-O-sulfated GlcNAc/GlcNS (Glc-
NAc(6S),GlcNS(6S)), and 3-O-sulfated GlcNS (GlcNS(3S)), as well as 3-O- and
6-O-sulfated GlcNS (GlcNS(3,6S)) [3]. Collectively, permutations of these modi-
�cations across the two residues yield 48 distinct dp2 sulfation patterns.
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Although HS chains are present in almost every animal tissue, their sulfation
patterns vary according to spatiotemporal expression di�erences, lending tissue-
and developmental stage-speci�c biological functions to the molecule [14, 15]. HS
is found within cells, on cell surfaces, and in the ECM [16], where it participates
in signaling pathways by binding growth factors, cytokines, and morphogens [17].
This in�uences protein concentrations on cell surfaces and within the ECM, af-
fecting cell adhesion, migration, and various disease processes including cancer
and infectious diseases [11, 18].
One of the most heavily sulfated HS family member, heparin (HP) is composed
of repeating disaccharides of 2-O-sulfated IdoA (IdoA(2S)) and N-sulfated, 6-O-
sulfated glucosamine (GlcNS(6S)) residues [1]. Compared to most HS molecules,
HP is characterized by less structural variability and greater negative charge [19].
Primarily synthesized in mast cells of the connective tissue, HP is distinguished by
its potent anticoagulant properties, primarily through interaction with antithrom-
bin III (AT-III) [20]. This interaction accelerates the inactivation of thrombin
and factor Xa, key enzymes in the coagulation cascade. Beyond its anticoagulant
properties, HP also interacts with various proteins to modulate in�ammation, cell
proliferation, and metastasis [21, 22, 23].

1.1.3 Chondroitin Sulfate and Dermatan Sulfate

CS is the most abundant GAG, consisting of alternating units of GlcA and N-
acetylgalactosamine (GalNAc), connected by β-1,3 and β-1,4 glycosidic bonds [1,
24]. CS is categorized into four types based on variations in the sulfation patterns
of the disaccharide units: CS-A (GlcA-GalNAc(4S)), CS-C (GlcA-GalNAc(6S)),
CS-D (GlcA(2S)-GalNAc(6S)), and CS-E (GlcA-GalNAc(4,6S)) [1, 24]. These
patterns in�uence interactions with proteins and signaling molecules in the ECM
of cartilage tissues, increasing mechanical integrity and resistance to compressive
forces [24].
The presence of IdoA linked to GalNAc is characteristic for DS [25, 26]. While CS
and DS share many biosynthetic enzymes, speci�c sulfotransferase (ST) enzymes
act on DS to attach sulfate groups to IdoA, preventing the reversible epimerization
to GlcA and enhancing its �exibility compared to CS [1]. DS exhibits a high
variability of sulfation patterns and is particularly important in the development
of blood vessels, skin, and bone, and plays a role in tissue development and wound
repair, including participation in cell signaling [25].
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1.1.4 Keratan Sulfate

KS is composed of repeating disaccharide units of galactose (Gal) and GlcNAc,
connected by alternating β-1,3 and β-1,4 glycosidic bonds [1]. It is divided into
three types, each associated with di�erent tissue locations and sulfation patterns.
KSI, primarily located in the cornea, includes a mixture of non-sulfated, monosul-
fated, and disulfated disaccharides. KSII, important in cartilage, shares similar
sulfation patterns with KSI but varies in sulfation degree and polysaccharide
length [3]. KSIII, found in the brain, features the shortest and least sulfated
chains [27].
KS in�uences cellular proliferation and migration, but its molecular mechanisms
remain less well de�ned than for other GAGs [28, 29]. Its main functions include
maintaining corneal hydration [30], and supporting the structural integrity of
cartilage and bone through interactions with proteins such as osteoadherin [31],
�bromodulin [32], and PRELP [27].

1.2 Speci�city in Protein/GAG Interactions

In the context of biomolecular recognition, speci�city denotes the preferential
and selective binding of a ligand to its cognate target on the basis of complemen-
tary geometric, electrostatic, and stereochemical features, while simultaneously
excluding non-cognate partners and o�-target interactions [33]. For GAGs,
establishing and deciphering speci�city is uniquely challenging because GAG
chains are inherently polydisperse, heterogeneous in sequence, and undergo
spatial context- and developmental stage-dependent compositional remodeling.
The apparent "promiscuity" of many GAGs arises from their high charge density
and conformational plasticity, properties that permit multivalent, often degen-
erate interactions with diverse protein classes (cytokines, growth factors, viral
glycoproteins, enzymes). Despite broad electrostatic attraction, distinct sulfation
motifs, chain lengths, and higher-order presentations support protein-speci�c
recognition [2]. This contrast is evident for the SARS-CoV-2 trimeric spike glyco-
protein: basic patches in its S1 subunit favor highly sulfated HS motifs, whereas
the post-fusion S2 core can also engage CS-E fragments [34]. Conversely, the
fungal lectin from Psathyrella velutina discriminates strictly for HP over other
acidic polysaccharides [35], and Protein C inhibitor displays subtype-dependent
conformational switching when complexed with CS, DS, or HP [36].



8 1 Introduction

Determinants of Binding Speci�city

Sulfation patterns are the primary encoders of GAG speci�city. Sequential
actions of specialized sulfotransferases generate unique micro-domains such as
2-O-, 6-O-, and 3-O-sulfated motifs in HS that are stringently recognized by
partner proteins [37, 38]. The 6-O-sulfotransferases 2 and 3 selectively mod-
ify 2-O-sulfated regions to create high-a�nity epitopes for �broblast growth
factors, whereas the broader speci�city 3-OST-5 targets both N-sulfated and
N-unsubstituted GlcNAc residues [39].
Electrostatics underpins every stage of protein/GAG binding. Long-range at-
traction between the densely negative patches of sulfate and carboxylate and
basic amino acid clusters accelerates complex formation, as re�ected in the
pronounced sensitivity of binding kinetics and a�nities to changes in salt con-
centration [40, 41, 42]. Because counter-ions surround charged GAG groups and
charged amino acid side chains, they partially shield the electrostatic interaction
during protein/GAG binding, and subsequent short-range interactions re�ne the
initial electrostatic attraction into a speci�c and sequence-dependent molecular
interface [43, 44].
Extracellular sulfatases (e.g. Sulf-1 and Sulf-2) and lyases remodel the sulfation
landscape, dynamically rewriting binding codes and therefore receptor speci�city.
For instance, Sulf-2 preferentially excises 6-O-sulfates from trisulfated HS do-
mains, attenuating �broblast growth factor signalling [45]. Chondroitin AC and
B lyases, in turn, exert subtype-selective depolymerisation of CS-A/C and DS,
respectively [46].
Beyond sequence, GAG oligomer length dictates avidity and topology of the
binding interface. VAR2CSA, the placental malaria adhesin, requires CS chains
of de�ned minimum length (around dp24 to dp32) to engage oncofetal CS
in tumours [47]. Molecular dynamics and crystallographic studies reveal also
that HS adopts extended and kinked conformers whose torsional preferences
are modulated by iduronic acid epimerisation and protein docking, as seen for
6-OST-oligosaccharide complexes [48, 49].
The local density and orientation of GAG chains on core proteins (e.g. syndecans,
glypicans) further modulate speci�city by controlling multivalent clustering and
cooperative binding [11, 17]. Recent super-resolution and cryo-electron tomogra-
phy studies suggest that nanoscale glycocalyx architecture shapes growth-factor
gradients, however the underlying rules are only partly de�ned [50, 51]. Ad-
vances in surface plasmon resonance, isothermal titration calorimetry, nuclear
magnetic resonance, cryo-electron microscopy, and atomistic simulation now
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permit quantitative dissection of a�nity versus speci�city, kinetics versus ther-
modynamics, and structural dynamics of protein/GAG complexes. Integration
of these techniques is essential for a holistic understanding of protein/GAG
interaction speci�city.
Understanding the physicochemical characteristics that govern protein/GAG
speci�city has paved the way for developing GAG mimetics with tailored sulfation
patterns, nucleic acid aptamers engineered to discriminate among GAG variants
with low-nanomolar binding a�nities [52], and self-assembling peptide sca�olds
derived from RHAMM that recapitulate HA binding [53]. Synthetic HS analogs
with strategically positioned sulfate groups show promise as anticoagulants and
anticancer agents with reduced o�-target e�ects [54]. Continued elucidation of
protein/GAG speci�city thus o�ers fertile ground for therapeutic innovation.
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1.3 Experimental Approaches to Study

Protein/GAG Complexes

Several experimental approaches are used to stud GAGs and protein/GAG com-
plexes, each limited by GAG �exibility, heterogeneity, and polydispersity. For
resolving the structure of protein/GAG complexes, X-ray crystallography pro-
vides high-resolution structural information, though crystallizing such complexes
can be challenging due to the �exibility and heterogeneity of GAGs. Cryogenic
electron microscopy (cryo-EM) has recently emerged as a powerful technique for
visualizing large protein/GAG complexes without the need for crystallization,
particularly when the complex is too large for crystallographic experiments. Nu-
clear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are
the most prominent techniques for revealing atomic-level motion, composition,
and sulfation patterns of GAGs, complementing the static structural information
obtained by the previously mentioned methods. NMR is particularly useful for
resolving the three-dimensional structure and conformational �exibility of GAGs,
as well as for studying protein/GAG interactions in solution. MS is used for
identifying the monosaccharide composition, sulfation patterns, and sequence of
GAGs, especially using techniques like tandem MS and glycomics approaches.
Techniques like surface plasmon resonance (SPR) and isothermal titration
calorimetry (ITC) are employed for studying the interactions between GAGs
and proteins. SPR allows for real-time, label-free measurements of binding
kinetics, while ITC provides thermodynamic pro�les of the interaction, including
binding a�nity, enthalpy, and entropy. Other approaches, such as �uorescence
polarization, co-immunoprecipitation, and pull-down assays, are used to validate
and explore protein/GAG interactions in a more biological context.
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Figure 1-2: Experimental approaches to study GAGs and protein/GAG interac-
tions; structural: X-ray crystallography (X-ray), nuclear magnetic
resonance spectroscopy (NMR), mass spectrometry (MS), electron
microscopy (EM), and circular dichroism (CD); interaction: surface
plasmon resonance (SPR), biolayer interferometry (BLI), isother-
mal titration calorimetry (ITC), and di�erential scanning calorime-
try (DSC); quantitative: high-performance liquid chromatography
(HPLC), capillary electrophoresis (CE), and enzymatic digestion
with chromatography; spatial: immunohistochemistry (IHC), �uo-
rescence microscopy, and electron microscopy (EM).

1.3.1 X-ray Crystallography

X-ray crystallography operates by directing X-rays at a crystallized sample of
GAGs or protein/GAG complexes to determine their atomic structure [55]. Upon
hitting the crystal, the X-rays are di�racted by the electrons in the sample's
atoms, producing a di�raction pattern, consisting of spots called re�ections, which
are captured and used to create an electron density map outlining the positions of
atoms within the crystal. The crystal structure is then deduced by �tting atomic
models to the electron density [55].
Crystallizing GAGs presents challenges due to their �exibility, heterogeneity, and
polydispersity, making it di�cult to form a stable, well-ordered crystal lattice.
Nevertheless, crystallographic structures of protein/GAG complexes help to map
out binding sites, identify critical interactions between speci�c protein residues
and GAG functional groups, and understand the conformational changes that
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occur upon binding. The resulting structural data are invaluable for drug design,
particularly in identifying how therapeutic molecules might inhibit or enhance
GAG-protein interactions. Yet despite its power, X-ray crystallography requires
signi�cant preparatory work, such as optimizing crystallization conditions. The
crystallization of protein/GAG complexes results in static structures and may
not fully capture the dynamic molecular interactions occurring under physiolog-
ical conditions. In practice, crystallography is frequently paired with solution
methods and was successfully employed to obtain detailed atomic-level structural
information of speci�c protein/GAG complexes and identify corresponding bind-
ing sites and modes.
X-ray crystallography has been used to provide structural insight into the cat-
alytic mechanisms of proteins interacting with GAGs, particularly in processes
such as blood coagulation and �brinolysis. The structures of thrombin and an-
tithrombin have revealed key aspects of their catalytic mechanisms, including
HP-induced conformational changes in antithrombin upon binding [56, 57, 58].
The binding of protease nexin-1 (PN1) and thrombin mediated by HP is accom-
panied by a substantial conformational shift, facilitating the formation of a highly
e�ective inhibitory complex [59]. Additionally, the high-resolution structure of
a thrombin-protein C inhibitor (PCI) complex, bridged by HP, has provided in-
sights into how HP enhances thrombin recognition, thereby in�uencing PCI's
dual role in coagulation [60]. Crystallographic studies have also characterized the
calcium-dependent binding of annexin A2 by HP, revealing a new calcium-binding
site that forms upon GAG interaction, crucial for annexin A2's role in �brinolysis
[61].
Structural studies on bacterial enzymes involved in GAG depolymerization have
elucidated important features of these proteins. For instance, the structure
of Heparin Lyase I from Bacteroides thetaiotaomicron highlighted an activity-
enhancing thumb-like extension that aids in substrate recognition and binding
[62]. Similarly, the crystal structure of dimeric Heparinase II from Pedobacter
heparinus has demonstrated how its independent active sites contribute to sub-
strate recognition in the depolymerization of HP and HS [63].
X-ray crystallography was also employed in the identi�cation and characterization
of distinct HP-binding sites in other proteins. The structure of the chemokine
CXCL12 revealed distinct HP-binding sites, shedding light on its roles in embry-
onic development, HIV-1 infection, and cancer metastasis. This work proposed
a mechanism in which GAGs sequester and present CXCL12 to its receptor,
CXCR4 [64]. Similarly, the crystal structure of HP bound to NK1, a splice vari-
ant of hepatocyte growth factor/scatter factor (HGF/SF), identi�ed primary and
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secondary HP-binding sites in di�erent domains, suggesting a dual regulatory
role of HP in NK1 activity [65]. Additionally, crystallography helped identify two
distinct GAG-binding sites in annexin V, which are essential for its high-a�nity
interactions with HS on cell surfaces [66].
The oligomerization of GAG-binding proteins has also been explored using X-
ray crystallography. Liang et al. described the formation of rod-shaped, double-
helical oligomers by the chemokine CCL5, and elucidated how GAGs bind through
a speci�c motif, clarifying di�erences in the GAG-binding mechanisms between
CCL5 and CCL3 [67]. Application of X-ray crystallography in combination with
other approaches revealed the tetrameric assembly of chemokine CCL11 in com-
plex with the HP derivative fondaparinux [68]. Studies of acidic (aFGF) and
basic �broblast growth factor (bFGF) complexes with their receptors and HP
highlighted HP's role in facilitating ternary complex formation, with the 6-O-
sulfation of HP shown to be critical for FGF signaling [69, 70]. Further crystallo-
graphic studies demonstrated the stabilization of protein dimers by fully sulfated
HP decasaccharides, including the dimeric forms of aFGF [71], amyloid precursor-
like protein 1 (APLP1) [72], and the reelin-N domain of F-spondin [73].
With 102 experimentally available structures of GAGs and protein/GAG com-
plexes [74], X-ray crystallography is as of today the most popular method for
GAG structure determination despite its shortcomings in studies of GAGs. Re-
search employing X-ray crystallography has shed light on molecular processes
that have signi�cant implications for disease and in�ammatory responses, clar-
ifying molecular steps in coagulation and �brinolysis with direct relevance to
therapeutic targeting.
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1.3.2 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy is used to determine the struc-
ture, dynamics, and interactions of molecules at the atomic level. By measuring
the magnetic properties of atomic nuclei in the presence of a strong magnetic
�eld, NMR provides detailed information about the chemical environment and
spatial arrangement of atoms within a molecule [75]. Several types of NMR ex-
periments can be identi�ed based on their level of complexity. One-dimensional
(1D) NMR measures the resonance frequencies of nuclei in a single dimension
and provides basic chemical shifts and coupling constants. Two-dimensional (2D)
NMR experiments, which include COSY (Correlation Spectroscopy), HSQC (Het-
eronuclear Single Quantum Coherence), and NOESY (Nuclear Overhauser E�ect
Spectroscopy), measure correlations between two di�erent types of NMR sig-
nals in two dimensions. More advanced NMR techniques, designed for studying
large biomolecular systems, include three-dimensional (3D) NMR, in particular
3D NOESY-HSQC and 3D TOCSY-HSQC, which combine multiple 2D NMR
experiments.
NMR has underpinned discovery and characterization e�orts relevant to phar-
macology. For instance, HP-like sulfated polysaccharides from snail mucus have
been characterized using NMR and chromatography, revealing signi�cant anti-
SARS-CoV-2 activity by inhibiting spike protein binding to the ACE2 receptor,
thus presenting an alternative HP source that bypasses the traditional porcine
and bovine derived HP used in current pharmaceuticals [76]. A study on the
slug Limacus �avus identi�ed a new GAG with potent heparanase inhibitory ac-
tivity. NMR analysis of this GAG highlighted the critical roles of chain length
and sulfate substitution in determining its bioactivity [77]. A study on arti�-
cial ECM coatings used NMR spectroscopy to analyze the structural interactions
between GAGs and sca�old materials, �nding that GAG-coated sca�olds signif-
icantly enhanced bone regeneration and collagen synthesis in rats, highlighting
the importance of sulfation degree and GAG type in bone healing [78].
NMR experiments were crucial in elucidating the interactions of GAGs with pro-
tein �brils, e.g. by showing that GAGs bind tightly to amyloid-β (Aβ) �brils,
a�ecting their aggregation and stability [79]. Additionally, NMR characterization
of HP tetrasaccharides indicated speci�c binding to Aβ, suggesting their poten-
tial as inhibitors of Aβ aggregation [80]. NMR analysis of salmon calcitonin
�brillation revealed that GAGs, particularly HP, signi�cantly accelerate this pro-
cess at di�erent pH levels [81]. In the context of atherosclerosis, NMR stud-
ies demonstrated that HP and epigallocatechin-3-gallate (EGCG) can remodel
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apolipoprotein A-I �brils, transforming them into non-toxic oligomers [82]. Ad-
ditionally, NMR research on Parkinson's disease highlighted how GAGs in�uence
α-synuclein �brillation and cytotoxicity [83, 84].
Multiple studies have employed NMR spectroscopy together with other experi-
mental and computational methods in the investigation of protein/GAG binding.
Studies on IL-8 with di�erent GAGs assessed the role of lysine residues in GAG
binding through a combination of NMR spectroscopy, mutagenesis, and molecu-
lar dynamics simulations [85]. A similar approach was used to identify speci�c
anchor points of chemokine CXCL12 for binding sulfated GAGs [86] and to dis-
cern GAG binding sites on CXCL14 speci�c to di�erent GAG types [87]. The
importance of particular residues in GAG binding was also demonstrated in a
study using NMR spectroscopy to identify a GAG-binding site at the C-terminal
end of IL-10, involving speci�c arginine and lysine residues [88].
To date, only eight NMR structures of GAGs can be found in the PDB [74] as
NMR studies face challenges because of the polydispersity and structural hetero-
geneity of GAGs, causing weak signals and overlapping resonances due to similar
repeating units. Despite these di�culties, NMR remains valuable for studying
protein/GAG interactions in solution, o�ering insights beyond the static images
provided by X-ray crystallography.
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1.3.3 Electron Microscopy

Electron microscopy (EM) o�ers high-resolution molecular structure analysis due
to its shorter electron wavelength compared to visible light, providing signi�cantly
higher resolution. A beam of electrons, emitted by a tungsten �lament cathode
and accelerated by an anode, is used to produce electric potential maps akin to
X-ray electron density maps. The main types of EM are transmission electron
microscopy (TEM), scanning electron microscopy (SEM), and cryo-EM.
EM has been valuable for structural studies for a variety of GAGs [89, 90]. A com-
bination of cryo-EM and computational approaches enabled the detailed study
of substrate selection, polymerization, and transmembrane translocation mecha-
nisms of the glycosyltransferase hyaluronan synthase (HAS), participating in HA
synthesis [91]. Using focused ion beam scanning EM, a ring mesh-like structure of
GAG chains was shown to form around collagen �brils in rat tendons, suggesting
that multiple GAG chains interact to create a planar network [92]. The interac-
tions of collagen and GAGs were further characterized by EM to reveal a delicate
glycoconjugate-rich super�cial layer and an underlying network of collagen �brils
bridged by GAGs, which together distribute stress across cartilage tissue [93].

1.3.4 Mass Spectrometry

Mass spectrometry (MS) characterizes GAGs and protein/GAG assemblies, typi-
cally via electrospray (ESI) or MALDI ionization [94], where the analyzed sample
is ionized by applying high voltage to create an aerosol, or by using a pre-ionized
reagent gas that reacts with the sample [94]. MS o�ers several key advantages over
NMR spectroscopy and other experimental techniques, including superior sensi-
tivity, faster processing speed, and the ability to monitor molecular exchanges,
which allows for the detection of multimolecular complexes.
MS techniques, particularly ESI and matrix-assisted laser desorption ionization
(MALDI), are powerful tools for studying host-guest complexes. A rapid and sen-
sitive method for semi-qualitative and quantitative analyses of CS and DS was
presented by Kiselova et al., requiring small sample sizes and providing accurate
results in correlating structure to function in di�erent tissues and species [95].
Liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed
to measure urinary DS and HS levels in patients with GlcNAc-phosphotransferase
de�ciency (mucolipidosis II and III), proving to be a sensitive tool for diagnosing
the de�ciency and potentially monitoring new therapies [96]. These studies un-
derscore the critical role of MS techniques in the precise analysis and diagnosis
of various GAG-related disorders.
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Hydrogen/deuterium-exchange mass spectrometry (HDX-MS) further broadens
MS by tracking the incorporation of deuterium into a protein of interest over
time, thus enabling the mapping of interaction sites and conformational changes
in solution-phase complexes. In the interleukin-8/CS complex, HDX-MS indi-
cated structural stabilization in speci�c protein regions, supporting its utility in
mapping protein/GAG interaction interfaces [97]. Molecular docking restrained
by these data reproduced the binding interface previously characterized by NMR
spectroscopy.

1.3.5 Capillary Electrophoresis

Capillary electrophoresis (CE) separates analytes by driving them through capil-
laries of submillimeter diameter under an applied electric �eld and is implemented
in several complementary modes, including a�nity CE (ACE), capillary zone elec-
trophoresis (CZE), capillary electrochromatography (CEC), gel CE (CGE) and
frontal analysis continuous CE (FACCE) [98].
In protein/GAG research, each mode has addressed a distinct analytical need.
ACE pinpointed the HP-binding amino acid stretch of serum amyloid P compo-
nent and showed that divalent metal ions modulate this interaction [99]. CZE
quanti�ed dissociation constants for HP binding to SAP-derived synthetic pep-
tides [100, 101], whereas FACCE clari�ed the stoichiometry and a�nity of the
bovine serum albumin/HP complex [102]. Conventional CE assays have revealed
marked di�erences in HP a�nities among cleaved variants of β2-microglobulin
[103]. Together, these examples illustrate how the various CE protocols pro-
vide complementary thermodynamic, kinetic, and structural insights into pro-
tein/GAG interactions.

1.3.6 Circular Dichroism

Circular dichroism (CD) measures di�erential absorption of circularly polarized
light to to investigate their structural properties and conformational changes
[104]. It distinguishes protein secondary structures in the far UV range and
explores the local tertiary environment of aromatic amino acids in the near UV
region. CD spectroscopy has also been used to study the structural features and
conformational dynamics of GAGs, such as CS, HA, and HP, revealing their func-
tional group characteristics [105, 106].
The interactions between biomolecules and GAGs have been analyzed using CD
for a variety of proteins, e.g. factor Xa-antithrombin [107], and small molecules
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like berenil and pentamidine [108, 109, 110]. CD spectroscopy has also been em-
ployed in characterizing conformational changes in proteins resulting from GAG
binding [111].

1.3.7 Fluorescence Spectroscopy

Fluorescence spectroscopy is used to monitor the functional activity and bind-
ing dynamics of GAG-interacting proteins both in the presence and absence of
GAGs, providing insights into reaction kinetics and inhibition by distinguishing
the di�erent absorption spectra of substrates and products. The addition of the
substrate allows for monitoring changes in speci�c signals, making this assay more
sensitive than spectrophotometric methods. However, it may be a�ected by im-
purities and the instability of �uorescent compounds under light exposure.
Fluorescence readouts quantify GAG e�ects on enzymatic activity and provide
information about host/guest complex formation through changes in �uorescence
intensity. The analysis of di�erent sulfated GAGs using �uorescence spectroscopy
showed that �uorescent HP, obtained through interactions of its uronic acid
residues with 5-amino�uorescein, retained its anticoagulant activity [112]. A com-
bination of �uorescence and NMR approaches, complemented by computational
analyses, demonstrated that increased GAG sulfation, as well as speci�c sulfation
patterns, increased the strength of protein binding [113].

1.3.8 Surface Plasmon Resonance

Surface plasmon resonance (SPR) tracks biomolecular interactions in real time
by measuring changes in the refractive index near the surface of a sensor chip
when biomolecules bind to immobilized ligands [114]. GAGs or GAG-binding
proteins are typically immobilized on the sensor chip through methods like amine
coupling or biotin-streptavidin interaction, and the binding events are detected
via changes in the angle of re�ected light.
SPR has advanced the understanding of protein/GAG interactions, revealing their
roles in various biological processes and disease mechanisms. Studies have shown
that CS and KS interact with phosphatidylcholine on plasma membranes [115]
and that HP binds to low-density lipoprotein, impacting cholesterol accumula-
tion and membrane dynamics [116]. Additionally, it was employed to show that
CS-4 regulates cathepsin S activity through mixed-type inhibition [117], as well
as the binding of sulfated GAGs to type I collagen at low pH, in�uencing collagen
degradation [118]. Studies on interactions between GAGs and various viral pro-
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teins, such as adeno-associated virus [119], SARS-CoV-2 [120, 121], monkeypox
virus [122, 123], human respiratory syncytial virus [124], have utilized SPR to
demonstrate varying binding a�nities and structural dependencies that in�uence
the potential therapeutic use of HP and its derivatives.
Research has further highlighted the speci�city and implications of protein/GAG
interactions, with structural elements in proteins like PDGF-AA and collagen IX
signi�cantly in�uencing their binding to GAGs [125, 126]. Protein tagging and
mutation studies have underscored the importance of protein structure in these
interactions [127, 128]. SPR analysis has quanti�ed the high a�nity of sclerostin
for HP and revealed the e�ects of salt and metal ion concentrations on these in-
teractions [129]. Additionally, studies on chemokine CXCL10 and prion proteins
have explored how structural modi�cations a�ect GAG binding and cellular func-
tions [130], while HA-mimicking glycopolymers have shown potential as tools for
studying HA functions and developing new therapies [131].

1.3.9 Enzyme-Linked Immunosorbent Assay

The enzyme-linked immunosorbent assay (ELISA) is designed for high-
throughput detection and analysis of GAGs and GAG-binding proteins, utilizing
speci�c antibodies for recognizing GAG molecules or their complexes. Sandwich
ELISA is commonly employed for GAG detection, in which two antibodies
bind di�erent parts of a GAG. Alternatively, competitive ELISA may be used,
where labeled GAGs compete with sample GAGs for antibody binding. Both
methods produce a measurable, enzyme-driven colorimetric signal indicating
GAG concentration.
ELISA assays have been developed for use in clinical diagnostics to monitor
diseases that alter GAG metabolism or degradation, such as cancer [132], os-
teoarthritis [133, 134], systemic sclerosis [135], and acute pancreatitis [136].
Additionally, studies involving ELISA experiments detail the role of GAGs in
ECM organization in embryonic development [137, 138] and the modulation of
GAG production by enzymes and drugs [139, 140].
ELISA provides speci�c and quantitative analysis of GAGs and can be adapted
to high-throughput formats to handle multiple samples. It is less labor-intensive
compared to traditional biochemical assays, however, the heterogeneity of GAG
sequences and sulfation patterns makes it di�cult to create universally e�ective
antibodies.
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1.3.10 Biolayer Interferometry

Biolayer interferometry (BLI) involves the immobilization of molecules on a
biosensor, which is subsequently submerged in a solution with an analyte.
Interference patterns caused by the binding of the immobilized molecule with
the molecules of interest are measured, which provides the researcher with
information on rate constants, reaction rates, or binding strength.
Key studies involving BLI include the discovery that HS proteoglycans are
crucial for the intoxication process by the bacterial toxin CNFγ from Yersinia
pseudotuberculosis [141], and detailed analysis of HS-derived oligosaccharides to
understand protein/GAG interactions [142]. Additionally, investigations of the
structure of the Amyloid Precursor Protein (APP) in the presence and absence
of HP [143] and the binding e�ciencies of di�erent HP variants against histones
demonstrated the diverse functional implications of GAGs in pathological con-
ditions, such as vascular diseases related to elevated histone levels [144], and
their potential in modulating chemokine signaling, as seen with the glycoprotein
CXCL17 [145].
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1.3.11 Calorimetry

Calorimetry quanti�es heat changes associated with molecular interactions and
chemical reactions, providing insights into the thermodynamics of biological pro-
cesses [146]. In Isothermal Titration Calorimetry (ITC), heat change (i.e., con-
sumption or release) is detected as the ligand molecule is titrated into a solution
containing the receptor molecule, usually a protein, allowing for the determina-
tion of binding a�nity, stoichiometry, enthalpy, and entropy using equation 1-1:

∆Q = n× V ×∆H ×

(

[L]t + [M ]t +Kd −
√

([L]t + [M ]t +Kd)2 − 4[L]t[M ]t
2[L]t

)

,

(1-1)
where ∆Q is the heat released or absorbed, n is the stoichiometry of the interac-
tion, V is the volume of the calorimeter cell containing the samples, ∆H is the
enthalpy change, [L]t and [M]t are the total concentrations of the ligand and the
receptor macromolecule, respectively, and Kd is the dissociation constant. This
equation models the binding curve and helps determine the binding parameters of
interest (Kd, ∆H, n) as well as the entropy change ∆S, using the relationships be-
tween enthalpy, entropy, and Gibbs free energy change∆G, quantifying the overall
change in energy during a process: ∆G = ∆H − T∆S and ∆G = −RTlnKa,
where Ka is the association constant (inverse of Kd).
Di�erential Scanning Calorimetry (DSC) measures the di�erence in the amount
of heat required to increase the temperature of a sample and reference as a func-
tion of temperature and is typically used to study thermal transitions such as
protein denaturation and conformational changes upon heating. The methods
are particularly useful in studying complex biological processes involving multi-
ple binding partners, also because they do not require labeling or immobilization
of the molecules studied. Moreover, ITC is able to provide a complete thermo-
dynamic pro�le (∆H, ∆S, ∆G, and Kd). However, these methods require a high
sample concentration and the interpretation of results may be challenging when
multiple binding sites and/or poses are involved in the binding process, which is
particularly relevant for GAG-containing systems.
Both ITC and DSC have been used extensively in studies of GAGs and GAG-
containing systems [147, 148, 149, 150, 151, 152]. ITC has been instrumental in
research on protein/GAG complexes [153, 154, 155, 43] and novel GAG-based bio-
materials [156, 157, 158, 159]. Calorimetric analyses were used to study the role
of GAGs in �brillogenesis and aggregation as a result of interactions with proteins
[101, 160, 161]. ITC was successfully employed to characterize the GAG-binding
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site on proteins [152] and assess the di�erences in binding a�nity for di�erent
GAG types [162].
The principal use of DSC in the study of GAGs is the analysis of the thermal
stability and characteristics of natural [163, 164] and synthetic GAG-containing
biomaterials [165, 166, 167, 168, 169, 170, 171, 172]. DSC has also been employed
to study the in�uence of GAGs on the structure of proteins [173, 174] as well as the
interactions of GAGs and protein/GAG complexes with lipids [175, 176], provid-
ing comprehensive insights into the thermodynamics of protein/GAG interactions
and advancing the development of new therapeutic strategies.
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1.4 In silico Methods to Study Protein/GAG

Complexes

The structural characterization of GAGs presents substantial challenges due to
their inherent diversity, large molecular size, conformational �exibility, and neg-
ative charge. Experimental techniques can struggle to resolve GAG structures at
high resolution. The �exibility, rapid conformational dynamics, and high negative
charge of GAG chains impede crystal formation for X-ray crystallography, com-
plicate the interpretation of NMR experiments, and reduce cryo-EM resolution.
Computational methods therefore play a central role, but still need re�nement to
capture GAG physicochemistry and to predict a�nities and selectivities.
Computational modeling is complicated by heterogeneity in GAG disaccharide
compositions, sulfation, and epimerization. Sparse high-quality data limit force-
�eld parameterization. Additionally, rapid conformational dynamics and �exible
glycosidic linkages exceed the capabilities of standard MD simulations, necessitat-
ing computationally intensive enhanced sampling techniques. The high negative
charge density of GAGs introduces strong electrostatic interactions and complex
solvent and counterion e�ects, further complicating accurate modeling. GAG
hydrophilicity requires explicit solvent models, signi�cantly increasing computa-
tional demands, as implicit solvent approaches inadequately capture hydration
e�ects.
Predicting protein/GAG binding a�nities and selectivities is further complicated
by non-canonical, multivalent, or allosteric interaction mechanisms and the inter-
play of hydrophobic, hydrogen-bonding, and electrostatic forces. Current force
�elds may inadequately represent sulfate groups or capture the behavior of large
protein/GAG complexes with su�cient �delity, impeding reliable energy calcula-
tions. Integrating experimental data (e.g., NMR or SAXS) with computational
methods can re�ne predictions, yet the complexity in GAG structures often intro-
duces uncertainties into hybrid models. Lastly, limited sequence-level data and
small interaction datasets slow method development and validation.
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1.4.1 Electrostatic Potential Calculations

Electrostatic Potential (EP, ϕ, eq. 1-2) is de�ned as the work of bringing a unit
positive charge from in�nity to a position in space and signi�es how energetically
costly or favorable it is for a unit charge to be located at a given position inside
an electric �eld [177, 178]. Positive EP values re�ect repulsion of a positive
test charge (unfavorable, higher energy), and negative values re�ect attraction
(favorable, lower energy) [177, 178].
Mathematically, for a system of N discrete point charges, the electrostatic
potential at a given point in space r is calculated by summing the potential from
each charge using Coulomb's law:

ϕ(r) =
1

4πε0

∑

i

qi
|r− ri|

, (1-2)

where ϕr is the electrostatic potential at position r, qi is the charge of the i-th
particle located at ri, |r − ri| is the Euclidean distance between the observation
point and that charge, and 4πϵ0 contains the vacuum permittivity ϵ0, which
scales the strength of the interaction in SI units. The electric �eld E is the
negative spatial gradient of the electrostatic potential: E⃗ = −∇⃗ϕ [178].
EP mediates the interactions among charged molecular entities, including ions,
amino acid side chains, DNA phosphates, and sulfated regions of GAGs. Mapping
ϕ onto a protein surface highlights patches that will attract or repel other charged
molecules, and helps predict binding sites, catalytic hotspots, or protonation
equilibria [179, 180].
EP isosurface maps depict the spatial distribution of EP around biomolecules,
using color gradients to mark regions of positive and negative charge (�g. 1-3).
These maps help pinpoint areas on the protein surface that are electrostatically
favorable for ligand binding.
EP maps help locate binding hotspots, rationalize pKa shifts, and guide drug
or biomaterial design, i.e. tasks that would be prohibitively slow or impossible
to probe experimentally at atomic detail [181, 182]. Three tiers of methods are
routinely used: quantum mechanical (QM) calculations that solve the electronic
structure explicitly and give the most accurate EP for small systems, semi-
empirical and molecular mechanics approaches that assign pre-parameterized
atomic charges to handle whole proteins e�ciently, and continuum electrostatics
models such as Poisson-Boltzmann or Generalized Born, which treat solvent and
ions as a dielectric medium and are fast enough for scanning large biomolecular
datasets.
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Figure 1-3: IL-8 and HP in orange cartoon and cyan licorice representation, re-
spectively, and the calculated EP isosurface obtained from APBS
software, colored by EP isovalue, with red color indicating negative
and blue indicating positive values.

QM methods calculate the electrostatic potential by explicitly solving how elec-
trons are distributed around nuclei [183, 184]. Ab initio (wave-function) methods
solve the time-independent Schrödinger equation for the entire many-electron
wave function:

Ĥ Ψ = EΨ, (1-3)

where Ĥ is the electronic Hamiltonian, Ψ is the many-electron wave function and
E is its eigen-energy. Density-functional theory (DFT) reduces the many-electron
problem to the electron density, and in its Kohn�Sham approach this is achieved
by iteratively solving a self-consistent set of e�ective single-electron equations
that reproduce that density:

[

−
1

2
∇2 + Vext(r) + VH

[

ρ
]

(r) + VXC

[

ρ
]

(r)

]

ϕi(r) = εi ϕi(r), (1-4)

with the density recovered as ρ(r) =
∑

i |ϕi(r)|
2, where Vext is the nuclear (ex-

ternal) potential, VH the classical (Hartree) electron-electron term and VXC the
exchange-correlation potential that contains all many-body e�ects.
Because the cost of either approach rises steeply with system size, QM calculations
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on protein/GAG complexes are normally con�ned to chemically critical fragments
(catalytic residues, metal cofactors, or short GAG motifs). The resulting high-
�delity EP is then used to benchmark or parameterize faster semi-empirical or
molecular-mechanics approaches [183, 184, 185, 186, 187].
While QM calculations give the most chemically detailed picture, their cost makes
them impractical for whole protein/GAG assemblies. This gap is bridged by semi-
empirical and classical molecular-mechanics (MM) methods, which approximate
the electron cloud instead of solving for it exactly. Semi-empirical schemes keep
a simpli�ed quantum framework but plug in experimentally �tted parameters,
trimming computer time enough to handle short GAG oligomers or active site
snapshots with reasonable accuracy [188]. MM goes further by replacing elec-
trons with �xed partial charges taken from a force �elds such as AMBER or
CHARMM, allowing entire proteins and long GAG chains to be simulated thou-
sands of times faster [189, 190]. These faster approaches can therefore generate
EP maps for full complexes, screen mutations, or follow binding events in MD
trajectories [191, 192]. The trade-o� is that subtle charge rearrangements, e.g.
sulfate polarization, cation�π interactions, may be smoothed out, so MM results
are often calibrated against the more precise (but smaller scale) QM or semi-
empirical calculations.
Continuum electrostatics approaches treat the aqueous environment and dissolved
ions that surround a biomolecule as smooth "backgrounds" instead of individual
particles, making their mathematical foundation tractable for systems as large
as an entire protein/GAG complex. The starting point is the Poisson equation,
which links the electrostatic potential ϕr to the �xed charge distribution ρϵ(r)

[193]:
−∇·

(

ε(r)∇ϕ(r)
)

= 4πρe(r), (1-5)

where ϵ(r) switches from a low value inside the solute (ca. 2�4) to the high
dielectric constant of water (ca. 80). To account for mobile salt ions, crucial
for the highly charged sulfates and carboxylates on GAGs, the equation gains a
Boltzmann term, giving the Poisson-Boltzmann (PB) equation:

−∇·
(

ε∇ϕ
)

= 4πρe + κ2 sinh
(

ϕkBT/e
)

, (1-6)

where κ (the inverse Debye length) encodes ionic strength. Finite-di�erence
solvers such as APBS or the PBSA module in AMBER discretize this equa-
tion on a 3D grid. The resulting potential can be projected onto a molecular
surface to highlight the positively charged amino acid patches that attract the
negative GAG chain. Because PB still resolves a full grid, one calculation takes
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seconds to minutes, which is fast enough for mutation scans or post-processing
MD snapshots.
To maximize computational e�ciency, the Generalized Born (GB) model replaces
the grid with an analytical pairwise formula that mimics PB screening [191]:

EGB = −
1

2

∑

i,j

qiqj
fGB(rij, αi, αj)

, (1-7)

where fGB uses Born radii (αi) to capture how deeply each atom is buried. GB
retains the key physics, i.e. reduced electrostatic coupling in a high dielectric
solvent, yet scales almost like a simple Coulomb sum, letting full protein/GAG
complexes run for microseconds in implicit solvent MD.

Electrostatic Potential Surface Calculations for GAGs

Electrostatic complementarity between clusters of basic residues on proteins and
the highly sulfated, carboxylated GAG chains is a fundamental driver of speci�c
molecular recognition. However, accurately modeling the EP of protein/GAG
complexes presents signi�cant challenges. These include the pronounced hetero-
geneity of GAG sulfation patterns, their intrinsic conformational �exibility, which
often necessitates ensemble sampling, and the extreme negative charge density
of GAGs, which strains the assumptions underlying continuum electrostatics and
complicates dielectric boundary de�nitions.
Experimental techniques such as site-directed mutagenesis, NMR spectroscopy,
and ITC shed light on electrostatics yet su�er, respectively, from structural
perturbations, size limits, and bulk-only thermodynamics. Atomistic EP maps
overcome these weaknesses, pinpointing charge hotspots and rationalizing GAG-
binding a�nities for targeted design.
Poisson�Boltzmann-based EP calculations using APBS have been applied suc-
cessfully to several protein/GAG complexes. For example, mapping the EP of
antithrombin bound to HP dp5 revealed a concentrated basic patch comprising
lysine and arginine residues that dominated the favorable Coulombic interaction
energy [194]. Mutagenesis of these residues to uncharged analogs results in dra-
matic reductions in binding a�nity as measured by �uorescence and ITC [195].
In another example, EP surfaces computed for both monomeric and dimeric forms
of the chemokine IL-8 were used to identify two distinct positive regions in the
N-terminal loop and the C-terminal helix [196, 197, 85, 198]. These regions cor-
respond closely to chemical shift perturbations observed by NMR during heparin
titration, and targeted substitutions at these residues raise the dissociation con-
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stant by 5 to 20-fold in SPR assays [196, 197, 85, 198].
Similarly, in the case of human serum albumin, continuum electrostatics and
computational docking studies with HA and CS-6 highlight several shallow EP-
positive grooves across subdomains IB, IIA, and IIIA [182]. These regions cor-
respond to weak a�nities validated through sedimentation and calorimetry, con-
sistent with albumin's role in low-a�nity, multivalent GAG binding.
Together, these examples underscore the critical role of EP calculations in dis-
secting and predicting protein�GAG interactions, especially in systems where
experimental resolution is limited or ensemble behavior is signi�cant.
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1.4.2 Molecular Docking

Molecular docking is a computational technique utilized to predict favorable
binding conformations of ligands within protein targets, estimate the associated
binding a�nities, and identify promising binders through computational ranking.
Its conceptual roots lie in classical "lock-and-key" and "induced-�t" models of
molecular recognition, where favorable complementarity in shape, electrostatics,
hydrogen bonding, and hydrophobic packing drives binding. Although proteins
are intrinsically �exible and aqueous solvent imposes signi�cant entropic and
desolvation penalties, benchmarks show near-native poses are often recoverable
with careful sampling and scoring. Modern docking approaches therefore balance
physical realism with computational expediency, using transferable force �eld
terms, empirical or knowledge-based scoring to generate testable hypotheses that
guide biochemical experimentation and rational drug design.
A practical docking protocol begins with system preparation, where protein
protonation states, missing atoms, and bound waters or cofactors are curated
and a chemically consistent ligand geometry is generated. This is followed
by search space de�nition, for example, a three-dimensional grid centred on a
known or predicted binding pocket. Next, a sampling phase explores the ligand's
rigid-body translations and rotations plus its internal torsions using determin-
istic searches, Monte Carlo or genetic algorithms to generate candidate poses.
Each pose then enters the scoring stage, where empirical, knowledge-based, or
physics-derived, functions approximate the binding free energy, often followed
by consensus or machine learning rescoring to improve rank ordering. Finally, a
post-processing and validation step re�nes the top poses via energy minimization,
short MD simulations, or MM/GBSA calculations.
The core divergence among docking approaches lies in how they explore con-
formational space and account for �exibility through conformational sampling.
At one end, rigid-body and soft docking treat both partners as static, relying
on exhaustive or grid-based searches that are fast but miss induced-�t e�ects.
Progressively richer schemes permit ligand torsions and side-chain rotamers,
typically sampled with Monte Carlo or Genetic Algorithms (GAs) that stochasti-
cally hop across high-dimensional landscapes. Ensemble docking widens receptor
�exibility by docking against pre-generated protein snapshots from MD or NMR,
while induced-�t protocols iteratively alternate docking and local minimization
to adapt pocket residues in situ. Deterministic, systematic searches guarantee
coverage for small systems, while stochastic Monte Carlo and GA methods bal-
ance breadth and speed, fragment growth and incremental construction reduce
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torsional burden for large ligands, and emerging reinforcement learning and
di�usion-based generative models learn to propose low-energy poses directly.
Each step up the �exibility ladder improves realism but in�ates search space
exponentially.
Once poses are generated, docking algorithms proceed with scoring and rank-
ing. Traditional functions fall into three families: empirical (e.g., ChemScore,
GlideScore), which regress weighted van der Waals, electrostatic, H-bond, and
desolvation terms against experimental data; knowledge-based potentials, which
transform atom-pair frequencies observed in crystallographic complexes into
statistical potentials of mean force, and physics-based force �eld scores, which
sum bonded and nonbonded energies from molecular mechanics parameter sets.
Because each type of scoring function excels on di�erent molecule types, modern
docking work�ows may combine them in a consensus approach, then apply
post-docking re�nement such as MM/GBSA, thermodynamic integration, or
fast free energy perturbation to the top-scoring poses. Machine learning models
employing graph neural networks [199, 200, 201, 202], as well as protein/ligand
"language" models [203, 204], have enabled rapid rescoring and show promising
results relative to conventional scoring approaches. Nonetheless, all scoring
approaches face challenges due to inaccurate solvent treatment and entropy
estimates.

Molecular Docking of GAGs

Protein/GAG complexes pose unique challenges in molecular docking studies
stemming from the physicochemical characteristics of GAGs. The GAG back-
bone is very �exible as two glycosidic torsions plus ring puckering at every GAG
residue create a plethora of low-energy shapes even for small or moderately sized
GAG fragments. Their repetitive sequence means a larger GAG molecule can
bind in several similar or identical sequence fragments, multiplying pose permu-
tations even when keeping the GAG backbone conformation �xed. Lastly, the
scarcity of high-resolution protein/GAG complex structural data hinders both
parameterization and validation of scoring functions.
Dynamic Molecular Docking (DMD) addresses these issues by combining docking
and steered MD (SMD), guiding a GAG molecule toward known binding sites.
Although computationally expensive, DMD yields insights when prior binding
site knowledge is available [205].
Fragment-based docking takes a di�erent approach, decomposing GAG polysac-
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charides into short conformationally pre-screened oligosaccharides that can be
sampled exhaustively. Each fragment is �rst guided to basic patches on the
protein surface by electrostatic potential maps, then subjected to a rapid lo-
cal relaxation so that glycosidic torsions and ring puckers adapt without creat-
ing a search space explosion. Low-resolution experimental data are integrated
early in the docking protocol to discard spurious placements. Once potential
poses are obtained, spatially compatible neighbors are merged together into pro-
gressively longer chains whose linkages satisfy distance, dihedral torsions, and
sulfation pattern criteria. Subsequent MD relaxation optimizes local conforma-
tions and supplies a physics-based pose ranking. Benchmark studies con�rmed
that fragment-based docking can reliably provide accurate atomic models of pro-
tein/GAG complexes [206].
Replica Exchange MD with Repulsive Scaling (RS-REMD) docking, in contrast,
directly handles conformational plasticity of GAGs by running parallel MD repli-
cas in which the van der Waals radii of all atoms are uniformly scaled [207, 208,
209]. Enlarged radii in high-radius replicas sterically push both the GAG and
nearby protein side chains out of local minima. Replica exchanges move con�g-
urations that have escaped local traps in the enlarged-radius replicas down to
replicas with unmodi�ed van der Waals radii, producing binding poses that ac-
count for the adaptability of both ligand and protein.
For highly charged �exible ligands, RS-REMD goes beyond the static electro-
static placement of fragment-based approaches by explicitly sampling long-range
charge-driven steering together with the accompanying protein side chain rear-
rangements [210]. The sampling performance of RS-REMD derives from the
scaling factor rather than an exhaustive enumeration of rotamers, rendering the
method largely insensitive to GAG length. With no prior assumptions about
the binding site or GAG conformation, RS-REMD is unbiased with respect to
the starting structure of the complex. The use of explicit solvent preserves the
water-mediated interactions crucial to protein/GAG binding while still allowing
the docking protocol to run e�ciently. Its principal drawback is cost, as hundreds
of nanoseconds of MD per replica across multiple replicas are typically required,
yet benchmarks on multiple protein/GAG complexes have shown RS-REMD to
recover native-like poses in the majority of cases where classical docking fails
[211, 212].
Fragment-based assembly and RS-REMD stand as two representative ways that
occupy opposite ends of a broader spectrum from rapid modular assembly to ex-
haustive enhanced sampling. Their usefulness depends on the size of the GAG
ligand, available experimental restraints, and the desired balance between speed
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and accuracy. Because protein/GAG complexes often demand customized dock-
ing work�ows, several computational studies have demonstrated their ability to
translate theoretical predictions into experimentally con�rmed binding insights.
However, current studies indicate that while fragment-based methods are reliable
for shorter HP fragments, RS-REMD, though costlier, can converge on native-like
poses for chains longer than dp10. Gandhi et al. combined surface conservation
analysis with fragment-based docking of HP dp6 onto bone morphogenetic protein
2, pinpointing two histidine-rich patches whose mutagenesis abolished binding,
thereby validating the electrostatic "hot strips" predicted in silico [213]. Sapay
et al. demonstrated a hybrid work�ow in which trisaccharide fragments of HS
were �rst placed with AutoDock4, annealed to explore backbone registers, and
then fed into explicit-solvent MD, the re�ned poses reproduced NMR CSPs for
FGF2, showcasing the power of post-docking dynamics [214].
A systematic assessment was provided by Uciechowska-Kaczmarzyk et al. who
benchmarked fourteen docking methods against twenty-eight protein/GAG com-
plexes and found that even the top performer (AutoDock3) achieved less than or
equal to 3 Å RMSD in just 43 % of cases, underscoring the need for GAG-speci�c
scoring and sampling improvements [215].
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1.4.3 Molecular Dynamics

Molecular dynamics (MD) is a computational simulation technique for investi-
gating the physical motion of atoms and molecules. It relies on the principles of
Newtonian mechanics to model the behavior of molecular systems by solving the
equations of motion that govern interacting particles. This enables the tracking
of how a molecular system evolves throughout a simulation. MD simulations are
an essential tool for understanding the fundamental processes at the atomic level
as they can reveal important information about molecular conformations, inter-
actions, and reactions that are often di�cult to capture through experimental
techniques alone.
The development of MD traces back to the mid-20th century when the advent of
digital computers enabled the practical implementation of computational simula-
tions. The pioneering work by scientists like Berni Alder and Thomas Wainwright
in the late 1950s laid the groundwork by using MD to study the properties of
simple liquids [216]. Advances in computational power and algorithms, along
with the development of increasingly sophisticated force �elds, further propelled
the progress of MD simulations. Force �elds, in this context, are mathemati-
cal frameworks consisting of parameterized equations that de�ne the potential
energy landscape of molecular systems based on atomic positions, accounting
for both bonded (e.g., bond stretching, angle bending, and dihedral torsions)
and nonbonded (e.g., van der Waals, electrostatic) interactions. Continuous im-
provements such as parallel computing and enhanced sampling techniques have
expanded the scope and scale of MD simulations, enabling the study of complex
biological systems and materials with detail and accuracy.
MD simulations are based on Newtonian mechanics, which relate atomic motion
to the forces acting on each particle used to compute time-dependent trajectories
[217] (eq. 1-8):

ai =
d2ri
dr2

=
1

mi

Fi, (1-8)

where ai is the acceleration of particle i with mass mi and position ri resulting
from the force Fi acting on it. By knowing the forces acting on each particle, one
can compute the acceleration, and subsequently the velocity and position of each
particle. The iterative process of computing the forces acting on, and the dis-
placement of simulated particles, repeated over many small time steps, produces
a trajectory of the particles over time showing the molecular system's dynamic
behavior.
In most force �elds the nonbonded terms are cast in explicit analytic forms: van
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der Waals interactions can be approximated with a 12-6 Lennard-Jones potential,
while electrostatic forces obey Coulomb's law. These nonbonded terms, together
with the bonded contributions (bonds, angles, torsional angles) are summed
to yield the total potential energy. An accurate representation of the struc-
tural, thermodynamic, and dynamic properties of simulated molecules requires
parametrizing the potential energy functions, which involves �tting the force �eld
to experimental and/or quantum mechanical data.
In MD simulation tools, the equations of motion are solved using numerical in-
tegration algorithms. Among the most widely used algorithms are the Verlet,
velocity Verlet, and leapfrog Verlet methods [218]. The Verlet algorithm calcu-
lates new positions of the simulated particles based on their current and previous
positions, o�ering excellent energy conservation properties without providing ve-
locities directly [217]. The leapfrog algorithm addresses the lack of direct velocity
calculation by computing velocities at half-time steps, "leaping" over positions,
which allows for e�cient updates of both positions and velocities [219]. The
velocity Verlet algorithm combines the strengths of both, updating positions,
velocities, and accelerations in a single step, while maintaining the energy con-
servation bene�ts of the original Verlet algorithm [220, 221].
Atomistic (all-atom, AA) and coarse-grained (CG) MD simulations are two funda-
mental approaches used to study the behavior of molecular systems. AA MD pro-
vides a detailed, high-resolution view by modeling each atom explicitly, making
it ideal for examining speci�c molecular interactions and conformational changes.
In contrast, CG MD simpli�es the system by grouping atoms into larger units or
"beads," reducing computational complexity and enabling the simulation of larger
systems and longer timescales. Together, these approaches o�er complementary
insights, with AA MD capturing �ne details and CG MD e�ciently exploring
large-scale dynamics, thus broadening the scope of molecular simulations.

Atomistic Approaches

In atomistic MD, molecules are represented as collections of atoms, each with
distinct positions and properties: mass, charge, radius, and bonding charac-
teristics [222]. Each atom's movement is calculated iteratively, taking into
account the forces exerted by neighboring atoms, i.e., those located within a
de�ned interaction distance cuto�. This level of detail enables the observa-
tion of intricate aspects of MD, such as hydrogen bonding patterns, van der
Waals interactions, and polarization e�ects, providing valuable insights into the
structural and functional properties of molecular systems. Running atomistic
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MD simulations involves using specialized software to perform the complex
calculations. Popular MD software includes GROMACS (GROningen MAchine
for Chemical Simulations) [223], AMBER (Assisted Model Building with Energy
Re�nement) [189], CHARMM (Chemistry at HARvard Molecular Mechanics)
[224], NAMD (Nanoscale Molecular Dynamics) [225], LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) [226], and TINKER-HP [227],
each characterized by features that make them applicable to speci�c biomolecule
types and/or computational resources available. These tools provide a compre-
hensive suite of functionalities, including energy minimization, equilibration, and
production runs, allowing detailed and accurate simulations.
Setting up an AA MD simulation involves selecting or constructing the molecular
structure of interest, often sourced from databases like the Protein Data Bank
(PDB) or modeled de novo when experimental data are unavailable. Once the
structure is obtained, it may need re�nement to correct stereochemistry, optimize
the geometry, and adjust protonation states to ensure the structure accurately
re�ects physiological conditions.
Periodic boundary conditions (PBC) are employed in MD simulations to ap-
proximate bulk-phase behavior by simulating a small, representative segment
(simulation box) of the system [228]. The simulation box is virtually replicated
in all directions, allowing particles that exit one face to re-enter from the opposite
side. This eliminates arti�cial edge e�ects and maintains a continuous, uniform
environment throughout the system. The simulated molecule is placed in a
simulation box that should be large enough to prevent interactions between the
molecule and its periodic images, i.e., the virtual copies of the system generated
by PBC, and solvated to mimic the natural aqueous environment of biological
molecules. PBC are particularly crucial when simulations include explicit sol-
vent, where solvent molecules are represented individually to capture solvation
dynamics with high accuracy. Without PBC, solvent at the box edges would
experience unrealistic conditions, such as vacuum exposure, leading to artifacts
that distort both structural and thermodynamic properties [228].
Several explicit water models are used to realistically mimic the aqueous en-
vironment of biomolecular processes, each di�ering in complexity, accuracy,
and computational e�ciency. Among the most commonly employed are TIP3P
(Transferable Intermolecular Potential with 3 Points) [229] and SPC (Simple
Point Charge) [230], both of which represent water as rigid three-site models
with �xed bond angles and partial charges. TIP4P and its variants, such as
TIP4P-Ew, TIP4P/2005, and TIP4P-D, introduce a fourth interaction site to
better approximate the location of the negative charge and improve the repre-
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sentation of properties like density, di�usion, and dielectric constant. SPC/E
(Extended SPC) adds polarizability corrections to enhance energetic accuracy,
while TIP5P includes two additional virtual sites to capture the lone pairs on
the oxygen atom, o�ering better agreement with the experimental density and
radial distribution functions of water. More advanced models, such as POL3
and SWM4-NDP, incorporate polarizability to more accurately represent the
electronic response of water molecules to local electrostatic �elds, although at a
higher computational cost. The choice of water model depends on the simulation
goals and required balance between accuracy and performance, with TIP3P and
TIP4P/2005 among the most commonly used in biomolecular MD due to their
compatibility with major force �elds and favorable trade-o�s between realism and
e�ciency. To maintain overall electrostatic neutrality of the system, counterions
(e.g., Na+, Cl−) are added after solvation.
Prior to the production run, in which simulation data are collected for analy-
sis, the system undergoes energy minimization to eliminate steric clashes and
high-energy con�gurations. This is followed by equilibration steps, during which
temperature and pressure are gradually brought to target values, ensuring the
system reaches a stable, physiologically relevant state before data acquisition
begins.
Proper temperature and pressure control are essential for the stability and ac-
curacy of MD simulations, in�uencing the reliability of the simulated molecular
behaviors. During the MD simulation, the thermal conditions of the simulated
system are controlled by thermostats, which regulate the kinetic energy of
particles to achieve and sustain a target temperature. The two most common
thermostats are the Berendsen and Langevin thermostats. The Berendsen
thermostat scales the velocities of particles towards the target temperature
using a �rst-order di�erential equation, providing smooth temperature control,
however sometimes resulting in non-physical temperature distributions [231].
The Langevin thermostat, on the other hand, adds a frictional force and a
random force to the system's particles, simulating the e�ect of a heat bath,
o�ering a more accurate temperature control and the maintaining of the correct
thermodynamic ensemble [232].
Pressure control in MD simulations is managed by barostats. The Berendsen
barostat adjusts the system's volume by scaling the coordinates of particles, driv-
ing the pressure towards a target value [233]. However, similar to the Berendsen
thermostat, it can lead to non-physical volume �uctuations. The Langevin baro-
stat incorporates stochastic forces and friction, akin to the Langevin thermostat,
ensuring more realistic pressure regulation [234].
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The choice of time step in MD simulations is critical for ensuring accurate and
stable integration of the equations of motion. Typically, a time step of 1 to 2
femtoseconds (fs) is used in atomistic MD to capture the fast vibrational motions
of bonds, especially hydrogen bonds. Using time steps larger than this can lead
to integration errors and unrealistic behavior. However, longer time steps can
be employed if constraints like SHAKE [235] or LINCS [236] are applied to
bond lengths involving hydrogen atoms, which exhibit the fastest vibrational
motions, allowing the simulation to run faster without losing accuracy. The
total simulation time depends on the scienti�c question being addressed and the
available computational resources. For instance, studies of protein folding or
large conformational changes may require simulations extending to microseconds
or longer. Given the computational intensity, these extended simulations often
necessitate access to high-performance computing clusters or specialized hard-
ware, like GPUs, to be feasible within reasonable time frames.

Figure 1-4: Snapshots of an MD trajectory; the protein, IL-8, is shown in cartoon
representation, while the ligand (HP dp6) is shown in sticks represen-
tation colored according to time step, with red color corresponding
to the initial position of the ligand in the MD trajectory and blue
corresponding to the �nal position.

Post-simulation, detailed analysis of trajectories and derived properties is con-
ducted (�g. 1-4). Trajectory visualization is one of the �rst steps in this process,
where software like VMD (Visual Molecular Dynamics) [237], PyMOL [238], or
Chimera [239] is used to visualize the resulting trajectories of atoms over time,
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helping to identify signi�cant conformational changes, interactions, and overall
system behavior. Beyond visualization, quantitative analyses are performed
to extract detailed information about the system, typically include root mean
square deviation (RMSD) to measure the average deviation of atomic positions
from a reference structure over time, and root mean square �uctuation (RMSF)
to assess the �exibility of individual residues or atoms, highlighting regions with
high mobility, which might be functionally important or prone to interactions.
Radial distribution functions (RDF) describe how particle density varies as a
function of distance from a reference particle and are particularly useful for
understanding the spatial distribution and interactions of atoms or molecules
in the system, such as solvation shells around ions or the organization of lipid
bilayers. Other important properties often analyzed include hydrogen-bond
analysis to track the formation and stability of hydrogen bonds, and secondary
structure analysis, to monitor changes in protein folding or unfolding.

AA MD Simulations of GAGs

Fully atomic structures of GAGs and protein/GAG complexes can be obtained
from established databases of experimentally determined structural data, e.g.,
the PDB or carbohydrate-focused databases such as Glyco3D [240] or GAG-DB
[74]. If experimental structures are not available, specialized tools can be used
to build and re�ne three-dimensional GAG models, including the GAGBuilder
of GLYCAM-Web [241], CHARMM-GUI Glycan Modeler [242], PRODRG [243],
LigParGen [244], or the tleap module of the AmberTools suite [245]. For pro-
tein/GAG complexes, initial models can be generated through molecular docking
techniques, followed by re�nement to resolve any steric clashes or unrealistic
conformations.
Force �elds tailored for carbohydrate simulations enable precise modeling of
GAGs, re�ecting the unique physicochemical characteristics and sulfation varia-
tions among GAG classes. GLYCAM (Glycoprotein and Carbohydrate Molecular
Mechanics) is one of the most frequently used force �elds for various carbohydrate
types, o�ering speci�c parameters for monosaccharides and linkages found in
GAGs [246]. Another option, the CHARMM (Chemistry at HARvard Macro-
molecular Mechanics) force �eld, is comprehensive and versatile, supporting a
broad spectrum of biological molecules, including carbohydrates, and is suitable
for GAG simulations [190]. These force �elds are integrated into MD software
such as AMBER [189] to streamline the simulation process.
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The parametrization process for force �elds like GLYCAM and CHARMM in-
volves deriving parameters that accurately describe the potential energy surfaces
of molecules. This process typically involves quantum mechanical (QM) calcula-
tions on model compounds or molecular fragments to determine the optimal bond
lengths, angles, dihedral torsions, and nonbonded interactions [247, 248]. These
QM results are then used to �t the parameters of the force �eld to reproduce
experimental data, including crystal structures and NMR spectroscopy results,
ensuring accurate representation of energetics and geometries, particularly the
conformational properties of glycosidic linkages [247].
Simulating protein/GAG complexes requires the integration of force �elds that
can accurately represent both proteins and GAGs within the same MD simu-
lation. Commonly, a combination of the GLYCAM force �eld for GAGs with
AMBER or CHARMM force �elds for proteins is employed, which leverages the
strengths of each force �eld: GLYCAM's detailed parametrization for carbo-
hydrates and AMBER or CHARMM's comprehensive parameters for proteins,
including peptide backbones, side chains, and their interactions. A compre-
hensive study evaluating the e�ectiveness of the CHARMM, GROMOS, and
AMBER/GLYCAM force �elds in modeling protein/carbohydrate interactions
highlighted signi�cant divergences in their predictions of structural descriptors
and unbinding free energies [249]. Although certain structural descriptors like in-
termolecular hydrogen bonding were generally consistent across the tested force
�elds, di�erences were observed in speci�c amino acid/carbohydrate contact
patterns. While GROMOS predicted a higher frequency of contacts, CHARMM
and GLYCAM reported fewer but more intense interactions, with CHARMM
showing the best correlation to experimental data albeit underestimating un-
binding energies, and GLYCAM overestimating them. Additionally, particular
attention has to be paid to CH-π interactions in protein/carbohydrate binding,
which are often not adequately represented in force �elds [249, 250].
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CG Approaches

Advances in computational power, e�cient sampling techniques, and accurate
force �eld parameterization have signi�cantly broadened the scope of AA molec-
ular simulations [251, 252], allowing e�cient sampling of conformational space
[253, 254] and enabling explicit simulations of solvated molecular systems, thus
bene�ting biochemical research. However, processes involving large biomolecular
assemblies or long-timescale conformational transitions often remain beyond the
practical reach of AA simulations. Coarse-grained (CG) approaches address this
limitation by grouping atoms into larger units, known as pseudoatoms or "beads,"
thereby reducing the degrees of freedom, enhancing computational e�ciency, and
facilitating the study of longer timescales and larger biomolecular systems, in-
cluding protein folding [255, 256], conformational transitions [257, 258, 259, 260],
and macromolecular interactions. Although CG MD sacri�ces some atomic-level
detail, it captures essential system behaviors, providing valuable insights into the
mechanisms and functions of molecular systems while maintaining computational
tractability. Developing accurate and transferable force �elds for CG models re-
mains challenging, given the need to represent complex molecular interactions
with fewer parameters, often leading to biases toward reference con�gurations
[261, 262].
Early CG models were developed to simplify the representation of proteins and
nucleic acids, enabling studies of large-scale dynamics and interactions. The level
of CG is determined by the de�nition of pseudoatoms, with common approaches
involving one pseudoatom per residue or two per residue to account for side-chain
packing and speci�city [263].
Elastic network models (ENMs) represent systems as beads connected by elastic
springs, which have been useful for analyzing protein behavior, characterizing
principal modes of motion, �tting atomic structures to electron density maps
[264], and re�ning low-resolution structural data [265, 266]. Applications include
studies of diphtheria toxin [267] and HIV-1 protease [268]. The G	o model, orig-
inally developed for protein folding simulations, represents proteins as chains of
one-bead amino acids with interactions biased toward the native structure, e�ec-
tively modeling folding thermodynamics and kinetics [262, 269, 270]. To address
the limitations of the G	o model in describing intermediate metastable states, ad-
ditional energy terms have been introduced. These modi�cations have improved
its ability to model complex folding landscapes [271], enhanced the representa-
tion of residue-level speci�city [272, 273], and enabled more realistic simulations
of biomolecular interactions such as protein-protein binding [274]. ENM and G	o



1.4 In silico Methods to Study Protein/GAG Complexes 41

models are inherently biased toward reference con�gurations, which limits their
transferability compared to early CG models developed by Levitt that employed
more transferable, knowledge-based parameterizations [275].
Modern one-bead models are largely derived from G	o models, incorporating ad-
vanced potential energy terms but still depending partially on reference con�gu-
rations. Introducing a second bead at the side chain centroid improves local in-
teraction speci�city [256], while further re�nements include adding energy terms
[276] and �tting free energy functions derived from AA simulations [277, 278].
More complex CG models combine multiple residues into larger pseudoatoms,
such as the MARTINI force �eld, which maps four heavy atoms to a single pseu-
doatom [279], or employ shape-based CG models to preserve the molecular shape
[280]. These models have been employed in simulations of viral capsid dynamics,
protein-induced membrane bending [281], and large liposome systems [282]. In
four-bead models, the side chain is represented by a single bead while the back-
bone's three heavy atoms are modeled explicitly, enabling detailed descriptions
of hydrogen bonding, which are useful for applications such as de novo protein
structure prediction [283] and protein folding studies [284].
Coarser CG descriptions can be achieved using ENMs with rigid-block decom-
position [285, 286], Brownian dynamics for electrostatics-driven di�usional inter-
actions [287, 288], and continuum representations via density �elds [289]. These
approaches o�er simpli�ed yet insightful methods to study protein-protein dock-
ing [290, 291] and the competition between protein folding and aggregation [289].
The interactions between CG pseudoatoms are described by the e�ective CG en-
ergy function, which can be derived from AA MD simulations, experimental data,
or theoretical models and statistical analyses of structural databases. In practice,
many CG potentials combine these sources to balance accuracy, transferability,
and computational e�ciency. CG models based on AA MD aim to reproduce
con�gurational probabilities and thermodynamic properties of atomistic systems,
employing methods such as inverse Monte Carlo [292] and force-matching [293].
Knowledge-based CG potentials derived from experimental structural data are
based on assumptions like the Boltzmann distribution of the number of partic-
ular residue pairs interacting in native structures [263]. Initially developed for
protein folding [255], these potentials are also used to investigate protein binding
mechanisms, with recent developments enhancing their accuracy and applicabil-
ity [294].
Most rigorous CG MD simulations depend on speci�c molecular systems and
environmental conditions, which limits their transferability and often results in
overly collapsed states compared to experimental observations. Recent e�orts to



42 1 Introduction

improve parameterization have included the use of a CG polarizable water model
[295] and the renormalization of CG multibody interactions [296].
Although no single CG model is universally optimal, the combined use of dif-
ferent CG models alongside other computational techniques can provide a more
comprehensive understanding of experimental results and help discriminate be-
tween competing hypotheses regarding molecular mechanisms, structural confor-
mations, or interaction pathways.

CG MD Simulations of GAGs

Despite their biological importance and widespread presence, only a limited num-
ber of CG models have been developed for GAGs, likely due to the complexity
of their sequences and structures [297]. The initial CG model for GAGs was in-
troduced by Bathe et al. in 2005 [298], speci�cally for CS and HA. This model
represented each sugar residue with �ve CG beads: two for the carbon atoms and
one for the oxygen atom to simulate the glycosidic linkage, an interaction site for
the center of mass to model steric interactions, and an interaction site for the
center of charge to account for electrostatic interactions. This model accurately
reproduced the conformations and titration characteristics of the studied GAGs
[298]. Sattelle et al. [299, 300] created a CG model for HS, simplifying the sugar
residue representation to two interaction centers: one for the sugar ring and an-
other for the glycosidic linkage oxygen atom. This model was e�ectively used for
studying large HS molecules [300] and HS-containing proteoglycans [299].
Samsonov et al. proposed a more intricate model encompassing 28 pseudoatoms
to simulate 17 di�erent GAG types [301]. These pseudoatoms corresponded to
various functional groups of GAGs, such as the oxygens in glycosidic linkages,
sulfate groups, carboxylate and N-acetyl groups, the centers of mass of pyranose
rings, and the CH2OH group of GlcNAc and GalNAc. Depending on the type
and sulfation pattern of the sugar residue (GalNAc/GlcNAc and GlcA/IdoA) and
its position in the GAG chain (internal/terminal), each repeating unit was rep-
resented by 2 to 5 CG pseudoatoms. Geometrical parameters for virtual bonds,
bond angles, and torsional angles were derived from all-atom MD simulations
of various GAGs, while nonbonded interaction parameters were obtained using
steered MD. Pseudoatoms representing carboxyl and sulfate groups were given a
charge of -1, with all other pseudoatoms being neutral. This CG model e�ectively
simulated the global and local properties of GAG chains of varying lengths.
Another CG model of GAGs is derived from the SUGRES-1P model for carbo-
hydrates, part of the UNI�ed COarse gRaiNed (UNICORN) model for biomacro-
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molecules [302, 303]. The UNICORN model employs a physics-based approach,
reducing each repeating unit to one or two CG sites depending on the macro-
molecule type and the system's e�ective energy function [304]. This model ensures
transferability across di�erent systems by decomposing the system's potential of
mean force into contributions from individual CG sites, pairs of CG sites, and
groups of CG sites. The UNICORN model has successfully predicted protein
structures [305], folding kinetics [306], conformational changes [307], and RNA
and DNA structure and dynamics [308]. The implementation of the SUGRES-1P
model for HP and protein/HP interactions was performed as part of this thesis
and is further detailed in Sections 3.3 and 3.4.
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Figure 1-5: A protein and ligand complex shown in orange cartoon representa-
tion (protein) and sticks representation colored according to atom
name (ligand). Below are the CG representations of fragments of
the same complex, with uni�ed CG beads corresponding to groups
of atoms and dashed arrow lines indicating interactions between the
CG interaction sites of the protein and ligand.
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1.4.4 Binding Free Energy Calculations

Many biological processes rely on thermodynamic properties of the recep-
tor/ligand binding, rendering accurate binding a�nity calculations essential in
computational biophysics and drug discovery. Understanding binding strength
and the role of individual residues in this process enhances insights into bio-
logical mechanisms. The intricate nature of binding involves factors such as
direct receptor/ligand interactions, desolvation, energetic strain from adopting
speci�c binding conformations, and changes in con�gurational entropy. Binding
free energy calculations complement docking and MD simulations by providing
insights into binding energetics, which is useful in identifying optimal binding
poses of ligands (Table 1-2). Per-residue decomposition of the binding free
energy highlights residues exerting the strongest favorable or unfavorable contri-
butions, thereby guiding targeted mutagenesis by mapping these residues onto
most populated MD conformations or high-resolution crystal/NMR structures.
Free energy is a thermodynamic quantity representing the amount of work a
system can perform, a quantity crucial in binding studies as it quanti�es how
tightly a ligand binds to its receptor. Binding free energy is a speci�c case of
Gibbs free energy (G), a general concept used to predict the feasibility of any
thermodynamic process at constant pressure and temperature. The change in its
value (∆G) is used to determine if binding occurs spontaneously, depending on
the enthalpy change (∆H), the entropy change (∆S) and the temperature T:

∆G = ∆H − T∆S, (1-9)

A negative ∆G indicates favorable binding, moving the system toward equilib-
rium, i.e., a state of balanced forward and reverse binding rates. Understanding
these changes helps predict the a�nity and stability of molecular interactions,
directly impacting drug design.
Several strategies exist for calculating binding free energy, each with di�erent
levels of accuracy and computational requirements. Among these, fast end-
point techniques are computationally e�cient methods that estimate binding
free energy between two molecules by focusing typically only on the bound
and unbound states. These methods, including Molecular Mechanics/Poisson-
Boltzmann Surface Area (MM/PBSA), Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA), Linear Interaction Energy (LIE), end-point Free
Energy Perturbation (FEP), and Quantum Mechanics/Molecular Mechanics
(QM/MM) are frequently used for virtual screening due to their speed and
simplicity. Despite their e�ciency, fast end-point techniques may not capture



46 1 Introduction

all free energy contributions, particularly for �exible or complex systems, and
some depend heavily on empirical parameters. Potential of Mean Force (PMF)
methods, on the other hand, allow a more detailed exploration of the binding
landscape by calculating free energy as a function of a distance or along pathway
between interacting molecules.
More rigorous approaches like thermodynamic integration (TI) and alchemical
FEP require extensive sampling through MD simulations, o�ering greater accu-
racy through statistically rigorous post-processing. The high computational costs
arise from the explicit solvent treatment and the need to determine free energy
di�erences at multiple intermediate states. TI calculates free energy di�erences
by integrating the gradient of the free energy along a reaction coordinate, while
alchemical FEP estimates changes by gradually transforming one molecule into
another, allowing precise energy calculations.

Table 1-2: Comparison of Methods for Estimating Binding Free Energies in Com-
putational Chemistry

Method Description Advantages Disadvantages

Alchemical FEP Calculates free energy
di�erence by
simulating a gradual
transformation
between two states

High accuracy for
small perturbations;
handles complex
systems; can account
for entropy changes

Computationally
expensive; requires
signi�cant sampling;
convergence issues in
large transformations

TI Integrates the
derivative of the free
energy with respect
to a coupling
parameter over a
series of simulations

High precision for
moderate
perturbations;
straightforward error
analysis

Computationally
expensive; requires
careful placement of
intermediate
coupling-parameter
states; sensitive to
sampling
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Method Description Advantages Disadvantages

MM/PBSA or
MM/GBSA

Combine molecular
mechanics energies
with
continuum-solvent
free energies from
either a
Poisson�Boltzmann
(PB) or Generalized
Born (GB)
implicit-solvent model

Fast post-processing
of MD; no alchemical
transformations; GB
variant even quicker

Accuracy depends on
force �eld and
implicit model;
solvent treated
implicitly; limited
entropy treatment;
GB typically less
accurate than explicit
solvent or the PB
variant

LIE Estimates binding
free energy using a
linear approximation
of van der Waals and
electrostatic
interaction energies
between ligand and
solvent

Simple and
computationally
e�cient; requires
fewer simulations

Empirical parameters
needed; less accurate
for complex systems;
limited to speci�c
systems

QM/MM Combines quantum
mechanics for the
active site or ligand
with molecular
mechanics for the rest
of the system

Accurate for systems
with electronic e�ects;
captures polarization
and charge transfer

Computationally
intensive; requires
careful QM region
selection

Compared to TI and alchemical FEP, MM/PBSA, MM/GBSA, and LIE o�er a
practical balance of accuracy and computational e�ciency, making them partic-
ularly suitable for studying large, �exible molecules like GAGs, where extensive
sampling is often impractical. Their ability to approximate binding energetics
without requiring multiple intermediate states provides valuable insights into
GAG interactions while remaining computationally feasible.
MM/PBSA is used for estimating the binding free energy of biomolecular com-
plexes by combining molecular mechanics (MM) calculations with continuum
solvation models. It estimates free energy by decomposing the system into MM
energy, solvation energy, and entropic contributions. The MM energy includes
bonded interactions (bond stretching, angle bending, dihedral torsions) and
nonbonded interactions (van der Waals and electrostatic interactions). Solvation
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energy is split into polar contributions, calculated using the Poisson-Boltzmann
equation (PBE, eq. 1-10), and nonpolar contributions, estimated using the
solvent-accessible surface area (SASA).

−∇ · (ϵ(r)∇ϕ(r)) = ρf (r) + ρm(r), (1-10)

where ϵ(r) is the dielectric permittivity at position r, ϕ(r) is the electrostatic
potential at position r, ρf (r) is the �xed charge density at position r, and ρm(r)

is the mobile charge density at position r. Entropy is typically estimated through
normal mode analysis (NM) or quasiharmonic approximation (QH), though it is
often omitted due to computational cost.
The MM/PBSA work�ow involves an MD simulation on the complex to generate
an ensemble of con�gurations, followed by computing the total free energy of the
complex, ligand, and receptor from snapshots extracted from the MD trajectory.
Binding free energy (∆Gbinding) is then calculated as:

∆Gbinding = <Gcomplex>−<Gligand>−<Greceptor>, (1-11)

where <G> represents the average over MD snapshots.
MM/PBSA is computationally e�cient and relatively accessible for application
as a post-processing method to MD simulations using common software tools
like AMBER or GROMACS, providing �exibility for analyzing di�erent parts of
the trajectory. However, the use of an implicit solvent model may fail to accu-
rately capture speci�c solvent interactions like hydrogen bonding and ion e�ects
compared to explicit solvent models. As entropy estimation is computationally
expensive and therefore often approximated or omitted, this additionally reduces
accuracy. Since MM/PBSA evaluates binding energies based on discrete MD
snapshots, its results are inherently limited by the conformations sampled in the
trajectory.
The MM/GBSA method is another computational technique used for estimating
binding free energies of biomolecular complexes as a sum of molecular mechanics
energy (bonded and nonbonded interactions), solvation energy, and an entropic
contribution. It is similar in concept to MM/PBSA but uses the Generalized
Born (GB) model (eq. 1-12) instead of the PBE to calculate the polar solvation
energy, allowing for faster computation while retaining a reasonable level of
accuracy.

∆Gpolar
solv = −

1

2

∑

i,j

qiqj
fGB(rij)

, (1-12)
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where qi and qj are the charges of atoms i and j, rij is the distance between
atoms i and j, fGB(rij) is the Generalized Born function, which depends on the
e�ective Born radii and the solvent.
The GB model estimates the electrostatic solvation energy that would be ob-
tained by solving the PBE, doing so under the assumptions of a near-spherical
solute and a continuum dielectric solvent. It is faster than the full PB equa-
tion, making it suitable for simulations requiring many energy evaluations.
MM/GBSA is faster and more computationally e�cient than MM/PBSA due
to the analytical GB model, making it suitable for large datasets, but may not
capture electrostatic interactions as well as PB, especially in highly charged
systems.
An alternative computational approach for estimating binding free energies is
LIE, which is based on a linear approximation of the interaction energies between
the ligand and its environment (protein and solvent), derived from MD, or Monte
Carlo (MC) simulations. The method uses empirical scaling factors to establish
a quantitative relationship between interaction energies and binding free energy,
adjusting these factors to �t experimental data for more accurate predictions.
The LIE method estimates ∆Gbinding by using a linear combination of van der
Waals and electrostatic interaction energies for the ligand in both the bound
and free states. To achieve this, independent MD simulations are conducted
for the receptor/ligand complex and for the ligand in solution, followed by the
computation of interaction energies. The binding free energy is then determined
using the LIE equation (eq. 1-13) and empirical scaling factors, resulting in a
linear approximation that aligns with experimental observations:

∆Gbinding = α<Ebound
vdW >+ β<Ebound

elec >− (α<Efree
vdW>+ β<Efree

elec >) + γ, (1-13)

where <Ebound
vdW > and <Ebound

elec > are the average van der Waals and electrostatic
interaction energies between the ligand and its environment in the bound state,
<Efree

vdW> and <Efree
elec > are the corresponding interaction energies in the solvated

free state, α and β are empirical scaling factors for van der Waals and electro-
static interactions, respectively, and γ is an empirical constant to account for
other contributions (e.g., entropy, desolvation e�ects).
Moving beyond empirical methods, PMF o�ers a more detailed exploration of
the energy pro�le along a reaction coordinate, making it particularly e�ective
for studying binding pathways, understanding energy barriers, and identifying
intermediate states in receptor/ligand interactions. PMF calculations often
use techniques like Umbrella Sampling (US). US applies restraining potentials
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to maintain the system at prede�ned positions along the reaction coordinate,
enhancing sampling in low-probability areas and generating the PMF curve.
SMD, on the other hand, uses external forces to pull a ligand along the reaction
coordinate, sampling di�erent con�gurations to produce a free energy pro�le.
Both methods use biasing techniques to e�ciently sample the reaction coordi-
nate and provide a comprehensive energy landscape. PMF provides a detailed
free energy landscape along a chosen pathway, useful for understanding complex
binding mechanisms, but it is computationally intensive and requires well-de�ned
reaction coordinates.

Application of Free Energy Calculation to GAGs

Computational approaches for estimating binding free energies in GAGs require
judicious method selection, given the substantial �exibility, dense charge distri-
bution, and extensive solvation e�ects inherent to these molecules. Alchemical
FEP and TI are among the most accurate methods, although they are also
computationally demanding. A notable example demonstrated that FEP could
predict the binding a�nities of HP to AT-III with an accuracy within ± 2.3
kcal/mol in comparison to experimental values, emphasizing that explicitly
accounting for solvation dynamics is critical in capturing the strong electrostatic
and hydration components of protein/GAG interactions [309]. TI has been
employed to re�ne CG models such as the Martini force �eld by calculating
partition coe�cients of GAG disaccharides between water and octanol phases,
thereby improving parameterization of GAG simulations and enabling more
realistic replication of GAG behavior in biological contexts [310].
Despite the high precision achievable with alchemical methods, computational
e�ciency often necessitates alternative strategies such as MM/PBSA and
MM/GBSA. These methods approximate binding free energies by summing
intramolecular energy terms (computed in vacuo) with a solvation term derived
from implicit-solvent models. Although MM/PBSA and MM/GBSA have pro-
vided satisfactory rankings of GAG-binding a�nities, they can lack the accuracy
seen in fully explicit methods, particularly for highly charged systems [44, 311].
One study combined MM/PBSA with MD simulations to analyze the energetics
of HP binding to PECAM-1 and annexin A2, revealing that longer HP fragments
bind more strongly due to enhanced electrostatic interactions in speci�c protein
domains, but also showing that binding free energies can be slightly overesti-
mated relative to experimental data [44]. MM/GBSA has also been applied
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to protein/GAG complexes, illustrating that the �exibility of the iduronic acid
ring, especially in its 2-O-sulfated form, signi�cantly a�ects computed binding
free energies, underscoring the need to incorporate ring conformational variabil-
ity into GAG force �elds [311]. Another study using MM/GBSA found that
non-enzymatic protein/GAG systems typically exhibit stronger electrostatic
contributions to binding than enzymatic complexes, which rely more heavily on
van der Waals interactions [179]. Further analyses focused on APRIL, a protein
that interacts with various GAGs, used MM/GBSA to elucidate the roles of
key N-terminal lysine residues, GAG chain length, and sulfation patterns in
modulating binding a�nities. These studies consistently identi�ed electrostatic
forces as dominant, particularly in the case of HP, and showed that full-length
APRIL binds more e�ectively than its truncated forms [312].
For research questions demanding more detailed pathways or mechanistic
insights, techniques such as LIE, SMD, and US can be used. LIE is relatively in-
expensive computationally, although its accuracy depends heavily on calibration
against extensive experimental datasets, which can then enable robust scoring
of protein/GAG interactions [313, 314]. Methods that determine the potential
of mean force, whether by US or the Jarzy«ski equation in SMD simulations,
can yield both binding free energy and kinetic parameters [313, 314, 315, 316].
However, these approaches often require substantial simulation time to achieve
convergence, making them more challenging for routine quantitative prediction.
Hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, or
fully QM approaches, have also been proposed for further improving the treat-
ment of electrostatic interactions, but their application to GAGs is relatively
limited due to high computational cost and complexity [317, 318].



2 Research Aims and Key

Objectives

Protein/GAG interactions fall into three categories: nonspeci�c (the binding
is determined only by the GAG net charge), broadly speci�c (where a protein
binds a limited range of GAG types), or highly speci�c (requiring an exact GAG
sequence). The underlying factors shaping these interactions remain not fully
understood and are often attributed to the sulfation code (GAG sulfation pattern
and degree) completely determining the physicochemical properties of GAGs.
The primary aim of my research was to investigate the factors a�ecting pro-
tein/GAG interactions through computational chemistry techniques, alongside
developing novel tools and analysis pipelines for analyzing these systems. The
employed theoretical models were validated and re�ned using experimental data
from NMR spectroscopy and glycan microarray experiments. The presented
work is structured into four distinct sections, each focusing on the use of di�erent
computational tools to study GAGs and protein/GAG complexes.

1. Complementarity of electrostatic potential isosurfaces as a determinant of
protein/GAG binding speci�city:

− Characterization of the near-surface electrostatic potential of proteins
and protein/GAG complexes;

− Validation of theoretical electrostatic potential surface calculations us-
ing a novel NMR technique;

− Development of an analysis pipeline integrating experimental and com-
putational data for electrostatic potential predictions.

2. Signi�cance of electrostatic interactions in protein/GAG binding speci�city:

− Comparison of the binding behavior of HP and de novo designed acidic
peptides;
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− Investigation of the structural, dynamic, and energetic features distin-
guishing HP from anionic peptides using computational and comple-
mentary experimental data.

3. Development and optimization of GAG-speci�c computational tools:

− Implementation of a coarse-grained model of HP for MD simulations;

− Optimization of the corresponding parameters, including interaction
energy term weights;

− Critical assessment of the method against experimental data.

4. Investigation of the in�uence of GAG sulfation pattern on binding speci-
�city:

− Analysis of physicochemical properties of unbound 3-O-sulfated HS;

− Proposal of MD-based descriptors to predict speci�city and a�nity of
HS binding to di�erent proteins.



3 Publications Included in the

PhD Thesis

The following section provides brief summaries of the publications included in
this PhD thesis, with each subsection focusing on a distinct study. The full
publications can be found at the end of this section.
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3.1 Detecting Protein-Ligand Interactions with

Nitroxide Based Paramagnetic Cosolutes

NMR spectroscopy provides valuable insights into protein/ligand binding a�ni-
ties and conformational changes [319]. Paramagnetic NMR broadens this scope,
enabling sensitive screening of fragment binding events, even when a�nities
are very low, even for weakly binding fragments, providing structural restraints
to aid computational chemistry especially when crystallography is challenging
[320]. Solvent distance-dependent paramagnetic relaxation enhancement (sPRE)
e�ects, induced by soluble paramagnetic probes, map solvent-accessible surfaces
without altering receptor or ligand molecules [320] and can be used to charac-
terize solvent-accessible surfaces [321, 322], predict structures [323, 324], detect
transient conformations [325], and identify binding interfaces [326, 327, 328].
A recently developed method using PROXYL cosolutes allows determination
of the protein near-surface electrostatic potential (ϕENS), with NMR data cor-
relating well with Poisson-Boltzmann theory predictions [329, 330, 331]. Ionic
PROXYL probes are useful for detecting interactions with charged ligands like
GAGs, which signi�cantly alter the electrostatic potential at their binding site.
The presented study used the PROXYL method to examine IL-8 binding to
GAGs and the Grb2 SH2 domain interaction with phosphotyrosine peptides,
mapping ligand binding sites and changes in ϕENS. Experimental NMR data
aligned with theoretical models from atomistic MD simulations and ϕENS pre-
dictions via the Adaptive Poisson-Boltzmann Solver (APBS) software [193, 332].
The comparison provided deeper insights into how ligand binding alters protein
electrostatics, emphasizing the importance of considering both protein and ligand
�exibility in interaction predictions. Free IL-8 was characterized by a strong
positive ϕENS, particularly in GAG-binding regions, which aligned well with
computational predictions, especially in the structured regions of the protein.
This agreement validated the theoretical model and highlighted the importance
of IL-8's positive charge in GAG interactions.
Upon binding to IL-8, HP caused widespread electrostatic potential alterations
that extended beyond the binding interface. In contrast, HA left the electrostatic
pro�le of the protein largely unaltered, owing to its lower a�nity. HP adopted
an extended conformation between the C-terminal helix and N-terminal loop of
IL-8, consistent with previous theoretical and experimental studies, while HA
bound energetically less favorably in a groove between the C-terminal helices
of the IL-8 dimer. The results imply that the impact of HP on electrostatic
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potential may be crucial for IL-8's role in forming chemokine gradients during
in�ammation, whereas HA likely plays a more transient or context-dependent
role, contributing to less stable or secondary interactions.
The study demonstrated that combining computational and experimental meth-
ods improves understanding of protein/ligand interactions by providing accurate
predictions and validation of ϕENS and ligand binding poses. While agreement
between experimental and computational ϕENS values for IL-8 and Grb2 SH2
supported the models, discrepancies revealed areas needing further re�nement or
where additional factors, such as protein �exibility or solvent e�ects, should be
considered.

Figure 3-1: ENS electrostatic potentials (ϕENS) determined from the PRE NMR
data of IL-8 apo (top) and the IL-8/HP complex (bottom). Ex-
perimentally determined ϕENS (black points for secondary structure
residues and gray points for loop regions) and predicted ϕENS data
(red line) are plotted along the IL-8 residue number. The predicted
ϕENS values represent the mean of the ENS potentials calculated from
a 100 ns MD simulation, the red shaded regions indicate the standard
deviation of the ϕENS predictions. Figure adapted with permission
of the publisher from Penk A, et al. Detecting Protein-Ligand In-
teractions with Nitroxide Based Paramagnetic Cosolutes. Chemistry.
2024;30(18):e202303570. Author rights retained.
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Comparison of Glycosaminoglycans and

Acidic Peptides

As previously observed, the alteration of the near-surface electrostatic potential
of IL-8 upon GAG binding was greater for the more negatively charged HP than
HA. The ϕENS changes extended beyond the HP binding site, underscoring the
role of electrostatic interactions in IL-8/HP binding and suggesting that electro-
static complementarity may in�uence binding speci�city and a�nity.
The nature of protein/GAG binding spans a continuum of mechanisms in terms
of speci�city. On one hand, certain complexes show highly speci�c recognition,
as with AT-III binding a de�ned HP pentasaccharide [333], driven by precise
sulfation patterns and 3D conformation. On the other hand, electrostatically
dominated interactions, exempli�ed by chemokines (e.g., CXCL12 [86], CXCL14
[87]) and proteins like BMP-2 [334] or TGF-β1 [335], depend heavily on net
negative charge but also re�ect sulfation positions, chain length, and protein
surface topology. Even these less speci�c cases often exhibit sulfation or confor-
mational preferences, highlighting the multifactorial nature of GAG recognition.
Many protein/GAG interactions lie somewhere between these extremes, resisting
simple classi�cation as purely speci�c or electrostatic. Although NMR, X-ray
crystallography, and computational methods have enriched our understanding,
many molecular details of protein/GAG binding remain to be clari�ed.
This study aimed to evaluate the role of electrostatics in IL-8/HP binding and
contrast it with the in�uence of structural properties of HP. Using NMR and
molecular modeling, IL-8 interactions with HP dp6 and a series of synthetic acidic
decapeptides of comparable length and charge, designated as p3-, p5-, p7-, and
p10-, labeled according to their incremental negative charges, were analyzed to
better understand how electrostatics and structural di�erences between GAGs
and peptides a�ect binding speci�city. The distinct chemical nature and confor-
mational preferences of GAGs and peptides, including di�erences in the number of
degrees of freedom, charge distribution, and solvent-mediated interactions, likely
lead to di�erences in their recognition descriptors and impact on the speci�city
of their interactions with proteins.

Molecular docking and atomistic MD simulations of IL-8/ligand complexes iden-
ti�ed probable binding sites and key binding residues. Subsequent free energy
calculations allowed to determine binding energy contributions. The frequency
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Figure 3-2: Electrostatic energy in vacuo (top left), total electrostatic energy
(bottom left), van der Waals energy (top right) and total free en-
ergy (bottom right) for the IL-8/ligand complexes determined using
MM/GBSA. Statistical signi�cance of di�erences is shown as (*) for
statistical signi�cance when compared to all other groups, (1) sta-
tistical signi�cance when compared to p3-, (2) statistical signi�cance
when compared to p5-, (3) statistical signi�cance when compared
to p7-, (4) statistical signi�cance when compared to p10-. Figure
adapted with permission of the publisher from Schulze C, et al. Lig-
and binding of interleukin-8: a comparison of glycosaminoglycans and
acidic peptides. Phys Chem Chem Phys. 2023;25(36):24930-24947.
Author rights retained.
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and stability of H-bonds between IL-8 and ligands were also analyzed. Addition-
ally, long MD simulations of unbound ligands were conducted to assess their �ex-
ibility compared to IL-8-bound ligands using radius of gyration (Rg) and RMSD,
indirectly measuring entropy loss upon binding. Independent of the computa-
tional analyses, NMR spectroscopy quanti�ed HP and peptide binding a�nities
and mapped ligand binding sites via chemical shift perturbations (CSPs).
The extensive computational analysis con�rmed the importance of electrostatics
in binding, though structural and energetic di�erences between HP and peptides
suggested additional factors at play. Docking simulations showed both HP and
peptides bind parallel to the α-helices of IL-8, however HP exhibited a more
geometrically de�ned binding mode, while peptides were characterized by more
dispersed poses, indicating reduced speci�city. In the MD simulations, peptides
formed less stable hydrogen bonds, leading to weaker binding a�nity compared
to HP, which exhibited stronger binding and more favorable total binding free en-
ergy. While electrostatic contributions were similar for HP and the most charged
peptide p10-, peptides had weaker overall binding due to less favorable van der
Waals and solvation energies. HP retained its conformation upon IL-8 binding,
showing minimal change in radius of gyration and suggesting it was already in
the optimal binding state. Peptides, particularly those of lower charge, instead
displayed substantial conformational rearrangements with associated greater en-
tropic loss.
The study revealed that while electrostatics is crucial in IL-8/ligand interac-
tions, it alone cannot account for GAGs' higher a�nity for IL-8 over acidic pep-
tides. Other factors, such as ligand �exibility, conformational changes, hydrogen
bonding, solvent e�ects, and the speci�c arrangement of charged groups, form a
complex network of parameters driving protein/GAG speci�city. These �ndings
enhance the understanding of protein/GAG interactions and o�er insights for de-
signing more e�ective GAG mimetics.
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Figure 3-3: Distributions of radius of gyration (Rgyr) values (kernel density esti-
mation) for bound and unbound states in continuous and dashed
lines, respectively, for HP dp6, p3-, p5-, p7-, and p10-. Figure
adapted with permission of the publisher from Schulze C, et al. Lig-
and binding of interleukin-8: a comparison of glycosaminoglycans and
acidic peptides. Phys Chem Chem Phys. 2023;25(36):24930-24947.
Author rights retained.
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Model of Polysaccharides to Heparin

Studying the structure and dynamics of HP through classical AA MD simulations
is resource-intensive. The ability of long HP chains to form large multiprotein
assemblies further complicates MD simulations by necessitating longer timescales
to accurately capture structural changes. CG methods present a more compu-
tationally e�cient alternative by grouping atoms into beads, thereby reducing
complexity and computational cost while retaining critical molecular properties.
CG approaches e�ectively address challenges arising from the periodicity and
diversity of GAGs [298]. Despite the biological importance of GAGs, only a lim-
ited number of specialized CG models have been developed for these molecules.
Many earlier models have either been overly complex or excessively simpli�ed,
limiting their ability to e�ectively simulate long HP structures [298, 300, 299].
One CG model that achieves a suitable balance between simplicity and accuracy
is SUGRES-1P, which provides su�cient precision to capture the global struc-
tural properties of HP, potentially useful for elucidating its roles in regulating
blood coagulation, maintaining protein gradients essential for cell signaling, and
molecular transport [336, 337, 338, 339], and mediating structural processes such
as collagen reorganization [340, 341] and amyloid formation [342, 343].
The work presented in this publication aimed to extend the SUGRES-1P CG
model to HP molecules and validate it through comparisons with experimental
data. As part of the UNICORN framework, SUGRES-1P represents polysaccha-
ride chains using one CG site per sugar residue, positioned between glycosidic
linkage oxygen atoms that serve as geometrical anchor points [303]. The model
was now re�ned by representing each CG bead as an ellipsoid (�g. 3-6) and
incorporating two interaction sites per bead to account for the o�-center charge
distribution in HP residues [344].

The SUGRES-1P force �eld is physics-based. By deriving all bonded and non-
bonded interaction potentials from �rst-principles calculations, it provides an
accurate model of atomic and molecular behavior. This approach enables the ac-
curate representation of molecular interactions and, as a result, better predictions
of energy states and conformational changes over time. Although the UNICORN
framework utilizes solely an implicit solvent model, Debye-Hückel screening is ap-
plied to electrostatic interactions to account for ionic strength, thereby capturing
the in�uence of factors such as salt concentration on electrostatic forces.
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Figure 3-4: The SUGRES-1P model of HP. The interaction sites correspond to
united sugar rings, represented by violet ellipsoids, located halfway
between glycosidic oxygen atoms (shown as white spheres) that serve
to de�ne the geometry of the polysaccharide molecule. The virtual
bonds connecting the oxygen atoms are shown as thick black lines.
The geometry of the polysaccharide chain is de�ned by the virtual
bond angles θi and torsional angles γi.

Following the computational implementation of the CG model, I �ne-tuned the
force �eld parameters, including energy terms and electrostatic screening factors,
to ensure accurate simulations of the structure and dynamics of highly charged HP
molecules. An empirical adjustment was conducted on HP chains of three lengths
(dp6, dp12, dp24) to �nd the optimal parameter set across di�erent oligosaccha-
ride lengths. MD simulations were used to collect data on end-to-end distance
(EED) and radii of gyration (Rg) of free HP chains to guide the modi�cations of
the Debye-Hückel parameter κ, which accounts for di�ering ion concentrations,
as well as of energy term weights governing bonded and nonbonded interactions.
Higher κ values as well as increased torsional-energy weights promoted coiling of
the HP chains, resulting in more compact conformations. Conversely, increasing
the electrostatic term weight led to extended HP chains due to stronger repulsion
within the chain. Notably, lower κ values (i.e., lower ion concentrations) and
higher electrostatic energy weights provided the best �t for shorter HP chains,
while longer chains required higher κ and adjustments to bond-stretching and
torsional energy weights to match experimental data.
After optimizing the parameters, the performance of SUGRES-1P in modeling
the structure of free HP chains was evaluated through extended CG MD simula-
tions across a broad range of chain lengths (dp6 to dp68), followed by comparison
of the obtained results to experimental data on EED and Rg [345, 346]. The op-
timized parameters accurately captured the overall shape, �exibility, and global
structural characteristics of HP chains (�g. 3-5). Simulated EED and Rg val-
ues closely matched experimental data, although shorter chains exhibited slightly
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more extended conformations, while longer chains tended to adopt more coiled
structures compared to their experimentally determined counterparts. Notably,
the simulations successfully replicated a structural kink observed experimentally
in chains longer than dp14 [345]. Visual comparisons con�rmed the accuracy of
the model, with CG chains closely resembling experimental structures. Addition-
ally, RMSD analysis con�rmed the model's capability to reproduce the dynamic
�exibility of HP within experimentally observed ranges.
The SUGRES-1P model demonstrated remarkable accuracy in simulating the
structure and dynamics of HP molecules, establishing itself as a reliable tool for
future GAG simulations. Its success in modeling free HP chains provided a solid
foundation for applications in studying protein/HP interactions. Furthermore,
the integration of SUGRES-1P with the UNICORN framework enables the sim-
ulation of larger, more complex biomolecular systems, including HP, proteins,
lipids, and ions.



64 3 Publications Included in the PhD Thesis

Figure 3-5: Representative conformations of the CG trajectories of HP dp18,
dp24, dp30, and dp36 visualized in trace representations, colored
according to trajectory time step (left); experimentally determined
conformation of HP dp18 (PDB ID: 1IRI), dp24 (1IRJ), dp30 (1IRK),
dp36 (1IRL) in licorice representation (right). Figure adapted with
permission of the publisher from Danielsson A, et al. Extension of
the SUGRES-1P Coarse-Grained Model of Polysaccharides to Hep-
arin. J Chem Theory Comput. 2023;19(17):6023-6036. Author rights
retained.
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Simulating Protein/Heparin Interactions

Following the implementation and validation of the SUGRES-1P model for free
HP molecules, the next step was an extensive and thorough analysis of its perfor-
mance for protein/HP complexes. By combining the CG UNRES representation
for proteins with SUGRES-1P for HP, a computationally e�cient framework was
established for accurately modeling protein/HP interactions. The SUGRES-1P
model simpli�es each HP residue into one CG bead composed of two interaction
sites, while UNRES-1P represents amino acids with two CG beads, one for the
side chain and one for the backbone peptide group. The combined CG energy
function included three components modeling protein/protein, HP/HP, and
protein/HP interactions. Force �eld parameters were calibrated and optimized
to accurately model protein/HP binding interactions.
CG MD simulations of three protein/HP complexes, each spanning approxi-

mately 1 µs of all-atom time, were conducted to study the binding dynamics and
protein stability in�uenced by HP. The proteins studied were basic and acidic
Fibroblast Growth Factor (bFGF, aFGF), and the NK1 splicing variant of Hep-
atocyte Growth Factor/Scatter Factor (HGF/SF), all complexed with HP dp6,
while aFGF was also complexed with HP dp8 and dp10 to assess the e�ect of HP
chain length on aFGF dimer stability. After energy minimization, ten replicates
of canonical CG MD simulations were run for each system to sample a broad
range of conformations. Protein/HP interactions were analyzed by clustering
the CG structures to identify the most probable conformations and protein/HP
contact maps. Structural deviation from the experimentally determined crystal
structures and �exibility of the interacting molecules were assessed using RMSD
and RMSF calculations, while Principal Component Analysis (PCA) was used
to capture major modes of motion, highlighting conformational shifts during the
MD simulations. The results were validated against crystallographic data to
assess the model's predictive accuracy.
The results for the bFGF/HP dp6 complex demonstrated that the UNRES/SUGRES-
1P CG model accurately captured the interaction, validating its predictive
capability. The complex remained stable across all 10 CG MD replicates, with
no dissociation of HP from bFGF. RMSD values showed e�ective modeling of
structural dynamics, with 4.6 Å for bFGF and 11.7 Å for HP compared to
experimental data. The CG simulations enabled the successful identi�cation of
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Figure 3-6: The coarse-grained UNRES and SUGRES-1P models. The uni�ed
CG peptide groups (p) are represented by a pink �lled circle, the
uni�ed side chain beads (SC) by a pink �lled ellipsoid. The uni�ed
CG sugar rings of the polysaccharide (S) are shown as blue �lled el-
lipsoids. The Cα atoms of the polypeptide and the O4 atoms of the
polysaccharide are used to de�ne the geometry of the polymer chains
and do not function as interaction sites. The virtual bonds connecting
the CG beads to the Cα and O atoms are shown as thick black lines.
Figure adapted with permission of the publisher from Danielsson A,
et al. Implementation of the UNRES/SUGRES-1P Coarse-Grained
Model of Heparin for Simulating Protein/Heparin Interactions. J
Chem Theory Comput. 2024;20(23):10703-10715. Author rights re-
tained.

HP-binding residues, which aligned closely with experimental data, particularly
Arg-82, Lys-120, Gln-124, Lys-126, and Lys-136, thereby con�rming accurate
binding behavior [347, 348, 349]. The orientation of HP within the binding site
varied slightly across the CG clusters, highlighting the adaptability of the binding
site. PCA revealed conformational changes in bFGF upon HP binding. Notably,
HP stabilized the bFGF dimer, as simulations of free bFGF dimers showed
intermittent dissociation and reformation of the dimer, whereas in the presence
of HP, the dimer remained consistently stable throughout the simulation.
The UNRES/SUGRES-1P CG model also e�ectively captured the dynamics and
interactions between NK1 and HP dp6. Although NK1 remained bound to HP
in only 5 out of 10 simulation replicates, the HP-binding site aligned well with
experimentally known sites. Key HP-binding residues were accurately identi�ed
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and consistently formed contacts with HP, despite notable �exibility in binding
poses across simulations. PCA revealed limited motion of NK1 when bound to
HP, indicating complex stability, though increased mobility was observed in the
�exible N-terminal region. RMSF analysis con�rmed this �nding, showing that
HP-binding regions were stable, while the N-terminal was the most �exible.
In the aFGF/HP system, the combined UNRES/SUGRES-1P model captured
the e�ects of varying HP chain lengths on HP-mediated aFGF dimer stability.
The aFGF/HP complex remained stable in most simulations, with no disso-
ciation in 8 of 10 replicates for HP dp6, and 6 of 10 for both dp8 and dp10.
Interestingly, for dp10 one replicate showed reassociation towards the end of the
simulation, indicating that longer HP chains may promote dynamic binding to
aFGF. The simulations also revealed that in complex with longer HP chains (dp8
and dp10), the aFGF dimer adopted a more compact structure, likely due to
stronger HP-mediated interactions between aFGF monomers. Key HP-binding
residues on aFGF were identi�ed and consistently matched experimentally deter-
mined binding sites. Contact frequency between aFGF and HP increased with
chain length, with longer chains forming more stable contacts. PCA indicated
a twisting and squeezing motion of the aFGF dimer around the HP chain, with
monomer rotation decreasing as HP length increased, suggesting that longer
chains limit dimer �exibility.
The SUGRES-1P model has proven accurate in simulating the structure and
dynamics of HP molecules, making it a reliable tool for future protein/GAG sim-
ulations. Furthermore, its integration with the UNICORN framework allows for
the simulation of larger, more complex biomolecular systems involving proteins,
lipids, nucleic acids, and ions, signi�cantly expanding its potential in advanced
biological research.
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3.5 Molecular Dynamics-Based Descriptors of

3-O-Sulfated Heparan Sulfate as

Contributors of Protein Binding Speci�city

HS molecules play critical roles in biological processes such as coagulation, viral
infection, and cell signaling, primarily through their interactions with various
proteins. However, the complexity and variability in HS sulfation patterns and
their template-less synthesis make understanding these binding mechanisms dif-
�cult. Research suggests that protein/GAG binding is subject to conformational
selection, where the GAG fragments adopt protein-binding conformations even
in their free state, reducing the need for signi�cant structural changes during
binding, particularly in electrostatically driven interactions [299, 350, 351]. For
instance, Guglier et al. found that the inherent �exibility of HP allows it to
meet FGF2's binding requirements without needing further conformational shifts
[352]. The sequence-dependent �exibility of HS, shaped by speci�c sulfation
patterns, plays an important role in adopting these pre-binding conformations,
which are crucial for the binding speci�city of proteins like FGF receptors
[353]. Nonetheless, some studies argue that while the free-state conformation is
important, �nal adjustments occur upon protein binding [354].
In their study, Chopra et al. developed a modular synthetic approach to generate
a library of 27 structurally diverse HS hexasaccharides, systematically varying
sulfation patterns and backbone structures [355]. This library provided a pow-
erful platform for elucidating the binding requirements of HS-binding proteins,
revealing distinct preferences for di�erent sulfation motifs in physiological and
pathological processes. The study included a diverse set of HS-binding proteins
to explore the ligand requirements of 3-O-sulfated HS. Antithrombin-III (AT-III)
and heparin cofactor II (HC-II) were chosen for their roles in blood coagulation
and dependence on speci�c sulfation patterns, while �broblast growth factors
(FGF-7, FGF-9) and FGFR1 were included to investigate their sulfation-speci�c
binding in cell signaling and development. Proteins like neuropilin-1 (Nrp-1)
and receptor for advanced glycation end products (RAGE) were studied for
their involvement in angiogenesis and in�ammatory diseases, respectively, and
stabilin-2 was selected for its role in scavenging and clearance processes. Bone
morphogenetic protein-2 (BMP-2) was examined for its therapeutic potential in
bone regeneration.
Based on this unique library of 27 synthetic HS hexasaccharides and the results
of Chopra et al. [355], the presented study aimed to elucidate the speci�city of
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protein/HS interactions, with a focus on the rare 3-O-sulfation of HS molecules,
through the application of computational techniques and unsupervised machine
learning algorithms. Molecular descriptors of the HS molecules were identi�ed to
explain protein/HS binding, based on the structural properties of unbound HS
molecules observed in all-atom MD simulations. All-atom MD simulations of the
unbound HS molecules were conducted using AMBER16 and the GLYCAM06-j
force �eld with the explicit TIP3P water model. A range of physicochemical
descriptors were extracted from the MD trajectories, including intramolecular
H-bonds, end-to-end distance (EED), root-mean-square �uctuation (RMSF),
radii of gyration (Rg), dipole moments, glycosidic dihedral angles and percentage
in minimum-energy conformations, ring puckers, total free energy and individual
energy components (van der Waals, electrostatic, solvation), and con�gurational
entropy. These descriptors were used to assess the stability, conformational
freedom and �exibility of the HS molecules, and uncover associations between
these descriptors and the HS molecules' binding potential.

Figure 3-7: The correlation between MD-derived descriptors of free GAGs was
analyzed using Pearson correlation coe�cients and plotted as a cor-
relation matrix. The standardized data was subjected to PCA to
uncover underlying patterns and construct Principal Components,
i.e. new dimensions that are each a linear combination of the orig-
inal MD-derived descriptors. The original data set was transformed
into the new PC-dimensionality, and the values corresponding to
each of the HS molecules in this new dimension were correlated
with binding a�nity data obtained from Chopra et al. [355]. Fig-
ure adapted with permission of the publisher from Danielsson A, et
al. Molecular dynamics-based descriptors of 3-O-Sulfated Heparan
sulfate as contributors of protein binding speci�city. Comput Biol
Chem. 2022;99:107716. Author rights retained.

Principal Component Analysis (PCA) was applied to the descriptor dataset
to reduce dimensionality and extract the most important patterns from the
data. PCA transformed the descriptors into new uncorrelated variables, or PCs,
capturing the main variability in the dataset. Pearson correlation analysis was
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then used to assess the relationship between these descriptors and protein/HS
binding a�nity, identifying those most relevant to binding speci�city. Linear
regression models evaluated how well the PCA-derived components explained
binding a�nity. Hierarchical clustering of the correlation matrix further revealed
patterns and subgroups, grouping proteins based on their correlation with HS
molecular features, o�ering insights into binding a�nity determinants.
The MD simulations revealed signi�cant structural variability among the HS
molecules. RMSD, Rg, and EED indicated that most HS molecules were �ex-
ible, adopting multiple conformations throughout the simulation. Certain HS
sequences were observed to form compact stable structures toward the simula-
tion's end, with increased intramolecular H-bonds correlating to greater rigidity,
potentially a�ecting protein interactions. Sugar ring puckering was also found to
contribute to increased �exibility in some of the HS molecules. Pearson correla-
tion analysis revealed that speci�c descriptors strongly correlated with binding
a�nity for certain proteins. Following PCA, linear regression models con�rmed
that descriptors from unbound HS molecules were reliable indicators of binding
strength. Clustering based on protein correlations with PCs identi�ed three
distinct protein groups: group 1 (BMP-2, FGFR1, Stabilin-2), where binding
a�nity was in�uenced by H-bonds, ring puckering, and molecular �exibility;
group 2 (RAGE, Nrp-1, FGF-7, FGF-9), which preferred highly �exible HS
molecules; and AT-III, which formed a separate cluster, as its binding a�nity
was not well explained by the selected descriptors, indicating that other factors
might contribute to its speci�city.
The study con�rmed that di�erent proteins exhibit distinct preferences for spe-
ci�c structural and physicochemical features of HS molecules, strongly indicating
that the conformational space of the unbound HS plays a role in determining pro-
tein binding speci�city. Descriptors from MD simulations successfully explained
much of the binding a�nity, although further research incorporating protein
descriptors and more complex interactions is necessary for a more comprehensive
understanding of interaction speci�city.
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3.6 Outlook

This thesis advances the understanding of protein/GAG interactions by provid-
ing new insights into the roles of electrostatics, sulfation patterns, and molecular
�exibility in binding speci�city. The studies presented integrate experimental
data with multiscale computational modeling, establishing a versatile framework
for future investigations of protein/GAG complexes.
While this thesis furthers the understanding of protein/GAG binding speci�city,
several limitations remain. The computational approaches employed necessarily
rely on approximations, simpli�ed solvent models, parameter optimization from
limited benchmarks, and restricted sampling of large biomolecular systems, thus
enabling the exploration of complexes otherwise inaccessible to experimental ap-
proaches.
Future work should focus on continued force �eld re�nement, rigorous validation,
and expansion of datasets to improve the predictive accuracy of computational
approaches. The extension of the SUGRES-1P and UNRES/SUGRES-1P frame-
works to diverse GAG libraries and multivalent protein assemblies will enable
large-scale, high-throughput simulations. Furthermore, developments in GPU ac-
celeration and machine-learning-based analysis of structural descriptors and free
energy landscapes o�er the potential to model extracellular protein/GAG net-
works at physiologically relevant scales, bridging atomistic detail with mesoscale
organization.
Although the biological motivation for this thesis lies in understanding GAG func-
tion, its primary contribution is methodological. The work�ows presented here
o�er a generalizable platform for studying molecular recognition across chemically
complex systems. The work presented in this thesis demonstrates how computa-
tional chemistry can complement experimental studies and accelerate hypothesis
testing.
By integrating computational simulations with experimental validation, this work
establishes computational and experimental frameworks that deepen understand-
ing of protein/GAG interactions and provide a foundation for future advances in
molecular modeling.
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Detecting Protein-Ligand Interactions with Nitroxide Based
Paramagnetic Cosolutes

Anja Penk,[a] Annemarie Danielsson,[b] Margrethe Gaardløs,[b] Cindy Montag,[a]

Andrea Schöler,[c] Daniel Huster,[a] Sergey A. Samsonov,*[b] and Georg Künze*[c]

NMR spectroscopy techniques can provide important informa-
tion about protein-ligand interactions. Here we tested an NMR
approach which relies on the measurement of paramagnetic
relaxation enhancements (PREs) arising from analogous cati-
onic, anionic or neutral soluble nitroxide molecules, which
distribute around the protein-ligand complex depending on
near-surface electrostatic potentials. We applied this approach
to two protein-ligand systems, interleukin-8 interacting with
highly charged glycosaminoglycans and the SH2 domain of
Grb2 interacting with less charged phospho-tyrosine tripep-

tides. The electrostatic potential around interleukin-8 and its
changes upon binding of glycosaminoglycans could be derived
from the PRE data and confirmed by theoretical predictions
from Poisson-Boltzmann calculations. The ligand influence on
the PREs and NMR-derived electrostatic potentials of Grb2 SH2
was localized to a narrow protein region which allowed the
localization of the peptide binding pocket. Our analysis
suggests that experiments with nitroxide cosolutes can be
useful for investigating protein-ligand electrostatic interactions
and mapping ligand binding sites.

Introduction

Elucidating the binding mode of biological macromolecules
with their ligands is essential for understanding the biological
effects triggered by the ligand binding process as well as for
the discovery and design of new bioactive molecules. Nuclear
magnetic resonance (NMR) spectroscopy represents a versatile
approach to characterize protein-ligand interactions and is
sensitive to a wide range of ligand affinities (nanomolar to
millimolar).[1] Several NMR methods are available to obtain
structural, thermodynamic, and kinetic information about
protein-ligand systems.[2] For example, the measurement of
chemical shift perturbations (CSPs) allows calculation of equili-
brium dissociation constants and identification of protein
residues that bind the ligand. An advantage of the CSP method
is its ability to capture protein conformational changes, which

can occur upon ligand binding. This provides opportunities for
identifying and targeting allosteric binding sites.[3,4] However,
care must be taken in the interpretation of CSPs since they can
reflect either direct protein-ligand interactions or secondary
conformational effects. Other NMR methods, such as saturation
transfer difference (STD) NMR spectroscopy,[5] transferred
nuclear Overhauser effect (NOE) NMR spectroscopy,[6] and the
Water-LOGSY method,[7] rely on detecting the NMR signals of
the ligand. STD NMR and Water-LOGSY can be used to
determine the ligand moieties that are important for binding[8]

and also to screen mixtures of ligand fragments for their ability
to bind to proteins.[9,10] Transferred NOEs can be utilized to
determine the ligand conformation in the bound state,[11] which
can be helpful for modeling the 3D structure of the protein-
ligand complex. Moreover, they can be used for ligand
screening.[12]

Paramagnetic NMR methods further expand the application
range of NMR in drug research.[13] An important application of
paramagnetic NMR is the collection of structural restraints on
the ligand binding pose which can guide the drug design
process in medicinal chemistry. This is especially useful in the
early stages of drug discovery when crystal structures of weakly
binding ligands are difficult to obtain. The paramagnetic
restraints such as pseudocontact shifts (PCSs) or paramagnetic
relaxation enhancements (PREs) can be integrated via different
approaches to guide ligand docking calculations or filter the
generated interaction models. PCSs can be used in a similar
manner as CSPs to locate the ligand binding site. In order to
exploit the paramagnetic effects, different approaches for
attaching the paramagnetic center (e.g. a nitroxide radical or
lanthanide ion) to the receptor protein or ligand molecule of
interest exist.[14–22] While the PCS approach is well suited for
fast-exchanging ligands with micro- to millimolar dissociation
constants, PCSs on tightly binding, slow-exchanging ligands
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could be detected using special reporter groups e.g. tert-
butyl[18] or 19F nuclei.[19]

One concern about these covalent tagging approaches is
that the addition of such large tags to the ligand molecule
could significantly alter its binding mode. Affinity data are also
not easily transferrable to the untagged ligand. Thus, tagging-
free NMR techniques represent an interesting alternative.
Solvent PRE (sPRE) effects can be induced by soluble, para-
magnetic probes that are directly added to the protein solution,
requiring no chemical modification of the protein or ligand.
sPREs offer a rich source of structural information and have
been used for a variety of applications in structural biology,
e.g., for the mapping of the solvent accessible surface of
biomolecules,[23,24] protein structure prediction,[25,26] the detec-
tion of transient conformational states,[27] and the localization of
the binding interface in protein-protein complexes.[28–30] Re-
cently, Iwahara and coworkers developed an NMR method that
uses paramagnetic 2,2,5,5-tetramethylpyrrolidine-N-oxyl nitro-
xide (PROXYL) cosolutes to determine the local electrostatic
potential (ϕ) around biomolecules.[31–33] Specifically, two oppo-
sitely charged PROXYL molecules are used and their PRE effects
are quantified. The PROXYL probes distribute around the
macromolecule according to the near-surface electrostatic
potential (ϕENS), which can be determined with per-residue
resolution from the ratio of PRE rates induced by the two
PROXYL derivatives. The authors concluded, that the NMR-
derived data of ϕENS agreed well with predictions from the
Poisson-Boltzmann theory and that this method could be used
for the de novo determination of ϕENS.

[31]

Electrostatic interactions play an important role in protein-
ligand recognition processes.[34] They account for a sizeable
contribution to the binding affinity and the stabilization of
weakly specific transition states that occur along the binding
pathway.[35] Furthermore, electrostatic complementarity at the
protein-ligand interface is recognized as an important factor for
predicting and optimizing ligand affinity and selectivity.[36,37] We
reasoned that the ionic PROXYL probes could also be useful for
the detection of protein-ligand interactions, in particular for
ligands bearing charged chemical groups, since those will
significantly perturb the protein electrostatic potential in the
binding site. Here, we extend the PROXYL method to the
investigation of protein-ligand complexes and apply it to two
protein-ligand systems, the protein interleukin-8 (IL-8), interact-
ing with glycosaminoglycans (GAGs), and the src-homology 2
(SH2) domain of the growth factor receptor-bound protein 2
(Grb2), interacting with phosphotyrosine peptides.

IL-8 is, depending on its splicing variant, a 8–9 kDa protein
that belongs to the CXC chemokine family and plays important
roles in the activation and recruitment of neutrophil granulo-
cytes to sites of inflammation.[38,39] IL-8 strongly interacts with
GAGs from the extracellular matrix, such as heparan sulfate or
chondroitin sulfate. The interaction with GAGs contributes to
the formation of a dynamic chemokine gradient which medi-
ates the attraction and migration of immune cells.[40] GAGs are
highly negatively charged polysaccharides consisting of peri-
odic disaccharide units and carry a large number of sulfate
groups. Heparin (HP) is the most highly sulfated member of the

GAG family and an important pharmaceutical anticoagulant.
The interaction of IL-8 with HP and other GAGs has been
demonstrated by several experimental and computational
studies which revealed important GAG binding residues on IL-8
as well as the binding mode for shorter GAG fragments.[41–47]

Grb2 is a 25 kDa adaptor protein consisting of one SH2
domain and two SH3 domains, arranged in the order SH3-SH2-
SH3.[48] The SH2 domain is a small domain of approximately 100
amino acid residues which binds to specific tyrosine phosphor-
ylation sites on several proteins.[49] Binding of the Grb2 SH2
domain to phosphotyrosine (pY) motifs on receptors, e.g. EGF
receptor,[50] recruits the Ras exchange factor Sos at the plasma
membrane where Sos stimulates nucleotide exchange on Ras,
triggering the downstream signaling of Raf and MAP kinases.[51]

The phosphotyrosine (pY) recognition consensus sequence of
Grb2 SH2 is pYXN, where X represents any amino acid and N
represents asparagine.[52,53]

In this study, we evaluate the applicability of the PROXYL
method for mapping ligand binding sites in IL-8 and Grb2 SH2,
and for detecting changes in the protein near-surface electro-
static potential (ϕENS) induced by interactions with their
respective ligands. Our results show that the PROXYL method
can detect ligand-induced changes of ϕENS, which are in good
agreement with theoretical predictions. A highly charged HP
ligand alters the PRE and ϕENS data across a large region in IL-8,
while pYXN peptides cause more localized changes in a narrow
region in Grb2 SH2, which allow a precise localization of the
peptide binding site. Our findings suggest that experiments
with paramagnetic cosolutes can be a useful addition to the
toolbox of NMR methods for studying protein-ligand interac-
tions.

Results and Discussion

Calculation of the electrostatic potential of IL-8

The soluble PROXYL probes distribute around the protein
according to its electrostatic potential. We first investigated the
strength and distribution of ϕENS of IL-8 using computational
approaches. Starting from the homodimeric NMR structure of
IL-8[54] we sampled an ensemble of structures of IL-8 using
molecular dynamics (MD) simulation and calculated ϕENS for
these structures using the Adaptive Poisson-Boltzmann Solver
(APBS) software.[55,56] Figure 1A shows mappings of ϕENS for
different isosurface values. As can be seen in Figure 1A, ϕENS is
mostly positive over large regions around IL-8 since IL-8 is
strongly positively charged at neutral pH.

We then applied molecular docking and MD simulation to
model the complex of IL-8 with GAGs and studied the influence
of GAG binding on ϕENS. We chose two different GAGs, HP and
hyaluronan (HA), because of their different charge densities.
While HP contains a maximum of four negatively charged
groups per disaccharide, HA features only one negatively
charged carboxyl group per disaccharide and is the GAG with
the lowest net charge. For computational efficiency, both GAGs
were modeled as hexasaccharides (dp6, where dp stands for
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degree of polymerization). The binding pose of HP dp6 with the
lowest energy in the MD simulation is displayed in Fig 1B. The
HP dp6 molecule adopts an extended conformation located
between the C-helix and N-loop of one IL-8 monomer and
oriented parallel to the C-terminal C-helix. This binding pose
corresponds to the one previously analyzed by us and others,
both theoretically and experimentally.[44,46,47,57,58] The lowest
energy binding pose of HA dp6 observed in the MD simulations
was located in a central groove formed by the two C-helices of
the IL-8 dimer (Figure 1C). This alternative GAG binding pose is
not unexpected. It was observed in previous simulation
studies,[44,47,58] however, was less populated than the binding
pose between N-loop and C-helix. It was also seen in some MD
runs with HP dp6 in this study. As expected from the high
negative charge of HP dp6 of �12e, it strongly changes ϕENS

around IL-8 to more negative (Figure 1B). By contrast, HA dp6
has a comparatively small effect and does not significantly
change ϕENS in the environment of IL-8 (Figure 1C).

Paramagnetic NMR data for IL-8and IL-8/GAG complexes

Next, the distribution of ϕENS around IL-8 and IL-8/GAG
complexes was investigated experimentally using paramagnetic
NMR. We used 15N-labeled IL-8 and prepared the protein as
previously described yielding the homodimeric form of IL-8(1-
77) in the used NMR concentrations.[44] We used the para-
magnetic PROXYL derivatives shown in Figure 2A as cosolutes
and measured the 1H transverse PRE rates (Γ2) for the 1HN

backbone amide groups of IL-8 (example spectrum of IL-8 in Fig
S1) using the two time-point approach (see Experimental
Section). Specifically, cationic aminomethyl-PROXYL and anionic
carboxy-PROXYL were used to measure Γ2,+ and Γ2,� rates,
respectively. We observed clear signal intensity changes for
many resonances in the 1H-15N HSQC spectrum of IL-8
(examples shown in Fig 2B) relative to the diamagnetic
reference spectrum. This allowed us to measure Γ2,+ rates for
55 residues and Γ2,� rates for 58 residues in IL-8, respectively
(Table S1). As can be seen from the signal slices in Fig 2B and
the PRE-vs-residue number plot in Fig 2C, the Γ2,+ and Γ2,� rates
vary significantly for several residues of IL-8. Large Γ2,+ rates
above 40 Hz were measured for residues in the N-terminus, the
N-loop, and the β2 and β3 strand. Large Γ2,� rates above 40 Hz
were observed for residues in the N-loop, the β3 strand and the
C-helix (Fig 2C). The different patterns of Γ2,+ versus Γ2,� rates
are also evident from their mapping onto the 3-dimensional
structure of IL-8 shown in Fig S2. This indicates that the two
oppositely charged PROXYL molecules distribute with a differ-
ent probability density in the electric field generated by IL-8.

Next, we prepared samples of IL-8 with HP dp6 or HA dp6,
respectively, by stepwise titration with GAG, while recording a
1H-15N HSQC spectrum for each titration step (see Fig S3 and
S4). As expected from previous NMR studies,[44] some protein
precipitation was observed during the titration of HP, which
indicated a strong interaction with GAG. To avoid that the
protein was completely precipitated, a concentration not higher
than an equimolar ratio of IL-8 and HP had to be used. We
monitored the interaction of HP with IL-8 by measuring CSPs
from 1H-15N HSQC spectra and mapped the CSPs to the IL-8
amino acid sequence (Fig S4A). In line with our previous NMR
studies,[44] the largest CSPs above a threshold of 0.02 ppm were
found for residues in the N-loop (K20, H23, K25, K28) and the C-
helix (K59, W62, V63, Q64, V66, V67, E68, K69, F70, A74, E75).
This set of residues matches the modeled binding pose of HP
dp6 that was observed in the MD simulation (Fig 1B), showing
that most interactions of HP dp6 are formed with the N-loop
and C-helix of IL-8.

Compared to HP dp6, the CSPs induced by HA dp6 were
considerably smaller (<0.01 ppm) (Fig S4B), indicating that it
binds weakly to IL-8.[44] However, a similar CSP pattern was
observed, with the highest changes found for residues in the β1
strand (K28) and the end of the C-helix (A74, E75).

We next monitored the interaction of IL-8 with HP dp6 and
HA dp6 using aminomethyl-PROXYL and carboxy-PROXYL
probes, respectively, and compared the PRE rates of IL-8
measured in the presence and absence of GAG. The PROXYL-
induced signal intensity changes relative to the diamagnetic

Figure 1. Simulated electrostatic potentials for IL-8 and IL-8-ligand com-
plexes. (A) IL-8 apo. Secondary structure regions are labeled. (B) IL-8/HP dp6
complex. (C) IL-8/HA dp6 complex.
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reference were clearly different for several IL-8 residues upon
addition of HP and HA. This is exemplary shown for the NMR
signals of A7 and V63 in Fig 2B. Figure 2C displays the Γ2,+ and
Γ2,� rates along the IL-8 residue number for the cases without
GAG, with HP, and with HA, respectively (see also Table S1).
Comparing the GAG-free and HP-bound PRE datasets, the Γ2,+
rates are clearly increased in the presence of HP for almost all
residues in IL-8, as can be seen in Figure 2C and supporting Fig
S5A. The Γ2,� rates on the other hand are less strongly increased
by HP compared to the Γ2,+ rates (Fig S5A). This result indicates
that cationic aminomethyl-PROXYL molecules become more
enriched around the IL-8/HP complex and that HP binding to
IL-8 renders ϕENS more negative as suggested by the APBS
calculations (Figure 1B). Furthermore, the Γ2,+ rates are most
strongly increased for residues in the N-loop, β1 strand, and C-
helix (Fig S5A), which is line with the computationally predicted
binding sites for HP dp6 (Figure 1B).

The PRE datasets for IL-8 and IL-8/HA are overall more
similar. The Γ2,+ and Γ2,� rates are not increased in the presence
of HA, but are even slightly decreased (Fig S5A). This indicates
that HA binding has only a small influence on the distribution
of PROXYL molecules around IL-8 and consequently on ϕENS.

This can also be seen when comparing the computationally
predicted ϕENS isosurfaces for IL-8 apo and IL-8/HA in Figure 1.

Interestingly, the PREs of a few isolated residues are largely
decreased in the presence of both HP and HA. The Γ2,+ rate of
H38 and the Γ2,� rate of F22 are over 100 Hz in the absence of
GAG and are reduced by more than 60 Hz upon addition of HP
or HA (Fig S5). Similarly, the Γ2,+ rates of L3, A7 and C55 are
reduced by 20–30 Hz in the presence of HP and HA. A possible
explanation could be that those residues in IL-8 undergo direct
interactions with the PROXYL molecules, leading to their fast
relaxation, and that HP and HA binding blocks those direct IL-8-
PROXYL interactions, reducing the strong PRE effects.

In summary, we conclude based on the observed PRE
changes that GAGs, in particular HP, profoundly affect the
interaction of IL-8 with PROXYL molecules. In accordance with
our APBS calculations, this supports the notion that HP renders
ϕENS more negative while HA has a comparatively small
influence on ϕENS.

Figure 2. Paramagnetic NMR data used to analyze the electrostatic potentials around IL-8 and IL-8/GAG complexes. (A) Paramagnetic cosolute molecules used
in this study. (B) Examples of signal intensity changes used to measure 1HN PRE rates of IL-8 apo protein and IL-8 in the presence of HP dp6 or HA dp6,
respectively. The 1H slices of the 1HN signals of A7 and V63 from the HSQC spectra of IL-8 at 0 ms and 10 ms relaxation measurement delays are shown. The 1H
signal slices in the absence (diamagnetic) or presence of 9.5 mM paramagnetic PROXYL derivative normalized to the intensity at 0 ms are displayed. Signal
change differences observed in the presence of aminomethyl-PROXYL or carboxy-PROXYL compared to the diamagnetic case are indicated with blue or red
arrows, respectively. (C) The PRE rates Γ2,+ (blue) and Γ2,� (red) measured for the backbone 1HN nuclei in IL-8 in the absence and presence of HP dp6 or HA
dp6, respectively, are plotted versus the IL-8 residue number. Error bars represent the Γ2 rate uncertainties (see Experimental Section). The 1HN PRE rates of IL-
8 are summarized in Table S1 in the supporting material.
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NMR-determined near-surface electrostatic potentials for IL-

8and IL-8/GAG complexes

In order to more quantitatively analyze the effect of GAGs on
the electrostatic potential of IL-8, we determined ϕENS for IL-8
and IL-8/GAG complexes using the measured Γ2,+ and Γ2,� rates
(Figure 2C, Table S1) and applying equation 1 (see Experimental
Section). We only considered statistically significant PRE rates
and Γ2,+/Γ2,� ratios (see Experimental Section). This procedure
yielded ϕENS values for 38 residues of IL-8, 41 residues of IL-8/HP
dp6, and 41 residues of IL-8/HA dp6, respectively. Fig 3A shows
ϕENS values (black) for individual residues in IL-8 in the GAG-free
case, and in the presence of either HP dp6 or HA dp6,
respectively. For comparison with the experimental ϕENS values,
we calculated theoretical ϕENS potentials using the APBS
software[55,56] and structural models of IL-8 or IL-8/GAG com-
plexes generated by docking and subsequent MD simulation.
From the APBS-computed potential at each grid point in the
exterior of the protein structure, we calculated the theoretical
ϕENS potential of each 1HN nucleus of IL-8 by applying
equations 1 and 2 (see Experimental section). The accessibility
of each grid point was assessed by measuring the distance to
the closest protein or GAG atom and comparing it to the sum
of the van der Waals radius of the biomolecular atom and the
accessibility radius of the paramagnetic PROXYL probe of 3.5 Å
(Experimental Section). The theoretical ϕENS profile plotted in
Figure 3A (red) shows the average � S.D. of ϕENS over a 100 ns
MD simulation. Overall, the experimental ϕENS data agreed well
with the simulated data, in particular for residues in secondary

structure regions. Correlation plots of experimental versus
simulated ϕENS values for IL-8, IL-8/HP, and IL-8/HA are shown in
Fig 3B. The RMSD between experimental and simulated ϕENS

values in the structured regions was 10.1 mV (IL-8), 10.5 mV (IL-
8/HP), and 9.5 mV (IL-8/HA). The correlation coefficients for
secondary structure regions were 0.57 (IL-8), 0.40 (IL-8/HP), and
0.49 (IL-8/HA). The largest outliers were observed for residues in
loop regions, e.g., for L3 and A7 in the N-terminus, H38 in the
β1-β2 loop, and N76 in the C-terminus. The discrepancy
between experimental and simulated ϕENS data for the residues
in loop regions is most likely due to increased conformational
flexibility of those parts of the IL-8 structure. This is supported
by the observations of Yu et al.[31] who found in their para-
magnetic NMR study on ubiquitin the largest outliers in loop
regions. The authors attributed the discrepancy to increased
conformational heterogeneity, which poses a challenge to
structure-based electrostatic potential prediction. We also
calculated the standard deviation of the predicted ϕENS data
using 100 structures equally sampled from the 100 ns MD
simulation for each IL-8 or IL-8/GAG system. The standard
deviation was highest in the N-terminus, the β1-β2 loop, and
the β3 strand (Figure 3A), which are regions of increased
flexibility. This supports the notion that considering protein
flexibility is critical for the prediction of the electrostatic
potential. Improving the conformational sampling of the
protein structure, e.g., by extending the time length of the MD
simulation, could therefore potentially improve the agreement
of the ϕENS data with the experiment.

Figure 3. ENS electrostatic potentials (φENS) determined from the 1HN PRE NMR data of IL-8 and IL-8/GAG complexes. (A) Experimentally determined (black and
gray points) and predicted φENS data (red line) for IL-8 apo (left), IL-8/HP (middle), and IL-8/HA (right) plotted along the residue number for IL-8. The predicted
φENS values represent the mean of the ENS potentials calculated from a 100 ns MD simulation of IL-8 or IL-8/GAG complexes. The red shaded region indicates
the standard deviation of the φENS predictions. Data points for residues located in secondary structure regions are shown in black and those for residues in
loop regions are colored gray. (B) Correlation between experimental and predicted φENS data. Error bars represent the experimental φENS value uncertainties
(see Experimental Section).
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Comparing the ϕENS data of IL-8 with those of IL-8/HP and
IL-8/HA, some distinct differences can be noticed. The presence
of HP leads to a reduction of ϕENS across large parts of IL-8. The
reduction is most significant in the N-loop, β1 strand, β3 strand,
and the C-helix (middle plot in Fig 3A). This can be explained by
the highly negatively charged character of HP dp6 (q=�12e)
and by the fact that HP dp6 binds close to those regions in the
IL-8 structure. As seen in Fig 1B, HP dp6 gives rise to an
extensive area of negative potential around IL-8. This is in
contrast to the IL-8/HA dp6 complex, which is displayed in
Figure 1C. The ϕENS profile (right plot in Figure 3A) is not
significantly different from that of apo IL-8, and the spatial
distribution of ϕENS is not significantly perturbed. This is
consistent with the small negative charge of HA dp6 of �3e.

In conclusion, while the interaction of IL-8 with HP dp6 can
be clearly detected from the changes of ϕENS using para-
magnetic NMR, the interaction with HA dp6 cannot be deduced
based on experimental ϕENS measurements. This could indicate
that the PROXYL method is more suitable for the detection of
highly charged ligand interactions. In addition, we observed
that the HP-induced ϕENS changes around IL-8 were not limited
to only a handful of amino acid residues, but occurred over
multiple regions of the protein. This could be due to the high
charge and large size of the HP dp6 molecule. While this effect
could be helpful for the detection of biomolecular interactions,
it also limits the site-selectivity of the structural information.
Furthermore, while HP has the highest negative charge density
of any known biological molecule, many small drug molecules
are less strongly charged, which could imply possible limitations
of the approach. It is an interesting question if drug interactions
with proteins can also be studied with paramagnetic PROXYL
probes. Thus, to further explore the capabilities and limitations
of paramagnetic PROXYL probes for detecting protein-ligand
interactions, we decided to test this approach on another group
of ligands that were smaller and less strongly charged as HP.

Calculation of the electrostatic potential around Grb2 SH2

and Grb2 SH2/peptide complexes

As an additional test system we used the SH2 domain of Grb2
which recognizes phosphotyrosine peptides containing a pYXN
recognition motif (where X can be any residue).[52,53] Grb2 SH2
was prepared by expression in E. coli with a C-terminal His6 tag
for purification purposes (see Experimental Procedures). We
tested three different small pYXN tripeptides, which carried in
their middle position either a neutral (valine, V), positively
charged (lysine, K), or negatively charged amino acid (glutamic
acid, E). At physiological pH (7.4), these peptides have a net
charge of ca. �2e (pYVN), �1e (pYKN), or �3e (pYEN),
respectively. The N- and C-termini were capped with acetyl and
amide groups, respectively, to avoid any unspecific interactions
due to the free termini. Based on the crystal structure of Grb2
SH2 bound to a longer PSpYVNQN peptide (PDB: 1JYR[59]), we
modeled the complex of Grb2 SH2 with each pYXN tripeptide
using docking and MD simulation. Representative structural
models from the MD simulation are displayed in Figure 4. Using
the APBS software,[55,56] we calculated ϕENS for each Grb2 SH2/
peptide complex and apo Grb2 SH2, which is mapped on the
protein surface shown in Figure 4.

All pYXN peptides share a common binding mode. The
phosphotyrosine side chain binds to a region with high positive
ϕENS formed by the side chains of R67 (α1 helix), R86 (β1 strand),
S88 (β1 strand), K109 (β3 strand), and the backbone HN of E89
(β1-β2 loop). The asparagine side chain of pYXN is hydrogen-
bonded to the backbone of K109 (β3 strand) and capped by the
side chain of Trp121 (β3-α2 loop) of Grb2 SH2. The middle
residue X binds to a small pocket formed by Q106 (β3 strand),
F108 (β3 strand), S141, and N143 (both in the loop after α2).

As can be seen in Fig 4, Grb2 SH2 exhibits an extended
region of positive ϕENS which is formed by several cationic
residues (R67 (α1 helix), R86 (β1 strand), K109 (β3 strand)). This

Figure 4. Simulated electrostatic potentials for Grb2 SH2 apo and Grb2 SH2/peptide complexes. (A) Grb2 SH2 apo. Secondary structure regions are labeled. (B)
Grb2 SH2 with pYVN (q=�2e). (C) Grb2 SH2 with pYKN (q=�1e). (D) Grb2 SH2 with pYEN (q=�3e).
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positive pocket binds the phosphotyrosine group of the pYXN
peptides and is one of the structural determinants for the
recognition of phospho-tyrosine peptides by Grb2 SH2. Another
smaller region of negative ϕENS is formed by the side chains of
E71, E72 (both α1 helix), and D104 (β3 strand), but is not part of
the peptide binding pocket. The binding of pYVN and pYEN
reduces slightly the size of the positive ϕENS region (Figure 4B
and D) and the binding of pYKN slightly increases its size, while
the negative ϕENS region is not significantly changed by any of
the tripeptides. To monitor the interaction of pYXN peptides
with Grb2 SH2 by NMR and experimentally measure ϕENS around
the protein as well as the ligand induced changes of ϕENS, we
next conducted NMR experiments with paramagnetic PROXYL
probes.

Paramagnetic NMR data on Grb2 SH2 and Grb2 SH2/peptide

complexes

We used 15N-labeled Grb2 SH2 and unlabeled pYXN peptides.
The resonance assignment of the 1H-15N HSQC spectrum of
Grb2 SH2 (see Fig S6) was transferred from previous NMR
studies of Grb2 by Yuzawa et al.[60] (BMRB-ID: 5693) and Sanches
et al.[61] (BMRB-ID: 27781) and confirmed with the help of a
1H-15N HSQC-TOCSY experiment. The resonance assignment of
the 1H-15N HSQC spectrum of peptide-bound Grb2 SH2 was
taken from Ogura et al.[62] (BMRB-ID: 11055). We assured binding
of pYXN peptides to Grb2 SH2 by performing titrations of Grb2
SH2 with the individual pYXN peptides and measuring CSPs.
Figure S7 shows the series of HSQC spectra recorded during
titration with pYVN (Fig S7A), pYKN (Fig S7B), and pYEN (Fig
S7C). We observed CSPs (>0.2 ppm) for several residues, a
disappearing of peaks at concentrations of 40–60 mol% pep-
tide, and a reappearing of peaks at concentrations of
�100 mol% peptide. This indicates that ligand binding hap-
pens in slow exchange on the NMR time scale and that pYXN
peptides have a high binding affinity. Figure S8 shows the CSPs
induced by pYVN (Fig S8A), pYKN (Fig S8B), and pYEN (Fig S8C)
plotted along the Grb2 SH2 residue number. Mapping of the
most significant CSPs on the molecular surface of Grb2 SH2
allowed unambiguous identification of the peptide binding
region (right side in Fig S8). The CSP-derived binding regions
are in perfect agreement with our docking and MD simulation
derived models of the individual Grb2 SH2/peptide complexes
(Figure 4). The largest CSPs were measured for residues that
line the peptide binding pocket and are located in the β1–β2
loop, β2 strand, β3 strand, and the β3–α2 loop.

For measuring 1HN PRE rates, we used 5-fold molar excess of
peptide, at which the binding site on Grb2 SH2 is fully
saturated, and either cationic aminomethyl-PROXYL (Γ2,+) or
neutral carbamoyl-PROXYL (Γ2,n) at a concentration of 9.8 mM.
We also tested anionic carboxy-PROXYL, but the quality of the
Grb2 SH2 NMR spectrum deteriorated significantly at concen-
trations of carboxy-PROXYL above 3.5 mM. This prevented us
from measuring significantly high PREs in the presence of
carboxy-PROXYL. However, we observed pronounced signal
intensity changes of several NMR signals of Grb2 SH2 in the

presence of 9.8 mM aminomethyl-PROXYL and carbamoyl-
PROXYL, respectively. A comparison of the intensity of selected
HSQC signals of Grb2 SH2 in the absence (apo) and presence of
pYXN peptides is shown in Figure 5A and Fig S9. In the apo
state, we observed strong PREs for residues that are part of or
near the pYXN binding site, e.g., E89, S90 (both β1-β2 loop),
Q106, K109 (both β3 strand), and W121 (β3-α2 loop). For S90
the HSQC signal is broadened beyond detection by the para-
magnetic aminomethyl-PROXYL indicating a very high PRE rate.
The small remaining signals of E89 and Q106 challenged the
detection limit but allowed to determine a PRE rate (see also
Fig S9). Furthermore, the HSQC signals of K109 and W121 are
significantly reduced in their intensity by both aminomethyl-
PROXYL and carbamoyl-PROXYL. The Γ2,+ and Γ2,n rates
calculated from the signal intensity changes are plotted along
the Grb2 SH2 amino acid sequence in Figure 5B. The named
HSQC signals reappeared upon addition of each pYXN peptide
(Fig S9) and a reduction of the PREs of those residues was
observed with both tested PROXYLs. This effect was the same
for all three peptides – pYVN, pYKN, and pYEN (Figure 5B and
S10) – and could indicate that the accessibility of the Grb2 SH2
surface for the PROXYL probes was blocked by the peptide
ligands, thus increasing the protein-PROXYL distance and
decreasing the PRE for residues within the peptide binding site.
In contrast, residues that are outside of the peptide binding site
showed no signal intensity modulating effect in the presence of
pYXN peptides. This is exemplary shown for G93 in Figure 5A.
The PRE rates of residues outside of the peptide binding site
were almost the same in the free and peptide-bound state,
indicating that the peptide ligand does not affect the accessi-
bility of those residues to the PROXYL probes.

To aid the structural interpretation of the PRE data, we
plotted them on the molecular surface of Grb2 SH2 shown in
Fig 6 and Fig S11. We compared the strength and distribution
pattern of Γ2,+ and Γ2,n rates of the apo state (Figure 6A) with
those of the pYVN-bound state (Figure 6B) as well as the other
peptide-bound states (Fig S11). In addition, we calculated the
PRE differences (ΔΓ2,+, ΔΓ2,n) between peptide-bound and apo
states and analyzed their distribution patterns. Figure 6C
displays the PRE differences versus the Grb2 SH2 residue
number for the pYVN-bound state and Figure 6D shows protein
surface mappings of the ΔΓ2,+ and ΔΓ2,n rates. The PRE
differences for all peptide-bound states and their protein
surface mappings are shown in Fig S12 in the supplement. As
can be seen in Fig 6 and Fig S12, PREs change most significantly
within a narrow surface region of Grb2 SH2. This area (encircled
by a red line in Figure 6) corresponds to the binding site of
pYVN. Also for the pYKN- and pYEN-bound states, PREs are
most strongly reduced in this surface region of the Grb2 SH2
structure (Fig S11+S12). Intriguingly, the pattern of PRE
changes resembles very closely the pattern of CSPs (Fig S8).
These findings support our previous interpretation that the
peptide ligand sterically blocks access of the PROXYL probes to
the protein surface within a defined region, which corresponds
to the ligand binding site. Thus, the PRE data provide precise
information about the location of the pYXN peptide binding
site. We suppose that this approach may be applicable also to
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other protein-ligand systems and that PRE data derived from
soluble PROXYL probes can be in general helpful for the spatial
mapping of ligand binding sites.

NMR-determined electrostatic potentials for Grb2 SH2 and

Grb2 SH2/peptide complexes

To analyze how pYXN peptides affect the electrostatic potential
of Grb2 SH2, we determined ϕENS from the measured Γ2,+ and
Γ2,n rates (Figure 5B, Table S2) by applying equation 1. We
obtained ϕENS values for 57 residues of Grb2 SH2 in the apo
state, and for 53, 56, and 51 residues of Grb2 SH2 in the pYVN-,
pYKN-, and pYEN-bound state, respectively. Figure 7 shows the
NMR derived ϕENS data (black) for Grb2 SH2 and Grb2 SH2/
peptide complexes. For comparison with the experimental ϕENS

values, we also calculated the theoretical ϕENS values using the
APBS computed potential grids and the MD-derived models of

Grb2 SH2 or Grb2 SH2/peptide complexes (Figure 4). The
theoretical ϕENS data (red) are plotted as average � S.D. along
the residue number and correlated with the experimental ϕENS

values in Figure 7. The agreement between experimental and
theoretical data was fairly good, with RMSD values in secondary
structure regions of 4.8 mV (Grb2 SH2), 6.2 mV (Grb2 SH2/
pYVN), 6.5 mV (Grb2 SH2/pYKN), and 7.2 mV (Grb2 SH2/pYEN).
The correlation coefficients were 0.70 (Grb2 SH2), 0.59 (Grb2
SH2/pYVN), 0.58 (Grb2 SH2/pYKN), and 0.66 (Grb2 SH2/pYEN).
However, several outliers were observed for residues in loop
regions, e.g., G93 (β1–β2 loop), V105 (β2–β3 loop), A115, G116,
Y118, W121, V123 (all β3–α2 loop), and S141 (tail after α2). The
discrepancy between experimental and predicted ϕENS data
could be explained by increased conformational flexibility for
these parts of the Grb2 SH2 structure. In particular, the β3–α2
loop showed increased flexibility in the MD simulation, resulting
in standard deviations of ϕENS of up to 10 mV for this loop. The
lack of agreement would make it difficult to use ϕENS values

Figure 5. Paramagnetic NMR data used to analyze the electrostatic potentials around Grb2 SH2 and Grb2 SH2/peptide complexes. (A) Examples of signal
intensity changes used to measure 1HN PRE rates of Grb2 SH2 apo protein and Grb2 SH2 in the presence of pYVN or pYKN peptide, respectively. The 1H slices
of the 1H-15N HSQC signals of G93, Q106, K109, and W121 of Grb2 SH2 at 0 ms and 10 ms relaxation measurement delays are plotted. The 1H signal slices in
the absence (diamagnetic, black) or presence of 9.8 mM aminomethyl-PROXYL (paramagnetic, blue) or carbamoyl-PROXYL (paramagnetic, green) normalized
to the intensity at 0 ms are displayed. Signal change differences observed in the presence of PROXYL derivatives relative to the diamagnetic case are indicated
with arrows. (B) 1HN PRE rates Γ2,+ (blue) and Γ2,n (green) of Grb2 SH2 in the absence and presence of pYVN or pYKN peptide, respectively, versus the Grb2
SH2 residue number. The signal intensity changes and 1HN PRE rates measured in the presence of pYEN peptide were very similar to those in the presence of
pYVN or pYKN, and are shown in Fig S10. Error bars represent the Γ2 rate uncertainties (see Experimental Section). All 1HN PRE rates of Grb2 SH2 are
summarized in Table S2 in the supporting material.
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quantitatively as restraints for structure prediction tasks, by
evaluating the match between experimental and back-calcu-
lated ϕENS data. However, further studies are still needed to
assess the predictive power of ϕENS data for modeling protein-
ligand interactions and establish best practices how to translate
ϕENS data into structural information. One possibility could be to
obtain information on the location of the ligand binding site by
comparing the ϕENS data collected for the ligand-bound and
ligand-free states, similarly to our analysis of the PRE differ-
ences. As demonstrated in the previous section, the location of
the largest ΔΓ2 rates could be used to precisely narrow down
the location of the pYXN binding site in Grb2 SH2 (Figure 6).
This kind of information can be very useful as a starting point
for modeling of a protein-ligand complex. Looking at the ϕENS

curve of Grb2 SH2 and comparing it with those of the Grb2

SH2/peptide complexes (Figure 7), some small but clear differ-
ences can be observed. In Figure 8 only the section of the ϕENS

curve from K100 to L120 is plotted. It can be seen that the ϕENS

curve is shifted to smaller ϕENS values for each pYXN peptide
compared to the case without peptide. The downshift of the
ϕENS curve is most pronounced for pYVN and pYEN peptides,
which carry net charges of �2e and �3e, respectively, and less
pronounced for pYKN, which has a more positive charge of
�1e. This finding suggests that the pYXN peptides change the
ϕENS potential locally in a narrow region of Grb2 SH2. This
region corresponds to the β3 strand and the first loop after β3.
Both parts of the Grb2 SH2 structure establish direct contacts
with the peptide ligand, which could explain why ϕENS is
changed in this region.

Figure 6. 1HN PRE rates measured for Grb2 SH2 in the presence of either aminomethyl-PROXYL (Γ2,+) or carbamoyl-PROXYL (Γ2,n) are plotted on the molecular
surface of Grb2 SH2. (A) Γ2,+ and Γ2,n rates for Grb2 SH2 apo protein. Residues with high PRE rates in the apo dataset are labeled. Residues whose signal was
wiped out in the presence of PROXYLs are labeled with an asterisk (*). (B) Γ2,+ and Γ2,n rates for Grb2 SH2 bound to pYVN. The region in which strong PRE
rates disappear is framed with a red line. (C) Difference of PRE rates between apo and pYVN-bound state (ΔΓ2,+, ΔΓ2,n) are plotted versus the Grb2 SH2 residue
number. The difference PRE rates are defined as: ΔΓ2,+ =Γ2,+ (pYVN) – Γ2,+ (apo) and ΔΓ2,n=Γ2,n (pYVN) – Γ2,n (apo). The dashed bars at residue S90 indicate
that this signal was wiped out by the PROXYL compounds in the apo state but not in the pYVN-bound state, indicating a significant decrease of the Γ2,+ and
Γ2,n rates. (D) The absolute values of ΔΓ2,+ and ΔΓ2,n are plotted on the surface of Grb2 SH2. Residues with high difference PRE rates are labeled. The strength
of PRE rates is indicated with a color gradient. Γ2,+ or ΔΓ2,+ : 0 Hz (white) – 60 Hz (blue), Γ2,n or ΔΓ2,n: 0 Hz (white) – 60 Hz (green). Grb2 SH2 is shown from two
different perspectives. Additional surface mappings of Γ2 and ΔΓ2 rates measured for Grb2 SH2 in the presence of pYKN or pYEN are shown in supporting
Figures S11 and S12.
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Together, our data show that the ϕENS potential of Grb2 SH2
can be measured using paramagnetic NMR in good agreement
with theoretical predictions. The effect of pYXN peptides on
ϕENS is localized to a narrow region on the protein. This kind of
information could be useful for ligand binding mode discovery.

Conclusions

Paramagnetic NMR methods represent an important NMR tool
employed in drug discovery and drug development. They can
provide structural restraints for modeling the structure of
protein-ligand complexes, even for weakly interacting ligands.
However, the covalent labeling of proteins with paramagnetic
tags or the generation of metal ion-tagged ligands is
complicated and bears the risk of perturbing the protein

structure and/or ligand binding mode. Experiments with para-
magnetic cosolutes offer a promising alternative because they
require no chemical modification of protein or ligand. Instead,
the paramagnetic probes can be directly added to the protein
solution. The PROXYL probes used in the present study have
small size, which lowers the risk of unspecific binding to the
protein. Moreover, the differently charged sidechains of the
PROXYL probes influence their distribution around the protein,
which offers flexibility in tuning the size of the solvent PRE
effect.

Using two test systems, the proteins IL-8 and Grb2 SH2, we
have evaluated the utility of the PROXYL method for mapping
ligand binding sites in proteins and for measuring the effect of
ligand binding on the electrostatic potential of proteins. Our
study extends and completes previous investigations, which
reported the de novo determination of ϕENS for proteins

[31,63] and
DNA[33] as well as studies, which mapped interfaces in protein-
protein complexes using soluble, Gd3+-chelating paramagnetic
agents.[29,30]

Our NMR-determined ϕENS data for IL-8 and two IL-8/GAG
complexes show that a highly negatively charged HP ligand
reduced the ϕENS of IL-8, in agreement with theoretical
predictions from APBS calculations, while a less charged HA
ligand had only a negligible effect on ϕENS.

The results for Grb2 SH2 and three Grb2 SH2/peptide
complexes show that the PROXYL-induced PRE data allow a
precise localization of the peptide binding region. The location
of the peptide binding region obtained by the PROXYL method
matches the region inferred from CSP data and agrees well with
the crystallographic binding pose of phosphotyrosine peptides
on Grb2 SH2.[59] Furthermore, the effect on ϕENS was localized to

Figure 7. ENS electrostatic potentials determined from the 1HN PRE NMR data of Grb2 SH2 and Grb2 SH2/peptide complexes. Experimentally determined
(black and gray points) and predicted ENS potentials (red line) versus residue number plots and experimental versus predicted φENS data plots for (A) Grb2
SH2 apo, (B) Grb2 SH2 with pYVN, (C) Grb2 SH2 with pYKN, and (D) Grb2 SH2 with pYEN. The predicted φENS values represent the mean of the ENS potentials
calculated from a 100 ns MD simulation of Grb2 SH2 or Grb2 SH2/peptide complexes. The red shaded area indicates the standard deviation of the φENS

predictions. Data points for residues located in secondary structure regions are shown in black and those for residues in loop regions are shown in gray. Error
bars represent the experimental φENS value uncertainties (see Experimental Section).

Figure 8. ENS electrostatic potential for residues 100 to 120 in Grb2 SH2 is
reduced by the presence of pYXN peptides – pYVN (q=�2e), pYKN (q=�e),
pYEN (q=�3e). Left: Experimentally determined (black points) and predicted
ENS potentials (red line) versus residue number. Right: Molecular model of
Grb2 SH2 with pYVN. The ribbon segment corresponding to residues 100–
120 is colored red.
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a narrow region in Grb2 SH2, as expected from the small size of
the pYXN tripeptide ligands.

Information on how interacting ligand and drug molecules
shape ϕENS is important for understanding the protein-ligand
interaction mechanism and could give insights into the bio-
logical responses that are triggered by the ligand recognition
process. Our results show that experiments with soluble,
paramagnetic PROXYL probes can be a useful addition to the
toolbox of NMR methods for studying protein-ligand interac-
tions. NMR-determined ϕENS data could be useful for compar-
ison with computational predictions of protein-ligand electro-
statics-driven interactions. In addition, PRE data-derived ligand
binding sites can serve as general constraints to guide protein-
ligand structure calculations or can be used as filters to validate
generated protein-ligand models.

Experimental Section

Proteins and other materials: 15N-labeled IL-8(1-77) (excluding the
first 22-amino acid signal peptide from the Uniprot sequence
P10145) was expressed in E. coli strain ER2566 and purified as
described by Pichert et al.[44] Please note the difference of �5
residues in the nomenclature when comparing to IL-8(1-72). 15N-
labeled Grb2 SH2 domain (comprising residues M55–D150 of Grb2
from Uniprot sequence P62993; cloned in pET21b(+) plasmid) was
expressed in E. coli strain Rosetta (DE3) at 20 °C for 16 hours after
induction with 0.4 mM IPTG and was purified by Ni-NTA affinity
chromatography and size exclusion chromatography as described
in the Supporting Information. The PROXYL derivatives 3-amino-
methyl-PROXYL, 3-carboxy-PROXYL, and 3-carbamoyl-PROXYL were
purchased from Sigma-Aldrich. The phospho-peptides Ac-pTyr-Val-
Asn-NH2, Ac-pTyr-Glu-Asn-NH2, and Ac-pTyr-Lys-Asn-NH2 were syn-
thesized by the Leipzig University peptide synthesis core unit using
standard F-moc solid phase synthesis strategy. Peptide identity was
confirmed by MALDI-TOF mass spectrometry. Heparin (HP) and
hyaluronan (HA) hexasaccharides (dp6, where dp stands for the
degree of polymerization) were purchased from Iduron (Man-
chester, UK).

NMR sample preparation: NMR samples of 15N-labeled IL-8
contained 0.33 mM protein in IL-8 sample buffer (20 mM Na-
phosphate (pH 7.0), 40 mM NaCl, 10 mM DMSO, and 5% D2O). NMR
samples of IL-8 with HP contained 0.40 mM protein and 0.40 mM
HP dp6 in IL-8 sample buffer, and NMR samples of IL-8 with HA
contained 0.29 mM protein and 1.0 mM HA dp6. Samples were
prepared by stepwise titration of IL-8 with GAGs and the titration
was followed by recording a 1H-15N HSQC spectrum for each step.
The paramagnetic NMR samples of IL-8 with PROXYLs contained
9.5 mM of either 3-aminomethyl-PROXYL or 3-carboxy-PROXYL. The
diamagnetic IL-8 sample was prepared by adding sample buffer
containing no PROXYLs to achieve the same concentration of IL-8
or IL-8+GAGs as in the case of the paramagnetic sample. NMR
samples of Grb2 SH2 domain contained 0.24 mM protein in Grb2
SH2 sample buffer (20 mM Tris-HCl (pH 7.2), 100 mM NaCl, 10 mM
DMSO, and 5% D2O). NMR samples of Grb2 SH2 domain with
phospho-peptides contained 0.24 mM protein and 1.2 mM of either
Ac-pYVN-NH2, Ac-pYEN-NH2, or Ac-pYKN-NH2 peptide, respectively.
The paramagnetic NMR samples of Grb2 SH2 with or without
phospho-peptides contained 9.8 mM 3-aminomethyl-PROXYL or 3-
carbamoyl-PROXYL, respectively. The diamagnetic control sample
was prepared by adding sample buffer containing no PROXYLs until
the same concentration of Grb2 SH2 or Grb2 SH2+peptide as in
the case of the paramagnetic sample was reached. The preparation

and quantification of the PROXYL stock solutions is described in the
Supporting Information.

NMR experiments: The binding of GAGs to IL-8 and of phospho-
peptides to Grb2 SH2 during titrations with ligands were followed
by recording 1H-15N HSQC spectra.[64] Spectra were acquired
typically with spectral widths of 16 ppm for 1H and 38 ppm for 15N
as well as 128–256 data points in the indirect dimension. The NMR
resonance assignment of the 1H-15N HSQC spectrum of IL-8 was
taken from Pichert et al.[44] The resonance assignment of the 1H-15N
HSQC spectrum of the apo form of Grb2 SH2 was transferred from
Yuzawa et al.[60] (BMRB-ID: 5693) and Sanches et al.[61] (BMRB-ID:
27781). NMR signal assignments were confirmed with the help of a
3D 1H-15N HSQC-TOCSY spectrum of apo Grb2 SH2 acquired at a 1H
field strength of 700 MHz and a TOCSY mixing time of 60 ms. The
resonance assignment of the 1H-15N HSQC spectrum of peptide-
bound Grb2 SH2 was transferred from Ogura et al.[62] (BMRB-ID:
11055). The PRE rates of the 1H transverse magnetizations (Γ2) of
the protein 1HN nuclei were measured using a 1H-15N HSQC
experiment with a spin echo sequence implemented during the
first INEPT period.[65] The two time-point approach[65] with a 10-ms
difference was chosen and the two spectra were recorded in an
interleaved manner. For each protein and ligand, the PRE experi-
ments were conducted with three samples: one diamagnetic
reference sample, containing no PROXYL derivative, and two
paramagnetic samples, one containing 3-amino-methyl-PROXYL,
and the other one containing either 3-carboxy-PROXYL or 3-
carbamoyl-PROXYL. Uncertainties in Γ2 rates were estimated using
an error propagation procedure.[65] All NMR experiments on IL-8
were performed at 30 °C using a Bruker NEO 700 MHz spectrometer
equipped with a 5 mm E-free HCN triple resonance probe. All NMR
experiments on Grb2 SH2 were performed at 25 °C using a Bruker
Avance III 600 MHz spectrometer quipped with a 5 mm inverse
triple resonance probe with z-gradient. The Bruker software
TopspinTM was used for data acquisition und spectrum processing.
Analysis of the NMR spectra and quantification of the NMR signal
intensities for PRE measurements was carried out using the
NMRFAM-SPARKY software.[66]

Determination of NMR-based near-surface electrostatic poten-

tials: The ENS electrostatic potentials φENS of individual
1HN nuclei

were determined from the Γ2 rates using equation (1), which was
derived by Yu et al.[31]

�ENS ¼
kBT

ðzb � zaÞe
ln

G2;a

G2;b

� �

(1)

where kB is the Boltzmann constant; T is temperature; e is the
elementary charge; z is a charge valence of a PROXYL derivative;
and suffixes a and b refer to the two PROXYL derivatives. Since a
neutral pH was used for the PRE measurements, z= +1 for 3-
aminomethyl-PROXYL, z=0 for 3-carbamoyl-PROXYL, and z=�1
for 3-carboxy-PROXYL. The uncertainties in φENS were estimated
using an error propagation protocol as described in Yu et al.[31] We
used the selection criteria described in Yu et al.[31] to use only
statistically significant Γ2 rates and Γ2,a/Γ2,b rates for calculation of
φENS.

Molecular structures: The structure of dimeric IL-8 was obtained
from the Protein Data Bank (PDB ID: 1IL8, NMR structure).[54] Missing
N-terminal residues were added in the xLeap module of
AMBER20.[67] The structure of Grb2 SH2 was obtained from the PDB
(PDB ID: 1JYR, 1.55 Å).[59] An eight-residue long histidine tag (LEH6)
was added in xLeap to the protein sequence to match the exact
sequence of the protein used in the presented NMR experiments.
The GAG ligand structures were extracted from the PDB (PDB ID:
1HPN[68] and 2BVK,[69] NMR structures), for HP dp6 and HA dp6,
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respectively. Three tripeptide ligands Ac-pYXN-NH2 (X=V, E, or K)
containing a phosphotyrosine residue (pY), were constructed based
on the peptide ligand from (PDB ID: 1JYR, 1.55 Å).[59]

Molecular docking: Molecular docking was performed using
Autodock3.[70] The docking simulation of IL-8/HP and IL-8/HA
complexes used a grid box of size 60 Å×60 Å×60 Å with a grid step
of 0.375 Å, centered on the two α-helices of dimeric IL-8. The
docking of each complex was carried out in 100 independent runs
using the Lamarckian Genetic Algorithm for 105 generations, an
initial population size of 300, and 9995 x 105 energy evaluations.
The 50 docking poses with the best Autodock3-score were
clustered using the DBSCAN algorithm.[71] Ten cluster representa-
tives per IL-8/GAG complex with the best Autodock3-score were
used for subsequent analyses.

Molecular dynamics simulations: All MD simulations were carried
out in AMBER[67] using the ff14SBonlySC[72] force field parameters for
proteins, and GLYCAM06[73] force field parameters for GAG ligands.
The starting structures of IL-8 and Grb2 SH2 were obtained from
the aforementioned PDB files. The cluster representatives previously
identified for the IL-8/GAG docking models were used as starting
structures of the MD simulations of the IL-8/GAG complexes,
resulting in 10 MD systems per complex. The IL-8/HP and IL-8/HA
systems were solvated using a truncated octahedron TIP3P periodic
box with 15.0 Å distance between the complex and the box
boundaries. The starting structures of the Grb2 SH2/peptide
complexes were obtained by substituting the ligand in the PDB
1JYR with the phosphotyrosine-containing Ac-pYXN-NH2 (X=V, E,
K) ligands. The ff14SBonlySC[72] force field parameters in AMBER
were used, together with appropriate parameters for the phos-
phorylated tyrosine residues.[74] Each structure was placed in a
TIP3P water box whose boundaries were at a 15.0 Å distance from
the complex atoms.

All analyzed systems were neutralized by adding Na+/Cl� counter-
ions prior to the MD simulations. A two-step energy minimization
protocol was used, where the first step contained 0.5×103 steepest
descent cycles and 103 conjugate cycles with harmonic force
restraints on solute atoms (100 kcal/mol/Å2), and the second step
contained 3×103 steepest descent cycles and 3×103 conjugate
gradient cycles without restraints. The system was then heated up
to 300 K for 10 ps using a Langevin thermostat (collision frequency
1 ps�1), followed by an equilibration step at 300 K in an isothermal
isobaric ensemble for 100 ns. The subsequent MD production run
was carried out for 100 ns, employing the Particle Mesh Ewald
method for the computation of long-range electrostatic interactions
and the SHAKE algorithm for constraining all covalent bonds
involving hydrogen atoms. The resulting trajectories were visualized
in VMD.[75] The cpptraj module from AMBER was used for the
analysis of the obtained trajectories.[76]

All frames of the MD trajectories were analyzed using Molecular
Mechanics-Generalized Born Surface Area (MM-GBSA) in AMBER20
with igb=2.[77] Out of the ten trajectories obtained per IL-8/GAG
complex, a representative MD simulation was chosen based on the
lowest binding free energy value, followed by visual inspection and
analysis of the obtained trajectories in the context of known
binding poses of HP in complex with IL-8.

Poisson-Boltzmann equation-based calculation of electrostatic

potentials: For each MD trajectory of the IL-8/GAG and Grb2 SH2/
peptide complexes, 100 configurations equally spaced throughout
the 100 ns trajectory were extracted and converted to individual
PQR files using the xLeap module of AMBER[67] and the Open Babel
chemical toolbox.[78] The Adaptive Poisson-Boltzmann Solver (APBS)
software[55,56] was used to create the electrostatic potential surface
maps. Additional electrostatic potential maps were obtained for the

apo structures of IL-8 and Grb2 SH2. Atomic radii and charges were
assigned using the AMBER ff14SBonlySC[72] force field parameters.
Each system was placed in a 144 Å×144 Å×144 Å box with a
spacing of 0.5 Å, resulting in 289×289×289 grid points. The
monovalent ion concentration was set to 70 mM or 100 mM,
respectively, to reflect the actual ionic strength in the IL-8 or Grb2
SH2 sample buffers. The solvent van der Waals radius was set to
1.4 Å and the ionic radius was fixed at 2.0 Å. The dielectric constant
of solvent and protein interior was set to 78 and 2, respectively. The
theoretical ENS electrostatic potentials φENS of individual

1HN nuclei
were calculated from the electrostatic potential values at all grid
points which were outside of the space occupied by protein and
ligand using equations (1) and (2):

G2;a

G2;b
¼

X

i

air
�6
i exp

Ua;i

kBT

� �

,

X

i

air
�6
i exp

Ub;i

kBT

� �

(2)

where i is the index of a grid point, Ui is the electrostatic potential
at the grid point i, ri is the distance between that grid point and a
1HN nucleus, and ai is the accessibility of that grid point (0 for
inaccessible grid points, 1 for accessible grid points). The accessi-
bility of a grid point for the paramagnetic PROXYL probe was
assessed by comparing the van der Waals radii of protein and
ligand atoms to an empirically determined accessibility radius of
3.5 Å for the PROXYL probe. This value was found optimal by Yu
et al.[31] in yielding the best agreement between experimental and
predicted φENS data. Thus, grid points that were closer to a protein
or ligand atom than the sum of the atom van der Waals radius and
PROXYL probe accessibility radius were considered to lie in the
inaccessible interior of the macromolecule, and otherwise in the
accessible exterior. The computation of the φENS data from the APBS
output grids was conducted using a Python script.
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Ligand binding of interleukin-8: a comparison
of glycosaminoglycans and acidic peptides†
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Recognition and binding of regulatory proteins to glycosaminoglycans (GAGs) from the extracellular

matrix is a process of high biological importance. The interaction between negatively charged sulfate or

carboxyl groups of the GAGs and clusters of basic amino acids on the protein is crucial in this binding

process and it is believed that electrostatics represent the key factor for this interaction. However, given

the rather undirected nature of electrostatics, it is important to achieve a clear understanding of its role

in protein–GAG interactions and how specificity and selectivity in these systems can be achieved, when

the classical key-lock binding motif is not applicable. Here, we compare protein binding of a highly

charged heparin (HP) hexasaccharide with four de novo designed decapeptides of varying negative net

charge. The charge density of these peptides was comparable to typical GAGs of the extracellular

matrix. We used the regulatory protein interleukin-8 (IL-8) because its interactions with GAGs are well

described. All four peptide ligands bind to the same epitope of IL-8 but show much weaker binding

affinity as revealed in 1H–15N HSQC NMR titration experiments. Complementary molecular docking and

molecular dynamics simulations revealed further atomistic details of the interaction mode of GAG versus

peptide ligands. Overall, similar contributions to the binding energy and hydrogen bond formation are

determined for HP and the highly charged peptides, suggesting that the entropic loss of the peptides

upon binding likely account for the remarkably different affinity of GAG versus peptide ligands to IL-8.

Introduction

Glycosaminoglycans (GAGs) represent a particular class of
linear anionic periodic polysaccharides made up of disaccharide
repetitive units containing a hexosamine and an uronic acid or
galactose in the case of keratan sulfate.1,2 These molecules pre-
sent varying net degrees and patterns of sulfation.3 GAGs are
major components of the extracellular matrix and play important
roles in numerous cellular processes such as signaling,4,5

anticoagulation,6,7 angiogenesis,8,9 and communication.10 Their
biological role is executed though intermolecular interactions
with protein partners such as growth factors, chemokines, pro-
teases and collagen.11–13 Disruptions of protein–GAG interactions
can cause a variety of pathologies including cancer,14–16

Alzheimer’s17 and prion diseases,18 autoimmune19 and inflam-
matory disorders.14,20 All this renders GAGs to be very promising

molecules for the design of new biomaterials in regeneration
therapies.21

Binding of protein to GAGs has been studied extensively and
different mechanism to regulate this interaction have been
shown to be important.13,22–24 The first and most important
mechanism is via specific interactions, where the classical
picture of a highly specific binding motif applies, e.g. via

hydrogen bonds. In particular, for antithrombin III, a very
specific short GAG sequence was discovered to exhibit the
strongest binding with important pharmaceutical implications.25

This system represents the best example studied so far of the highly
specific protein–GAG interactions. Several hydrogen bonds have
been identified in the crystal structure.26 Second, low-affinity
binding governed entirely by electrostatics has been reported for
many protein targets, including BMP-2,27 CXCL-12,28 TIMP-3,29 or
TGF-b1.30 Here, the most important parameter that affects the
binding strength is the net charge per GAG disaccharide unit.
Although a clear GAG binding epitope on the protein is also defined
in this case, the discrimination between different GAG-ligands and
thus the binding strength is solely dependent on the charge per
disaccharide unit and not the exact position of the charge. Hence,
this mechanism results in a rather low affinity and a rather fuzzy
structural ensemble of protein-bound GAGs. Nevertheless, such a
non-directed interaction may be of high biological relevance due to
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the highly ubiquitous abundance of GAGs, e.g. in the case of
heperansulfate–thrombin interaction.22,31 Third — and most
challenging to study in detail — GAGs bind to proteins via

contributions of both aforementioned mechanisms. GAG bind-
ing by such a mechanism is characterized by a rather low-
affinity and is believed to have the largest contribution from
electrostatics and solvation energy. However, some distinct
differences in the binding strength of ligands of the same net
charge but different sulfation patterns are observed. These
result in specificity or discrimination between ligands with
the same charge density.13,32,33 For cathepsin S, chondroitin
sulfates with varying sulfation patterns were predicted to bind
to different sites, suggesting the underlying molecular mecha-
nism of its inhibition.34 For CXCL-14, binding poses for der-
matan sulfate and chondroitin sulfate of the same net charge
are clearly distinguishable both in the experiment and in the
computational analysis.35 This is also known as the ‘‘sulfation
code’’, where the sulfation pattern is suggested to be crucial for
defining the recognition by protein targets and the involvement
in particular biochemical processes.36

Unfortunately, protein–GAG interactions are still insuffi-
ciently characterized at the molecular level due to the highly
repetitive nature and high variability of GAGs, and relatively few
GAG structures are available. Consequently, both experimental
and computational approaches experience challenges when
dealing with these systems because of GAGs’ particular proper-
ties such as limited availability of experimental structures, high
length, high flexibility, conformational variability, periodicity,
pseudosymmetry of the charged groups distribution, multipose
binding37 and high variation in the sulfation pattern.13,32,33

Considering these challenges, there is a central question in
protein–GAG research that remains unanswered: How is speci-

ficity in protein–GAG interaction achieved? This specificity itself
could be understood within several contexts: GAG type (glyco-
sidic linkage and monosaccharide components of a periodic
unit), GAG net sulfation (the amount of the GAG sulfate groups
defining the charge and, therefore, potential strength of elec-
trostatic interactions established by the molecules), GAG sulfa-
tion pattern (particular positions of the sulfate groups in a GAG
periodic unit). Despite the central role of GAG binding specifi-
city, this issue is far from being completely understood.

In the current work, we aim to get deeper insights into the
particular aspect of the specificity of protein–GAG binding by
specifically analyzing the role of electrostatics for the binding
affinity and structural properties of the protein–polyelectrolyte
complexes. In this generalization, we approach the question by
asking: would other molecules with a comparable net charge
but of very different chemical nature represent similarly binding
behavior with the same protein receptor? Answering this question
could yield an improved understanding of the extent to which
pure electrostatic interactions in protein–GAG binding are decisive,
and could, therefore, affect the molecular mechanisms behind
their biological functions. To this end, we chose the small
chemokine IL-8, a well-known regulatory protein, for which the
interactions with GAGs were extensively studied previously and
discussed in terms of its potential specificity.37–50 We performed

comparative analysis of the interaction of IL-8 with the hexame-
ric heparin (HP) and a series of acidic decapeptides with varying
charge density (Fig. 1). We applied a combination of solution
NMR and molecular modeling (molecular docking, molecular
dynamics, free energy calculations) approaches that were pre-
viously demonstrated to be successful in the characterization of
the interfaces of ligand binding to small proteins.13,51 Although
we confirm the strong impact of electrostatics on the binding
characteristics of this system, there are also different structural,
dynamic and energetic/entropic features that distinguish HP
from peptide binding to IL-8 suggesting that electrostatics is
not the only driving force responsible for GAG recognition of
proteins. Our results contribute to the basic understanding of
protein–GAG interactions and represent a fundamental step on
the way to deciphering the molecular basis of the molecular
specificity in these complex systems.

Materials and methods
Experimental studies

Materials. Heparin hexasaccaride (HP, degree of polymeriza-
tion of 6; dp6) was purchased from Iduron (Manchester, UK).

Fig. 1 Chemical structures of HP dp6 and the 4 acidic peptides used in

this study. Carboxylate groups are depicted as red and sulfate groups as

yellow spheres.
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The four different peptides, varying in their net charge (p3-:
EGAAEGAAEG, p5-: EGADEGADEG, p7-: EEADEGADEE and
p10-: EDEDEDEDED, see Fig. 1), were synthesized by the
Peptide Synthesis Core Unit (Leipzig University, Germany). The
15N-labeled ammonium salts were purchased from Eurisotop
(Saarbrücken, Germany) and all other chemicals from Carl
Roth (Karlsruhe, Germany).

Protein production. Human IL-8 (1–77) was expressed, pur-
ified, and refolded as previously described,45 except the final
dialyzing step was against a buffer containing 22.2 mM sodium
phosphate and 55.5 mM NaCl at pH 7.0 or only 22.2 mM
sodium phosphate at ph 7.0 without any additional NaCl.

Circular dichroism spectroscopy. Peptides were dissolved in
the measuring buffer containing 20 mM sodium phosphate and
50 mM NaCl (pH 7.0) to a final concentration of 5 mM. After
dissolving the peptides, the pH value of the solution had to be
carefully adjusted to pH 7.0 using NaOH. The CD analysis was
performed with 70 mM peptide in 20 mM sodium phosphate
buffer (pH 7.0) on a Jasco J-1500 spectropolarimeter (Pfung-
stadt, Germany). All experiments were carried out using a
sample size of 350 ml in a 0.1 cm quartz cell at 25 1C and CD
spectra were recorded from 190 nm to 260 nm with a scanning
rate of 50 nm min�1, 2 nm bandwidth and 0.2 nm data pitch
averaged in five scans for each sample. The molar ellipticity (Y)
was calculated using the following equation, where m1 repre-
sents the measured data (mdeg), M the average molecular
weight, C the peptide concentration, and L the path length of
the cell:

[Y] = m1 � M/(10 � L � C)

NMR spectroscopy. The NMR experiments were performed
on Bruker Avance Neo 700 MHz or Avance III 600 MHz spectro-
meters (Bruker BioSpin GmbH, Rheinstetten, Germany) equip-
ped with 5 mm inverse triple resonance probes with z-gradient.
For data acquisition and spectrum processing, the Bruker
software Topspint and for the analysis of the chemical shift
perturbation (CSP) and plotting the software NMRFAM-Sparky
was used.52

The peptides were dissolved in 22.2 mM sodium phosphate
buffer (0 mM NaCl, pH 7.0) to a concentration between 30 (p3-)
and 50 (p10-) mg ml�1 and the pH-value was carefully adjusted
to 7. Afterwards, an extensive dialysis of roughly 100 ml of the
peptide solution against two times 1 l of the buffer without
NaCl using Spectrumt Micro Float-A-Lyzert with a MWCO of
100–500 Da was performed. The concentration of the resulting
peptide solutions (B300 ml) was determined using 1HNMR. For
each peptide 10 ml of the solution was mixed with 100 ml valine
(c = 1.7 mM) and filled up to 500 ml including 10% D2O. A 1D
1H NOESY with low power water presaturation during the
mixing time (10 ms) and a 5 s period during the recycle delay
of 40 s were collected, with a 64 scans each. Concentrations of
the peptide solutions were determined using the internal valine
standard (Hg signal) and the alanine Hb signals. For p10- the
Hb and Hg of glutamic acid and Hb of aspartate were integrated
and the concentration was determined. Finally, these solutions

were mixed with phosphate buffer (either 0 mM NaCl or
1000 mM NaCl) and D2O to obtain stem solutions of the
peptides with 10 mM concentration (p3-, p5-), 9 mM (p7-) and
7 mM (p10-) in two different buffers. Both buffer systems
contained 20 mM sodium phosphate at a pH of 7 including
10% D2O. One contained no additional NaCl, while the other
contained 50 mM NaCl.

The fully 15N-labeled IL-8 (100 mM) sample was measured
at a temperature of 30 1C in 20 mM sodium phosphate buffer
(pH 7.0) containing 10% D2O and 4 mM TSP-d4 with or without
additional 50 mM NaCl. The acquired 1H–15N HSQC spectra
were comparable with published data of the homodimeric form
of IL-8,53 and the previously reported assignment was used.45

For CSP experiments, increasing amounts of HP hexasacchar-
ide (only in buffer with 50 mM NaCl) or the respective peptides
were titrated. Furthermore, pure buffer was titrated in to
exclude chemical shift pertubations due to protein dilution.
For each titration step, a 1H–15N Fast HSQC spectrum,54 using a
watergate 3919 water suppression55 and globally optimized
alternating phase rectangular pulse (GARP) for heteronuclear
decoupling,56 was acquired. For each NMR spectrum, typical
pulse lengths of 8.9–10.2 ms for 1H (depending on the salt
concentration of the buffer), 35 ms for 15N 901 pulses and
240 ms for the 15N decoupling were used. In total, 32 scans
per increment were acquired with a spectral with of 16 ppm as
well as complex 3072 data points in the direct, and 25 ppm
as well as real 128 data points in the indirect dimension.
To reduce the sample size to 350 ml for p10-, a Shigemis tube
matched to D2O (Shigemi Co., Tokyo, Japan), was used. The
resulting weighted chemical shift change for each NH signal of
the IL-8 backbone was calculated using the following equation,
where Dd represent the chemical shift perturbation (CSP):

Dd 1
H; 15N

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dHð Þ2þ dN=5

� �2

r

:

To determine the apparent kD value for the binding peptide, the
calculated CSP was plotted against the ligand concentration
and fitted using the following equation,57 where Ddobs is the
observed chemical shift change from the free state, Ddmax is the
maximum chemical shift change on saturation, [P]t and [L]t are
the respective protein/ligand concentrations:

Ddobs ¼ Ddmax

P½ �
t
þ L½ �

t
þkD

� �

� P½ �
t
þ L½ �

t
þkD

� �2
�4 P½ �

t
L½ �

t

1=2

2 P½ �
t

For the mean kD only the five most affected amino acids
(by CSP) were taken into account, as they most likely represent
the binding to the ligand instead of effects due to tertiary
structure changes. From this the mean kD and its standard
deviation was calculated.

For visualization of the CSP on the tertiary protein structure
USCF Chimera was used.58

Computational studies

Structures. The structure of the dimeric IL-8 protein used for
all simulations was obtained from the PDB (PDB ID: 1IL8).59
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The N-terminal missing residues were built in xLeap module of
AMBER16.60 The structure of hexameric HP dp6 used for
molecular docking simulations was taken from the PDB (PDB:
1HPN).61 The four anionic peptides, p3-, p5-, p7-, and p10- were
built using the xLeap module of AMBER1660 based on their
amino-acid sequence.

Molecular docking. Docking simulations were performed
with Autodock 3 (AD3),62 using a grid box with the grid step
of 0.375 Å centered on the two a-helices of the IL-8 dimer (the
heparin-binding site as described by ref. 39), of the following
sizes: 60 � 60 � 60 and 80 � 80 � 60 grid points for the IL-8/HP
complex and the IL-8/anionic peptide complexes, respectively.
The number of rotatable bonds of the ligands was set to 29 for
p3-, 32 for p5-, p7-, p10-, and HP dp6, respectively. IL-8 was kept
rigid throughout the docking simulation. Each docking experi-
ment was carried out in 100 independent runs, employing the
Lamarckian Genetic Algorithm with an initial population size
of 300, set to terminate after 105 generations. The 50 docking
solutions with the best AD3-score were clustered using the
DBSCAN algorithm.63 The metric used was root mean square
atom type distance (RMSatd metric), which is used to calculate
distances between atoms in the same manner as RMSD, but
uses pairs of atoms of the same type which are spatially close.
The neighborhood search radius was determined manually for
each complex in order to maximize the amount of identified
clusters. For subsequent molecular dynamics (MD) simula-
tions, the cluster representative(s), cluster members with the
best AD3-score within the cluster, and docking solutions with
the best AD3-score that did not belong to a cluster were used,
amounting to a total of 10 solutions per complex. No experi-
mental data was used as a restraint for either docking or MD
simulations.

Molecular dynamics

Molecular dynamics of protein–ligand complexes. MD
simulations of the complexes obtained from docking experi-
ments were carried out in AMBER16.60 The ff14SB force field64

parameters were used for the protein and peptide molecules,
while GLYCAM06 parameters were used for HP. The simulated
IL-8/peptide and IL-8/HP complexes were solvated in a periodic
TIP3P octahedron water box with at least 15 Å distance between
atoms of the analyzed complex and box boundaries. Charges
of the complexes were neutralized by adding Na+ and Cl�

counterions. Prior to the MD analysis, two energy minimi-
zation steps, with and without harmonic restraints on the
solute atoms, were performed, followed by heating the system
up to 300 K for 10 ps, and an equilibration step at 300 K in an
isothermal isobaric ensemble (NTP) for 100 ps. Subsequently,
the 20 ns-long productive MD run was carried out with
snapshots of the trajectories being written every 10 ps. The
entire protocol used for the MD simulation can be found in
detail in ref. 28.

Long MD simulations of unbound ligands. The unbound
ligand structures were analyzed in a separate 1 ms-long MD
simulation. The anionic peptides were solvated in a TIP3PBOX
with minimum distance of 7 Å between box boundaries and the

solute, and Na+ counterions were added to the system. The
same protocol for the minimization, heating, and equilibration
steps was as described above, followed by the productive MD
run. The corresponding simulation of HP dp6 was taken from
our previous work.65

Free energy calculations. Calculations of the free energy
of the IL-8/peptide and IL-8/HP complex trajectories as well as
per-residue energy decomposition were performed using
the Molecular Mechanics-Generalized Born Surface Area
(MM-GBSA) approach in AMBER16 with igb = 2. The analysis
was performed for all frames as well as for the last 5 ns of the
productive MD run, however no significant difference was
observed between the results of those subsets; hence, the
energy calculation results for all frames are presented and
analyzed. The mean values for total, electrostatic, and van der
Waals energy components were compared between the ligands
and the statistical significance of the differences was deter-
mined using Welch’s t-test for unpaired samples.66 Bonferroni
correction for multiple comparisons was applied. The MD
simulation length of 20 ns was shown to be sufficient for
statistically significant MD-based free energy calculations for
another protein–GAG system of a similar size when an ensemble
of trajectories starting frommultiple docked poses are analyzed.67

Comparison of bound and unbound ligand structures

The RMSD (root mean square deviation) of heavy atoms of the
same ligand between bound (docked) and unbound states was
calculated to make a qualitative estimate of how much the
conformation of the ligand changes upon binding to IL-8. Per
ligand, the bound structures were taken from all of the 1000
solutions obtained from the docking of the ligand to IL-8 from
all AD3 runs. The unbound structures consisted of the 108

conformations obtained from the 1 ms-long MD simulation.
The number of structures considered similar was calculated

for each ligand by counting the amount of bound and unbound
structures that were within a certain RMSD cutoff after struc-
tural superposition of the structures. The RMSD cutoff value
was incremented by a step of 1 Å from 0 Å to 12 Å. The results of
this comparison were used to estimate the total energy of the
system as a function of the reaction coordinate, which was
expressed as the number of structures below the RMSD cutoffs
(RMSDi). The resulting Potential of Mean Force (PMF) curves
were plotted, and the free energy values were used to obtain an
estimate of the dissociation constant kD using the relationship:

DG¼�RT� lnkDþC

¼�RT�
X

N

i¼1

ln
NunderRMSDi

totalN

� �

�
NunderRMSDi

totalN

� �

þC;

where R is the universal gas constant and T is the temperature
of the system, kD is the binding constant and N is the number
of corresponding structures.

The radius of gyration (Rgyr) of each ligand was calculated in
cpptraj68 using default parameters for all atoms and compared
between the bound (docked) and unbound states in order to
assess the compactness of the structures. Per ligand, the bound
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structures were taken from all 1000 AD3 solutions obtained
from the docking of the ligand to IL-8. The unbound structures
consisted of the 108 conformations obtained from the 1 ms-long
MD simulation. The kernel density estimates of Rgyr values were
calculated and plotted for all ligands in R.69

H-Bonds. Hydrogen bonds (H-bonds) established between
IL-8 and the ligand molecules were identified from all frames of
the 20 ns MD trajectories using cpptraj.68 The default para-
meters were used to determine the presence of a H-bond (bond
distance cutoff of 3.0 Å and hydrogen bond angle cutoff of
1351). For each donor–acceptor pair, the fraction of frames in
which they formed a H-bond was calculated; the obtained
fractions were averaged across the 10 replicates of MD runs
per IL-8/ligand complex and subsequently summarized and
visualized in Python 3.8.5 using the numpy 1.19.2,70 pandas
1.1.3,71 and matplotlib 3.3.272 libraries as well as in the R
package.69

Ligand flexibility and secondary structure analysis. The 1 ms-
long MD simulation of the unbound ligands was used to
analyze the ligands’ flexibility and secondary structure compo-
sition using cpptraj.68 The secondary structure content of the
peptide ligands was determined using the secstruct command
and subsequently visualized using gnuplot.73 The atomic fluc-
tuations of HP dp6 and the four peptides were obtained using
the rmsd command, applied to all atoms of the superimposed
trajectories. The variation of the rmsd value for the whole
trajectory was used as a measure of the ligand flexibility.

Data analysis and visualization. Postprocessing analysis
of the trajectories was performed using cpptraj module of
AMBER16.68 Visualization of the analyzed structures was carried

out in VMD.74 The R package69 was used for data analysis and
statistical analysis (Welch t-test for unpaired samples and
Bonferroni corrections for multiple testing).

Results
Interaction of IL-8 with charged ligands

The 1H–15N HSQC NMR spectrum of IL-8 shows well dispersed,
high-resolution signals (red contours in Fig. 2). Titration of the
five ligands (HP dp6 and the four negatively charged peptides,
see Fig. 1) to the protein caused specific peak shifts in the
1H–15N HSQC NMR spectra indicating changes in the chemical
environment of the respective amino acid. Fig. 2 shows as
example the 1H–15N HSQC NMR spectra for the titration of
the highest charged peptide ligand, featuring ten negative net
charges (p10-). The final titration step used a 20-fold excess of
the titrated peptides over IL-8, while for HP only an equimolar
GAG/protein ratio was used. Higher HP dp6 concentration
leads to a loss of signal intensity in the 1H–15N HSQC spectra
combined with an increased turbidity of the sample. However,
after some incubation time, the solution became clear again
and no aggregated protein was observable, while the NMR
signal intensity remained the same. All ligands changed the
chemical shifts of several residues of IL-8; the affected amino
acids were similar, but the magnitude of the chemical shift
perturbation (CSP) varied. The CSP increased with increasing
net charge of the ligands (Fig. S1, ESI†).

To map out these chemical shift changes for each residue
of IL-8, the weighted chemical shift perturbations (CSP)

Fig. 2 1H–15N HSQC NMR spectra of 15N-labeled IL-8 (100 mM, 50 mM NaCl, 20 mM NaP, pH 7.0; red) in the presence of the p10- peptide at varying

molar ratios of IL-8 to p10- (orange 0.5, light green 1, dark green 2.5 light blue 5, dark blue 10 and purple 20 fold molar excess of p10-).
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(Dd(1H,15N)) were calculated as described in the methods
section. The threshold for the significance level was set to
0.02 ppm, which was well above 2s of the CSP for all control
spectra. Fig. 3 shows these CSPs of the IL-8 for each peptide as
well as for HP dp6 as a function of sequence. By comparing the
overall pattern of peak shifts for each ligand, some similarities
but also specific differences are observable. The residues with
the highest CSP magnitude are concentrated in two regions of
IL-8, including (i) residues K20–K28 and (ii) K59–S77. Especially
residues V66 and A74 of the C-terminal a-helix show a strong

response in the titration experiments for all ligands. Close to
the shorter a-helix of IL-8, the titration with the peptides leads
to a similarly pronounced shift of residue K25, H23 and K20,
whereby HP dp6 influences predominantly residue H23 and
K20. Fig. 3F shows the CSP plotted on the structure of the IL-8
dimer, indicating an overall similar region of IL-8 affected by
the binding of p7-, p10- and HP dp6, where the degree of
perturbation due to the ligands on IL-8 is ordered as p3- o
p5- o p7- o p10- o HP dp6. Please note, that at 20-fold ligand
excess, p10-shows similar effects like HP dp6 at equimolar ratio

Fig. 3 Weighted chemical shift perturbation of IL-8 in buffer containing 50 mM NaCl upon addition of (A-D) the four peptides (0.5, 1, 2.5, 5, 10 and

20-fold molar excess relative to IL-8 with increasing color) and of (E) HP dp6 (0.2, 0.5, 0.75 and equimolar ratio with IL-8) plotted for each residue of IL-8.

The black dashed line denotes the significance threshold of 0.02 ppm. On the top of each graph, the secondary structure of IL-8 is shown, where waves

represent a-helical and arrows b-sheet regions. *, 1 and ^ denote overlapping peak pairs – K8/C12, 15I/44I and 18Y/61N respectively – which have

therefore the same CSP, as they did not separate during the course of titration. Please note, that the arrows indicate the overlapping peak pair R65/72K

which separated during the course of titration but could therefore not unambiguously assigned. (F) Shows the highest observed CSP of all ligands

(uniform scale from 0 to 0.11 ppm) plotted on the tertiary structure of dimeric IL-8 (pdb: 1IL8). Residues without information about the CSP are colored

grey, sidechains of the important residues K25, R65, K69 and K72 are shown and labelled.
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between protein an GAG. Nevertheless, for p5-, only A74 shows
a CSP above the threshold and for p3- no significant CSP was
reached.

Next, we performed the same titration experiments in a
NaCl-free buffer because this reduced salt concentration
strengthens electrostatic interactions due to reduced screening
of the charges. The CSPs for the same titrations steps as in
Fig. 3 are shown in Fig. 4 under NaCl-free buffer conditions.
As expected, the overall magnitude of the CSPs was increased
for each peptide ligand in the absence of NaCl (note the
different scaling of the y-axis in Fig. 3 and 4). The regions most
influenced by ligand binding remain the same (residues
K20–K28 and K59–S77) and the overall pattern in the helical
region is comparable to the buffer conditions with higher ionic
strength. However, especially the CSP pattern for p10- shows
some distinct changes for residues K20–K28. Fig. 4E shows the

maximal CSP during titration enlarging this region. This time,
the full color represents the maximum CSP of the respective
titration to allow for a better distinction of the effects on the
influenced amino acid pattern. While for p7- (left) nearly no
difference without (top panel) and with 50 mM NaCl (middle
panel) is observed, for p10- (right side) no influence on the
helical pattern is detected, but in the absence of NaCl a reduced
effect on K25 (side chain shown and labeled) is observed
compared to 50 mM NaCl. Interestingly, the sequence of
residues with maximum CSP in this region changed from K25
4 H23 B K20 in the presence to K20 4 H23 B K25, S19 in the
absence of NaCl. However, using HP as ligand, an even more
reduced influence on K25 and no influence on S19 is observed.
Taken together, this shows that the only three charged amino
acids in this region (K20, H23, K25) are influenced by the peptide
binding, while HP binding clearly perturbs the chemical shift of

Fig. 4 Weighted chemical shift perturbation of IL-8 in NaCl-free buffer upon addition of (A-D) the four peptides (0.5, 1, 2.5, 5, 10 and 20-fold molar

excess relative to IL-8 with increasing color) plotted for each residue of IL-8. The black dashed line denotes the significance threshold of 0.02 ppm.

On the top of each graph, the secondary structure of IL-8 is shown, where waves represent a-helical and arrows b-sheet regions. 1 and ^ denote

overlapping peak pairs 15I/44I and 18Y/61N – which have therefore the same CSP, as they did not separate during the course of titration. * represents the

initially slightly close peak pair K8/C12, whose CSPs where evaluated using integration. Please note, that the arrows indicate the overlapping peak pair

R65/72K which separated during the course of titration but could therefore not unambiguously assigned. (E) Shows the highest observed CSP in the

helical region and from K20–K25 for p7- and p10- in buffer without additional NaCl (top), in buffer with 50 mM additional NaCl (middle) and for HP dp6 in

buffer with 50 mM NaCl (scale from 0.02 ppm to the respective maximum CSP) plotted on the tertiary structure of dimeric IL-8 (pdb: 1IL8). Residues

without information about the CSP are colored grey, sidechains of K25, R65, K69 and K72 are shown.
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K20 and H23more than K25 (see also Fig SI1 and SI2 lowest panel
for enlarged spectra of this region, ESI†). Supporting this binding
of the peptides governed mostly by the charged side chains of
IL-8, the most highly charged peptide also shows a strong
influence on either R65 or K72 (labelled by arrows in Fig. 3 and
4 and side chains shown, see also Fig. SI1 and SI2 upper panel,
ESI†), which are adjacent to the K20–K25 region.

Determination of apparent kD values

We analyzed the binding strength of the negatively charged
ligands by plotting the CSP of each titration step of the five
most perturbed amino acids against the ligand concentration
and calculated the apparent dissociation constant (kD) for the
interaction of IL-8 with each ligand (Fig. 5). Normally, the kD
values determined from the NMR experiments do not represent
the intrinsic kD because the protein concentration necessary for
solution NMR measurements is much higher than the intrinsic
kD. However, taking the starting protein concentration of
100 mM and the end titration step with 20 fold excess for the

peptides into account, a determination of the kD in the range
from 20 mM to 2000 mM is reasonable.57 Fig. 5A shows exem-
plarily the plots for residues V66 and A74, which were highly
influenced by all ligands, when the CSP threshold was reached
(see Fig. 5B). The apparent kD values ( � standard deviation)
obtained from the fits are (1774 � 570) mM for p5-, (1024 � 400)
mM for p7- and (194 � 21) mM for p10- and thus show the
expected effect of the net charge in buffer containing 50 mM
NaCl. Because the titration experiment with HP dp6 in the same
buffer was only possible up to an equimolar ratio, saturation of
the CSP was not reached and a kD could not be determined.
However, given the fast increase of the CSP at low ratios, an
apparent kD much smaller than 25 mM is expected. Hence, even
the highest charged peptide p10- shows at least an order of
magnitude higher kD at higher salt concentration (50 mM).

The apparent kD values for ligand binding in the absence of
NaCl are larger than 2000 mM for p3- as no saturation was
reached, (506 � 193) mM for p5-, (142 � 22) mM for p7- and
(26� 8) mM for p10-. They show again the clear influence on the

Fig. 5 Plot of the weighted CSP of residue V66 and A74 for the titration experiment with HP dp6 and the four peptide ligands in buffers with different

ionic strength (A). Solid lines represent best fits to a 1 : 1 binding model. In (B) the up-to-five amino acids with largest CSP by the binding are shown, from

which the kD were calculated (C). (D) Shows the kD from this work and data adapted from literature for different hexasaccharides,45,46 where the same

high ionic strength buffer (filled symbols), but a concentration of 1 mM IL-8 was used.
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net charge of the peptide ligand confirming the stronger
binding at reduced ionic strength of the buffer.

Ligand docking to dimeric IL-8

In order to predict the structures of the complexes of IL-8 with
HP dp6 and the anionic peptides, the molecular docking
approach was applied. Docking simulations were performed
with the grid box centered on and encompassing only the
C-terminal helical regions of IL-8 dimer. Fig. S3 (ESI†) shows
the results of the docking; while most ligand molecules were
placed parallel to the a-helices of IL-8, the solutions appear to
be more narrow for HP and p3-, while for p5-, p7- and p10- the
docked structures are more spread out along the helices. The
results obtained for HP dp6 are in agreement with the previous
data we obtained for this system as an alternative binding
pose45 and by Joseph et al.,37 where for longer HP poses, in
which HP bound to both Cß-terminal helices, were proposed.

Clustering the 50 top-scoring solutions for each ligand
identified two clusters in the case of peptides and only one
cluster for HP. For subsequent MD simulations, the cluster
representative(s) (the structure(s) closest to the cluster center),
high-scoring cluster members, and high-scoring structures not
belonging to any cluster were taken, resulting in a total of 10
docking solutions per docking experiment chosen (Fig. 6).
Apart from p7-, no clear visual difference in the representative
binding poses within the clusters could be determined. For p7-
several binding poses stand out from the rest of the structures.

Molecular dynamics

MD simulations of the IL-8/ligand complexes obtained from
AD3 docking experiments were performed. To consider the
conformational variety of the structural ensemble obtained by
molecular docking, 10 different representative initial structures
for each ligand were used in the MD simulation. Fig. 7 shows
the results of one of the MD simulations for each ligand, while

Fig. S4 (ESI†) shows the poses of the ligand at the start of the
MD simulations (red) and at the end of the 20 ns MD simula-
tion (blue). In many cases, the ligand molecules dissociated
from the initial binding pose either to move along the a-helices
of IL-8 or to bind to the side of IL-8. However, no clear trend in
neither binding site nor binding pose preference could be
identified for the ligands when compared to each other. Never-
theless, peptide p5- moved the least in all of the 10 simulations
performed for the given ligand, suggesting that the initial pose
was energetically favorable.

Energetic analysis of the complexes revealed differences in
binding strength between the ligands as shown in Fig. 8. A clear
difference between HP and the peptides was seen in terms of
the total free energy, with IL-8/HP complexes being on average
more favorable. The differences were statistically significant
between HP and p3- as well as HP and p7-, while between
the peptides the only statistically significant difference was
between p10-, which had the lowest average total free energy
of binding, and p7-. The in vacuo electrostatic component of the
total energy became more favorable with increasing charge of
the ligand molecule, with HP and p10- having similar average
electrostatic energies, while IL-8/p3-complexes were the least
favorable in terms of electrostatic energy. The differences
were statistically significant between HP and p3-, p5-, and
p7-, between p10- and p3-, p5-, and p7-, as well as between
p3- and p5-, p3- and p7-, and p5- and p7-. The van der Waals
interaction energy was the lowest for p5-, and the least favor-
able for p10-, while HP, p3-, and p7-average energies were
comparable. The only differences that remained statistically
significant after multiple-testing correction were between p10-
and HP dp6, p3-, and p5-. The total electrostatic energy made
up of the in vacuo and implicit solvation generalized Born
component follows the same trend as the electrostatics in vacuo

for the peptide series. Only for p10- is the total electrostatic
impact favorable. Interestingly, it is significantly more favorable

Fig. 6 The docking poses used as input for the MD for IL-8 complexed

with HP dp6 and p3-, p5-, p7-, and p10-. The protein is shown in cartoon

and the ligands in stick representation. Ligand structures are colored

according to cluster membership as identified using DBSCAN clustering,

with cluster 1 in red, cluster 2 in light green, and structures not belonging

to any cluster in dark blue.

Fig. 7 Representative MD trajectory frames (every 100 ps for ligand, and

every 1 ns for the protein) of IL-8 complex with HP dp6 and p3-, p5-, p7-,

and p10-. Protein is shown in cartoon and ligand in stick representation

(red corresponds to the beginning and blue to the end of the simulation).
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than for the HP dp6, which has a more negative charge than p10-.
This analysis allowed to conclude that HP dp6 and p10- are
comparable in terms of electrostatics which justifies the design
of the used peptides to meet our original aim which was to
analyze if there are substantial differences in binding for repre-
sentatives of essentially different classes of molecules that are
similar in terms of their electrostatic properties.

In order to identify key residues of IL-8 involved in the
binding of HP dp6 and the anionic peptides, a per-residue
decomposition of the total free binding energy was performed.
The residues that contribute most favorably to the binding
energy, R65, K69 and K72, are common to all of the studied
systems (Table 1). Residue K25 was important for IL-8/HP dp6
and IL-8/p10- complexes, however the magnitude of its influ-
ence was greater for the HP-containing complex.

The acidic residues E68 and E75 of IL-8, on average, had a
strongly unfavorable impact on binding HP dp6, contributing

on average more than +1.50 kcal mol�1 to the binding free
energy. Only residue E68 had a similar contribution in the
IL-8/p10- complex (average energy contribution equal to
+1.55 kcal mol�1), while in case of IL-8 complexed with the
other peptides, this influence of E68 was not greater than
+1.50 kcal mol�1. This could be attributed to the higher
flexibility of the peptides in comparison to HP dp6, which
allowed them to reduce the unfavorable interactions with the
negatively charged residues. While all of the HP residues had
negative average binding free energy contributions, peptide
residue E1 had an unfavorable (positive) average binding
free energy contribution above +1.50 kcal mol�1 for all of the
IL-8/peptide complexes.

Comparison of bound and unbound ligand conformations

To explore the changes in conformation and compactness of
the ligand structures upon binding to IL-8, the distributions of
radii of gyration (Rgyr) were compared for each ligand between
its bound and unbound state and those differences were
compared between ligands. Rgyr has been used as a measure
for the description of structural specificity of both binding site
and the ligand.75–77 Fig. 9 shows the differences between the
bound and unbound state for each ligand. The distribution of
the HP Rgyr does not essentially change upon binding, while
there is a clear increase of Rgyr values for all the peptides.
With the increase of the peptide charge, this difference in the
Rgyr distributions between the bound and unbound states are
smaller. This can be explained by the fact that more charged
peptides are less likely to be folded into particularly compact
structures when unbound due to the intramolecular electro-
static repulsion. This analysis underlines the principal struc-
tural differences between the peptides and the HP molecule in
IL-8 binding and could potentially be a factor explaining the
specificity of HP binding.

The secondary structures of the unbound acidic peptides
were analyzed with the DSSP (Dictionary of Secondary Structure
of Proteins) approach applied to the corresponding MD trajec-
tories (Fig. S5, ESI†). Neither peptide revealed significant
secondary structure elements in the course of the simulation.
This was also in agreement with the CD experiments (Fig. S6,
ESI†).

The atomic fluctuation analysis of the unbound ligands
revealed substantial differences in flexibility between HP dp6
and the peptide ligands. The flexibility of the HP dp6 in terms
of the RMSD variance was equal to 0.7 Å and lower in compar-
ison to the flexibility values of p3- (4.1 Å), p5- (2.3 Å), p7- (1.9 Å)
and p10- (1.1 Å). Among the peptides, higher rigidity is
observed for more charged peptides as it was also suggested
by the analysis of Rgyr distributions.

Analysis of hydrogen bonds

Fig. 10 shows the patterns of H-bond formation during MD
simulations between IL-8, acting as H-bond donor, and the
ligands. The C-terminal helix region (residues 64–73) was an
important site of H-bond formation for all of the complexes,
especially for residues R65, K69, and K72. A second site of

Fig. 8 Boxplots representation of the electrostatic energy in vacuo (top

left), total electrostatic energy (bottom left), van der Waals energy (top

right) and total free energy (bottom right) for the IL-8/ligand complexes

determined using MM/GBSA. Statistical significance of differences is

shown as (*) for statistical significance when compared to all other groups,

(1) statistical significance when compared to p3-, (2) statistical significance

when compared to p5-, (3) statistical significance when compared to p7-,

(4) statistical significance when compared to p10-.

Table 1 Residues of IL-8 with mean contributions to DG below

�1.5 kcal mol�1 for the complexes IL-8/HP and IL-8/peptides, averaged

over 10 replicates. Residues with more favorable free energy contributions

than �2.0 kcal mol�1 are shown in bold

IL-8 residues

IL-8 monomeric unit 1 IL-8 monomeric unit 2

HP dp6 R65, K69, K72 K25, R65, K69, K72
p3- R65, K72 R65
p5- R65, K69, K72 K72
p7- R65, K69, K72 R65, K69, K72
p10- K25, R65, K69, K72, R73 R65, K69, K72
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H-bond formation was identified for residues 23–26, located at
the side loop of IL-8. Noteworthy is that HP dp6 was more likely
to form H-bonds in this site compared to the peptides. In the
case of the ligands acting as H-bond donors and IL-8 as H-bond
acceptor (Fig. S7, ESI†), only residues belonging to the
C-terminal helical region of IL-8 were involved in H-bonds with
occupancy over 0.1. The average frequency of H-bond formation
was similar for all of the examined IL-8/ligand complexes.
When ligands act as H-bond donors, the participation of the
less charged peptides is higher, while p10- behaves similarly to
HP dp6, establishing the fewest H-bonds.

Furthermore, we analyzed the differences in the distribution
of the number of simultaneously established H-bonds for these
particular residues depending on the bound ligand. When
considering only the 14 IL-8 residues that establish most
H-bonds as donors (i.e., residues 23–26, 59–61, 64–66, 69, 70,
72, 73) based on Fig. 10, there is a clear difference between the
distributions for p5- and especially for p10- in comparison to
HP dp6, p3-, p7- (Fig. 11). Peptides p5- and p10- form more
H-bonds simultaneously, which could be the explanation for

the observation that these peptides are more stable during the
course of the MD simulation in terms of their movements on
the protein surface. When analyzing contributions of each
individual residue of IL-8 as an H-bond donor, certain patterns
of specificity could be revealed (Fig. S8, ESI†). For H23 and K25,
there is a clear trend of higher H-bond propensity with the
increase in peptide charge, with the similarities between HP
dp6 and p10-. In contrast, while the trend for the peptides
remains the same for K59 (except for p10-), negligible number
of H-bonds with this residue are established by HP dp6. Peptide
p10- specifically interacts with H23, K25, and R73, while
p5- interacts with E60, N61, Q64, K72. V66 and F70 establish
specific H-bonds with HP dp6, although the normalized fre-
quencies of these H-bonds are very low. Interestingly, when
considering the amino acids of the known binding motif of IL-8
and HP (K25, R65, K69 and K72) especially p7- resembles the
H-bond donor pattern overall very well, while the other high
propensity amino acids are either in good agreement (H23) or
in closest agreement considering the other peptide ligands
(N61 and Q64).

Fig. 9 Comparison of distributions of Rgyr values (kernel density estimation) between bound and unbound states in continuous and dashed lines,

respectively, for HP dp6, p3-, p5-, p7-, and p10-.
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Discussion

Recognition of regulatory proteins by GAGs on the cell surface
is a key molecular process critically related to wound healing,
cell growth, hemostasis, anticoagulation, tumor progression,
inflammation and others.78 The molecular characteristics of
that interaction is the electrostatic attraction between GAGs,
rich in negatively charged sulfate groups, and clusters of
positively charged amino acids on the respective protein.79

As electrostatic forces represent a rather undirected mode of
interaction, the question arises how it can play the key role in
such important biological processes. For instance, both pro-
and anti-inflammatory cytokines, which induce highly adverse
biological effects, expose clusters of basic amino acids on their
surface and would be equally attracted by negatively charged
GAGs on the cell surface. Although GAGs feature varying charge
densities and distributions of negatively charged groups,
their interactions strengths with the same protein are not too

different.45 Furthermore, also other negatively charged poly-
electrolytes (i.e. peptides, nucleic acids and nucleotides etc.) are
found in the extracellular space and could also interact electro-
statically with basic proteins. This triggers the question what
factors other than electrostatics could provide an additional
contribution to the recognition of proteins by GAG molecules.

We approached this question by a combination of experi-
mental and computational methods comparing binding of a
classical GAG HP dp6 to IL-8 with a small library of de novo

designed short acidic decapeptides of varying charge density.
Here, the most highly charged peptide is comparable with HP
dp6 in terms of its net charge (Fig. 1). While HP is certainly one
of the most highly charged GAG with 4 negative charges on
average per dp (charge density:�0.52 to�0.57 C Å�1 depending
on conformation80), also other GAGs with lower charge density
such as hyaluronan (1 negative charge per dp, charge density
�0.13 C Å�1) or dermatan sulfate (2 negative charges per dp,

Fig. 10 Heatmap of hydrogen bond interactions between IL-8 (hydrogen atom donor) and HP dp6, p3-, p5-, p7- and p10-, averaged over IL-8 dimer

subunits and across replicates of MD simulations. Protein residue numbers are shown on the x-axis, ligand residue numbers are shown on the y-axis.

Color intensity corresponds to the frequency of the H-bond, i.e. the average fraction of MD trajectory frames in which the bond was formed.
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charge density �0.29 C Å�1) and chondroitin sulfate (2 negative
charges per dp, charge density �0.28 or �0.27 C Å�1 for
chondoritin-4-sulfate and chondroitin-6-sulfate, respectively)
are part of the extracellular matrix. The decapeptides varied
in their number of charges between �3 and �10, representing
comparable charge densities between non-sulfated hyaluronan
and monosulfated chondroitin or dermatan sulfate. The charge
densities of the peptides are �0.09 C Å�1 for p3-, �0.14 C Å�1

for p5-, �0.2 C Å�1 for p7-, and �0.29 C Å�1 for p10- and thus
well comparable to typical GAGs (Fig. 5D). Furthermore,
we included two different negatively charged amino acids,
aspartate and glutamate, which differ in the sidechain length
similarly to 4-O and 6-O sulfation, where the latter is one CH2

group further away from the sugar ring. The uncharged amino
acids in the peptides had small sidechains (Gly, Ala) to avoid
steric effects. For IL-8, it was shown that the binding strength
for chondroitin sulfate with the same net charge but an altered
position of the sulfate group, differs significantly – e.g. a
sulfation in the 6-O position leads to higher affinity (black
circles in Fig. 5D).45,46

At the same time, it is worth taking into account that the
chemical nature (the absence of sulfate groups in the peptides)
and conformational preferences of peptides and GAGs as
molecular classes in general are essentially different and,

therefore, their recognition elements are also likely to be
distinguishable because of the differences in terms of degrees
of freedom, charges distribution and as a consequence solvent-
mediated interactions. All these factors could potentially affect
the specificity features of their interactions with proteins.

Both GAG and the acidic peptides bind to an epitope defined
by similar amino acid residues on IL-8 as shown by NMR
titration (Fig. 3 and 4) and MD-based analysis (Table 1).
Furthermore, binding is enhanced with increasing net charge
from p3- to p10- and highly dependent on the ionic strength of
the buffer (Fig. 4D and Table 2). This suggests that non-specific
electrostatics may indeed be the key interaction for the for-
mation of GAG/IL-8 complexes. The most involved IL-8 residues
in peptide binding are R65, K69, and K72, which are part of the
well-known a-helical BxxxBxxBB motif (including R73), where
B stands for a basic residue.39,41,42 The second known GAG
binding motif of IL-8 is localized in the loop connecting the
N-terminal regions with the first b-strand and involves residues
K20, H23 and K25. Here, all positively charged residues
respond to peptide binding, while K25 responds strongest
(Table 1 and Fig. 2–4, except for p10- in buffer without NaCl).
These two binding motifs combined make the binding parallel
to the helix on the side of IL-8 more favorable for HP and the
peptides than the binding between the two helices, although
both are observed in the MD.

Although similar values for the NMR CSP of IL-8 were
induced by HP and the four model peptides, the ligand to
protein ratio corresponding to the maximal achieved CSP
varied drastically. For HP, the final titration step was achieved
at a molar 1 : 1 ratio between HP and IL-8, higher GAG to IL-8
ratios lead to unspecific aggregation and loss of NMR signal
intensity. In contrast, an up to 20-fold peptide excess still
allowed reasonable NMR measurements. This experimental
result suggests very different affinities of HP and the acidic
peptides. Indeed, from plots of CSP vs. ligand concentration,
apparent kD values could be determined for three peptides
(except p3-) varying between B0.2 and 1.8 mM in high ionic
strength buffer. As no saturation of the CSP was measured in
the presence of HP, such an apparent kD value could not be
determined from the NMR measurements. Using Trp fluores-
cence at much lower protein concentration of 1 mM in the same
buffer, Schlorke et al. determined the kD for GAG binding to
IL-8, which varied between 5.5 mM for HA and 2.0 mM for HP
dp6.45,46 These kD values for GAGs and our NMR values for the
acidic decapeptides are not directly comparable because very
different protein concentrations were used. It is also known
that IL-8 forms dimers with a monomer/dimer dissociation
constant of 18 � 6 mM.81 Thus, the NMR measurements are
determined for the IL-8 dimer while the Trp fluorescence data

Fig. 11 Frequency of H-bonds established in each frame for 14 IL-8

residues that establish most H-bonds as donors (23–26, 59–61, 64–66,

69, 70, 72, 73). On the x-axis the number of H-bonds simultaneously

observed in the same MD frames is provided.

Table 2 Estimate of the free energy of the system based on the comparison of bound and unbound ligand structures and the determined mean

dissociation constant kD for the analyzed complexes

p3- p5- p7- p10-

Calculated free energy [kcal mol�1] (derived kD [mM]) 1.93 (26.0) 1.79 (20.4) 1.58 (14.3) 1.46 (11.7)
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was acquired for monomers. Nevertheless, it is clear from
Fig. 5D (closed symbols) that GAGs bind with much higher
affinity to IL-8, which is also clearly suggested by the MD-based
free energy calculations (Fig. 8). This is remarkable, since the
charge density of the peptides and the lowly charged GAGs is
comparable. Strikingly, the kD values vary in the high ionic
strength buffer from p5- to p10- by a factor of roughly 10, while
in the low ionic strength buffer a factor of 20 is observed. This
once again suggests that electrostatics play an important role,
as ligand binding is improved in the absence of NaCl.

Since net electrostatics cannot fully explain the very different
affinity of the negatively charged GAG or peptides for IL-8, the
question arises what other factors contribute to the higher
affinity of GAG for the protein. Our computational analysis
can provide detailed insight into this question. Free energy
calculations (Fig. 8) allowed the separation of electrostatic and
van der Waals contributions as well as the impact of solvent
that was previously demonstrated to be key in the protein–GAG
interfaces.82 While the in vacuo electrostatic contribution scales
approximately proportionally with the ligand charges, the van
der Waals contribution is less favorable for the more charged
peptides. Total electrostatic contributions are also essentially
different for HP dp6 and acidic peptides: in the implicit solvent
model, the solvent contribution compensates the electrostatic
interactions between HP dp6 and the protein more effectively
than between the peptide p10- and the protein. This could be
explained by the substantially more hydrated nature of protein-
HP interfaces in comparison to protein-peptide interfaces.82

Such energetic pattern differences could provide one of the
clues for the GAG binding specificity.

An important difference between GAG and acidic peptides is
also the nature of the negatively charged groups on either
molecule. While sulfated GAGs contain both carboxylate and
sulfate groups, the model peptides only feature carboxylate
groups. The pKa value of the Glu sidechain is 4.1 at 25 1C83

and between 2.5 and 0.5 for the sulfate group of muco-
polysaccharides.84,85 While shifts in these pKa values can be
observed, our results suggest that both groups are relatively
strong electrolytes that should be fully charged at neutral pH
used in our experiments. However, both functional groups vary
in their physical properties as well as their hydrogen bond
capacity. The carboxylate group is smaller (V = 40.6 Å3) than the
sulfate group (V = 57.7 Å3) as determined by quantum chemical
calculations (https://www.spartan.com). This results in a lower
charge density of the sulfate group (�11.5 mC Å�2) compared to
the carboxylate group (�16.6 mC Å�2). Also, the sulfate group
has a higher dipole moment (4.7 D) than the carboxylate group
(3.1 D). All these differences influence the charge–charge,
charge–dipole, and dipole–dipole electrostatics. However, this
hardly explains the difference in binding strength over three
orders of magnitude between Hyaluronan dp6 (5.5 � 1.3 mM)45

and p5- (B1.7 � 0.6 mM), which both only exhibit carboxylate
groups and have a comparable charge density.

The conformational changes of the ligands between free and
bound form also play a role in the formation of ligand/IL-8
complexes. While HP is considered to be already relatively

elongated in free solution, CD experiments confirm that all
peptides are in random coil conformation in solution (Fig. S6,
ESI†). While backbone flexibility may help for the ligand to
assume the ideal binding pose on the protein surface, the
entropic change a coiled peptide ligand undergoes upon bind-
ing to a well-defined pose on the protein is rather unfavorable.
This could be explained qualitatively by the entropic compo-
nent of binding. As HP does not alter its radius of gyration or
conformation upon protein binding (Fig. 9), it already repre-
sents a perfect ligand for IL-8 without the need for further
structural adaption and binds with the highest affinity by far.
In contrast, a remarkable adaptation of all peptides upon
binding to a more elongated structure is observed (Fig. 9); Rg

increases by B2.4 Å for p3-, B1.9 Å for p5-, and B1.4 Å for p7-
and p10- upon IL-8-binding. This is accompanied with a
decrease in entropy due to the loss of motional freedom, which
also contributes to the lower binding energy. The suggestion
that entropy may be a very important factor is also supported by
the fuzzier binding poses assumed by the peptides in compar-
ison to HP (Fig. 6). This looser and more flexible binding mode
has more favorable entropy but also results in less optimal
binding geometry and thus in overall lower affinity.

The MD results also show that the Rg of the free peptides
increases with increasing charge density. This suggests that the
entropic loss associated with IL-8-binding is reduced for the
more highly charged peptides, in agreement with the higher
affinity of these molecules for the protein. As the peptide
charges are less screened in the absence of NaCl in the buffer,
one would assume that the peptides are even more elongated
under these conditions and thus closer to the peptide-bound
conformation, which would also result in a smaller entropy loss
contributing to the higher affinity of the peptides for IL-8 under
these conditions, which amounts to a factor of 3.5, 7.2 and 7.4
for p5-, p7- and p10-, respectively.

The last but very important descriptor of the interaction of
IL-8 with these ligands is hydrogen bonding. Based on the MD
simulation, we could analyze and compare the hydrogen bond
pattern of HP vs. the four negatively charged decapeptides
(Fig. 10). At first sight, no major differences in hydrogen bond
formation are observed between the individual ligands and
the C-terminal binding motif of IL-8. However, our analysis
reveals that the hydrogen bonds with residues from the more
N-terminal binding motif are much less frequent (Fig. 10).
There are more H-bonds observed at the same frames of the
trajectory for p5- and p10- in comparison to HP dp6, p3- and
p7-. But taking only the H-bonds of the binding motive into
account, p7- resembles the pattern of HP closest.

Conclusion

Taken together, although long ranged electrostatics is clearly a
key player in IL-8/ligand interaction, it cannot fully explain the
much higher affinity of GAGs for regulatory proteins compared
to other polyelectrolytes, i.e., acidic peptides. Further aspects
such as the ligand flexibility and conformational changes upon
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binding associated with an entropic contribution, ligand struc-
tural adaptability, hydrogen bond capacity, participation of the
solvent in the establishment of the interface, and exact locali-
zation of negatively charged groups as well as their (chemical)
nature have to be taken into account. Physiologically, it is
highly important that regulatory proteins do not bind poly-
acidic ligands — which are found abundantly in extracellular
fluids — as strongly as the cell surface GAGs. It appears that a
fine balance of physical interactions favors GAG binding over
binding of other ligands such as polyions, nucleic acid, or
peptide fragments. To describe each of the relevant factors in
more detail, investigations with more similar functional groups
should be conducted. Nevertheless, all aforementioned factors
act synergistically in providing some specificity of certain GAGs
to preferentially bind regulatory proteins and direct them to
the respective cells. This directed motion, mediated by a well-
balanced network of GAGs of varying charge density and
distribution, has been referred to as the ‘‘electrostatic band-
pass’’.86 While in principle an appealing concept, the current
comparison between negatively charged GAGs and peptides
suggests that additional factors than electrostatics need to be
considered to adequately describe the filtering of regulatory
proteins by the extracellular matrix. This contributes a step
towards understanding the specificity of protein–GAG bio-
molecular systems and the sulfation code, which remain highly
challenging for analysis at the atomistic level.
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ABSTRACT: Heparin is an unbranched periodic polysaccharide
composed of negatively charged monomers and involved in key
biological processes, including anticoagulation, angiogenesis, and
inflammation. Its structure and dynamics have been studied
extensively using experimental as well as theoretical approaches.
The conventional approach of computational chemistry applied to
the analysis of biomolecules is all-atom molecular dynamics, which
captures the interactions of individual atoms by solving Newton’s
equation of motion. An alternative is molecular dynamics
simulations using coarse-grained models of biomacromolecules,
which o#er a reduction of the representation and consequently
enable us to extend the time and size scale of simulations by orders of magnitude. In this work, we extend the UNIfied COarse-
gRaiNed (UNICORN) model of biological macromolecules developed in our laboratory to heparin. We carried out extensive tests
to estimate the optimal weights of energy terms of the e#ective energy function as well as the optimal Debye−Hückel screening
factor for electrostatic interactions. We applied the model to study unbound heparin molecules of polymerization degree ranging
from 6 to 68 residues. We compare the obtained coarse-grained heparin conformations with models obtained from X-ray di#raction
studies of heparin. The SUGRES-1P force field was able to accurately predict the general shape and global characteristics of heparin
molecules.

1. INTRODUCTION

Glycosaminoglycan (GAG) heparin (HP) is a linear, anionic
polysaccharide composed of repeating disaccharide units of 2-O-
sulfated iduronic acid (IdoA2S) and 6-O-sulfated andN-sulfated
glucosamine (GlcNS6S).1 With a −4 net charge per
disaccharide unit, HP is the most negatively charged
polysaccharide among all GAGs. Synthesized in mast cells of
connective tissues as part of proteoglycans, after its synthesis HP
is stored in secretory granules of mast cells2 and released into the
extracellular matrix, where it is involved in a range of important
biological processes, such as angiogenesis,3,4 anticoagulation,5

cell proliferation,6 cell adhesion,7,8 and cell migration.9−11 HP
fulfills its role via interactions with protein partners. The
disruption of protein−HP interactions can lead to the
development of diseases and pathologies, including tumor
growth and metastasis,3,12−14 neurodegenerative,15−18 prion
diseases,19−21 and autoimmune disorders.22,23 The participation
of HP in essential biological processes and pathways renders it a
promising and interesting target in medicine.24

The structure and dynamics of HP as well as its interactions
with proteins have been investigated by various experimental
techniques, including nuclear magnetic resonance (NMR),25−28

X-ray di#raction,29−32 surface plasmon resonance,33−35 mass
spectrometry,36,37 and capillary electrophoresis.38−41 However,
experimental techniques face a range of challenges in the study
of HP and other GAGs, mainly stemming from the periodicity,42

considerable length, and high molecular weight of native
GAGs,43−45 diversity of sequences and sulfation patterns,44

conformational flexibility,46 and tendency to cause oligomeriza-
tion and precipitation of proteins.45

To fully elucidate the structure and dynamics of biomolecules,
computational approaches are often used alongside experimen-
tal techniques.47,48 A standard computational method is all-atom
molecular dynamics (MD) simulations, in which Newtonian
laws of motion are applied to determine the movement of each
individual atom of the simulated system over time.47,48 The
trajectories resulting from MD simulations, therefore, show the
dynamic behavior of biomolecules and their complexes. MD
simulations of HP molecules of di#erent lengths were used to
study their conformation in solution49,50 and in complexes with
proteins.51−54

While MD simulations are invaluable in the elucidation of the
three-dimensional structures of GAGs and the atomistically
detailed mechanisms of binding with proteins, they might also
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fail to produce satisfactory results. Native GAG chains can
achieve sizes of up to 100 kDa (degree of polymerization up to
approximately 30,000,000)55 and are, therefore, too large to be
simulated using classical all-atom MD approaches. The addition
of protein receptors, solvents, and ions increases the system size
even when modeling only short HP fragments, which reduces
the timescales that can be covered by all-atom MD techniques.
The length of HP molecules together with their high flexibility
result in a large conformational space that may be sampled
insu?ciently. Additionally, the binding of GAGs by proteins is
predominantly electrostatic in nature and GAG-binding sites are
most often patches of positively charged amino acid residues on
the protein surface, as opposed to deep binding pockets.56,57

This, as well as multipose binding, a phenomenon in which
multiple binding poses of comparable binding energy coexist,
causes di?culties in the determination and prediction of the
exact binding poses of GAGs in protein-GAG systems.58,59

An alternative to classical all-atom MD methods that allows
the coverage of larger spatial and temporal scales is coarse-
grained (CG) modeling. CG approaches are based on a
reduction of the representation of a system studied by
introducing the so-called pseudoatoms that represent groups
of atoms. When compared to all-atom MD representations,
coarse graining of the system representation significantly
reduces the number of degrees of freedom. As a result, the
computational resources required to simulate the system are
reduced. At the same time, the reduction in resolution is
inherently accompanied by a reduction in detail and accuracy, so
care has to be taken in the construction of the CG model in order
to keep key features of the system and retain the essential
characteristics of the biomolecules.60

In spite of the significance and ubiquity of GAGs in the
biological context, only a handful of CG models have been
developed for this class of molecules, possibly due to the
complexity of their sequence and structure.61 The first CG
model of GAGs was proposed by Bathe et al. in 2005,62 designed
for the modeling of chondroitin, chondroitin sulfate, and
hyaluronic acid. The sugar residue was represented by a total of
five CG beads: two carbon atoms and an oxygen atom to model
the glycosidic linkage, an interaction site corresponding to the
center of mass, used to model steric interactions, and an
interaction site corresponding to the center of charge, modeling
the electrostatic interactions. The model was able to correctly
reproduce the conformation of the GAGs studied as well as their
titration characteristics.62

Sattelle et al.63,64 designed a CG model of heparan sulfate by
reducing the representation of the sugar residue to two
interaction centers: one representing the sugar ring and the
second one representing the glycosidic linkage oxygen atom.
The model was successfully applied to the study of heparan
sulfate of large size64 and heparan sulfate-containing proteogly-
cans.63

A more detailed model, comprising 28 di#erent pseudoatoms
for the simulation of 17 di#erent GAG types was proposed by
Samsonov et al.65 The pseudoatoms corresponded to di#erent
functional groups of the GAGs, including oxygens of the
glycosidic linkages, sulfate groups, the carboxylate and N-acetyl
groups, centers of mass of the pyranose rings and the CH2OH
group of the C6 atom of N-acetyl-glucosamine and N-acetyl-
galactosamine. The number of CG pseudoatoms per repeating
unit ranged from 2 to 5 depending on the type and sulfation
pattern of the sugar residue (N-acetyl-galactosamine/N-acetyl-
glucosamine and glucuronic acid/iduronic acid) and its location

in the GAG chain (internal/terminal). Geometrical parameters
for virtual bonds, virtual bond angles, and virtual bond torsional
angles were obtained from all-atom MD simulations of di#erent
GAGs, while parameters of nonbonded interactions were
obtained using steered MD. Pseudoatoms representing carboxyl
and sulfate groups were assigned charges equal to −1, while all
other pseudoatom charges were set to 0. The CG model
achieved good results in the modeling of global and local
characteristics of GAG chains of di#erent lengths.65

Another CG model of GAGs is based on the SUGRES-1P
model of carbohydrates, which is a part of the UNIfied COarse
gRaiNed (UNICORN) model for biomacromolecules.66,67 The
UNICORN model relies on a strictly physics-based approach,
reducing the representation to only one or two CG sites per
repeating unit depending on the type of macromolecule, and the
e#ective energy function of the modeled system.68 The
transferability of the model to di#erent systems is ensured by
the decomposition of the potential of mean force of a system
into a sum of contributions from its parts, corresponding to
interactions within the CG sites, pairs of CG sites, as well as
groups of CG sites. The UNICORN model has been successful
in the prediction of protein structures,69 folding kinetics,70

conformational changes,71 and RNA and DNA structure and
dynamics.72

In this study, we present the implementation and calibration
of the SUGRES-1P CG model.67,73 We based our implementa-
tion on the theoretical background and initial parametrization of
the sugar rings with each other published by our group.67,73

Furthermore, we have fine tune the weights and parameters of
the force field and applied the SUGRES-1P force field to the
simulation of free HP of degree of polymerization (dp) ranging
from 6 to 68. The conformations obtained from CG simulations
were compared to experimentally determined HP struc-
tures.74,75 The results show a good agreement with the
experimental data in terms of the general shape and
conformation of the CG HP molecules as well as their global
characteristics: end-to-end distance (EED) and radius of
gyration (Rg).

2. METHODOLOGY

2.1. SUGRES-1P CG Force Field. The SUGRES-1P
model67,73 employed in this work is a physics-based model of
polysaccharide chains which is a part of the CG UNICORN
model of biomolecules, alongside the UNited RESidue
(UNRES), and united Nucleic Acid RESidue (NARES-2P)
models for polypeptides and nucleic acids, respectively.68 In the
SUGRES-1P model, the polysaccharide chain representation is
reduced to a single interaction site per sugar residue located
halfway between glycosidic linkage oxygen atoms, which serve as
anchor points of the polysaccharide chain (Figure 1). The
geometry of the polysaccharide chain in the SUGRES-1P model
is defined by virtual bonds (corresponding to O1 → O4
glycosidic linkages), the virtual bond angles θi, and virtual bond
dihedral angles γi, as shown in Figure 1.

Each interaction center of the polysaccharide consists of two
sections, termed the “head” and “tail”. This is brought by the
necessity of accounting for the anisotropy of the CG HP
residues, as the center of the charge is o# the geometrical center
of the residue. Therefore, the location of the head corresponds
to the center of the charge, while that of the tail corresponds to
the uncharged part of the residue. As a result, the energy of
interactions between HP residues is calculated as a sum of the
head−head, tail−tail, and head−tail interaction energies. The
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SUGRES-1P physics-based e#ective energy function of a
polysaccharide chain is expressed by eq 1
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The term Ubond(di) accounts for the energetics of the virtual-
bond-deformation, where di corresponds to the length of the i-th
virtual bond, Ub(θi) is the virtual bond angle deformation term
for angle θi, and Utor(γi, θi−1, θi) is the virtual-bond-torsional
energy term for virtual bond dihedral angle γi, where angles (θi−1

and θi) are the adjacent virtual bond angles.
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is represented by a sum of energy terms of the

interaction of the polar and charged parts of the residue,
excluding the Coulombic charge−charge interactions, as
expressed by eq 2
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The interaction between the uncharged parts of the
interaction sites is modeled using the Gay−Berne potential,76
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where rij is the distance between the uncharged tails of the
interacting particles, σij is the distance corresponding to the zero
value of EGBerne for arbitrary orientation of the particles (σij

0 is the
distance corresponding to the zero value of EGBerne for the side-
to-side approach of the particles), and ϵij is the van der Waals
well depth.

The contribution to the energy arising from polarization of
the solvent, Epol

GB, by charged parts of the interaction sites is
computed using the generalized Born model
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where qi, qj are the charges of the interacting particles, ϵin is the
e#ective dielectric constant of the “inside” of the interacting
particles, ϵout is the e#ective dielectric constant of the solvent, rij′
is the distance between the charged heads of the interacting

particles, and f GB(R) is the Generalized Born function expressed
by
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where ai and aj are Born radii and R corresponds to the distance
between the given sites of the interacting particles (e.g., the
distance between the charged heads, rij′, in the case of Epol

GB).
Epol is the polarization energy corresponding to the

interactions between the charged and uncharged parts of the
interaction sites of two sugar residues
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where rij′ is defined under eq 3, rji″ is the distance between the
uncharged tail of particle i and the charged head of particle j; rij″
is the distance between the head of particle i and the tail of
particle j; ϵin and ϵout are dielectric constants within the particles
and in bulk, respectively; κD is the length of Debye screening due
to the presence of counterions; and α1 and α2 are solvation
parameters of the tails of the particles.

The cavity term of the isotropic charged heads is expressed by
ΔFcav
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In the above equations, rij′ is the distance between two
charged parts of the interaction site of particles i and j, and σi

iso

and σj
iso are equivalent to the minimum distance between the

center of charge of particle i or j, respectively.
The cavity term of the uncharged tails is calculated by
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where χij″
(1) and χij″

(2) are anisotropies related to ΔFcav, rij is the
distance between the tails of the interacting particles, and σi and
σj are calculated with the minimum distance between the centers
of the interacting particles.

The isotropic Lennard-Jones potential is used to model the
van der Waals interaction energy between two polar heads

Figure 1. Illustration of the SUGRES-1P model. The interaction sites
are united sugar rings, represented by transparent red ellipsoids, located
half-way between glycosidic oxygen atoms (white spheres) which are
not interaction sites but serve to define the geometry of the
polysaccharide molecule. The virtual bonds connecting the oxygen
atoms are shown as thick black lines. The geometry of the
polysaccharide chain is defined by the virtual bond angles θi and
torsional angles γi.
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where rij′ is the distance between the polar heads, σij′ is the
distance corresponding to the zero value of ELJ, and ϵij′ is the van
der Waals well depth.

The electrostatic interaction energy between the charged
parts of the interaction sites is expressed by

=E
q q

r
332

i j

ij
el

in (13)

The energy terms are multiplied by the weights w as well as, in

the case of U
S S

el

i j
, temperature factors f n(T) that reflect the

temperature dependence of the appropriate e#ective-energy
terms, defined by
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where To = 300 K.
For a more detailed description of the CG SUGRES-1P force

field, the reader is referred to refs 67 and 73.
2.2. HP Structures. The NMR structure of HP from PDB:

1HPN25 was used as a template for the construction of HP
fragments used in CG simulations. HP molecules of length from
6 to 68 residues, which are referred to as dp6, dp8, dp10, dp12,
dp14, dp16, dp18, dp24, dp30, dp32, dp36, dp48, and dp68,
respectively, were constructed using the xLeap module of
AMBER77 by either elongating or shortening the template
structure. The choice of HP molecule lengths was dictated by
the availability of experimental data used as a reference to
compare with the results obtained using the CG MD
simulation.74

As a reference, measures of EED and radius of gyration (Rg)
from analytical centrifugation and synchrotron X-ray scattering
experiments for HP dp6, dp12, dp18, dp24, dp30, and dp3674

and HP dp32, dp48, and dp6875 were used. The conformations
of HP oligomers obtained from CG simulations were compared
with the structures of HP dp18, dp24, dp30, and dp36 obtained
by74 using constrained scattering modeling based on the
structure of HP in ref 25.

2.3. Estimation of Energy-Term Weights and the
Debye−Hückel Screening Factor. Due to the high negative
charge of HP,1 the inclusion of an appropriate amount of
counterions in simulations is necessary. In the SUGRES-1P
model, this is possible by the adjustment of the Debye−Hückel
screening factor κ−1, which describes the electrostatic screening
distance of charges in an electrolyte78,79 and is linked to the ionic
strength of a solution, as shown in eq 15, for the case of
monovalent ions

=

k

N e I

T

2

1 r 0 B

A

2

(15)

where κ−1 is the Debye−Hückel screening length, ϵr is the
dielectric constant of water, ϵ0 is the vacuum dielectric
permittivity, kB is the Boltzmann constant, T is the absolute
temperature, NA is the Avogadro number, e is the elementary
charge, and I is the ionic strength of the electrolyte.79 The

Debye−Hückel length κ−1 is part of theUS S

vdW

i j
term in eq 6 in the

SUGRES e#ective energy equation. The expression forUS S

vdW

i j
has

been adapted from previous studies of the e#ective interactions
of like-charged side chains in the UNRES force field.80 While a
direct comparison between values of κ−1 as used in SUGRES-1P
and actual ionic strength of solutions cannot be made due to the
implicit nature of the solvent in the UNICORN CG model, the
value of κ can be expected to increase with the square of ionic
strength, as can be deduced from eq 15.

The appropriate weights of the energy terms from eq 1, as well
as the optimal value of the Debye−Hückel screening factor, were
determined empirically using HP of three di#erent lengths (HP
dp12, HP dp24, and HP dp68). For each e#ective-energy term,
the corresponding weight was increased from 1 to 10 with
increments of 1. At the same time, for each examined set of
energy term weights, the value of the κ parameter was increased
from 0.0 to 1.0 with increments of 0.1, as detailed in Table S1,
emulating the increase of salt concentration.

Canonical Langevin dynamics simulations of each HP
molecule were conducted with the SUGRES-1P force field for
all combinations of e#ective energy-term weights and κ values
without any restraints imposed on the size of the molecule,
starting from the extended conformation. The time step size
stems from the energy and distance units conversion from kcal/
mol and Å, respectively (molecular time unit). Previous
publications have investigated the influence of the step length
used in the MD algorithm of the UNRES force field,81,82

especially in the context of energy drift in the CG simulations.
The time step equal to 4.89 fs was recommended as a safe value
for the stability of the MD algorithm.82 To obtain approximately
1 μs real time per simulation, the simulations in our work were
therefore carried out for 2,000,000 steps per simulation. The
RMSD of the HP molecules in reference to the starting
structures has been inspected to ensure the convergence of the
MD simulations. The EED and radii of gyration (Rg) of the
obtained HP conformations were compared to experimental
data.74,75

All CG simulations have been conducted at T = 300 K. Due to
the dependence of the energy function employed by the
SUGRES-1P force field on the temperature, a change of the
simulation temperature would likely a#ect the obtained results
and the choice of optimal parameters. Nevertheless, all
simulations were conducted at T = 300 K as it represents a
temperature close to the physiological temperature and
corresponds to the experimental conditions employed most
commonly in experiments, including the ones we used as a
reference for our data.74

2.4. CG Simulations of Short and Long Free HP
Molecules for Selected Weights of E5ective Energy
Terms and Selected Values of κ. Canonical Langevin CG
dynamics were conducted for HP dp6 to dp68 using three
combinations of κ and weights of the e#ective energy terms:

1. κ2 and electrostatic interaction energy weight (weel) equal
7,

2. κ7 and electrostatic interaction energy weight (weel) equal
7,

3. κ7 and virtual bond-stretching energy weight (wbond) equal
4.

The trajectories comprised 2,000,000 steps with a 4.89 fs step
length. The EED and radii of gyration (Rg) of the obtained HP
conformations were compared to experimental data.74,75 The
overall conformations of CG HP dp18, dp24, dp30, and dp38
were compared to the conformation obtained by ref 74 using
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constrained scattering modeling based on the NMR structure of
HP.25

2.5. Visualization and Analysis. The CG conformations of
HP were visualized using VMD83 and analyzed using the cpptraj
module of AMBER.77 Comparisons of EED andRg values as well
as their visualization were performed using R.84 Clustering of
frames of the CG trajectory has been performed using the
DBSCAN85 algorithm using the cpptraj module of AMBER77

with a minimum cluster size of 2 and distance cuto# of 4 Å.

3. RESULTS AND DISCUSSION

3.1. Estimation of Energy Term Weights and the

Debye−Hückel Screening Factor. An initial CG simulation
of free HP using default e#ective-energy term weights and
parameters determined by refs 67 and 73 did not yield
satisfactory results. The HP molecules formed tight coils,
which are not likely to correspond to in vivo conformations.

The optimal weights of the e#ective energy terms from eq 1 as
well as the optimal value of the κ parameter accounting for

Figure 2. Dependence of the EED and the radius of gyration (Rg) on the energy term weight and ion concentration expressed by the κ parameter for
HP dp12. The black square corresponds to all weights set to 1 (default) while colored circles (color legends shown below the graph) correspond to
varying a given weight from 1 to 10 with a step of 1. See eq 1 and the text below this equation for the energy-term and energy-term-weight symbols. The
experimental values of EED and Rg from refs 74 and 75 are shown as dashed red lines.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00511
J. Chem. Theory Comput. 2023, 19, 6023−6036

6027



counterion screening have been determined empirically by
conducting CG simulations of HP dp12, dp24, and dp68 for all
combinations of energy term weights and κ as described in the
Methodology section. In short, each energy-term weight was
increased from 1 to 10 with a step of 1 while keeping all other
energy-term weights at a default value of 1. For every considered
value of the weights, the value of κ was increased from κ0,
corresponding to a total lack of counterions in the simulated
system, to κ10, as detailed in Table S1. The average EED and Rg

values across the CG simulation trajectory were compared to

experimental values from refs 74 and 75 in order to determine

which combination of weights and κ resulted in conformations

with characteristics most similar to the experimental HP

conformations. Figures 2−4 summarize the findings for HP

dp12, dp24, and dp68 for κ0 and κ10, which correspond to the

two extremes of the tested values, i.e., a complete lack of ions and

high salinity of the simulated system.

Figure 3. Dependence of the EED and the radius of gyration (Rg) on the energy term weight and ion concentration expressed by the κ parameter for
HP dp24. The black square corresponds to all weights set to 1 (default) while colored circles (color legends shown below the graph) correspond to
varying a given weight from 1 to 10 with a step of 1. See eq 1 and the text below this equation for the energy-term and energy-term-weight symbols. The
experimental values of EED and Rg from refs 74 and 75 are shown as dashed red lines.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00511
J. Chem. Theory Comput. 2023, 19, 6023−6036

6028



The increase of the κ parameter, corresponding to an increase
in the ion concentration of the implicit solvent, led to a decrease
in the EED and Rg of the three examined HP molecules. The
same e#ect, i.e., the adoption of more coiled conformations, was
achieved by increasing the weight of the torsional energy term.
On the other hand, more elongated molecules were obtained by
increasing the weight of the electrostatic energy term. Such
conformations were also characterized by a larger radius of
gyration.

Depending on the chain length of the analyzed HP molecules,
the structures obtained from CG simulations were in good
agreement with experimental data at di#erent ion concen-
trations.74,75 Interestingly, the experimental EED of the short
HP dp12 lied within the range of achievable values for
simulations conducted in the absence of ions (i.e., for κ0). The
percentage of error (PE) of EED ranged from 75.3% below to
73.0% above the experimental value of 60 Å. In contrast, the
EED of CG HP dp12 simulated in κ10 achieved values close to
the experimental EED only in the case of very high weights of the

Figure 4. Dependence of the EED and the radius of gyration (Rg) on the energy term weight and ion concentration expressed by the κ parameter for
HP dp68. The black square corresponds to all weights set to 1 (default) while colored circles (color legends shown below the graph) correspond to
varying a given weight from 1 to 10 with a step of 1. See eq 1 and the text below this equation for the energy-term and energy-term-weight symbols. The
experimental values of EED and Rg from refs 74 and 75 are shown as dashed red lines.
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electrostatic energy term, with the closest value lying 2.9% below
the experimental EED. While less pronounced than in the case of
EED, the same can also be observed for the Rg of HP dp12. The
experimental EED and Rg of HP dp24 were within the ranges of
EED and Rg values of the simulated HP molecules for all the
considered κi values. In general, the obtained HP dp68
conformations were characterized by an EED and Rg of the
chain closer to the experimentally determined EED and Rg in
higher ion concentrations compared to the shorter HP
molecules. The long HP dp68 chains have a higher propensity
for forming coiled conformations owing to their length; hence,
the EED of the simulated chain is probably controlled less by the
repulsive electrostatic forces and more by the increased
flexibility of the virtual bonds and virtual bond angles caused
by an increased weight of the bond stretching and torsional angle
deformation energies.

The need for the adjustment of the energy-term weights is
evident, as the use of default weights resulted in either too
compact or too extended molecules compared to the
experimentally determined conformations. At the same time,
the di#erent preferences for ion concentration and energy term
weights for short and long HP chains highlight the challenge of
finding one universal set of parameters and weights for all
lengths of HP. The choice of optimal energy-term weights and κi
employed in this study relied on an empirical approach that
resulted in a set of parameters enabling the simulated HP
molecules to adopt conformations similar to the ones observed
in experiments (e.g., in ref 74). While this approach proved
successful in this study, due to the interdependence of the
parameters of the force field, more advanced optimization
techniques may be applied in future developments of the
SUGRES-1P force field. Recent research showed the successful
application of a range of sophisticated optimization approaches,
including a variety of machine-learning algorithms.86−94 While
such complex parametrization techniques are without a doubt an
interesting approach in possible future developments of the
SUGRES-1P force field, for the aim of proof of concept of this
study, we have restricted ourselves to the empirical approach.
For this purpose, we have determined 10 combinations of
energy term weights and κi for each of the three tested HP
lengths that resulted in the best agreement with experimental
EED and Rg values from refs 74 and 75 (detailed in Tables S2−

S4).
Simulations at lower ion concentrations (κi ranging from κ0 to

κ5) together with an increased weight of the electrostatic energy
term (weel from 3 to 10) resulted in only small discrepancies
between the experimental EED and the EED of CG HP dp12
molecules (Table S2). The percentage error of the EED of CG
molecules ranged from 1.6% below to 1.9% above the
experimental value, with the closest EED lying just 0.2% above
the experimental EED in the case of κ2 andweel equal 7. TheRg of
the conformation obtained in simulations with these settings
were, however, higher than the corresponding experimental Rg

values (discrepancies within 12.6% of the experimental EED
value). In order to reduce the di#erence between the CG Rg and
the experimental Rg, simulations had to be conducted at low ion
concentrations (κ0 to κ6) together with the electrostatic energy
term weights between weel = 2 and weel = 6. While reducing the
percentage error of Rg values to a maximum of 2.2%, this
increased the discrepancies in the EED values (a percentage
error of the values of up to 17.3%). Consequently, the HP dp12
molecules simulated in settings better fitted to replicate

experimental Rg values were shorter than the HP molecules
studied by ref 74.

The 10 HP dp24 conformations with EED values closest to
the experimental lengths were obtained from CG simulations in
a larger range of κi values than in the case of HP dp12 (κi ranging
from κ0 to κ10). The simulated molecules were characterized by
EED lying within 1.5% of the experimentally determined value.
When the EED values of the simulated molecules were closer to
the experimental EED values, the Rg values were below the
experimentally determined Rg values (percentage error up to
26.1% of the experimental value). In order to achieve Rg values
closer to those determined by ref 74, the modification of either
the virtual bond-stretching energy term weight (wbond from 2 to
4), the weight of the van der Waals interaction energy (wvdw

equal either 4 or 10), or the use of default energy term weights in
a low ion concentration (κ2) was necessary. As a consequence,
however, the HP molecules were shorter than the experimen-
tally- determined conformations (up to 21.8% shorter than the
experimental EED). It is important to note that while the EED
and Rg are closely related measures; they describe di#erent
aspects of the size of polymer chains. For instance, a coiled
polymer chain may be characterized by a small EED, owing to
the close location of its ends, but a larger Rg value due to the
overall volume of the coiled chain. Consequently, an
inconsistency in the increase rate of the EED and Rg values of
the simulated molecules, depending on the changes of the
e#ective-energy weights and κi, could be observed.

Although a wide range of κi values enabled HP dp68 to
achieve EED close to the experimental values, a predominance
of higher κi among the 10 best combinations of κi and energy
term weight could be observed. The conformations obtained
from the CG simulations lied within the close range of the
experimental EED (the percentage error of the EED lied at and
below 0.8% for the 10 best combinations of energy weights and
κ). The modification of the virtual bond stretching energy term
weight was the most prevalent modification among those
resulting in EED values closer to the experimental EED. The HP
dp68 conformation characterized by a Rg closest to the
experimental Rg, as determined by ref 75, was obtained by
conducting CG simulations without the presence of ions in the
implicit solvent together with a modification of the torsional
energy term weight to wtor = 8 (percentage error 0.6%). This
resulted in a more compact and coiled chain, yet at the same
time flexible in the context of the rotation of the virtual bonds.
The remaining combinations of parameters among those
resulting in a better agreement of experimental and theoretical
Rg (percentage error within 1.6%) comprised modifications of
the virtual bond stretching energy weights (wbond from 6 to 10)
in a wide range of κ values (κ0 to κ10). As was the case for HP
dp12 and dp24, this resulted in a larger di#erence in EED values
between the experimentally studied and simulated HP dp68
molecules (percentage error up to 21.1%).

Assuming that HP dp12 is a representative of shorter chains of
HP, HP dp68�representative of long HP chains, and HP dp24
of medium-length chains, several observations can be made from
the conducted analyses. Compared to medium-length and long
HP, HP dp12 exhibits a greater tendency to adopt extended
conformations. Unsurprisingly, the high importance of the
repulsive electrostatic interactions between the CG sugar
residues seems to be the most important energy term for HP
dp12, causing the extension of the HP chain. While HP dp24
achievedRg and EED close to experimental values for all tested κi
values, provided the appropriate modification of the energy term
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weights, HP dp68 showed a slight preference for higher ion
concentrations, corresponding to more compact conformations.
The energy term most important to achieve conformations of
HP dp68 resemble the experimental ones was the virtual bond
stretching energy. Taken together with the importance of the
high torsional energy term weight in obtaining conformations of
Rg comparable to experimental data, this suggests a more
dynamic and flexible behavior of the long HP chains compared
to the shorter HP molecules.

At the same time, it is important to highlight the possible bias
toward more coiled conformations of the molecules studied due
to the origin of the used parameters. The initial parameters used
in the e#ective energy terms were determined based on all-atom
MD simulations of HP using the GLYCAM06 force field and the
TIP3P explicit water model.73 However, the limitations of
di#erent water models in all-atom simulations of GAGs have
been demonstrated in some studies: TIP3P may not reproduce
the charge distribution with the same quality as more complex
solvent models and therefore result in highly bent conformations
of HP and other GAGs.95,96 This is likely caused by the
accumulation of counterions near the GAG molecules, which
enabled the relatively close contacts between sugar residues.
Therefore, the tendency of HP to adopt coiled and bent
conformations when simulated in the CG SUGRES-1P force
field may be influenced by the origin of the parameters of the
force field used to obtain them.73

The length, flexibility, and overall shape of HP chains are
important to ensure the formation of correct conformations and
allow binding to proteins. The di#erences between experimental
values of both EED and Rg and those of the CG molecules
became more apparent with increasing chain length. The Rg of
the tested HP molecules appeared to be more robust than the
EED, i.e., it did not deviate as strongly from the experimental
values for molecules simulated using combinations of energy
term weights and κ optimized for a better agreement of the EED.
Therefore, the parameters for subsequent analyses were chosen
among those combinations of energy term weights and κi, which
resulted in HP conformations characterized by EED close to the
experimental chain lengths. As a result, three combinations of κi
and energy term weights were chosen, each corresponding to the
optimal parameters for HP dp12, dp24, and dp68: κ2 and weel =
7, κ7 and weel = 7, and finally κ7 together with wbond = 4.

3.2. CG Simulations of Short and Long Free HP
Molecules for Selected Weights of E5ective Energy
Terms and Selected Values of κ. Simulations of HP of length
dp6 to dp68 were conducted in the SUGRES-1P force field using
the three combinations of κi and energy term weights mentioned
in the previous subsection. The EED of the obtained HP
molecules was plotted as a function of the degree of
polymerization of HP chains (Figure 5). As could be expected,
the parameter set, which previously was optimal for HP dp12,
also proved to be better in the simulation of shorter HP chains.
The di#erence in the experimental EED and the EED of CG HP
was the smallest for this set of parameters compared to the other
parameter sets for HP dp6 and HP dp12 (percentage errors of
20.4 and 0.8% for HP dp6 and dp12, respectively; Table S1).
The conformations of medium-long HP molecules (dp18 and
dp24) had EED values closest to the experimental ones with
parameters optimal for HP dp24 (percentage error of 0.8% for
HP dp18 and 0.4% for HP dp24; Table S5). The EED of HP
dp30 was estimated with roughly the same percentage error by
both the HP dp24-fitted and HP dp68-fitted parameter
combinations, with an error of 16.5% for κ7 with weel = 7 and

an error of 12.0% for κ7 and wbond = 4. This was also the case for
HP dp36, where the percentage error between the experimental
and theoretical EED was equal to 7.8% when using either of the
aforementioned parameter combinations. Interestingly, the best
parameter combination in terms of agreement of experimental
and theoretical EED of HP dp32 was the HP dp12-fitted
combination of κ2 and weel = 7. Both HP dp48 and HP dp68
exhibited a better agreement with the experimentally
determined EED when simulated using parameters estimated
from tests using HP dp68 (percentage errors of 9.0 and 0.1% for
HP dp48 and dp68, respectively).

The Rg of the short HP dp6 was underestimated in all three
tested combinations of κi and weights (Table S6), with a
minimum of 30.5% error in the value of Rg in the case of HP
dp12-fitted parameters. In the case of HP dp12, the best
parameter combination was κ7 with weel = 7, resulting in only
3.9% of error above the experimentally determined value of Rg.
For all other HP lengths (HP dp18 to dp68), the best agreement
with experimental Rg was obtained when simulating the

Figure 5. Dependence of the end-to-end distance (EED) (a) and the
radius of gyration (Rg) (b) on the e#ective-energy term weight and ion
concentration expressed by the κ parameter for HP dp from 6 to 68.
Black points correspond to the experimental values from refs 74 and 75;
standard deviation of the experimental values are represented by black
bars where available. The EED and Rg values obtained by the
modification of the weights and κ are shown as colored points, with a
standard deviation represented by bars of corresponding color.
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molecules using κ7 and wbond = 4. For HP dp18, dp24, and dp32,
the optimal parameter combination underestimated the Rg of
the simulated chains relative to the experimental Rg (percentage
errors of 12.3, 3.8, and 7.2% for dp18, dp24, and dp32,
respectively). In simulations of HP dp30, dp36, dp48, and dp68,
the Rg of the obtained conformations lied above the
experimentally determined values (percentage errors of 7.2%
for HP dp30, 16.3% for HP dp36, 12.0% for HP dp48, and 8.7%
for HP dp68). It seems, therefore, that the conformations of HP
obtained by simulations using the CG SUGRES-1P force field
would be able to reproduce either the degree of extension of the
chains, as expressed by the EED, or their radius of gyration, but
not both at the same time. In general, the HP dp12-fitted
parameters caused the HP molecules to adopt more extended
chains, characterized by a higher Rg. The shorter, more coiled
chains obtained by conducting the CG simulations with the
dp68-fitted parameters were a good choice for the longer chains
(from HP dp18 to dp68). The parameters that seemed like a
good “middle ground” when considering the agreement with
experimental EED resulted in a small di#erence in the Rg values
of experimentalRg and theRg of the simulated molecules only for
HP dp12.

The structures obtained by the CG MD simulations were
clustered using the DBSCAN algorithm to identify representa-
tive conformations for particular κi and energy term weights, as
visualized in Figure 6. The simulated HP molecules adapted
coiled conformations independently of the parameter combi-
nation used in the CG simulations. In most of the simulations,
only one conformation cluster could be identified due to the
similarity of the sampled conformations. Importantly, in all three
simulation settings and for all of the identified cluster
representatives, a kink in the chain appeared for HP longer
than dp14, corresponding to the kink observed experimentally,
e.g., in ref 74. However, using κ2 and weel = 7, fitted for shorter
HP chains, the kink became less pronounced for longer HP
molecules. At the same time, the overall shape of the other HP
molecules did not seem qualitatively too di#erent between the
parameters fitted for medium-long and those for long HP chains
(κ7 and weel = 7). The representative conformations have been
compared with the experimentally determined conformations of
HP deposited in the RCSB PDB under the IDs: 1IRI, 1IRJ,
1IRK, and 1IRL,74 visualized in the SUGRES-1P CG
representation, as shown in Figure 6. A striking similarity in
the overall shape of the chains of CG HP can be observed�

Figure 6.Representative conformations of the CG trajectories of HP conducted using κ2 withweel = 7, κ7 withweel = 7, and κ7 andwbond = 4, visualized in
trace representations, colored in blue. Additionally, the CG SUGRES-1P representation of the experimentally determined conformations of HP74 of
HP dp18 (PDB ID: 1IRI), dp24 (PDB ID: 1IRJ), dp30 (PDB ID: 1IRK), and dp36 (PDB ID: 1IRL) in trace representation.
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while the simulated chains appear to be slightly more extended
than their experimental counterparts, the key feature of the
chains, i.e., the kink in the structure, is well preserved in the CG
molecules.

Table S7 details the root-mean-square deviation (RMSD)
calculated for O4 atoms of the CG HP structures in reference to
the first model in the conformations of HP dp18, dp24, dp30,
and dp36 in PDB entries 3IRI, 3IRJ, 3IRK, and 3IRL.74 The
variety of structures obtained from CG simulations lies within
the range of the experimentally determined diversity of the
dynamic HP molecules. In the case of HP dp18, the RMSD
between the ensemble of structures in PDB ID 3IRI74 reached
up to 7.6 Å, which is only 0.3 Å less than the mean RMSD
between all of the frames of the CG simulation of HP in
reference to the models in 3IRI. This di#erence in RMSD values
increases with the increasing length of the HP chain; however, it
remains relatively small. The RMSD obtained during CG
simulations in reference to the models in PDB entry 3IRJ is 10.3
Å (Table S7), which is 2.7 Å larger than the RMSD between the
experimentally determined conformations in PDB 3IRJ.74 In the
case of HP dp30 and dp36, the RMSD between the structure
models in the respective PDB entries ranged up to 10.1 and 14.5
Å, while the mean RMSD of the HP structures obtained by CG
simulations calculated in reference to the models in the
respective PDB entries lies at 15.2 and 18.6 Å, respectively.
This shows that the CG simulations of the HP chains in the
SUGRES-1P force field were able to capture the dynamic
behavior of the HP molecules approximately within the ranges of
the experimental diversity of HP conformations.74 It is
important to note that the results of the CG simulation in the
SUGRES-1P force field are based purely on theoretical
approaches and no constraints based on experimentally
determined EED were imposed on the simulated HP chains
during the CG simulations. Taking all comparisons of the EED,
Rg, and overall shape of the simulated chains into account, κ7

together with weel = 7 is likely a good combination of parameters
that can be used for the simulation of both short and long HP
chains.

4. CONCLUSIONS

We have extended the SUGRES-1P CG model to the simulation
of free HP chains. The e#ective interaction energy function has
been modified compared to ref 73 by extracting the electrostatic
interaction energy term from the sum containing all other
interaction energies of two sugar residues to enable a direct
modification of the corresponding electrostatic energy term
weight. This enabled us to obtain more extended HP chain
conformations characterized by remarkable similarity to the
experimentally determined HP molecules. The estimation of the
energy term weights and the κi parameter, describing the ion
concentration of the simulated system, enabled us to identify the
most important elements of the e#ective energy function specific
to HP chains of di#erent lengths. The results suggest that long
HP molecules most likely adopt more coiled conformations,
governed predominantly by the electrostatic interaction energy
of the charged HP residues. The SUGRES-1P module is fully
compatible with the UNICORN model of other biomacromo-
lecule types, consequently providing the potential for simulating
and analyzing their interactions with HP. The next step in our
work is to thoroughly explore the interaction between HP and
particular proteins, providing a significant approach to model
large protein systems that contain GAGs and will prove useful in
the simulation of the corresponding key biological phenomena,

such as collagen reorganization,97,98 the maintenance of protein
gradients in the presence of GAGs,99−102 and GAG-induced
amyloidogenesis.103,104 The inclusion of parameters for other
types of GAGs in the CG SUGRES-1P model will be addressed
in future works.
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Moussaoui, M.; de Paz, J. L.; Angulo, J.; Nieto, P. M.; Jiménez-Barbero,
J.; Boix, E.; Bruix, M. Insights into the Glycosaminoglycan-Mediated

Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by
NMR. ACS Chem. Biol. 2013, 8, 144−151.

(27) Sanderson, P. N.; Huckerby, T. N.; Nieduszynski, I. A.
Conformational equilibria of alpha-L-iduronate residues in disacchar-
ides derived from heparin. Biochem. J. 1987, 243, 175−181.

(28) Künze, G.; Köhling, S.; Vogel, A.; Rademann, J.; Huster, D.
Identification of the Glycosaminoglycan Binding Site of Interleukin-10
by NMR Spectroscopy. J. Biol. Chem. 2016, 291, 3100−3113.

(29) Wu, L.; Viola, C. M.; Brzozowski, A. M.; Davies, G. J. Structural
characterization of human heparanase reveals insights into substrate
recognition. Nat. Struct. Mol. Biol. 2015, 22, 1016−1022.

(30) Shaya, D.; Tocilj, A.; Li, Y.; Myette, J.; Venkataraman, G.;
Sasisekharan, R.; Cygler, M. Crystal structure of heparinase II from
Pedobacter heparinus and its complex with a disaccharide product. J.
Biol. Chem. 2006, 281, 15525−15535.

(31) Capila, I.; Hernáiz, M. J.; Mo, Y. D.; Mealy, T. R.; Campos, B.;
Dedman, J. R.; Linhardt, R. J.; Seaton, B. A. Annexin V−Heparin
Oligosaccharide Complex Suggests Heparan Sulfate−Mediated
Assembly on Cell Surfaces. Structure 2001, 9, 57−64.

(32) Shao, C.; Zhang, F.; Kemp, M. M.; Linhardt, R. J.; Waisman, D.
M.; Head, J. F.; Seaton, B. A. Crystallographic analysis of calcium-
dependent heparin binding to annexin A2. J. Biol. Chem. 2006, 281,
31689−31695.

(33) Munakata, H.; Takagaki, K.; Majima, M.; Endo, M. Interaction
between collagens and glycosaminoglycans investigated using a surface
plasmon resonance biosensor. Glycobiology 1999, 9, 1023−1027.

(34) Théoleyre, S.; Kwan Tat, S.; Vusio, P.; Blanchard, F.; Gallagher,
J.; Ricard-Blum, S.; Fortun, Y.; Padrines, M.; Rédini, F.; Heymann, D.
Characterization of osteoprotegerin binding to glycosaminoglycans by
surface plasmon resonance: Role in the interactions with receptor
activator of nuclear factor κB ligand (RANKL) and RANK. Biochem.
Biophys. Res. Commun. 2006, 347, 460−467.

(35) Rusnati, M.; Bugatti, A. Surface Plasmon Resonance Analysis of
Heparin-Binding Angiogenic Growth Factors.Methods Mol. Biol. 2016,
1464, 73−84.

(36) Yu, Y.; Zhang, F.; Renois-Predelus, G.; Amster, I. J.; Linhardt, R.
J. Filter-entrapment enrichment pull-down assay for glycosaminoglycan
structural characterization and protein interaction. Carbohydr. Polym.
2020, 245, 116623.

(37) Przybylski, C.; Gonnet, F.; Saesen, E.; Lortat-Jacob, H.; Daniel,
R. Surface plasmon resonance imaging coupled to on-chip mass
spectrometry: a new tool to probe protein-GAG interactions. Anal.
Bioanal. Chem. 2020, 412, 507−519.

(38) Liu, X.; Sun, C.; Zang, H.; Wang, W.; Guo, R.; Wang, F. Capillary
electrophoresis for simultaneous analysis of heparin, chondroitin sulfate
and hyaluronic acid and its application in preparations and synovial
fluid. J. Chromatogr. Sci. 2012, 50, 373−379.

(39) Loegel, T. N.; Trombley, J. D.; Taylor, R. T.; Danielson, N. D.
Capillary electrophoresis of heparin and other glycosaminoglycans
using a polyamine running electrolyte. Anal. Chim. Acta 2012, 753, 90−

96.
(40) Eldridge, S. L.; Higgins, L. A.; Dickey, B. J.; Larive, C. K. Insights

into the capillary electrophoresis separation of heparin disaccharides
from nuclear magnetic resonance, pKa, and electrophoretic mobility
measurements. Anal. Chem. 2009, 81, 7406−7415.

(41) Lin, L.; Liu, X.; Zhang, F.; Chi, L.; Amster, I. J.; Leach, F. E.; Xia,
Q.; Linhardt, R. J. Analysis of heparin oligosaccharides by capillary
electrophoresis-negative-ion electrospray ionization mass spectrome-
try. Anal. Bioanal. Chem. 2017, 409, 411−420.

(42) Samsonov, S. A.; Pisabarro, M. T. Computational analysis of
interactions in structurally available protein-glycosaminoglycan com-
plexes. Glycobiology 2016, 26, 850−861.

(43) Pepi, L. E.; Sanderson, P.; Stickney, M.; Amster, I. J.
Developments in Mass Spectrometry for Glycosaminoglycan Analysis:
A Review. Mol. Cell. Proteomics 2021, 20, 100025.

(44) Zappe, A.; Miller, R. L.; Struwe, W. B.; Pagel, K. State-of-the-art
glycosaminoglycan characterization. Mass Spectrom. Rev. 2022, 41,
1040−1071.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00511
J. Chem. Theory Comput. 2023, 19, 6023−6036

6034



(45) Pomin, V. H.; Wang, X. Glycosaminoglycan-Protein Interactions
by Nuclear Magnetic Resonance (NMR) Spectroscopy. Molecules
2018, 23, 2314.

(46) Skidmore, M. A.; Guimond, S. E.; Rudd, T. R.; Fernig, D. G.;
Turnbull, J. E.; Yates, E. A. The activities of heparan sulfate and its
analogue heparin are dictated by biosynthesis, sequence, and
conformation. Connect. Tissue Res. 2008, 49, 140−144.

(47) Karplus, M.; McCammon, J. A. Molecular dynamics simulations
of biomolecules. Nat. Struct. Biol. 2002, 9, 646−652.

(48) Hollingsworth, S. A.; Dror, R. O. Molecular dynamics simulation
for all. Neuron 2018, 99, 1129−1143.
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ABSTRACT: Heparin is a natural highly sulfated unbranched
periodic polysaccharide that plays a critical role in regulating
various cellular events through interactions with its protein targets
such as growth factors and cytokines. Although all-atom
simulations of heparin-containing systems provide valuable insights
into their structural and dynamical properties, long chains of
heparin participate in many biologically relevant processes at much
bigger scales and longer times than the ones which all-atom MD is
able to e�ectively deal with. Among these processes is the
establishment of chemokine gradients, amyloidogenesis, or collagen
network organization. To address this limitation, coarse-grained
models simplify these systems by reducing the number of degrees
of freedom, allowing for the e!cient exploration of structural
changes within protein/heparin complexes. We introduce and validate the accuracy of a new coarse-grained physics-based model
designed for studying protein/heparin interactions, which has been incorporated into the UNRES software package. The e�ective
energy functions from UNRES and SUGRES-1P have been employed for the protein and heparin components, respectively. A good
agreement between the obtained coarse-grained simulation results and experimental data confirms the suitability of the combined
coarse-grained UNRES and SUGRES-1P model for in silico analysis of complex biological phenomena involving heparin, spanning
time scales and molecular system sizes not attainable by conventional atomistic molecular dynamics simulations.

1. INTRODUCTION

Glycosaminoglycans (GAGs) are a class of long linear anionic
polysaccharides composed of repeating disaccharide units.1

GAGs are primarily located in the extracellular matrix (ECM),
where they form a dynamic sca�old, regulating cell behavior by
interacting with growth factors and cytokines.2,3 The self-
organization of ECM components, facilitated by GAGs, is
crucial for tissue development and wound healing.4 GAGs also
play a vital role in maintaining protein gradients in living
organisms, influencing embryonic development and other
processes through interactions with growth factors.5−9 Addi-
tionally, they contribute to biomolecular organization,
impacting protein assembly and self-organization at cell
surfaces,10 particularly in cell signaling11 and the modulation
of protein aggregation in neurodegenerative diseases.12−15

Heparin (HP), the most negatively charged GAG,1 is
recognized for its anticoagulant and antithrombotic e�ects.16,17

Through interactions with a wide range of protein classes, HP
also exhibits anti-inflammatory,18 antiviral,19 and anticancer
e�ects.20

Computational analysis and simulation of protein/HP
complexes is crucial for understanding their dynamic behavior
and interactions, alongside experimental techniques. All-atom
(AA) molecular dynamics (MD) simulations, which capture
the interactions between individual atoms,21 have been

successfully applied for modeling biomolecular systems
involving HP polysaccharide chains.22−25 However, HP chains
can achieve sizes of on average 5−20 kDa in vivo,26,27

corresponding to a degree of polymerization (dp) of
approximately 10−100.28 Their length and flexibility result in
a large conformational space that may be undersampled using
classical AA MD approaches.29 For example in AA simulations
of various protein/GAG complexes, the average RMSD of the
GAG between the experimental and simulated structure equals
7.9 ± 3.3 Å for simulations performed using the TIP3P explicit
water model.30 This also indicates that protein/GAG systems
should be simulated without any restraints as they typically
undergo large conformational changes. Additionally, many
biological processes involving protein/GAG complexes occur
over extended time scales, which necessitates the use of coarse-
grained (CG) approaches.
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In CG methods, groups of atoms are merged into larger
pseudoatoms representing individual interaction sites. The
group selection is based on criteria such as chemical similarity
or spatial proximity. This simplification allows to e�ectively
capture essential system features while minimizing computa-
tional costs, thereby enabling the extensive analysis of
biologically relevant processes, such as protein binding and
unbinding.
Despite the biological importance of GAGs, only a few CG

models exist for these complex molecules, with the first one
introduced by Bathe et al. in 2005 for modeling chondroitin
sulfate and hyaluronic acid.31 Sattelle et al. successfully applied
their CG model of heparan sulfate to study proteoglycans.32

Samsonov et al.33 proposed a more detailed CG model for 17
di�erent GAG types, utilizing 28 pseudoatoms to accurately
represent various functional groups and achieving good results
in modeling GAG chains of various lengths and characteristics.
Recently, the MARTINI CG force field has been extended to
the inclusion of several types of GAGs and was successful in
the reproduction of the thermodynamic and conformational
properties of GAGs.34

In this work, we present the integration of protein/HP
interaction potentials into the UNICORN (unified coarse-
grained) physics-based model,35 combining the UNRES CG
model for proteins and SUGRES-1P model for HP. The
reduction of the interacting residues to either two (in the case
of proteins) or one (in the case of polysaccharides) CG
interaction sites per monomeric unit significantly reduces the
number of degrees of freedom in the studied systems. We
analyzed the dynamics of three protein/HP complexes using 1
μs CG MD simulations in UNICORN, followed by
comparison of the results with the corresponding crystallo-
graphic structures: (i) basic fibroblast growth factor (bFGF)
with HP dp6, (ii) acidic fibroblast growth factor (aFGF) dimer
with HP of varying degrees of polymerization, and (iii) a
hepatocyte growth factor/scatter factor (HGF/SF) splice
variant with HP dp6. We mainly focused on crystal structures
as the other types of structural data are not available.29

Both bFGF and aFGF, known HP-binding proteins, regulate
various cellular processes, including cell proliferation, di�er-
entiation, and angiogenesis, by interacting with cell surface
receptors.36−40 HGF/SF, a multifunctional protein, is involved

in cell growth,41,42 cell motility,43 and morphogenesis44−46 and
binds HP, which influences its dimerization and activity.47−49

NK1 is a natural splicing variant of HGF/SF, which includes its
N-terminal (N) and the first kringle (K1) domains.50 It has
been observed to exist in a monomeric state in solution in the
absence of HP and to adopt a dimeric structure in the presence
of HP.48,51

Our CG simulations of the protein/HP complexes high-
lighted the flexibility of the HP oligosaccharide and the HP-
binding residues. The identified binding sites aligned well with
those characterized by experiments, suggesting the predictive
power of the UNRES and SUGRES-1P models for protein/HP
complexes over extended time scales. The presented CG force
field can be e�ectively utilized for analyzing protein/HP
systems across a broad spectrum of sizes. It can facilitate the
simulation of critical biological processes, including the
reorganization of collagen,52,53 maintenance of protein
gradients,5,7−9 and the formation of amyloid aggregates
induced by GAGs.54,55

2. METHODS

2.1. Structure of the Coarse-Grained Protein/HP
Systems. The protein/HP model utilized in this study
incorporates the UNRES56 representation for proteins and
the SUGRES-1P57 representation for the HP component of
the simulated systems. The solvent is implicitly considered,
influencing the e�ective potentials governing interactions
between CG sites. The energy function integrates UNRES
(Uprot

UNRES) and SUGRES-1P (USUGRES−1P) energies for protein
and HP components, along with interaction energies, as
defined in eq 1. Subsequent sections elaborate on the specific
energy functions employed.

= + +U U U Uprot
UNRES

sugar
SUGRES 1P

prot sugar (1)

For a detailed description of the UNRES and SUGRES-1P
models within the CG UNICORN force field, including a
helpful comparison of the CG structures with the correspond-
ing all-atom representations, we refer the reader to Figure 1 in
Liwo et al.56

2.2. UNRES Model of Polypeptide Chains. In the
UNRES model, the polypeptide chain is reduced to unified

Figure 1. Coarse-grained representation of polypeptide and polysaccharide chains in the UNRES and SUGRES-1P models, respectively.58 The
unified CG peptide groups (p) are represented by a blue filled circle, the unified side-chain beads (SC) by a blue filled ellipsoid. The unified CG
sugar rings of the polysaccharide (S) are shown as red filled ellipsoids. The Cα atoms of the polypeptide and the O atoms of the polysaccharide are
used to define the geometry of the polymer chains and do not function as interaction sites. The virtual bonds connecting the CG beads to the Cα

and O atoms are shown as thick black lines.
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side chains (SC) and peptide groups (p), which function as
interaction sites.56 The p group is located halfway between
consecutive α-carbon atoms (Cα), which are linked by virtual
bonds and used only to determine the geometry of the
polypeptide chain. The unified SCs are represented by an
ellipsoid of revolution connected to the Cα atom by virtual
bonds (Figure 1). Each SC is composed of two interaction
sites, corresponding to a nonpolar part located in the middle of
the SC ellipsoid, and a charged or polar site located at the
“head” of the ellipsoid.
The backbone virtual bond angle between the Ci−1

α , Ci
α and

Ci+1
α atoms is represented by θprotdi

, while the backbone virtual

bond dihedral angle is symbolized by γprotdi
, defined by the Ci−1

α ,

Ci
α, Ci+1

α and Ci+2
α atoms. The location of the center of the

united SCi group with respect to the Ci−1
α , Ci

α and Ci+1
α atoms is

defined by the angles αprotdi
and βprotdi

.

The UNRES force field employs an e�ective energy function
expressed as a cluster-cumulant expansion of the potential of
mean force for a protein in an aqueous environment59 (eq 2):
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The energy terms are represented by the symbol U, where
USC diSCdj

is the mean free energy of the hydrophobic and

hydrophilic interactions between SCs and interactions of SCs
with the implicit solvent. Due to the two aforementioned
interaction sites comprising each SC, USC diSC dj

encompasses a

sum of energy terms: the interaction of the charged or polar
parts of the interacting SCs, the interaction of the nonpolar
interaction sites, and energy stemming from the interaction of
the charged/polar and nonpolar sites with the solvent.
Depending on the chemical character of the interacting SCs
(same or oppositely charged, polar, hydrophobic), USC diSC dj

contains the following energy terms: EGBerne (van der Waals
interactions of the nonpolar interaction sites described by the
Gay-Berne potential), ELJ (van der Waals interaction between
charged sites), Eel (electrostatic interactions of charged sites
described by the Coulomb potential), Epol (interaction of
charged/polar with nonpolar sites described by the General-
ized Born model), Epol

GB (polarization of the solvent by the SCs),
ΔFcav

iso (cavity term for charged interaction sites), and ΔFcav
(cavity term for nonpolar interaction sites).60−63

USC dip dj
is the excluded-volume interaction between SCs and

the peptide groups p. The interactions between peptide groups
are split into the Lennard-Jones interaction energy (Up dip dj

VDW) and

the peptide-group-dipole interactions, (Up dip dj

el ), which accounts

for the hydrogen bonds formed between peptide groups. The
dynamic breaking and formation of disulfide bonds is
accounted for by the Ussbond term. The local properties of
the polypeptide chain are accounted for by the backbone
torsional, virtual bond angle bending, side-chain rotamer, and
virtual bond-deformation terms, i.e., Utor(γi, θi, θi+1), Ub(θi),
Urot(θi, αSCi, βSCi) and Ubond(di), respectively. The correct
reproduction of regular α-helical and β-sheet structures is
ensured by the multibody terms, Ucorr

(3) and Uturn
(3) , which describe

the multibody contributions from the coupling between
backbone-local and backbone-electrostatic interactions, and
the correlation contributions that involve 3 consecutive
peptide groups, respectively.
The weight of each energy term is given by wx, and the terms

corresponding to factors of order higher than 1 are additionally
multiplied by the respective temperature factors, defined by eq
3, which reflect the dependence of the first generalized-
cumulant term in those factors on temperature:64

=
[ + ]

{ [ ] + [ ]}
f T

T T T T
( )

ln exp(1) exp( 1)

ln exp ( / ) exp ( / )n n n
o

1
o

1
(3)

where To = 300 K.
In the presented work, all parameters and energy terms

relating to the UNRES representation of proteins were
adopted from previous calibration studies involving proteins
of di�erent structural classes.65

2.3. SUGRES-1P Model of the Polysaccharide Chains.
In the SUGRES-1P model, the polysaccharide chain
representation is reduced to only one CG bead representing
the unified sugar rings (S) (Figure 1), which function as
interaction sites of the sugar molecule. The S residue is
positioned halfway between consecutive glycosidic linkage
oxygen atoms (O) connected by virtual bonds, that serve only
to define the geometry of the virtual chain, as do the Cα’s in
the UNRES model. Each residue is composed of a charged and
uncharged interaction site to account for the anisotropy of the
CG HP residues, as the center of charge is located o� the
geometrical center of the residue. The current implementation
of SUGRES-1P allows modeling HP molecules composed of
N-sulfated and 6-O-sulfated glucosamine (GlcNS6S) and 2-O-
sulfated iduronic acid (IdoA2S). The virtual bond angle θsugdi

corresponds to the angle between three consecutive O atoms,
while the virtual bond dihedral angle γ is defined by two planes
formed by four consecutive O atoms. The e�ective energy
function of the SUGRES-1P force field is expressed by eq 4.
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2 S S
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(4)

The term Ubond(di) accounts for the energetics of the virtual
bond-deformation, where di corresponds to the length of the i-
th virtual bond, Ub(θi) is the virtual bond angle-deformation
term for angle θi, and the virtual bond-torsional energy term
for virtual bond dihedral angle γi is given by Utor(γi, θi−1, θi),
where angles θi−1 and θi are the adjacent virtual bond angles.
The Coulomb (electrostatic) interaction energy between the
charged parts of the interaction sites is expressed by US diSdj

el .
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The term USdiSdj

vdW represents the interaction of the polar and

charged parts of the residue, excluding the Coulombic charge−
charge interactions, as expressed by eq 5:

= + + + + +U E E E F F ES S
vdW

GBerne pol
GB

pol cav cav
iso

LJi j

(5)

EGBerne corresponds to the interaction energy between the
uncharged parts of the interaction sites, modeled by the Gay-
Berne potential.66 Epol

GB gives the contribution to the energy
arising from the polarization of the solvent by charged parts of
the interaction sites, computed using the generalized Born
model. Epol is the polarization energy corresponding to the
interactions between the charged and uncharged parts of the
interaction sites of two sugar residues. The cavity term of the
isotropic charged parts of the interaction sites is expressed by
ΔFcav

iso , while the cavity term of the uncharged parts is calculated
by ΔFcav. The isotropic Lennard-Jones potential, ELJ, is used to
model the van der Waals interaction energy between two polar
parts.
The energy terms are multiplied by the appropriate weights

w as well as, in the case of US diSdj

el , temperature factors f n(T) that

reflect the temperature-dependence of the appropriate e�ective
energy terms. The energy term weights and parameters relating
to the CG model of HP were adopted from our previous work,
wherein parameters were calibrated using HP molecules of
length ranging from dp6 to dp68.67

2.4. E/ective Potentials for the Polypeptide/HP
Interactions. The energy function for protein/HP inter-
actions (Uprot‑sugar) is based on the potentials determined in our
earlier work58 and is expressed by eq 6:

= +U w U w U

i j i j

prot sugar SC S SC S p S pSi j i j

(6)

where USC diSdj
and Up diSdj

are protein side-chain/sugar, and protein

peptide-group/sugar e�ective interaction potentials, respec-
tively. Each term is multiplied by the appropriate weight (wx),
whose values are in the current study optimized in a systematic
manner. As CG force field require calibration,68 to accurately
model the interactions of proteins with HP, we have performed
an adjustment of the energy term weights referring to the
interaction between the CG HP residues and the SC and
peptide groups of the CG protein residues. To this end, we
have incrementally modified the weights by 0.1 within a range
of 0.5 to 1.5. The weight optimization was performed for the
bFGF/HP dp6 complex.
The e�ective energy function for protein/HP interactions

adopts di�erent forms depending on the nature of the
interacting side chains: for charged SCs (both of the opposite
and the same charge as the GAG residues), the interaction
energy equals the sum of the van der Waals, polarization, and
electrostatic interaction energy together with the cavity term
for charged parts of the interaction sites (eq 7)

= + + + +

+ +

U U F F U U

U U

i
SC S SC S

vdW
cav cav

so
SC S
el

polSC S
GB

SC S
pol

SC S
LJ

i j i j i j i j

i j i j (7)

while for uncharged polar and nonpolar SCs, the interaction
energy is reduced to the van der Waals term only:

= +U U F vSC S SC S

vdW

cai j i j (8)

The parameters used (Supporting Information Tables S1−

S3) in the energy function modeling polypeptide/HP
interactions were adopted from Samsonov et al.58 Due to
unphysical values describing the minimum distance between
the charged parts of the interacting beads, these parameters
used in the ΔFcav

iso energy term were adjusted empirically to
obtain realistic results, matching sugar bead sizes comparable
to sizes of HP monosaccharide units as obtained using
crystallographic experiments.69

The stability of MD simulations for protein/HP interactions
was assessed in terms of energy conservation in microcanonical
MD simulations using the bFGF/HP dp6 complex. Temper-
ature conservation was verified by conducting canonical
simulations with the Berendsen thermostat70 implemented
with UNRES at T = 300 K, using the coupling parameter τ =
48.9 fs.
2.5. Coarse-Grained Molecular Dynamics Simulations

of Protein/HP Complexes. To study the dynamics of
protein/HP complexes, we carried out CG MD simulations of
three di�erent proteins complexed with short HP oligosac-
charide chains: (i) monomeric bFGF (PDB ID: 1BFC69), (ii)
dimeric aFGF (PDB ID: 2AXM71), and (iii) the NK1 protein,
a splicing variant of the HGF protein consisting of its N-
terminal (N) and first kringle domain (K1) (PDB ID:
3MKP50). In the case of aFGF, three di�erent ligands were
used: HP dp6 (as in the crystal structure), HP dp8, and HP
dp10. The dp8 and dp10 structures were constructed by
elongating the HP dp6 molecule from the 2AXM crystal
structure by two and four residues using the tleap module of
the AMBER package.72

Energy minimization of each system was carried out using
the SUMSL algorithm73 before performing simulations. For
each system, a series of ten canonical CG MD simulations were
conducted at T = 300 K in implicit solvent. All weights of the
protein/HP interaction energy terms USC diSdj

and Up diSdj
were kept

at the default values of 1.0, while the weights of the e�ective
energy function terms describing the protein and sugar part of
the system were taken from previous studies.65,67 Each MD run
consisted of 2 × 106 steps with a 0.498 fs time step length
(0.01 MTU). he typical time step in UNRES ranges from
0.498 to 4.98 fs (0.01−0.1 MTU). However, based on
additional simulations of the bFGF/HP dp6 system, we
determined that using a 4.98 fs time step led to excessively
high values of electrostatic forces, triggering an automatic
algorithm to reduce the time step and indicating potential
instability in the system. To avoid such instability, we opted for
a conservative 0.498 fs time step in this study. For other
timesteps (0.498, 0.996, and 2.49 fs), no qualitative di�erences
were observed in the contact maps between HP and bFGF. We
thus recommend using timesteps within the 0.498−2.49 fs
range for similar systems. Due to the reduction of the number
of explicitly treated degrees of freedom and smoothing of the
free energy landscape in the CG model, there is approximately
1000 times speed-up in comparison to the AA explicit water
time scales74 for the protein system. Therefore, the CG
simulation time per each simulation run corresponds to
approximately 1 μs AA simulation time. It should be noted that
event based speed up for sugar systems has not yet been
determined. Snapshots were collected every 1000 steps,
yielding a total of 2000 snapshots per trajectory.
2.6. Analysis and Visualization. The CG trajectories

were analyzed by in-house scripts using the Python
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programming language75 as well as the cpptraj module of the
AMBER MD package.72

In order to identify representative structures of the protein/
HP complexes, CG snapshots with dissociated HP ligands
were filtered out. The structures were clustered using the
DBSCAN algorithm,76 with the same clustering parameters
determined from all systems within the study. The minimum
number of data points per cluster (minPts) was set to 10, and
the ϵ parameter, defining the cluster radius, was set to 2.0 Å.
Cluster centers were considered representative structures and
were compared to the crystallographic structures of the
analyzed protein/HP systems using VMD77 and Pymol78

software. The representative structures of proteins were
converted to AA representations using the PULCHRA
software79 for visualization and comparison purposes. Calcu-
lations of root-mean-square deviation (RMSD), root-mean-
square fluctuation (RMSF), and eigenvectors of motion were
conducted using the cpptraj module in the AMBER software.72

Contacts formed between the proteins and HP were evaluated
using the nativecontacts command of the cpptraj module using
a distance cuto� of 8.0 Å between the CG protein and HP
pseudoatoms. Heatmaps depicting contacts were visualized
using Python and the matplotlib library.80 Venn diagrams were
constructed with the aid of the BioVenn81 and Venny82 tools.
The mobility of the proteins and HP chains during the CG
simulations has been analyzed using Principal Component
Analysis (PCA) and in VMD using the ProDy interface83 with
default parameters. For visualization purposes the first
eigenvector is visualized. The scree plots were drawn.

3. RESULTS

3.1. Energy and Temperature Conservation in MD
Simulations. The UNRES/SUGRES-1P CG MD simulations
were assessed for energy and temperature conservation using
the bFGF/HP dp6 system. The total energy during micro-
canonical MD simulations remained stable (Supporting
Information (SI) Figure S1a), while the kinetic and potential
energies fluctuated but maintained a relatively stable sum,
demonstrating the conservation of total energy in the
microcanonical MD simulation.
In temperature conservation tests, the average bath temper-

ature of the CG simulations is narrower than the theoretical
distribution (SI Figure S1b), as expected for the Berendsen
thermostat, yet it maintained the system’s temperature near the
desired value, indicating e�ective temperature control during
the MD simulation.
3.2. Optimization of Energy Term Weights. The

optimal weights were determined by evaluating which settings
decreased both the number of dissociation events of HP from
bFGF and any unbiological structural changes in bFGF
assessed through visual inspection and RMSD analysis (SI
Table S4). These optimized weights were then applied
consistently across all other protein/HP systems analyzed in
the study. The optimal weights were determined to be 1.1 for
both wSC‑S and wp‑S.
3.3. Basic Fibroblast Growth Factor in Complex with

HP dp6. From the performed CG simulations, an ensemble of
structures was derived from trajectories wherein the HP did
not dissociate from the protein, constituting all of the 10 CG
simulations. The system reached convergence in those
trajectories, as evidenced by the change in the RMSD over
time in reference to the initial structure (SI Figures S2 and S3).

The CG structures of the bFGF/HP complex were
clustered, resulting in 5 clusters (SI Figure S4). The binding
sites identified in the cluster representatives 1 through 4 are
similar in shape and size, encompassing largely overlapping sets
of residues (SI Table S3). However, the orientation of HP
within the binding site varies across the di�erent representa-
tives, which underscores the flexibility and adaptability of the
binding site in accommodating the ligand in distinct
conformations. To evaluate the similarity of the obtained
protein structures, the cluster representatives were compared
with the crystal structure using the TM-score84 and GDT-TS85

for Cα atoms (Table 1).

The CG bFGF structure represented by the cluster centroid
of the most populated cluster (65.7% of the CG MD
trajectory), closely resembles the crystal structure of bFGF in
both 3D arrangement and as measured by the TM-score and
GDT-TS. The less populated clusters exhibit lower similarity,
likely due to the flexibility of specific regions of the bFGF
protein. These findings indicate that the CG MD simulation
e�ectively captures the correct structure of the bFGF protein
in complex with HP, along with the dynamic flexibility
observed throughout the simulation and captured by the
clustering in the form of the less populated clusters.
The centroid frame of the most populated cluster was

chosen as the representative CG structure and superimposed
onto the experimental structure of bFGF/HP (PDB ID:
1BFC). To quantify the deviation between the experimental
and the representative CG structure, RMSD calculations were
applied to the protein and HP part, yielding an RMSD of 4.6
and 11.7 Å, respectively.
The HP-binding residues in the representative CG and

crystal structures (Figure 2) comprises 15 polar and charged
residues in both, although the exact composition of the HP-
binding site varies (SI Figure S5). Several experimentally
observed HP-binding residues (Arg-82, Lys-120, Gln-124, Lys-
126, Lys-136)69,86,87 are observed to be in close proximity to
HP in the representative CG frame.
To comprehensively characterize the HP-binding region

established by bFGF, we conducted an analysis on the
frequency of contacts formed between the pseudoatoms of
HP and those of the bFGF protein for the entire trajectory (SI
Figures S6 and S7). While minor di�erences can be observed
between the replicates, all show frequent contacts established
between HP and residues 117 to 138 of bFGF, corresponding
to the same region in close proximity to HP as in the crystal
structure. In most of the MD replicates, contacts could also be
observed for residues 71 to 85, although di�ering in frequency.
These residues form a β sheet not directly interacting with HP
in the crystal structure. Additionally, patches of bFGF residues
ranging from 21 to 51 were found to establish contacts with
HP in a lower intensity for only some of the replicates,

Table 1. TM-Score and GDT-TS Values of the Cluster
Representatives in Reference to the Crystal Structure of
bFGF

TM-score GDT-TS

cluster 1 0.56 0.97

cluster 2 0.32 0.27

cluster 3 0.34 0.32

cluster 4 0.32 0.29

cluster 5 0.35 0.32
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corresponding to regions of bFGF exhibiting the greatest
diversity in contact formation during the MD among the
replicates. While contacts between HP and the experimentally
established binding site were maintained in all of the analyzed
CG trajectories, the considerable flexibility exhibited by both
the HP ligand and the protein itself could be captured by the
CG simulations.
The flexibility of the protein observed in our simulation was

particularly pronounced for the N- and C-termini as well as for
residues Pro-37 to Pro-50, Tyr-74 to Lys-87, and Arg-121 to
Gln-124 (SI Figure S8). In the crystal structure only residues
Arg-124 to Gln-124 and the C-terminus are located near the
HP chain, while in the representative CG structure all four of
the regions can be seen to establish contacts with HP,
indicating increased mobility of those residues to increase the
contact with the GAG.
Reports in the literature present varying evidence on the

conformational changes occurring in the bFGF protein upon
HP binding. Some studies indicate no discernible changes
upon the binding of HP to (dimeric) bFGF,88 while others
suggest small yet consistent alterations in the conformation of
bFGF upon the binding to HP.89 In order to identify the key
motions occurring during the CG simulations, we have
performed an analysis of the eigenvectors associated with the
normal modes of motion of the bFGF/HP dp6 complex using
PCA. This was juxtaposed with a similar investigation
performed on a CG trajectory of the bFGF protein in its
apo form (Figure 3). The bFGF protein was characterized by
significantly less mobility in its apo form compared to the
bFGF/HP dp6 complex, manifesting only a limited set of
motions attributable to a select group of residues. Since the
eigenvalues corresponding to these movements represent
nearly 20% of the variance, the conclusions could be not
fully representative and should be interpreted rather
qualitatively.
This HP-induced mobility of bFGF fragments potentially

contributes to the formation of bFGF complexes with other
proteins.88,90 In the crystal structure of the ternary complex
involving bFGF, FGFR1, and HP, the loop region between
residues Gly-43 and Lys-53 of bFGF is located in close
proximity to and likely interacts with FGFR1.91 Analysis of
cluster representatives reveals that in the second most
populated cluster (SI Figure S4), the loop does not interact
with HP. This observation underscores the loop’s significant

flexibility during simulation. Furthermore, residues Ser-101 to
Tyr-104 along with Ser-109 to Tyr-116 are observed to engage
in interactions with HP within the bFGF/FGFR1/HP
complex, enclosing the HP chain from both sides.
Our findings highlight the dynamic nature of the bFGF/HP

complex, which appear pivotal in facilitating multimerization
and the assembly of higher-order complexes. Previous research
has elucidated how bFGFs form homodimers and tetramers
supported by HP chains.92−94 The dynamic characteristics
observed in our simulations might not be evident in the crystal
structure due to the constraints imposed by crystal packing,
however they are in line with the documented need for
structural flexibility to support the integration of bFGF into
complex assemblies.
3.3.1. Influence of the Starting Position on Complex

Stability. In order to examine the influence of the initial
position of the complex in the CG trajectory on the stability of

Figure 2. (a) Crystal structure of bFGF/HP dp6. (b) The representative frame of the CG trajectory of bFGF/HP dp6. The protein is shown in
cartoon representation, and Cα atoms of charged and polar residues within an 8 Å radius of HP are shown as labeled spheres. HP is shown in
licorice representation.

Figure 3. Motions of bFGF/HP dp6 during the CG simulation
obtained by PCA. The protein is shown in orange licorice
representation, the HP chain is shown in red licorice and sphere
representation. Arrows in cyan represent the motions of every fourth
residue in the dimension of the first principal component (PC1).
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the complex, we have performed CG simulations of the bFGF/
HP complex with the same setup, i.e., parameters and weights,
as previously, but modified the initial frame by shifting the
position of HP (Figure 4). The displacement of the HP

molecule in reference to the crystal structure was measured
using RMSD and equaled 9.2 Å for position 1, 39.9 Å for
position 2, 38.7 Å for position 3, and 38.5 Å for position 4.
Assuming the HP position in the crystal structure

corresponds to the optimal binding pose of HP, we found
that a suboptimal position a�ected the stability of the system.
While in all CG MD trajectories, irrespective of the initial
binding pose, HP was observed to establish contacts with
bFGF, the number of MD trajectories in which it later
dissociated from bFGF increased, as evidenced in Table 2.

3.3.2. bFGF Dimer Stability in the Presence of HP.Multiple
literature sources identify HP as a stabilizing factor for the
bFGF dimer. To investigate the ability of our CG model to
reproduce this phenomenon, we have performed 10 CG
simulation replicates for the bFGF dimer without HP and 10
CG simulation replicates in the presence of HP (starting
structures shown in Figure 5).
The bFGF dimer was observed to spontaneously dissociate

and bind again over the course of the MD trajectories for all of
the replicates. In contrast, in the presence of HP, the two

bFGF monomers bound tightly and the complex was stable
once formed throughout each of the CG trajectories ().
3.4. Acidic Fibroblast Growth Factor in Complex with

HP Chains of Di/erent Lengths. Interactions between HP
and FGF proteins are a�ected by HP chain length, where
specific lengths favor the formation of a stable, functional
FGF/HP complex, underscoring the importance of under-
standing HP length’s role in their interaction for elucidating
molecular intricacies in physiological processes.95−98 We have
conducted CG MD simulations of dimeric aFGF in the
UNICORN force field with HP of three di�erent lengths: dp6,
dp8, and dp10. The obtained structures were compared to
experimental data.71

CG MD trajectories in which HP did not dissociate from the
aFGF dimer were analyzed for stability. The amount of MD
simulations in which HP was found to dissociate from the
aFGF dimer was comparable for all three analyzed HP chain
lengths. In the case of aFGF/HP dp6, 8 out of 10 simulations
showed no dissociation event and were taken for further
analysis. For aFGF/HP dp8, this equaled to 6 out of 10 MD
simulations. For aFGF/HP dp10, 6 out of 10 simulations
showed no dissociation event, however the reassociation of the
aFGF/HP dp10 complex could be observed toward the end of
another CG MD simulation. The flexibility of the HP chain in
the complexes was overall similar, as evidenced by the RMSD
values of the oligosaccharide chains in reference to the first
frame of the MD simulations (SI Figures S10−S15).
Analysis of the three aFGF/HP complexes using PCA

revealed a consistent twisting and squeezing motion, with
monomers rotating in opposite directions and converging
toward the HP chain (SI Figure S17). The magnitude of this
motion was reduced by longer HP chains.
While the overall structure of the complex was maintained in

the CG trajectories, the dimer appeared more compact in the
representative CG frames compared to the crystal structure.
The radii of gyration for the complexes in the CG simulations
were slightly smaller yet still comparable to experimental
values: 19.8 ± 1.3 Å for aFGF/HP dp6, 21.0 ± 1.5 Å for
aFGF/HP dp8, and 20.3 ± 0.9 Å for aFGF/HP dp10, as
opposed to 23.4 Å for the experimental structure of aFGF/HP
dp6. This compaction may result from stronger interactions
between the monomers and the interposed HP chain. This
may be attributable to an enhanced attraction between the
monomers and the HP chain positioned in-between (Figure
7).
The HP-binding regions were comparable in size for the

crystal (11 polar and charged residues) and the CG
representative structures (9 polar or charged residues in
aFGF/HP dp6, 12 in aFGF/HP dp8, and 14 in aFGF/HP

Figure 4. Initial positions in reference to the crystal structure of
bFGF/HP, with the shifted HP molecule shown in yellow (position
1), red (position 2), cyan (position 3), and white (position 4).

Table 2. Number of CG MD Simulations, in Which HP was
Found to Dissociate from bFGF

initial position no. of MD with dissociation events

1 2 out of 10

2 2 out of 10

3 3 out of 10

4 2 out of 10

Figure 5. Initial positions of bFGF dimer (a) without HP, (b) with
HP.
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dp10). The experimentally determined HP-binding residues
(Asn-18, Lys-112, Lys-113, Asn-114, Lys-118, Arg-119, and
Arg-122)86,99,100 were identified in all of the CG representa-
tives (SI Figure S18), indicating strong electrostatic
interactions between the protein and HP.
Irrespective of the HP chain length in a complex, a

prevalence of contacts with HP could be observed for one of
the monomers of aFGF, indicating a di�erence in contact
intensity across the MD trajectories between the two aFGF
monomers (SI Figure S20). The main region of frequent

contacts encompasses residues Lys-101 to Pro-121, corre-
sponding roughly to the same binding site as observed in the
crystal structure. Interestingly, for aFGF/HP dp6 contacts
between the oligosaccharide and the N-terminus could be
observed, which decreased in frequency with increasing HP
chain length and almost no contacts established between aFGF
and HP dp10 for this region (SI Figures S21−S23). This could
possibly hint at an increased stability of the complex for longer
HP chains both for the protein and oligosaccharide
components.

Figure 6. Sum of the contacts perform from CG MD trajectories for (a) the bFGF dimer without HP, and (b) bFGF dimer in the presence of HP
dp24, in which the bFGF monomers establish contacts with each other within 8 Å.

Figure 7. (a) Crystal structure of aFGF/HP dp6. (b) Representative CG structure of FGF/HP dp6. (c) The representative CG structure of FGF/
HP dp8. (d) The representative CG structure of FGF/HP dp10. The protein is shown in cartoon representation, with Cα atoms of HP-binding
residues shown as labeled spheres. HP is shown in licorice representation.
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3.5. NK1 Splicing Variant of the Hepatocyte Growth
Factor with HP dp6. Among its various functions, HP is
recognized for stabilizing the structures of multimeric proteins
and enhancing dimerization of the NK1 splicing variant of
HGF/SF. To analyze the binding site of HP to monomeric
NK1, ten CG MD simulations were conducted, with HP
remaining bound to NK1 in five trajectories, which were
chosen for further analysis. System stability was assessed by
RMSD calculations (SI Figures S33, S34).
Three representative binding poses could be identified by

clustering the CG trajectory frames via DBSCAN (SI Figure
S35). In the representative trajectory frame of the most
populated cluster, the HP chain maintains its attachment to the
experimentally determined binding site, but adopts a shifted
binding pose compared to the crystal structure (Figure 8).

PCA analysis of the CG MD trajectories showed relatively
little movement of the complex (SI Figure S37), as the
complex appears to be stable when no dissociation of the HP
chain is observed. The greatest mobility of the NK1 protein
can be observed predominantly for the N-terminal residues as
evidenced by the RMSF analysis (SI Figure S39), while the
fluctuation of the HP residues over the course of the MD
simulation appear to be greatly reduced in comparison to the
protein, again highlighting the stability of NK1/HP binding (SI
Figure S40). The binding pose in the CG structure involves

contacts with experimentally confirmed HP-binding residues
(Lys-58, Lys-60, Thr-61, Lys-62, Lys-63, Arg-73)51,101,102 (SI
Figure S23). An analysis of contacts formed between NK1 and
HP the CG MD trajectory (SI Figure S28) reveals that a broad
range of NK1 residues establishes frequent contacts with the
oligosaccharide. For most of the replicates, a consistent region
of contact encompasses residues Lys-58 to Val-64, Cys-70 to
Lys-78, and Lys-94 to Phe-101. However, significant di�er-
ences between the replicates can be observed indicating a very
flexible system and mobility of the protein, facilitating a variety
of contacts with HP (SI Figure S29).
The observed interactions are consistent with scientific

literature emphasizing the role of HP in promoting the
oligomerization of NK1,47,48,101 particularly through binding to
the N-terminal domain,51,103 as a prevalence of the frequent
contacts across MD simulation replicates can be observed for
the N-terminus and adjacent regions of NK1 (SI Figure S28).

4. CONCLUSIONS

In this work, we present the implementation and evaluation of
the combined UNRES and SUGRES-1P CG model designed
for MD simulations of protein/HP complexes. This study
marks the first ever application of a physics-based CG model
for analyses of GAG-containing biomolecular systems.
We predict the interactions maintained in protein/HP

complexes as well as native contacts established between the
proteins and HP oligosaccharides in agreement with the
experimental data. The high natural flexibility of protein/HP
complexes is also captured by the presented CG MD
simulations.
The combined UNRES and SUGRES-1P model demon-

strated robust performance, evidenced by the interaction of the
experimentally detected residues with HP and the maintenance
of stable binding poses throughout repeated MD simulations in
the tested complexes. Moreover, we were able to correctly
reproduce the geometry of these analyzed complexes in terms
of the radius of gyration, which closely matched that of the
experimental structures. The presented approach could be
applied for simulating complex biological processes across long
time scales in large biomolecular systems, thereby improving
the understanding of the extracellular matrix function.
We plan to develop backmapping software for the GAG

system to reconstruct the atomistic details of protein/
carbohydrate interactions. Additionally, we aim to use a
machine learning approach to parametrize all types of GAGs
and to establish structure-parameter relationships.
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A B S T R A C T   

Glycosaminoglycans are linear periodic and anionic polysaccharides found in the extracellular matrix, involved 
in a range of key biochemical processes as a result of their interactions with a variety of protein partners. Due to 
the template-less synthesis, high 4exibility and charge of GAGs, as well as the multipose binding of GAG ligands 
to receptors, the speci�city of GAG-protein interactions can be dif�cult to elucidate. In this study we propose a 
set of MD-based descriptors of unbound Heparan Sulfate hexasaccharides that can be used to characterize GAGs 
and explain their binding af�nity to a set of protein receptors. With the help of experimental data on GAG-protein 
binding af�nity, we were able to further characterize the nature of this interaction in addition to providing a 
basis for predictor functions of GAG-protein binding speci�city.   

1. Introduction 

Glycosaminoglycans (GAGs) are a family of naturally-occurring 
linear periodic and anionic polysaccharides whose building blocks are 
repeating disaccharide units composed of an amino sugar and an uronic 
acid or hexose (Esko et al., 2009). Depending on their exact dimeric unit 
composition and their glycosidic linkages, several classes of GAGs can be 
distinguished: Heparan Sulfate (HS), Heparin (HP), Dermatan Sulfate 
(DS), Chondroitin Sulfate (CS), Keratan Sulfate (KS), and Hyaluronic 
Acid (HA). Heparan Sulfate (HS), composed of alternating N-actetyl
glucosamine (GlcNAc) and glucuronic acid (GlcA) residues (Esko et al., 
2009), is found often covalently attached to proteins of the extracellular 
matrix and plasma membrane, forming proteoglycans (PGs). HS is 
known to be involved in key biological processes, including cell division 
(Ughy et al., 2019) and differentiation (Kraushaar et al., 2012; Patel 
et al., 2008; Yokoyama et al., 2020), angiogenesis (Zhang et al., 2014), 
coagulation (Ho et al., 1997), viral infection (Clausen et al., 2020; Yue 

et al., 2021), neuron growth (Brickman et al., 1998; Johnson et al., 
2007), as well as tumor proliferation (Hendriks et al., 2005) and 
metastasis (Qazi et al., 2016). 

HS can undergo (selective) de-N-acetylation and N-sulfation of its 
GlcNAc residues, epimerization of GlcA to iduronic acid (IdoA), as well 
as sulfation by O-sulfotransferases on the 2-O position of its uronic acid 
(C2 of the uronic acid) and of the 6-O and 3-O positions of GlcNAc 
residues (Esko et al., 2009). While 3-O-sulfation is the rarest of all HS 
modi�cations, constituting only about 0.5% of the total sulfation 
(Huang et al., 2015; Pejler et al., 1987), 3-O-sulfotransferases (3-OSTs) 
represent the largest family of enzymes modifying HS polysaccharide 
chains (Thacker et al., 2014). This may indicate that 3-OSTs in coop
eration with other HS-modifying enzymes produce HS molecules that 
are unique and therefore engage in highly-speci�c interactions with 
proteins (Chopra et al., 2021). 

The speci�city of GAG-protein binding has been studied extensively 
before for a variety of complexes (Gama et al., 2006; Gama and 

Abbreviations: GAG, Glycosaminoglycan; HP, Heparin; HS, Heparan Sulfate; DS, Dermatan Sulfate; CS, Chondroitin Sulfate; KS, Keratan Sulfate; HA, Hyaluronic 
Acid; ATIII, Antithrombin III; PCA, Principal Component Analysis; PC, Principal Component; MD, Molecular Dynamics; RMSD, Root Mean Square Deviation; H-bond, 
Hydrogen Bond; HC, Hierarchical Clustering; RFU, Relative Fluorescent Unit. 
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Hsieh-Wilson, 2005; Joseph et al., 2015; Künze et al., 2021; Liu et al., 
2002; Pichert et al., 2012; Rogers et al., 2011; Sankarayanarayanan 
et al., 2017; Schlorke et al., 2012). In some cases, the only parameter 
that affects the strength of such interactions is GAG charge, which makes 
them entirely electrostatically-driven and, therefore, unspeci�c (Hintze 
et al., 2014; Koehler et al., 2017; Panitz et al., 2016; Rother et al., 2016). 
However, a considerable number of GAG-protein complexes rely on 
speci�c interactions (Almond, 2018; Guerrini et al., 2008; Künze et al., 
2021; Pomin and Mulloy, 2015; Sage et al., 2013). A number of proteins 
have been identi�ed as receptors of 3-O-sulfated HS molecules partici
pating in speci�c interactions, including Antithrombin III (Guerrini 
et al., 2008), Neuropilin 1 (Thacker et al., 2016), Stabilin 2 (Pempe 
et al., 2012), Advanced Glycosylation End-Product Receptor (Thacker 
et al., 2014) and growth factors such as Fibroblast Growth Factor 7 (Luo 
et al., 2006). Anomalies of 3-O-Sulfation have been implicated in 
tumorigenesis (Denys and Allain, 2019), renal �brosis (Ferreras et al., 
2019), and tauopathies relating to Alzheimer’s Disease (Zhao et al., 
2020). 3-O-su4ated HS molecules on cell surfaces also participate in 
viral infections (O’Donnell and Shukla, 2008). Taken together, the 
characteristics of HS and their interactions with proteins, as well as 
involvement in essential biological pathways render them promising 
and interesting targets in medicine. 

Although signi�cant research has been conducted on this topic, the 
template-less synthesis and resulting structural complexity of HS mole
cules complicates studies of their interaction with proteins. While 
research on GAG-protein speci�city concentrates mostly on the GAG- 
binding sites of proteins (Jokiranta et al., 2005; Li et al., 2016; Mor
gan et al., 2015; Mosier et al., 2012; Multhaup, 1994; Pratt and Church, 
1992; Sarkar and Desai, 2015; Sun et al., 2001; Taylor et al., 1995; Witt 
and Lander, 1994), it has been also observed that the sequence (Irie 
et al., 2002; Raghuraman et al., 2010, 2006; Sankaranarayanan et al., 
2015; Sankaranarayanan and Desai, 2014; Shworak et al., 1994), sul
fation degree and pattern (Ashikari-Hada et al., 2009; Irie et al., 2002; 
Kinnunen et al., 1996; Nakato and Kimata, 2002; Patel et al., 2008; Pye 
et al., 2000; Stringer and Gallagher, 1997; Viviano et al., 2004), chain 
length (Patel et al., 2008; Viviano et al., 2004) and, to a lesser degree, 
the conformation (Guglier et al., 2008) of GAGs generally and HS spe
ci�cally can contribute to binding speci�city. 

The aim of this study was to inspect and analyze the speci�city of HS- 
protein interactions employing computational approaches. To this end, 
we applied molecular dynamics (MD) simulations as well as a standard 
Machine Learning Algorithm (MLA) to examine 27 3-, 6-, and 3,6-O- 
sulfated HS molecules characterized and studied by (Chopra et al., 
2021), followed by linear regression and cluster analysis in order to 
assess the connection between characteristics of unbound HS molecules 
and the speci�city of binding to their protein partners. The analyzed 
dataset of 27 HS molecules with clearly de�ned sequences and sulfation 
patterns presents an unique opportunity to gain insight regarding the 
in4uence of speci�c differences in sulfation modi�cations on the 3D 
structure and physico-chemical characteristics of these molecules during 
Molecular Dynamics simulations. Those, in turn, can be linked to the 
af�nity between the analyzed HS molecules and a set of proteins known 
to bind HS with different speci�city. The application of a simple and 
well-known unsupervised MLA, Principal Component Analysis (PCA), 
enabled us to characterize the unbound HS molecules individually, but 
also the interplay between the proposed molecular descriptors in the 
context of GAG-protein binding. The investigation of the behavior of 
unbound HS molecules during MD simulations at atomistic level, that is 
not accessible using most experimental approaches, was supported and 
complemented by information gained from experiments (Chopra et al., 
2021). Taken together, both approaches helped to overcome the limi
tations of either of them when applied alone and allowed us to identify 
characteristics of unbound HS molecules that could be linked with 
con�dence to differences in binding af�nity for a set of HS-protein 
complexes. This knowledge may prove useful in drug design of HS 
molecules exhibiting traits in line with our �ndings. In particular it 

could suggest modi�cations of the GAG sequence that would lead to the 
appropriate conformations of the unbound HS with a higher propensity 
of binding their protein partners. Hence, our data assist in enabling the 
design and synthesis of speci�c HS molecules for potential use in 
regenerative medicine, cancer treatment and the prevention and treat
ment of viral infections. 

2. Materials and methods 

2.1. Heparan sulfate and protein dataset 

In our study, we considered the library of 27 HS hexasaccharides 
previously synthesized and analyzed by (Chopra et al., 2021). The 
synthetic HS molecules, constructed from 9 different backbone tem
plates, differed in the modi�cation of their central GlcNAc residue 
(3-O-Sulfation, 6-O-Sulfation, 3,6-O-Sulfation) (sequences detailed in  
Table 1). In order to conduct simulations via computational methods, 
the 27 HS molecules were built in the xLeap module of AMBER16 (Case 
et al., 2016) and described with the GLYCAM06 force �eld parameters 
(Kirschner et al., 2008). The two building blocks of the analyzed HS 
hexasaccharides are shown in Fig. 1. The exact placement of the sulfate 
groups along the GAG in4uences the strength of electrostatic interaction 
in GAG-protein complexes and represents a “sulfation code” assumed to 
regulate the speci�city of interactions with proteins (Gama and 
Hsieh-Wilson, 2005). 

The analyzed HS molecules were named 1A, 1B, 1C to 9A, 9B, 9C in 
accordance with the naming scheme in (Chopra et al., 2021). The names, 
detailed in Table 1, re4ect the position of the sulfate group on the 
GlcNAc residue (“A”: 3,6-O-sulfation, “B”: 3-O-sulfation, “C”: 6-O-Sul
fation) and the sequence of the 3 residues varying between the 27 
oligosaccharides. 

Binding af�nity data between the 27 HS hexasaccharides and a set of 
nine functionally diverse proteins known to recognize 3-O-sulfation to 
varying degrees was taken from (Chopra et al., 2021). The nine proteins 
considered are: Antithrombin III (ATIII), Heparin Cofactor 2 (HC-II), 
Fibroblast Growth Factor 7 and 9 (FGF-7, FGF-9), Fibroblast Growth 
Factor Receptor I (FGFR-I), Neuropilin 1 (Nrp-1), Bone Morphogenic 
Protein 2 (BMP-2), Stabilin 2 (Stab-2), Advanced Glycosylation 
End-Product Receptor (RAGE). The interaction study between HS mol
ecules and the nine proteins presented in (Chopra et al., 2021) is the �rst 
such study examining the interaction selectivity for the set of HS hex
asaccharides of clearly de�ned sequences and speci�c sulfation patterns 
along the GAG. All nine proteins are known to interact with HS and are 
involved in key biochemical processes connected to cell-cell signalling, 
e.g. angiogenesis, immunity, axon guidance, embryonic development. 
The study by (Chopra et al., 2021) is thus a particularly exclusive dataset 
that can be studied in order to elucidate the variability in binding af
�nity and selectivity of speci�c HS molecules and a wide range of their 
protein partners. 

2.2. Molecular dynamics 

Molecular dynamics (MD) simulations of the 27 unbound HS hex
aseccharides were carried out in AMBER16 (Case et al., 2016; Götz et al., 
2012) with the GLYCAM06 (Kirschner et al., 2008) force �eld in order to 
obtain descriptors of the oligosacchrides with possible predictive power 
in relation to their binding af�nity and speci�city. 

Each of the 27 molecules was solvated in a TIP3P octahedral periodic 
box with minimum distance between solute and box edge of 15.0 Å and 
neutralized with counterions (Na+). For every hexasaccharide, two en
ergy minimization steps were carried out (�rst 1.5 × 103 steepest 
descent cycles and 103 conjugate gradient cycles with harmonic force 
restraints on solute atoms, followed by 6 × 103 steepest descent cycles 
and 3 × 103 conjugate gradient cycles without restraints). Subsequently, 
the system was heated up to 300 K for 10 ps with harmonic force re
straints of 100 kcal/mol Å−2 on solute atoms, and equilibration for 50 ps 
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at 300 K and 105 Pa in isothermal isobaric ensemble (NPT). A 100 ns 
productive MD run was carried out in an NPT ensemble. The SHAKE 
algorithm (Ryckaert et al., 1977), 2 fs time integration step, 8 Å cutoff 
for non-bonded interactions, and the Particle Mesh Ewald method 
(Darden et al., 1993) were used. 

2.3. Descriptors of unbound HS molecules 

Based on the MD trajectories of each unbound HS, a set of physico- 
chemical properties (“descriptors”) was analyzed in the PTRAJ (Roe 
and Cheatham, 2013) module of AMBER16 using default parameters 
(Table 2). Restricting the descriptors to only those relating to intra
molecular characteristics of the HS was done with the goal to discover 
what properties of the unbound molecules are putatively linked to the 
binding af�nity. In case those descriptors are identi�ed, one can argue 
that while the synthesis of HS molecules in vivo is template-less, the 
cellular machinery is required to ensure certain characteristics and 
modi�cations of HS molecules in vivo in order for the molecules to be 
able to interact speci�cally with their protein partners. The inclusion of 
other descriptors to be obtained from MD simulation of HS complexes 
with proteins as well as descriptors of the HS-binding sites on the pro
teins should also be considered, as these would likely enhance the in
formation gained from computational studies of these unbound HS 
oligosaccharides. Nevertheless, it can be assumed that the characteris
tics of unbound HS molecules are likely to affect the binding af�nity to 
proteins in the extracellular matrix, as the long GAGs naturally occur
ring in cells would possibly have substantially limited 4exibility in vivo 
to ensure correct complex formation with proteins (Sattelle et al., 2015; 
Spencer et al., 2010). Therefore, it is likely that certain characteristics of 
HS have to be already encoded and ensured in their unbound state, thus 

likely to be observed in the preference of certain values of the 
physico-chemical descriptors analyzed in this study. 

To detect groups of highly correlated descriptors, Pearson product- 
moment correlation coef�cients were computed for the descriptor 
dataset and plotted as a heatmap. The correlation analysis was used as a 
guide in feature selection. 

2.4. Machine learning and correlation analysis 

The descriptor dataset was standardized prior to applying MLAs. The 
feature extraction and selection approaches were used to reduce the 
dimensionality of the original dataset and to uncover patterns in the 
descriptor dataset that could later be linked to the binding af�nity of HS- 
protein complexes. 

PCA of the descriptor dataset of unbound HS molecules was carried 
out in python 3.8.5 using the scikit-learn library (ver. 0.24.2) (Pedregosa 
et al., 2011). PCA is a type of unsupervised machine learning technique 
used in a variety of �elds to reduce the dimensionality of large datasets 
as well as to reduce noise and extract patterns from the data. The 
approach works by transforming a matrix of correlated variables into a 
new coordinate system of uncorrelated variables called Principal Com
ponents (PCs) which are linear combinations of the initial ones and 
capture the essential information from the original dataset. We applied 
PCA to the descriptor dataset to create a lower-dimensional dataset of 
PCs that explain most of the variability in the MD-derived descriptors. 
Each PC can be seen as a summary of a set of variables that captures the 
physico-chemical character shared by the descriptors that contribute the 
most to the given PC. Because the construction of the PCs did not include 
any information on the HS-protein binding af�nity, the obtained PCs 
only describe the character of the unbound HS oligosaccharides 

Table 1 
Sequences of the 27 Heparan Sulfate molecules; differences in sequence between the HS types are marked in bold.  

1A: GlcA–GlcNS6S–GlcA–GlcNS3S6S–GlcA–GlcNS6S 4A: GlcA–GlcNS6S–GlcA–GlcNS3S6S–IdoA–GlcNS6S 7A: GlcA–GlcNS6S–GlcA–GlcNS3S6S–IdoA2S–GlcNS6S 
1B: GlcA–GlcNS6S–GlcA–GlcNS3S–GlcA–GlcNS6S 4B: GlcA–GlcNS6S–GlcA–GlcNS3S–IdoA–GlcNS6S 7B: GlcA–GlcNS6S–GlcA–GlcNS3S–IdoA2S–GlcNS6S 
1C: GlcA–GlcNS6S–GlcA–GlcNS6S–GlcA–GlcNS6S 4C: GlcA–GlcNS6S–GlcA–GlcNS6S–IdoA–GlcNS6S 7C: GlcA–GlcNS6S–GlcA–GlcNS6S–IdoA2S–GlcNS6S 
2A: GlcA–GlcNS6S–IdoA–GlcNS3S6S– GlcA–GlcNS6S 5A: GlcA–GlcNS6S–IdoA–GlcNS3S6S–IdoA–GlcNS6S 8A: GlcA–GlcNS6S–IdoA–GlcNS3S6S–IdoA2S–GlcNS6S 
2B: GlcA–GlcNS6S–IdoA–GlcNS3S–GlcA–GlcNS6S 5B: GlcA–GlcNS6S–IdoA–GlcNS3S–IdoA–GlcNS6S 8B: GlcA–GlcNS6S–IdoA–GlcNS3S–IdoA2S–GlcNS6S 
2C: GlcA–GlcNS6S–IdoA–GlcNS6S–GlcA–GlcNS6S 5C: GlcA–GlcNS6S–IdoA–GlcNS6S–IdoA–GlcNS6S 8C: GlcA–GlcNS6S–IdoA–GlcNS6S–IdoA2S–GlcNS6S 
3A: GlcA–GlcNS6S–IdoA2S–GlcNS3S6S–GlcA–GlcNS6S 6A: GlcA–GlcNS6S–IdoA2S–GlcNS3S6S–IdoA–GlcNS6S 9A: GlcA–GlcNS6S–IdoA2S–GlcNS3S6S–IdoA2S–GlcNS6S 
3B: GlcA–GlcNS6S–IdoA2S–GlcNS3S–GlcA–GlcNS6S 6B: GlcA–GlcNS6S–IdoA2S–GlcNS3S–IdoA–GlcNS6S 9B: GlcA–GlcNS6S–IdoA2S–GlcNS3S–IdoA2S–GlcNS6S 
3C: GlcA–GlcNS6S–IdoA2S–GlcNS6S–GlcA–GlcNS6S 6C: GlcA–GlcNS6S–IdoA2S–GlcNS6S–IdoA–GlcNS6S 9C: GlcA–GlcNS6S–IdoA2S–GlcNS6S–IdoA2S–GlcNS6S  

Fig. 1. The possible modi�cations of the HS building 
blocks in this study. All the HS molecules are made up of 
repetitive disaccharide units containing an uronic acid 
(glucuronic acid, GlcA or iduronic acid, IdoA) and N- 
acetyl-glucosamine, GlcNAc derivative. A) Glucuronic acid 
can undergo reversible epimerization to iduronic acid. B) 
Possible sulfation modi�cations of N-acetyl-glucosamine 
on its 3-O and 6-O positions (semi-transparent licorice 
representation) as well as the 2-O sulfation position of 
iduronic acid.   
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simulated using MD. 
As an alternative approach, Pearson correlation was used to assess 

the relationship between each individual descriptor and the HS-protein 
binding af�nity. The values of each descriptor measured during the MD 
simulation were correlated with the binding af�nity values for each 
complex individually to investigate which descriptors can be assumed to 
be most strongly linked with HS-protein binding strength and whether 
differences can be observed between complexes that can be attributed to 
the character and speci�city of the binding. A descriptor was considered 
to be signi�cantly associated with the binding af�nity data if the p-value 
of the t-test for the correlation was below the α = 0.05 signi�cance level. 

2.5. Linear regression analysis 

Linear regression analysis was carried out in R (stats base package) 
with the purpose of determining the strength of the link between the 
computed PCs and HS-protein binding af�nity data as given in (Chopra 
et al., 2021). To evaluate the usefulness of the PCA-based approach, for 
each HS-binding protein, the �rst four PCs of the dataset were used in a 
matching linear regression analysis. 

Statistical signi�cance and comparisons of regression models were 
conducted using the t-test and F-test. The cutoff for statistical signi�
cance used equals α = 0.05; p-values of the t-test for the independent 
variables (PCs) below the α level were considered statistically signi�
cant. The F-tests were used to assess how well the regression models �t 
the data. R2 (coef�cient of determination) values were reported for each 
linear regression model to describe the amount of variance in the target 
variable (HS-binding af�nity for each protein) accounted for by the in
dependent variables. 

2.6. Statistical and cluster analysis 

Statistical analyses were carried out in R version 3.6.3 (R Core Team, 
2020) (descriptive statistics of the descriptor dataset, Pearson correla
tion calculations using the “psych” package version 2.1.9 (Revelle, 
2021)) as well as python 3.8.5 using numpy 1.19.5 (Harris et al., 2020) 
and pandas 1.2.2 (McKinney et al., 2010). Cluster analysis via 

Hierarchical Clustering was carried out for the Pearson correlation co
ef�cients between PCs (“scoring function”) and the binding af�nity data 
in python using seaborn 0.11.1 (Waskom, 2021). 

2.7. Visualization 

Visualization was carried out in python using matplotlib 3.3.4 
(Hunter, 2007) and seaborn 0.11.1 (Waskom, 2021). 

3. Results 

The descriptors of unbound HS hexasaccharides analyzed during the 
MD simulation are summarized in Supplementary Table 1. 

3.1. MD simulation analysis 

The properties of the 27 HS molecules throughout the MD simulation 
were analyzed and summarized in terms of the major descriptors. The 
evolution over time for Root Mean Square Deviation (RMSD) with 
respect to the starting conformation, radius of gyration and molecule 
length (end-to-end distance) are shown in Fig. 2 for molecules 1A, 1B, 
1C, which were chosen as representatives for the analysis of these de
scriptors for two reasons. First, all the three different analyzed modes of 
sulfation (3,6-O-, 3-O-, and 6-O-sulfation) can be found in 1A, 1B and 1C, 
respectively. Moreover, the majority of the analyzed hexasaccharides 
behaved throughout the MD simulation in a manner qualitatively 
indistinguishable from these three HS molecules. Therefore, the evalu
ation whether the MD simulation reached convergence and the analysis 
of the descriptors over time is described in greater detail for 1A, 1B and 
1C, as well as for any of the other molecules if their behavior over time 
during the MD was clearly different than for the majority of analyzed HS 
hexasaccharides. Supplementary Figs. 1–3 show the behavior over time 
for RMSD, radius of gyration, and end-to-end distance for all 27 simu
lated HS hexasaccharides. Upon inspecting the changes of descriptors 
over time for the 27 HS (Fig. 2 and Supplementary Figs. 1–3), it can be 
seen that the MD simulation converged, i.e. the simulated system 
reached its equilibrium state. 

Table 2 
MD-derived descriptors of unbound HS molecules used in the study.  

No. Descriptor Symbol (Units) Explanation 
1.–8. Fraction of formed H-bonds Hbond[0/1/2/3/4/5/6/7] 

(no unit) 
Sum of fraction of MD-simulation frames where 0/1/2/3/4/5/6/7 intramolecular H- 
bonds were formed by atoms of the HS molecule 

9. Radius of gyration R_gyration (Å) A measure of elastic stability (resistance to deformation of shape and conformation) of 
the HS molecule; compactness of the molecule 

10. Dipole moment Dipole (e * Å) The dipole moment: a measure of the polarity of a molecule 
11. Molecule length Length (Å) Length of the molecule in Å de�ned as the distance between two terminal atoms 
12.– 

19. 
Dihedral angles of glycosidic 
linkages 

glycosidic_[1min1/1min2/3min1/ 
3min2/5min1/5min1/2 min/4 min] 
(no unit) 

The distribution of dihedral angles of each glycosidic linkages de�ned as O5n+1-C1n+1- 
O4n-C4n and C1n+1-O4n-C4n-C5n, where n is the sequential number of the sugar 
monomeric unit; 
Speci�cally, the percentage of points in the distribution of the dihedral angles that belong 
to a minimum 

20. glycosidic_percent (%) Total percentage of points of the dihedral angle distribution that belong to minima 
21.–26. Fluctuation of HS 

monosaccharide units 
4uct_[r1/r2/r3/r4/r5/r5] 
(Å) 

Root mean square 4uctuation analysis of atoms of HS residues 

27.–28. Ring pucker pucker_[1C4/4C1] 
(no unit) 

Fraction of1C4 and 4C1 ring pucker conformations of the sugar monomeric units; 
The conformations are de�ned as: 
1C4: ɣ= 48º ± 30º, δ = −64º ± 30º, 
4C1: ɣ= −54º ± 30º, δ = 62º ± 30º, 
where angle ɣ is de�ned by atoms C1–C2–C3–C4, and angle δ by atoms C1–O5–C5–C4 

29. Free energy components from 
the MM-GBSA model 

VDW (kcal/mol) Van der Waals energy 

30. Electrostatic energy EEL (kcal/mol) Electrostatic energy in vacuo 
31. EGB EGB (kcal/mol) Generalized Born electrostatic solvation energy 
32. ESURF ESURF (kcal/mol) Non-polar solvation energy 
33. Total free energy TOTAL (kcal/mol) Total free energy 
34. QH Entropy S_APPROX (kcal/mol) Quasi-Harmonic con�gurational entropy 
35. NM Entropy S_nm (kcal/mol) Normal mode entropy  
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Fig. 2. A) Root Mean Square Deviation (RMSD) [Å] of HS molecules 1A, 1B, 1C calculated in reference to the starting position of the simulation. B) Radius of 
gyration [Å] of HS molecules 1A, 1B, 1C. C) Length of the simulated hexasaccharide, calculated as the end-to-end distance [Å], of HS molecules 1A, 1B, 1C. All the 
data are obtained from 100 ns of the MD simulation. 
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3.1.1. Root mean square deviation 
RMSD analysis indicated that most of the HS molecules exhibit large 

4uctuations in the RMSD value across the MD simulation, as can be seen 
for molecules 1A, 1B, 1C in Fig. 2, chosen as representatives for the HS 
dataset. This indicates a high mobility of the unbound molecules. Ex
ceptions can be observed for molecules 7B and 9A (Supplementary 
Fig. 1), which reach a stable state at a relatively early point of the MD 
simulation, as well as for 7C, for which RMSD reaches convergence to
wards the end of the simulation. 

3.1.2. Radius of gyration 
An analysis of the radius of gyration (R_gyration) of the 27 HS 

molecules shows trends in line with those observed for RMSD. As can be 
seen in the example of HS 1A, 1B, 1C (Fig. 2), the hexasaccharides are 
very 4exible showing a high degree of mobility. As with RMSD analysis, 
molecule 9A, and to a lesser degree 7B and 7C (Supplementary Fig. 2) 
behave differently than the other molecules by exhibiting a decrease in 
R_gyration and thereby achieving a more stable and compact confor
mation towards the end of the MD simulation. 6C also exhibited a low 
radius of gyration for a signi�cant portion of the MD simulation, but 
towards the end the values of the radius of gyration increased again, 
signifying a switching from an extended conformation in the beginning 
of the MD, to a more compact conformation in the middle of the simu
lation, and back to a more extended and 4exible conformation towards 
the end. 

3.1.3. HS length 
The hexasaccharide molecules exhibit rapid changes of molecule 

length (measured as end-to-end distance) throughout the MD 

simulation, with most molecules not converging to either an extended 
nor a compact state at the end of the simulation, as can be seen in Fig. 2 
for the representative molecules 1A, 1B, 1C. However, HS 9A is an 
exception in the dataset, converging to a clearly compact conformation, 
with a signi�cant decrease in the end-to-end distance seen throughout 
the simulation (Supplementary Fig. 3). Similarly, molecules 7C and 9C 
are seen to shorten towards the very end of the MD simulation. 

3.1.4. Intramolecular H-bonds 
Fig. 3 shows the distribution of frequencies of intramolecular 

hydrogen bonds (H-bonds) for the 27 HS molecules. For the vast ma
jority of the analyzed molecules, the median value of H-bonds formed 
during the MD simulation equals 3 H-bonds, with some exceptions 
(median of 2 H-bonds for 7A, 8A, 9A). Conformations in which either no 
intramolecular H-bonds are formed during the MD simulation as well as 
those with the maximum possible amount of intramolecular H-bonds are 
unlikely to observe for all of the analyzed molecules. Nevertheless, the 
3,6-sulfated 9A, 8A, and 7A hexasaccharides seem to have a preference 
of conformations with less intramolecular H-bonds compared to the 
other HS molecules. 

3.1.5. Dipole moment 
All of the molecules seem to be similar in terms of polarity, with 

values of the dipole moment measured across the MD simulation ranging 
from 420.6 e*Å (for 4B) to 615.6 e*Å (for 9C) (Supplementary Table 1). 
The most polar molecules are 9C (615.8 e*Å) and 9A (600.0 e*Å), 
substantially separated from the third-most polar HS hexasaccharide 
(3A with 562.4 e*Å) by over 30 e*Å units. 

Fig. 3. Distribution of frequencies of intramolecular H-bonds formed by the HS molecules during MD simulations.  
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3.1.6. Glycosidic linkage dihedral angles 
In terms of dihedral angles of the glycosidic linkages (Supplementary 

Table 1), the HS molecules do not seem to display signi�cant differences 
between each other. The percentage of observations belonging to 
minima of the glycosidic linkage dihedral angles are comparable be
tween the analyzed hexasaccharides. 

3.1.7. Sugar ring =uctuation 
For all of the analyzed HS molecules, the highest values of sugar ring 

4uctuations throughout the MD simulation were observed for the sugar 
ring of the �rst residue (Supplementary Table 1) and to a much lesser 
degree for the sugar ring of the last residue. Hexasaccharides 6C, 7C and 
9A exhibit the highest 4uctuation of their �rst sugar ring (8.8 Å, 8.3 Å 
and 8.8 Å, respectively, versus a range of 4.7–6.8 Å for the remaining HS 
molecules of the dataset). The same trend can be observed for the last 
sugar residue (4uctuation values of 4.6 Å for 6C, 3.8 Å for 7C and 5.5 Å 
for 9A, compared to a range of 2.0–3.6 Å for the rest of the hex
asaccharides), but not for the 2nd, 3rd, 4th and 5th sugar rings. 

3.1.8. Ring pucker conformation 
A strong preference of the 4C1 sugar ring pucker conformation can be 

seen for all 27 HS hexasaccharides (Supplementary Table 1). Among the 
27 molecules, sugar rings of 1A, 6A and 7B show the highest propensity 
for the 1C4 conformation, with a fraction of MD time in which such a 
conformation could be observed equal to 0.1, 0.19 and 0.11, 
respectively. 

3.1.9. Enthalpy and entropy 
In terms of enthalpy and entropy components of the unbound HS 

molecules throughout the MD simulation, most of the analyzed hex
asaccharides have comparable values (Supplementary Table 1). A stark 
difference can be only observed for the electrostatic energy in vacuo for 
sugar 9A in comparison to the other HS molecules (1568 kcal/mol, 
versus a range of 356 kcal/mol to 1065 kcal/mol for the remaining 
sugars), indicating highly unfavorable electrostatic energy values of the 
unbound 9A hexasaccharide in solvent environment. 

In summary, the 3,6-O-Sulfated HS hexasaccharide 9A, where the 
central sugar residue is 4anked by IdoA2S residues on both sides, shows 
behavior clearly different than the other sugar hexasaccharides 
throughout the MD simulation, especially in terms of its RMSD calcu
lated in reference to the starting conformation, frequency of intra
molecular H-bonds, radius of gyration, 4uctuations of the �rst and sixth 
sugar rings and electrostatic energy in vacuo. Noteworthy, sugar 9A was 
found to bind with high af�nity to all proteins except for ATIII (Chopra 
et al., 2021). 

3.2. Descriptor analysis 

Pairwise Pearson correlation coef�cients were calculated for the 35 
descriptors summarized in Table 2, in order to examine the relationships 
between the descriptors. The correlation matrix visualized as a heatmap 
(Fig. 4) shows that some descriptors form clusters of strong positive and 
negative correlation, which may point to mutual relationships/de
pendencies and therefore possible redundancy in the primary descriptor 
dataset. A strong positive correlation (high positive Pearson correlation 
coef�cient) is depicted by a red color, a strong negative correlation 
(negative Pearson correlation coef�cient) – by violet, while no correla
tion corresponds to green colors on Fig. 4. 

H-bond–related descriptors form three clusters based on the corre
lation coef�cients: low amount of or no intramolecular H-bonds 
(Hbond0, Hbond1, Hbond2), high amount of intramolecular H-bonds 
(Hbond4, Hbond5, Hbond6, Hbond7) and exactly 3 H-bonds formed 
during the MD simulation (Hbond3). These descriptors correspond to 
the fraction of MD trajectory frames in which the simulated HS molecule 
formed the given amount of H-bonds. Therefore, the distribution of 
those frequencies, shown in Fig. 3, hints at preferences of certain HS 

types regarding the formation of intramolecular H-bonds. While the 
most frequent amount of H-bonds for the majority of HS molecules was 
3 H-bonds, hexasaccharides 7A, 8A and 9A are characterized by right- 
skewed distributions with the mode equal to 2 intramolecular H- 
bonds. The differences in sequence and sulfation pattern between the HS 
molecules dictates the preference for H-bond formation within the 
molecule. This information can in turn shed light on the formation of 
intermolecular H-bonds between the given HS and proteins, because the 
preference for forming many intramolecular H-bonds may indicate also 
a high likelihood of forming intermolecular H-bonds upon binding to 
proteins. 

The closely related descriptors R_gyration and Length, corresponding 
to the mean radius of gyration of the HS molecule and its end-to-end 
distance, respectively, show a strong positive correlation to each 
other. The more compact a molecule is and thus the smaller its radius of 
gyration, the smaller is its end-to-end distance. Conversely, an extended 
molecule will display a higher radius of gyration and a greater length. 
Interestingly, among all other descriptors, both R_gyration and Length 
are strongly negatively correlated to glycosidic_3min2. A stiff hex
asaccharide structure, i.e. only a narrow range of values possible for 
glycosidic bond dihedral angles, would in4uence the level of compact
ness of a molecule. The negative correlation coef�cient value therefore 
links a preference of lower dihedral angle values with a less compact 
structure. Among the 27 HS hexasaccharides, 6C, 7B and 9A display a 
more compact structure during the MD simulations (lower radius of 
gyration and shorter end-to-end distance) compared to the other 
oligosaccharides. 

All descriptors of sugar ring 4uctuation are positively correlated to 
each other, however the 4uctuation of the second sugar ring (4uct_r2) 
only shows a strong correlation to the �rst sugar ring and a weak cor
relation to the other 4uctuation descriptors. For all studied HS mole
cules, the �rst sugar ring shows the highest 4uctuations, with the 2nd, 
3rd, 4th, 5th and 6th rings being considerably less mobile throughout 
the MD simulation. Molecules 6C, 7B, 7C and 9A have the most 4uctu
ating 1st sugar residue among the HS hexasaccharides and this trend, 
although weaker, is also seen for residues 3, 4, 5 and 6. However, the 
2nd sugar residue for 6C, 7B, 7C, 9A shows 4uctuation levels compa
rable to the other HS molecules. Therefore, the distinction between 
4uct_r2 and the remaining 4uctuation descriptors can be attributed to 
the behavior of those four HS hexasaccharides. At the same time, all 
4uctuation parameters are strongly correlated to R_gyration and Length 
(negative correlation) as well as to the second dihedral angle minimum 
of the third glycosidic bond (glycosidic_3min2, positive correlation). 
The 4uctuation of a molecule is strongly linked to the molecule’s 
compactness as well as the rigidity of its structure, with less 4uctuation 
corresponding to an extended structure with a higher radius of gyration. 

All of the 27 HS show a strong preference for the 4C1 geometry. Ring 
pucker descriptors (pucker_1C4 and pucker_4C1) are strongly anti- 
correlated to each other and similarly correlated to most other de
scriptors. However, while pucker_1C4 is positively correlated to the �rst 
dihedral angle minimum of the �rst glycosidic linkage (glyco
sidic_1min1), pucker_4C1 shows a negative correlation to this 
descriptor. 

The descriptors of the glycosidic bond dihedral angle minima do not 
form clusters as distinct and clear as the other descriptors. Nevertheless, 
some of the glycosidic linkage descriptors can be seen to be strongly 
correlated to certain other descriptors in the dataset, e.g. the strong 
negative correlation between the second minimum of the 3rd linkage 
and R_gyration and Length, as well as the aforementioned positive 
correlation to 4uctuation descriptors. 

The enthalpy and entropy terms, as well as the dipole moment 
descriptor establish two separate clusters. Descriptors relating to the 
dipole moment, electrostatic energy, the non-polar solvation energy, the 
total free energy and the normal mode-calculated entropy are positively 
correlated to each other (correlation coef�cient above 0.78). At the same 
time, the van der Waals energy term, the polar solvation energy term, 
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and the quasi-harmonic entropy form another group of highly- 
correlated descriptors (correlation coef�cients above 0.87). The nega
tive correlation of the two entropy descriptors can seem surprising. 
What is important to consider for these descriptions of entropy, in this 
study they correspond to unbound ligand molecules and not, as may 
usually be the case when calculating entropy, to the protein-ligand 
complex formation. This negative correlation can be rooted in the dif
ference in approaches used to calculate the entropy of a system. Quasi- 
harmonic entropy, corresponding to descriptor S_approx, is better at 
describing the translational and rotational changes in a molecule’s 
conformation, closely related to the lengths, angles and torsions of 
bonds within the molecule. This approach also implicitly includes the 
effect of solvent on the entropy of the analyzed system. Normal mode 
entropy calculations, corresponding to S_nm in the descriptor data set, is 
linked to vibrational entropy, i.e. the bending and stretching of the 
molecule. Hence, both approaches describe different characteristics of 
the HS hexasaccharides and do not have to necessarily be positively 
correlated. The two groups formed by descriptors of enthalpy and en
tropy can be roughly classi�ed as a group of “electrostatics” descriptors 
and a group of “shape” or “conformation” descriptors. The electrostatic 

energy part of the total energy of the unbound HS molecules is the 
highest for 6A, 8A and 9A. The same oligosaccharides also exhibit very 
low van der Waals interaction energy, polar energy and quasi-harmonic 
entropy values. This could mean that the relatively high (i.e. unfavor
able) electrostatic energy caused by the conformation of those molecules 
is balanced out by the favorable shape adapted by the molecules during 
the MD simulation. 

The MD analysis of the 27 HS molecules provides invaluable infor
mation about the conformational landscape of those GAG molecules, 
uncovering preferences among the different HS types that may ulti
mately in4uence the af�nity and speci�city of binding to proteins. 

3.3. Correlation analysis using Pearson product-moment correlation 

The correlation between each of the 35 descriptors and the binding 
af�nity data for 9 HS-protein complexes was assessed using Pearson 
product-moment correlation. Supplementary Table 2 contains the cor
relation coef�cient values for all the descriptors. One immediate 
observation is that for different proteins, particular descriptors are 
correlated with binding af�nity of respective HS-protein complexes. 

Fig. 4. Heatmap of Pearson correlation coef�cients between the analyzed HS descriptors obtained from MD simulations.  
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ATIII is the most distinct from all other considered proteins – only a 
small number of descriptors can be found to be linked to the binding 
af�nity: the 4uctuation of the second sugar ring and the dihedral angle 
descriptor for the 4th glycosidic linkage. 

3.3.1. Intramolecular H-bonds 
H-bond descriptors do not seem to be strongly correlated with the 

binding af�nity of the remaining proteins, except for BMP2 (strong 
correlation for Hbond0 and Hbond3), FGFR1 (strong correlation for 
Hbond0, Hbond1, Hbond3) and Stab-2 (strong correlation for Hbond0, 
Hbond1, Hbond3). 

3.3.2. Radius of gyration 
The radius of gyration and length of the HS molecules are similarly 

linked only to the binding af�nity for complexes containing BMP2, 
FGFR1 and Stab-2. The dipole moment seems to be strongly correlated 
for all proteins except for ATIII. 

3.3.3. Glycosidic linkage dihedral angles 
In the case of glycosidic linkage dihedral angle descriptors, the 

descriptor relating to the second minimum of the �rst glycosidic linkage 
is strongly negatively correlated only with HCII and FGF-7. The 
descriptor of the �rst minimum of the 3rd glycosidic linkage as well as 
the �rst minimum of the 5th glycosidic linkage exhibit strong anti- 
correlation with the binding af�nity of all protein complexes except 
for ATIII. The descriptor of the dihedral angle of the 4th glycosidic 
linkage positively correlated with complexes containing HCII, BMP2, 
Nrp1, and negatively correlated with ATIII. 

3.3.4. Sugar ring =uctuation 
The 4uctuation of the sugar residues is linked to the binding af�nities 

only in the cases of: the second sugar ring and ATIII, the fourth sugar 
ring and BMP2, FGFR1, Stab-2, Nrp1, the �fth sugar ring and FGFR1, 
Stab-2, and the sixth sugar ring and BMP2, FGFR1, Stab-2, Nrp1. 

3.3.5. Enthalpy and entropy 
The enthalpy and entropy strongly correlated for all proteins except 

for ATIII as well as in the case of the solvation descriptor (ESURF) and 
the total energy descriptor (TOTAL) and proteins FGFR1 and Stab-2. 

Taken together, this analysis indicates that there is no clear unique 
pattern of correlation across the complexes, with each exhibiting dif
ferences in correlation sign and value. Therefore, no one elegant 
analytical function, linking the descriptors of intramolecular physico
chemical properties of the HS molecules with the binding af�nity of 
complexes, could be constructed even for groups of HS-protein com
plexes. Instead, any further analysis incorporating these correlation 
values would necessarily have to be tailored to each HS-protein 
complex. 

3.4. Principal component analysis 

Based on the conclusion drawn in the previous section, PCA seems, 
therefore, to be a appropriate next step for the investigation of the de
scriptors set. This alternative approach to the calculation of correlation 
coef�cients for each pair of descriptor and HS-protein complex binding 
af�nity is feature extraction, by which initial properties (here: the 
physico-chemical descriptors of HS hexasaccharides) are transformed 
into a set of new, independent descriptors (Principal Components, PCs). 
The constructed PCs are linear combinations of the original descriptors 
and as such combine information from the whole unreduced initial 
dataset. 

The scree plot (Fig. 5) was generated in order to assess the optimal 
amount of PCs needed to explain as much of the variance in the 
descriptor dataset as possible while still offering a reduction in dimen
sionality. Since the goal of applying PCA was not to reduce the 
descriptor dataset for visualization in a 2D- nor 3D-space but rather to 

�nd an overarching model describing the relationship between charac
teristics of the unbound HS hexasaccharides and their protein binding 
af�nity, the amount of PCs for subsequent analysis was reduced to 4 PCs. 
It can be seen that the �rst 4 PCs combined explain 74% of the variance 
of the initial descriptor dataset, whereas adding the 5th PC would not 
increase that cumulative variance in a meaningful way. 

To decipher the chemical nature of the constructed PCs, the contri
bution of each descriptor to the PCs was calculated and visualized by 
means of a heatmap (Fig. 6). The main contributors to the �rst PC (PC1) 
are H-bond descriptors (with the exception of Hbond3) and terms 
relating to enthalpy and entropy. PC2 is mostly in4uenced by R_gyra
tion, Length, ring 4uctuation (except 4uct_r2), ESURF, enthalpy/en
tropy terms, and most of the glycosidic linkage dihedral angle 
descriptors. The dihedral angle descriptors are the main driving force 
behind PC3, whereas enthalpy, entropy and H-bond terms contribute 
less to this PC. The dominant HS properties governing PC4 are the ring 
pucker descriptors, the �rst minimum of the �rst glycosidic linkage 
dihedral angle and, to a lesser extent, Hbond3. The colors in Fig. 6 
indicate the interplay between different descriptors and strength of 
contribution to each PC. 

Some of the observed relationships are to be expected, e.g. the op
position of VDW to EEL – in cases where structural complementarity 
plays a greater role, the van der Waals interaction energy matters more 
than the electrostatic energy and vice versa. The antagonistic behavior 
of the low- and high-H-bond descriptors is also understandable and in 
accordance with previous observations. However, Hbond3 shows a 
surprising pattern: while for PC1 and PC2 it is not strongly tied to either 
of the two other groups of H-bond descriptors, in PC3 it follows the same 
trend as low-H-bond terms, while in PC4 it behaves more similar to high- 
H-bond descriptors. Another intriguing detail is the complete absence of 
4uct_r2 from PC2, despite the strong presence of all other 4uctuation- 
related descriptors in that PC. Moreover, the two descriptors R_gyra
tion and Length operate in the same direction in all descriptors except 
PC1, where they act in an opposing manner. 

Additional information on the cooperation between different de
scriptors and PCs can be gained from inspecting the loading plots 
(Supplementary Fig. 4). In loading plots, the length of the vectors 
indicate the importance of the given descriptor for the PC. The orien
tation in space of the vectors depicts whether the descriptor has an in
4uence on both, only one or none of the PCs considered in the plot. 

Analysis of the interactions between descriptors in the PC-space 

Fig. 5. Scree plot detailing the fraction of variance explained by the Prin
cipal Components. 
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illustrates a variety of coexisting conformations characterized by 
distinct values adopted by the analyzed descriptors. A low amount of 
intramolecular H-bonds formed, together with a less compact molecule 
(high radius of gyration and length of the HS molecule) coincides with 
high ring 4uctuations, a larger dipole moment, high (unfavorable) 
electrostatic energy values, a greater entropy stemming from vibration 
and stretching of the molecule, as well as less entropy linked to the 
bending of the HS molecule. This corresponds to an extended, highly 
polar HS molecule; by analyzing the biplots of Supplementary Fig. 4, it 
can be seen that oligosaccharides likely to be found in such conforma
tions are e.g. 9A, 9C, 7A, 7C, 8A, 8B, 8C, 1A, 4A, 9B, 5A. A contrasting 
conformation would be characterized by a more compact structure, a 
higher amount of intramolecular H-bonds, less 4uctuation of the sugar 
rings, low solvation energy, more entropy contributed by bending of the 
molecule and low electrostatic energy. The HS hexasaccharides that 
seem to correspond to this combination of characteristics are 1B, 1C, 2A, 
2B, 2 C, 3B, 4B, 4C, 5B, 5C. 

A different look on the conformation would consider the glycosidic 
linkages. A preference of the dihedral angles of the 4th glycosidic link
age for speci�c dihedral values (i.e. a high concentration of observations 
belonging to the dihedral angle minimum, described by glyco
sidic_4min) co-occurs with dihedral angle values spread out more for the 
1st, 2nd, 3rd, 5th glycosidic linkages (less observations found in the 
minima during the MD simulations). This situation would be accompa
nied by very low 4uctuations of the 1st and 2nd sugar rings, a high 
electrostatic energy, higher solvation energy, and a higher vibrational 
entropy (S_nm). HS hexasaccharides that could be linked to this 
conformation include 2A, 3A, 3B, 3C, 5A, 6A, 9A, 9B, 9C. 

While ring pucker descriptors contribute mostly to PC4, which ex
plains the least variation in the initial dataset compared to the other PCs, 
the information they carry is still valuable for describing the charac
teristics of some of the HS oligosaccharides. A strong preference for the 
1C4 sugar ring puckering is linked to a high concentration of dihedral 
bonds of the 1st glycosidic linkage that belong to the minimum dihedral 
angle values, as well as a high fraction of structures throughout the MD 
trajectory that display 3 intramolecular H-bonds. This arrangement of 
characteristics can be linked to oligosaccharides 1A, 1B, 6A, 7B. The 
opposite situation, corresponding to a preference for 4C1 sugar ring 
puckering, can be seen to be characteristic especially for HS 9A. 

When taking into account the HS-binding af�nities determined by 
(Chopra et al., 2021), additional information can be gained about the 
preference of the HS-binding proteins regarding the characteristics of 
the hexasaccharides. As detailed in Fig. 1 in (Chopra et al., 2021), ATIII 
shows a high af�nity for 7A, 7B, a weaker af�nity for 4A, 4B, and only 
minimal af�nity for the other hexasaccharides. In the PC-space, un
bound 7A and 7B exhibit low intramolecular H-bonding and high ring 
4uctuations, while differing in the ESURF and length of the molecules 
(7A is more extended than 7B) and ring puckering conformations (7A 
prefers 4C1, while 7B prefers 1C4). Unbound 4B forms more intra
molecular H-bonds than 7A and 7B. Both 4A and 4B are characterized by 
a less de�ned conformation of the glycosidic linkages (limited 

preference of the minimum conformation) and less 4uctuation of the 
sugar rings. 

The other analyzed proteins show a clear preference for hex
asaccharides 9A and 3A. According to our MD analysis, in its unbound 
form 9A is compact, forms little to no intramolecular H-bonds, exhibits 
high 4uctuation of sugar ring atoms and shows a strong preference for 
4C1 ring puckering. At the same time, 3A is not characterized by 
considerable 4uctuations of its sugar rings. Both unbound 9A and 3A 
show little preference of glycosidic linkage dihedral bond minima. 

The obtained PCs provide a sort of model explaining the physico- 
chemical properties of the 27 unbound 3-O-sulfated HS hex
asaccharides. Each of the HS molecules differs to some extent from the 
others in the PC-space which is signi�cantly reduced in dimensionality 
relative to the original descriptor-space yet contains all relevant infor
mation on the chemical and structural characteristics of the studied 
GAGs. The observed differences may contribute to the understanding of 
HS-protein binding speci�city and of the sulfation code. 

3.5. Linear regression analysis 

Linear regression was used to evaluate the extent to which de
scriptors of the unbound HS hexasaccharides can explain HS-protein 
binding af�nity. The experimental binding af�nity data between the 
27 analyzed HS molecules and a set of protein targets known to specif
ically recognize 3-O-sulfation was taken from (Chopra et al., 2021). The 
independent variables of the linear regression model were the four PCs 
obtained from PCA, with the binding af�nity value expressed in Relative 
Fluorescent Unit (RFU) as response variable. The results of this analysis 
are detailed in Supplementary Table 3. 

For all proteins except ATIII, PC1 and PC3 are consistently statisti
cally signi�cant (p < α = 0.05). These PCs corresponded mostly to, in 
the case of PC1, H-bonds, enthalpy and entropy, as well as glycosidic 
linkage dihedral angles for PC3. Hence, it could be assumed that those 
sets of descriptors of unbound HS hexasaccharides are unlikely to have 
any substantial in4uence on the HS/ATIII binding af�nity. While the 
other two PCs, PC2 and PC4, do not exhibit statistically signi�cant links 
to the response variable, it cannot be ruled out that the descriptors these 
PCs summarize contribute to the binding af�nity of the GAG-protein 
complexes. For all proteins except ATIII, the PC-based linear regres
sion model offers a high degree of explanation of the target variable, 
with R2 values ranging between 0.68 and 0.8 (adjusted R2 between 0.62 
and 0.77). Thus, the MD-derived descriptors of unbound 3-O-sulfated HS 
hexasaccharides, simulated by MD, are alone capable of explaining up to 
around 70% of the binding af�nity data in 3-O-sulfated HS-protein in
teractions. In the case of ATIII, the R2 equals 0.11 (adjusted R2 =−0.06), 
which indicates that the PC-based linear regression models fails at 
explaining the variance in HS/ATIII binding af�nity. Consequently, it 
can be deduced that the descriptors serving as main signals in the four 
PCs considered are not the driving force behind the binding af�nity 
between ATIII and 3-O-sulfated HS. 

Fig. 6. Heatmap showing the contribution of descriptors of unbound HS molecules to the Principal Components.  
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3.6. Cluster analysis 

In order to discover any patterns and subgroups in the binding af
�nity data in relation to the descriptor-based PC space, cluster analysis 
by means of Hierarchical Clustering (HC) with average linkage was 
conducted. The clusterization of the PC versus binding af�nity correla
tion matrix is depicted as a heatmap in Fig. 7. 

Three main groups of proteins could be identi�ed by cluster analysis 
– “group 0′′ composed only of ATIII, “group 1” comprising BMP-2, FGFR- 
I and Stab-2, and “group 2” corresponding to RAGE, Nrp-1, HC-II, FGF-7, 
FGF-9. All proteins are positively-correlated with PC1 (the H-bond and 
free energy PC), however for ATIII this correlation is the weakest. In the 
case of PC3, ATIII shows negative correlation with all other proteins and 
a strong positive correlation with the values of PC3. The same pattern, 
although reversed in direction, can be observed for PC4, however here 
groups 1 and 2 differ visibly in the strength of correlation. In the case of 
PC2, only group 1 follows a clear trend as a whole, with all group 1 
proteins negatively correlated to PC2. ATIII shows only a very weak 
positive correlation, while group 2 is more heterogeneous in its corre
lation to PC2 across its protein members, with some showing a weak 
positive and other a weak negative correlation. 

Cluster analysis by HC revealed differences between the proteins in 
PC-space that may point to interesting information about the character 
of their binding with 3-O-sulfated HS. Among the descriptors consid
ered, the binding between group 2-proteins and HS seems to be thus 
mostly linked to H-bond formation, enthalpy and entropy, as well as the 
glycosidic bond dihedral angle. Based on the HC analysis, HS/ATIII 
binding is in4uenced by, in order of importance, glycosidic bond dihe
dral angle descriptors, H-bonds and free energy components, ring 
puckering, and the least by sugar ring 4uctuations. Meanwhile, the 
binding between group 1-proteins and 3-O-sulfated HS can be said to be 

in4uenced by all four PCs considered. 
Taken together with the information about contribution of each 

descriptor to the PCs, it is possible to further speculate on the exact 
character of the HS-protein binding. PC3 is strongly linked to descriptors 
of glycosidic linkage dihedral angle minima and for all those descriptors 
except glycosidic_4min the correlation to PC3 is negative. A positive 
correlation between the HS-binding af�nity of a protein and PC3 
consequently also means a negative correlation to the glycosidic linkage 
descriptors and a more spread out distribution of dihedral angle values 
sampled from the MD trajectories. Conversely, a negative correlation 
with PC3, as is the case for ATIII, means a positive correlation with the 
glycosidic bond descriptors, thus pointing towards a preference of a high 
fraction of data points in the minima and a speci�city of dihedral angle 
values of the HS molecules sampled from the MD simulations. 

Similar conclusions can be drawn about proteins of group 1 and 
sugar ring 4uctuation and puckering. Both sugar ring puckering and 
4uctuation describe the 4exibility of the HS molecule. The strong cor
relation of group 1-binding af�nity with PC2 and PC4 indicates a clear 
preference of certain conformational states. A negative correlation with 
PC2 corresponds to a positive correlation with 4uctuation descriptors, 
thus a greater link between binding af�nity and high 4uctuation and 
consequently a greater entropy of the HS molecule. At the same time, the 
negative correlation with PC4 entails a link between binding af�nity and 
a tendency for the 4C1 ring pucker conformation, thus less 4exibility in 
terms of ring puckering. Conversely, no strong correlation with PC4, as 
is the case e.g. for some proteins of group 2, would indicate no strong 
tendency towards either pucker conformation and thus perhaps an 
increased 4exibility of the HS molecules bound with high af�nity. 
Interestingly, ATIII is known to have a preference of certain ring pucker 
conformations of its ligands (Demeter et al., 2018), while in our analysis 
only a weak correlation with PC4 could be observed (Fig. 7). However, 

Fig. 7. Heatmap and hierarchical clustering of the correlation coef�cients between PCs and HS-protein binding af�nity values.  
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(Stancanelli et al., 2018) found that the ring pucker conformation of 
unbound HP is not obligatory for high-af�nity binding, as the correct 
conformation is adopted by HP upon binding to ATIII. Therefore, a weak 
correlation with PC4 does not necessarily correspond to a lack of pref
erence of sugar ring conformation. 

3.7. Assessment of binding af?nity based on the MD-derived Principal 
Components 

In order to use the obtained PCs as a scoring function, adding de
scriptors of either the protein or speci�cally the HS-binding site would 
be necessary. However, knowledge of structure or function similarity, 
evolutionary relationships between proteins or co-localization of pro
teins in different sub-cellular locations, tissues or organs can also be used 
to form hypotheses on the interaction of proteins with ligands. We used 
the experimental binding af�nity between Fibroblast Growth Factor 2 
(FGF-2) and the 27 3-O-sulfated HS hexasaccharides (Chopra et al., 
2021) to examine the usefulness of our PCA-based approach in pre
dicting the approximate physico-chemical nature of the HS/FGF-2 
binding. Due to being a member of the FGF family and interacting 
with Nrp-1 (Uniewicz and Fernig, 2008), we hypothesized that the 
binding of FGF-2 to the 27 HS molecules will be similar in character to 
the binding af�nity of FGF-7, FGF-9 and Nrp-1. Therefore, FGF-2 would 
be assigned to group 2” of HS-binding proteins by HC. 

We calculated the mean binding af�nity for each sub-group identi
�ed by cluster analysis (i.e. group 0, group 1, group 2) and calculated the 
Pearson product-moment correlation between the FGF-2 binding af�nity 
and the mean binding af�nities. The highest correlation was between 
FGF-2 and the mean binding af�nity of group 2 (correlation coef�cient 
equal to 0.82), followed by group 1 (correlation coef�cient 0.78) and 
ATIII (group 0, correlation coef�cient = −0.006). After including the 
FGF-2 data into the HC analysis, the clustering algorithm thus correctly 
sorted FGF-2 to group 2. As can be seen in Supplementary Fig. 5, the 
binding pro�le of FGF-2 is indeed similar to the binding pro�le of the 
other proteins of group 2: RAGE, Nrp-1, HC-II, FGF-7, FGF-9. Proteins of 
this group seem to lack the slightly higher selectivity of HS binding that 
can be observed for proteins of group 1. Therefore, the PCA approach, 
trained on data not including the FGF-2 binding af�nity, was able to 
distill the information contained in the unbound HS molecules in such a 
way that enabled us to correctly link the experimental binding af�nity 
with principal components containing the most relevant physico- 
chemical information on the unbound HS structures. 

4. Conclusions 

The analysis of the physico-chemical descriptors of unbound HS 
hexasaccharides using computational approaches gave insight into the 
speci�city and nature of binding between HS and a set of diverse pro
teins as well as into understanding of the sulfation code. Differences in 
sequence dictated preferences of unbound HS molecules regarding 
shape and 4exibility. The conformational landscape of unbound HS that 
arose from the cooperation of physico-chemical descriptors is likely an 
important factor in the determination of binding af�nity and speci�city 
in HS/protein binding. 

The elucidation of the links between properties of the HS molecules 
to the HS/protein binding af�nity determined by (Chopra et al., 2021) as 
well as removing redundancy from the available data was achieved by 
applying PCA to the initial descriptor dataset and identifying four 
principal components corresponding to the main groups of character
istics that explained most of the variance of the HS descriptors. The 
calculation of correlation between the obtained PCs and the HS-protein 
binding af�nity values followed by hierarchical clustering of the cor
relation coef�cients, as well as analysis of the association between PCs 
and binding af�nity data clearly showed that information obtained from 
MD simulations of unbound HS molecules can offer insight into 
HS/protein binding. All analyses underlined the difference in 

HS-binding speci�city between ATIII and the other proteins, which is in 
accordance with multiple experimental and theoretical studies (e.g. 
Mosier et al., 2012; Raghuraman et al., 2010). Additionally, we were 
able to further divide the remaining proteins into two subsets depending 
on the correlation of their HS-binding af�nity with PCs describing the 
unbound HS GAGs. 

The linear regression analysis on the PCA and HS-binding af�nity 
data showed that, except for ATIII, the binding of HS by the proteins 
could be explained to a high degree by the information summarized in 
the PCs. Therefore, PCA not only reduced the dimension of the initial 
descriptor dataset but also allowed us to identify the main characteris
tics of HS that can putatively contribute to protein binding af�nity. 
However, depending on the HS/protein complex considered, a part of 
variance in binding af�nity was left unaccounted for by the HS de
scriptors and PCs. This unexplained variance may be caused by the lack 
of descriptors of either the proteins or the GAG-binding sites located on 
those proteins in our study. While GAG-binding sites on proteins are 
usually composed of clusters of positively-charged amino-acid residues, 
(Sarkar and Desai, 2015) describe the importance of other types of 
residues in the binding site and its vicinity for the speci�city of pro
tein/GAG binding. (Joseph et al., 2015) identi�ed residues of IL–8 
outside of the GAG-binding site that do not directly bind the GAG but 
contribute to GAG-binding by enhancing the plasticity of the binding 
site in order to accommodate GAG molecules. Therefore, the differences 
between the proteins that can be re4ected by other descriptors than 
those included in our study, not only restricted to the binding site size 
and amino-acid sequence, is likely to further improve our model. 
Additional factors known to in4uence GAG/protein binding af�nity and 
speci�city, which could contribute to our analysis in future research, is 
the presence of ions (Kogut et al., 2021; Multhaup, 1994), the change in 
protein conformation upon GAG-binding (Rosenberg et al., 1997; Sage 
et al., 2013) or considering the presence of water molecules in the 
GAG-binding site of proteins (Mosier et al., 2012). 

The use of in silico methods allowed us to study in detail the prop
erties of 3-O-sulfated HS hexasaccharides in relation to their protein 
binding speci�city. This shed light on relationships between structural 
properties of the HS molecules and protein binding af�nity. A deeper 
understanding of HS/protein-binding speci�city attributed to the sul
fation code and of the physico-chemical characteristics of HS molecules 
that assist in the identi�cation and design of speci�c GAG molecules and 
their mimetics with applications in medicine and pharmacology. 
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