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STRESZCZENIE 

 W niniejszej rozprawie zaprezentowano zintegrowane podejście, łączące dane 

omiczne oraz metody uczenia maszynowego (ML), w celu mechanistycznego zrozumienia 

toksyczności płucnej wywołanej przez nanorurki węglowe (CNT). Wobec rosnącej 

produkcji oraz szerokiego zakresu zastosowań jednościennych i wielościennych nanorurek 

węglowych (SWCNT i MWCNT), ocena ich bezpieczeństwa – szczególnie po ekspozycji 

drogą wziewną – stanowi istotny priorytet naukowy i regulacyjny. W celu wypełnienia tej 

luki badawczej połączono chemoinformatykę, transkryptomikę oraz modelowanie oparte 

na koncepcji ścieżek niekorzystnych skutków (Adverse Outcome Pathways, AOP), aby 

opracować modele ilościowych zależności struktura-aktywność specyficzne dla 

nanomateriałów (Nano-QSAR). 

 Główne pytanie badawcze dotyczyło możliwości integracji transkryptomiki i metod 

uczenia maszynowego w tworzeniu predykcyjnych modeli toksyczności płucnej 

wywołanej przez CNT, związanej z ostrą odpowiedzią zapalną po ekspozycji wziewnej. 

Postawiona hipoteza zakładała, że nanorurki o podobnych właściwościach 

fizykochemicznych i profilach transkryptomicznych wykazują zbliżone działania 

niepożądane w obrębie tkanki płucnej. 

 W celu weryfikacji tej hipotezy zrealizowano trzy zasadnicze cele badawcze. Po 

pierwsze, opracowano model Nano-QSAR oparty na koncepcji AOP, pozwalający na 

ilościowe powiązanie właściwości fizykochemicznych MWCNT z zaburzeniami 

transkrypcji w szlaku odpowiedzi ostrej fazy (ang. acute phase signalling, AR). Po drugie, 

przeprowadzono analizę porównawczą SWCNT i MWCNT w celu identyfikacji 

wspólnych i odmiennych cech strukturalnych wpływających na aktywację tego szlaku. Po 

trzecie, skonstruowano globalny model Nano-QSAR umożliwiający ocenę wpływu 

pozostałości metalicznych (takich jak Fe₂O₃ i CoO) na wczesne zmiany transkryptomiczne 

powiązane ze stanem zapalnym i włóknieniem płuc.Modele skutecznie identyfikowały 

kluczowe czynniki molekularne oraz wczesne zdarzenia kluczowe (ang. Key Events, KEs), 

wykazując wysoką wartość predykcyjną zgodną z zasadami walidacji modeli QSAR 
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według wytycznych OECD. Do najistotniejszych determinantów odpowiedzi zapalnej i 

włóknienia należały: stosunek długości do średnicy MWCNTs, powierzchnia właściwa i 

sposób funkcjonalizacji nanorurek, a także obecność określonych domieszek metali. 

 Zasadniczą innowacją przedstawionego podejścia jest integracja danych 

transkryptomicznych z modelowaniem Nano-QSAR. W przeciwieństwie do tradycyjnych 

modeli opartych na końcowych punktach apikalnych (np. histopatologia, toksyczność 

narządowa), proponowane rozwiązanie wykorzystuje genomowe profile ekspresji genów 

jako wskaźniki wczesnych odpowiedzi molekularnych i komórkowych w obrębie szlaku 

odpowiedzi ostrej fazy. Takie podejście zwiększa biologiczną interpretowalność modeli 

oraz poprawia ich trafność predykcyjną, umożliwiając precyzyjną identyfikację szlaków 

molekularnych zaburzanych przez konkretne właściwości strukturalne CNT. Ponadto, 

rozwiązanie to wpisuje się w aktualne trendy regulacyjne, promujące mechanistyczne 

podejście do oceny zagrożeń, oraz wspiera projektowanie bezpieczniejszych 

nanomateriałów zgodnie ze strategia "safer-by-design". 

 Podsumowując, niniejsza rozprawa ustanawia kompleksowe i innowacyjne ramy 

predykcyjnego modelowania toksyczności CNT, oparte na zintegrowanym podejściu 

molekularnym. Ukazuje wartość synergii pomiędzy chemoinformatyką, uczeniem 

maszynowym i biologią systemową w kontekście nowoczesnej toksykologii regulacyjnej 

oraz wspiera etyczny, wydajny i zrównoważony rozwój nanotechnologii.  
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SUMMARY 

 This dissertation presents an integrative omics and machine learning (ML) approach 

to the mechanistic understanding of carbon nanotube (CNT)-induced pulmonary toxicity. 

Considering the increasing production and diverse applications of single-walled and multi-

walled CNTs (S- and MWCNTs), evaluating their safety, especially following inhalation 

exposure, has become a regulatory and scientific priority. To address this gap, the research 

bridges cheminformatics and transcriptomics and Adverse Outcome Pathway (AOP)-

informed modeling to develop a predictive Nano-Quantitative-Structure-Activity-

Relationship (Nano-QSAR) framework aligned with the principles of New Approach 

Methodologies (NAMs) and Next-Generation Risk Assessment (NGRA). 

 The central research question underpinning this work is: How can transcriptomics 

and machine learning be integrated to develop predictive models for CNT-induced acute 

phase-driven inflammation following inhalation exposure? The core hypothesis posits 

that CNTs with similar physicochemical characteristics and transcriptomic signatures are 

likely to induce comparable adverse effects in lung tissue. To investigate this, the study 

focused on the acute phase response (AR) signaling pathway, a well-established early 

marker of pulmonary inflammation and fibrosis. 

 To validate this hypothesis, the research pursued three primary objectives. First, an 

AOP-informed Nano-QSAR model was developed to quantitatively link the 

physicochemical properties of multi-walled CNTs (MWCNTs) with transcriptional 

perturbations in the AR pathway. Second, a comparative analysis of single-walled and 

multi-walled CNTs (SWCNTs and MWCNTs) was conducted to identify shared and 

distinct structural features that impact on acute phase response pathway. Third, the global 

Nano-QSAR model was developed to assess how residual metal impurities (such as Fe₂O₃ 

and CoO) contribute to early transcriptomic changes associated with lung inflammation 

and fibrosis. 

 These models successfully captured key molecular drivers and early key events 

(KEs), demonstrating strong predictive performance consistent with the OECD principles 
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for QSAR validation. Key physicochemical determinants, including aspect ratio, surface 

area/functionalization, and specific metal impurities, were identified as critical contributors 

of inflammatory and fibrotic responses. 

 A key innovation of this dissertation lies in the systematic integration of 

transcriptomic data into the Nano-QSAR modeling framework. Unlike traditional QSAR 

models that often rely on apical endpoints (e.g., histopathology or organ-level toxicity), 

this approach incorporates genome-wide gene expression profiles to capture early 

molecular and cellular responses within the acute phase pathway. This molecular-level 

integration enhances the biological interpretability and improves predictivity, enabling a 

more precise identification of pathways perturbed by specific physicochemical properties 

of CNTs. By anchoring transcriptomic responses to structural attributes, the strategy 

supports more nuanced and mechanistically grounded toxicity predictions. Moreover, it 

aligns with current regulatory trends emphazing mechanism-based hazard assessment and 

facilitates the development of safer-by-design (SbD) nanomaterials within the AOP and 

NAMs frameworks. 

 In summary, this dissertation establishes a comprehensive and innovative 

framework for the mechanistically informed prediction of CNT-induced toxicity. It 

demonstrates the value of combining cheminformatics, machine learning, and systems 

biology to advance regulatory toxicology and to support the ethical, efficient, and 

sustainable development of nanotechnology. 
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1.1. DEFINITIONS AND STRUCTURES 

 Carbon nanotubes (CNTs) are a class of materials composed of carbon atoms, 

wherein neighbouring carbon atoms on the molecular scale are sp2–hybridized into 

honeycombs, and these honeycomb lattices are then extended into overlapped sheets that 

form graphene. They have been under intensive and applied engineering since their 

discovery in the early 1900s. In 1991, Sumio Iijima published a landmark paper on multi-

walled carbon nanotubes (MWCNTs).1 Just two years later, researchers were able to 

synthesized single-walled carbon nanotubes (SWCNTs).1 SWCNTs are typically 0.4–2 nm 

in diameter, while MWCNTs consist of multiple concentric shells and have diameters that 

can often exceed 100 nm (though most commonly below this). SWCNTs are essentially 

cylindrical structures formed from a single sheet of graphene, whereas MWCNTs consist 

of multiple concentric graphene cylinders, which may include two layers or more.2,3 

 

 

Figure 1. Illustrates the basic structures of single-walled, double-walled and multi-walled CNTs. 

 In both SWCNTs and MWCNTs, the fundamental atomic arrangement is based on 

a hexagonal graphene lattice. The way in which a graphene sheet is rolled, defined by the 

chiral vector (n-m), determines many of the CNTs properties, particularly their electronic 

behaviour. For instance, SWCNTs with an armchair configuration (n=m) exhibit metallic 
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conductivity, while those with a zigzag pattern (m = 0, or n = 0) or chiral arrangement 

(n≠m) may behave as semiconductors or metals, depending on the specific (n-m) 

relationship. 

1.2. PHYSICOCHEMICAL PROPERTIES OF CNTS 

1.2.1. CHIRALITY 

 The chirality of a CNT, defined by its (n, m) indices, governs its electronic 

behaviour and optical features. When both indices are equal, as in armchair nanotubes (n 

= m), the tube exhibits metallic conductivity. On the other hand, zigzag (n ≠ 0, m ≠ 0) and 

more general chiral forms (n ≠ m ≠ 0) may behave as either semiconductors or metals, 

depending on the arithmetic relationship between the indices (especially whether n-m is 

divisible by 3).4,5  

1.2.2. MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES 

 Because of their diamond-hard sp2 carbon lattice, CNTs are extremely strong 

electrically and thermally conductive, but except for this, they have been exceptionally 

strong as well. Consider, for instance, the tensile strength of one individual MWCNT was 

found to be 63 GPa (making it among the strongest known materials) (Yu et al., 2000).4 

Thermal conductivities as high as 3500 W/m·K have been measured for SWCNTs at room 

temperature5, far exceeding almost all other materials (diamond is around 2200 W/m·K). 

Similarly, their electrical conductivity is also extraordinary, depending on chirality.6 These 

high conductivities that nanotubes can facilitate electron transfer and perhaps catalyst 

redox reactions at biointerfaces. This inherent reactivity granted by intrinsic properties 

make nanotubes durable and, in some ways, unique at the nanoscale. On the other hand, 

extremely strong and low biodegradability also implies that CNTs (especially pristine ones) 

can be very biopersistent, resisting clearance and remaining in tissues for long periods, 

which poses long-term safety concerns. 
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1.2.3. SIZE AND ASPECT RATIO 

 The length and diameter of CNTs (and hence their aspect ratio) are crucial for their 

biological interactions and toxicity. Long, rigid CNTs act much like high-aspect-ratio 

fibers. When inhaled, long needle-like MWCNTs can penetrate deep into the lung and 

frustrate macrophage clearance, similar to asbestos fibers.7–11 Such high aspect-ratio CNTs 

tend to persist in tissue and lead to chronic inflammation and fibrosis. In contrast, shorter 

or tangled CNTs are more easily cleared by cells and generally show less fibrosis. Thus, 

aspect ratio strongly affects the biopersistence and pathogenicity of these materials. 

1.2.4. GRAPHENE WALL NUMBER AND STRUCTURAL RIGIDITY 

 Besides making carbon molecules a few nanometers in diameter, stronger and able 

to perform certain functions, how high the number of graphene layers (SWCNTs, 

DWCNTs and MWCNTs) is, changes CNTs rigidity and surface area. MWCNTs are 

mechanically stiffer and usually contain more impurities.  Similarly, SWCNTs are highly 

flexible and hold a particularly large surface-to-volume ratio. An increased surface area 

may mean greater interaction with biomolecules. reactivity will be increased, thereby, 

through greater dispersion, once a functional group has been added to the surface.12 

1.2.5. SURFACE CHEMISTRY AND FUNCTIONALIZATION 

 Surface chemistry of CNTs without any modification (i.e., pristine) is hydrophobic 

and tends to self-aggregate. This reduces their solubility both in water and biological 

fluids.13 Such aggregates can trigger immune responses. CNTs are usually modified 

chemically in order to enhance their dispersibility and biocompatibility.  Oxidative 

treatments (e.g. COOH or -OH functional groups) render CNTs more hydrophilic and 

reduce their cytotoxicity.14 For example, one study showed that oxidized (–COOH) 

MWCNTs induced less cell death than pristine MWCNTs, although the oxidized tubes 

were tentatively somewhat more genotoxic.  Covalently attaching polymers or 

biomolecules (e.g. polyethylene glycol) can further increase solubility and reduce direct 

membrane interactions.  In a word, the covalent or noncovalent functionalization of CNT 
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surfaces changes them just as much in their dispersion, cellular uptake and ultimate 

toxicity.14,15 

1.2.6. IMPURITIES AND RESIDUAL CATALYSTS 

 Most CNTs are produced by catalytic methods; chemical vapour deposition (CVD) 

is a typical example of this approach. It uses metal catalysts such as iron (Fe), cobalt (Co), 

or nickel (Ni) to start the growth process of carbon nanotubes. Some residual catalyst 

particles are embedded or attached to CNTs and cannot be removed. Leachate from these 

metal impurities can cause Fenton-type reactions, producing reactive oxygen species 

(ROS). Numerous research reports indicate that the generation of intracellular ROS by 

CNTs depends, in part, on the metal content.16 Even commercial CNT samples often 

contain trace amounts of iron or other metals that contribute to oxidative stress in cells. 

Purification of these metals can reduce the effects, but it isn't easy to eliminate them. While 

the intrinsic fiber-like shape of CNTs is a primary factor in determining pathogenicity, 

metal impurities can magnify toxicity (especially oxidative stress) in certain conditions.16 

1.3. APPLICATIONS AND MARKET IMPACT OF CARBON 

NANOTUBES 

 Using their unique properties, CNTs have been integrated into a wide array of 

industries.17–22 Key application areas are detailed in Figure 2. 
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Figure 2. Overview of the main applications of carbon nanotubes across the industrial and 

biomedical sectors. 

 CNTs offer promising prospects due to their high electrical conductivity and 

nanometer-scale size. They have been applied to ultra-fast transistors, field-effect devices, 

bendable conductive films, transparent electrodes with nanoscale resolution, etc. CNTs can 

form the basis for ultra-fast Field-Effect Transistors (FETs) and carbon-based logic 

circuits, as well as for interconnects made of carbon fiber composite lines. They are also 

used in conductive thin films and inks for flexible displays. 

 CNTs play the role of conductive support and electrode additives in batteries (Li-

ion or Li-S), supercapacitors and fuel cells. Their large specific area and excellent 

conductivity raise the efficiency of electron transfer in all cases. CNT-based composite 

materials are used in solar cells (as either transparent electrodes or active media to absorb 

light) and light-emitting diodes. This area is also being researched for catalysis in energy 

applications, such as the manufacture of hydrogen or as metal-carrier materials and 

electrolyte supports in fuel cells. 
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Since CNTs possess tremendous strength yet weigh next to nothing, they can be 

incorporated as reinforcement into composites that make aircraft and automobile 

components. CNT-reinforced plastics and fibers produce materials with superb strength-

to-weight ratios. NASA and other organizations have studied CNT-based materials (US-

COMP program).25 Automakers are using CNT-filled resins for lighter car panels, 

improved tire materials and electromagnetic shielding. In all these fields, CNT composites 

contribute to vehicles and aircraft that are lighter, stronger and more energy efficient. 

 CNTs serve as catalyst support (on account of their high specific area and good 

stability) and active materials for catalysis in purifying the environment. For example, they 

have been used to promote the catalytic oxidation of toxic chemicals, adsorb heavy metals 

or organic pollutants from water, and provide high-performance membranes used in 

filtrates. They can withstand horrible conditions and are conductive, so environmental 

sensors (detecting gases or toxins) are a good fit for them. Furthermore, CNT-based 

photocatalysts are being researched for their ability to decompose persistent pollutants 

under light irradiation. 

 CNTs work for drug delivery and gene introduction in biomedicine. Thanks to their 

small size, this material can penetrate cells. In recent years, engineers have developed 

means to make them functional so that they can carry drugs or DNA right past the cell 

membrane to its target location. They play a role as contrast agents in (eg photoacoustic) 

imaging and sensing devices for biologically important molecules such as DNA. CNT 

scaffolds are used in tissue engineering with the capability to conduct electricity, which 

enables skin cells to grow. 

 Crops that detect diseases quickly enough for humans to stop their spread mean at 

least ten times the yield. Nanowire biosensors fashioned on silicon have been tested in 

living plants by UC Davis plant pathologist Pamela Ronald. For ecological restoration 

purposes, a network of sensors could be installed inside an estuary to monitor its oxygen 

level, etc. Both examples demonstrate how experts in fringe areas have begun applying 

cellulose paper-based tubes, the highest cost component, in conjunction with other 
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materials such as glass fibres. The upshot is a cheaper fit for new types of sensors and 

further moisture-proofing. 

 The global market is progressing fast as it can fulfil many needs across various 

sectors. For example, a report released by Grand View Research estimates (2024) that the 

global market for CNT was estimated to be around USD 3.71 billion with a CAGR 

(Compound Annual Growth Rate) of approximately 14.1% through 2030.23 According to 

another study, predicted growth from USD 5.0 billion in 2024 to USD 24.1 billion by 2034 

(CAGR 17%).24   

Table 1. The estimated market value of carbon nanotubes across various sectors, along with 

projected growth trends 

Sector 
2024 Market Value 

(Billion USD) 
Future Value Target Year CAGR (%) 

Electronics & 

Semiconductor 
$3.7 

Growing at 14.1% 

CAGR (2025–2030) 
2030 14.10% 

Energy Storage $6.88 $18.67 (by 2032) 2032 13.30% 

Automotive & 

Aerospace 
$5.9 (2025) $24.1 (2034) 2034 17% 

Pharmaceutical & 

Biomedical 
$6.45 $18.01 (by 2031) 2031 13.70% 

Environmental 

(Water, Air 

Purification) 

$1.31 $2.63 (by 2029) 2029 14.90% 

 

In specific areas, such as medical/biomedical applications of CNTs, it is anticipated that 

the market will rise from its expected to grow of about USD 6.45 billion in 2023 to USD 

18.01 billion by 2031(CAGR 13.7%).25 Similarly, the CNT-based environmental 

technology market is projected to advance from USD 1.31 billion in 2024 to USD 2.63 
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billion by 2029 (CAGR 14.9%).26 These values (Figure 2 and Table 1) illustrate the 

enormous potential for future growth of CNTs in electronics, energy, healthcare, and other 

fields. 

 Particularly, the global market for MWCNTs is currently dominated by this market, 

primarily due to their scalable production processes and relatively lower costs. Figure 3 

shows a detailed comparison of S- and MWCNTs.23–26  

 

 

Figure 3. Market trends for CNTs distinguish between the single-walled and multi-walled carbon 

nanotube types across major application sectors. 

1.4. MECHANISMS OF THE CNT-INDUCED TOXICITY 

 Carbon nanotubes have raised safety concerns due to their potential toxic effects, 

especially via inhalation. When CNTs are introduced into biological systems, they can lead 

to diverse effects on cells through several mechanisms (Figure 4).27,28 
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Figure 4. Physicochemical and biological factors influencing the toxicity of CNT. Nanotubes 

toxicity is determined both by intrinsic physicochemical properties (i.e., length, rigidity, surface 

chemistry and metal impurities) as well as key biological mechanisms such as oxidative stress and 

generation of ROS, frustrated phagocytosis, genotoxicity and DNA damage, lysosomal disruption 

and activation of inflammasome, cellular membrane damage and induced of pulmonary fibrosis. 

1.4.1. OXIDATIVE STRESS AND ROS GENERATION 

 CNTs are known to penetrate the cell membranes and interact with intracellular 

components, leading to their persistent accumulation within organelles, such as the 

endoplasmic reticulum.29 This localization is associated with the generation of reactive 

oxygen species (ROS), which lead to oxidative stress. Some studies have reported that even 

small doses of MWCNTs can induce high levels of intracellular ROS. It seems to be 

associated with solubilized metal contaminants present in MWCNTs (e.g., Fe, Co, Ni). 

Indeed, a correlation between intracellular ROS production and the metal content of CNTs 

has been frequently observed.28 The ROS, such as superoxide anions and hydroxyl radicals, 

can damage cellular macromolecules, including lipids, proteins and DNA, leading to 
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inflammation, mitochondrial dysfunction, and cell death. While even metal-free CNTs can 

induce ROS generation through surface defects or activation of oxidative enzymes, metal-

rich CNTs tend to elicit higher oxidative stress. Therefore, enhanced ROS production is 

considered a key mechanism underlying CNT-induced cytotoxicity and inflammation.30 

1.4.2. FRUSTRATED PHAGOCYTOSIS AND PERSISTENT 

INFLAMMATION 

 Long, rigid CNT fibers are often too large for macrophages to fully engulf, leading 

to frustrated phagocytosis. This failure to clear the fiber results in chronic activation of 

immune cells. Macrophages attempting (and failing) to digest the CNTs release pro-

inflammatory cytokines (e.g. TNF-α, IL-1β) and reactive species extracellularly, sustaining 

tissue inflammation. This mechanism mirrors the fiber-toxicity paradigm seen with 

asbestos. In fact, in animal studies, long MWCNTs instilled into body cavities induced 

asbestos-like pathological outcomes.31 Overall, frustrated phagocytosis by long CNTs 

drives ongoing inflammation and secondary tissue damage. 

1.4.3. GENOTOXICITY 

 The genotoxic effects of CNTs are typically mediated through oxidative stress 

mechanisms. This process may initiate with the generation of ROS via metal-catalysed 

such as Fenton chemistry involving iron, or through cellular accumulation of CNTs via 

phagocytosis. Subsequently, ROS production can be further amplified by the activation of 

NADPH oxidase.32 The physicochemical characteristics of MWCNTs significantly 

influence their genotoxicity.33,34 For example, in the study by Poulsen et al.,33 a panel of 10 

different MWCNTs was analyzed, suggesting that variations in parameters, such as length, 

rigidity and surface properties, directly affected the manifestation of genotoxicity effects 

in lung tissues. High-aspect-ratio CNTs (long, rigid tubes) have been shown to pose a 

greater genotoxic risk. This increased risk is likely attributed to their persistence in the 

biological system and higher ROS generation capacity.35 Chronic exposure to such CNTs 
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may cause DNA damage36 and impaired DNA repair, leading to mutations and increased 

carcinogenic potential over time.37 

1.4.4. PULMONARY FIBROSIS 

 Pulmonary fibrosis is a well-documented long-term pathological outcome of CNT 

exposure, observed across numerous experimental animal models.38–44 When CNTs enter 

the lungs, whether through inhalation, intratracheal instillation or pharyngeal aspiration, 

they trigger an immediate and robust inflammatory response. This acute phase is 

characterized by the recruitment and accumulation of immune cells such as neutrophils, 

macrophages, and lymphocytes, along with the release of pro-inflammatory and pro-

fibrotic cytokines, chemokines and growth factors. Both type 1 (Th1/M1) and type 2 

(Th2/M2) immune pathways are activated during this phase. 

 Fibrotic changes can begin as early as day 1 post-exposure, marked by the 

deposition of extracellular matrix (ECM) components in the alveolar septa begins to 

emerge. In the early stage, neutrophils and classically activated M1 macrophages dominate 

the immune response, sustaining inflammation and initiating tissue remodeling. As the 

response progresses, a shift toward a type 2 dominant microenvironment occurs. Th2 

lymphocytes and alternatively activated M2 macrophages become more prevalent, 

releasing type 2 cytokines (e.g., IL-4, IL-13) that suppress acute inflammation while 

promoting fibrotic remodeling. 

 Fibroblasts and myofibroblasts, key effector cells in fibrosis, are activated and 

expanding during this process. They are responsible for producing and depositing collagen 

and other ECM components that contribute to tissue scarring. By around 28 days of post-

exposure, chronic fibrotic phenotypes are typically fully established and can persist for 

months to a year. These long-term changes include interstitial fibrosis, thickening of 

alveolar septa, persistent inflammation and granuloma formation. 
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 Importantly, prolonged fibrosis and unresolved chronic inflammation create a tissue 

environment that may contribute to carcinogenic progression.45–48 Persistent fibroblast 

activation, immune dysregulation, and elevated oxidative stress can lead to DNA damage, 

impaired repair mechanisms, and cellular transformation. 

 

Figure 5. Overview of CNT-induced lung inflammation and fibrosis. Upon inhalation exposure to 

CNTs, various immune cells are recruited from the bloodstream and infiltrate the lung tissue. This 

immune activation is initiated by the release of cytokines, chemokines, reactive oxygen species 

(ROS), and alarmins, which arise through distinct mechanisms triggered by CNTs. During the 

early acute phase, neutrophils and pro-inflammatory M1 macrophages predominate, secreting 

mediators that drive acute inflammation. As the response progresses into the late acute phase, 

immune cells associated with type 2 immunity become dominant, releasing type 2 cytokines and 

mediators that promote type 2 inflammation. This shift facilitates the transition from acute to 

chronic inflammation, ultimately contributing to the development and progression of pulmonary 

fibrosis.49 
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 The general mechanisms of CNT-induced pulmonary toxicity outlined in this 

dissertation provide a systematic conceptual framework. By focusing on lung inhalation 

exposure, which is the most relevant route for occupational and environmental exposure 

scenarios. This work emphasizes the significance of CNT-induced perturbations at the 

transcriptomic pathway level. Particularly, it addresses acute inflammation and fibrosis as 

described in the adverse outcome pathway (AOP 33). This mechanistic overview is both 

comprehensive and aligned with current regulatory priorities. 

1.5. CURRENT PARADIGMS IN NANOMATERIALS SAFETY 

ASSESSMENT 

1.5.1. TRADITIONAL PHENOTYPE-BASED ASSESSMENT 

 For decades, methods for the safety evaluation of compounds have mostly relied on 

toxicity tests conducted with live animals. These tests raise ethical issues, are time-

consuming, and frequently yield results that cannot be easily translated into human terms 

because of the differences between species.50,51 Not only is traditional toxicology an 

expensive and laborious process, but it also lacks a mechanistic understanding of 

exposure. It often fails to predict organismic responses to new toxicants and substances 

accurately. The approach used by regulatory bodies to evaluate safety constitutes a 

hazard-based paradigm, where toxic effects are identified at high doses, and then these 

findings are used to assess chemical safety risk to human health. Although this method 

has served as the backbone of basic understanding, especially of nanomaterials, which 

often exhibit behaviors not adequately captured by conventional testing designs. A more 

sophisticated approach is needed for safety assessment, and one which is both 

mechanistic- and human-relevant.52 
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1.5.2. FROM TRADITIONAL TO TRANSFORMATIVE: EMERGING 

PARADIGMS 

  Tox21 noted the limitations of traditional toxicology given how many complex 

compounds there are. Consequently, the scientific and regulatory communities are 

changing their reliance from traditional testing to new predictive, mechanism-based, and 

human-relevant models and methods. This change is being pursued based on concepts such 

as New Approach Methodologies (NAMs), Next-Generation Risk Assessment (NGRA), 

Integrated Approaches to Testing and Assessment (IATA) and Adverse Outcome Pathways 

(AOPs). The purpose of these paradigms is to improve the efficiency, ethical acceptability 

and scientific validity of toxicology.53 

1.5.2.1. NEW APPROACH METHODOLOGIES (NAMs) 

 NAMs represent a step change for modern-day toxins expertise. They are 

comprised of non-animal approaches and methodologies utilized in harnessing data to 

inform safety evaluations of chemical compounds in regulatory submissions.54,55 They 

involve in silico (computational), in chemico (reaction-based) and in vitro (cell-based) 

methods, and exposure assessment and biological tools, including systems biology, allow 

hazard prediction and risk assessment to move one step forward.56,57 They also incorporate 

omic technologies (genomics, proteomics, metabolomics), organ-on-chip devices, and 

high-content screening platforms that offer mechanistic insights. 

1.5.2.2. NEXT-GENERATION RISK ASSESSMENT (NGRA) 

 NGRA can be defined as an exposure-driven risk assessment approach that 

integrates NAMs. NGRA transforms risk assessment by shifting the focus away from 

traditional hazard-based models toward a more holistic understanding of risk that includes 

realistic exposure scenarios, biological relevance, and mechanistic insights.58,59 

Key principles of NGRA include: 

• Human relevance: Data used should be directly relevant to human biology. 
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• Hypothesis-driven: Assessments are guided by specific, testable hypotheses. 

• Exposure-led: Exposure data inform the scope and design of toxicological testing. 

• NAM-based: Preference is given to NAMs over traditional animal testing. 

• Fit-for-purpose: The approach is tailored to the specific regulatory question. 

Risk assessment with NGRA promotes transparency, reproducibility and efficiency. Given 

that its framework is capable of supporting a weight-of-evidence (WoE) approach that 

integrates omics analysis, computational models, traditional cell systems, and in vitro 

assays, NGRA also gives weight to this. The use of read-across and grouping strategies, 

especially valuable with structurally or functionally similar nanomaterials. Such an 

approach harmonizes well with international efforts to modernize chemical safety 

assessments. 

1.5.2.3. INTEGRATED APPROACHES TO TESTING AND ASSESSMENT 

(IATA) 

 IATA (OECD 2024)60 lists several hazardous response indicators, such as 

toxicological and ecological signs, that can be optimally combined to provide an acceptable 

basis for hazard identification and quantitative risk assessment. IATA was developed as a 

step-by-step method for the classification and prioritization of chemicals, leading to valid 

properties data inputs for summarizing existing knowledge in a format which is data-rich 

instead of data-poor and for harmonizing across different regulatory domains to make 

quantitative predictions of both short- and long-term effects more accurate. IATA often 

consists of the following steps: 

• Problem formulation: Defining the regulatory context and assessment goals. 

• Data gathering: Collecting existing data, including historical data and NAMs. 

• Data integration: Using decision trees, logic frameworks, or WoE approaches to 

integrate data. 
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• Uncertainty analysis: Assessing the reliability and relevance of the data. 

By applying IATA, the efficiency and effectiveness of risk assessment can be improved, 

data relevance enhanced, and unnecessary testing reduced. For example, with regard to 

nanoparticles where little information is available, IATA frames are especially useful with 

clustering and read-across61,62, allowing data-poor substances to be assessed on the basis 

of similarities to better-characterized analogues. EU-funded projects like GRACIOUS, 

SUNSHINE, HARMLESS and PATROLS have played important roles in developing IATA 

for nanomaterials. 

1.5.2.4. ADVERSE OUTCOME PATHWAYS (AOPs) 

 When a chemical stressor (e.g., internal or external factors) interacts with a 

molecular target (biological tissue or organ), it affects other molecular events in the target, 

which further may lead to response(s) at higher levels of biological organization and 

ultimately results in development impairment of other higher organism(s).63  

 

Figure 6. Schematic presentation of an adverse outcome pathway (AOP). The red stress sign box 

represents the stressor, which initiates the pathway. The green box denotes a molecular initiating 

event (MIE) – a biological interaction at the molecular level triggered by the stressor. While the 

orange boxes represent key events (KE) occurring at various levels of biological organization, 

progressing sequentially towards the adverse outcome (AO). Black arrows indicate the key event 
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relationships (KER), which define the causal and temporal connections between events within the 

pathway. 

 AOPs offer a theoretical construct to define toxicological interactions at different 

hierarchical levels of biological organization. MIEs to AOs on the individual and 

population scales. The AOPs are actually described as linear series of KEs that proceed in 

cascade along biological levels and strata. They provide a mechanistic explanation of how 

chemical exposure across living systems manifests as toxicities (Figure 6). A typical AOP 

consists of: 

• Molecular Initiating Event (MIE): The initial interaction between a chemical and 

a biological target. 

• Key Events (KEs): Measurable biological changes that occur downstream of the 

MIE. 

• Adverse Outcome (AO): The final toxicological effect of regulatory concern. 

• Key Event Relationships (KERs): Causal links between KEs and the AO. 

AOPs facilitate knowledge integration across disciplines and data types, supporting the 

development of predictive models, NAMs, and IATA frameworks.64,65 They are particularly 

useful in structuring complex biological information and in aligning experimental data with 

regulatory endpoints. The OECD has established the AOP Knowledge Base (aopwiki.org)66 

to promote the development and sharing of AOPs, and this resource is increasingly used in 

chemical and nanomaterial risk assessment. In nanotoxicology, AOPs are being developed 

to describe the development of adverse outcomes such as pulmonary fibrosis following 

exposure to nanomaterials.67–69 By linking experimental data with established AOPs, 

researchers can more effectively assess the potential health effects of exposures to 

compounds over time. This structure demonstrates the knowledge base, so that NAMs will 

be accepted by regulatory authorities more easily, resulting in clearer and safer decision-

making in the future. 
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 In this unifying framework of NAMs, NGRA, IATA and AOPs, the era of traditional 

and complex chemical/material safety assessments has begun. As an alternative to the bat 

model for relevance to humans and mechanisms, if reflects a sensible plan forward for 

comprehensive assessment of safety of complex. 

1.5.2.5. THE ROLE OF AOP-INFORMED NANO-QSAR MODELING 

 For decades, in silico models such as QSAR have played a pivotal role in the 

pharmaceutical and nanotechnology industries. They can elucidate structure-activity or 

structure-toxicity relationships. Thereby, they can support developing drugs and 

identifying whether substances are harmful. However, when applied to nanomaterials, the 

conventional QSAR models have required adaptation due to the complex and unique nature 

of nanoscale materials. The idea of Nano-QSAR was first formulated in 2009 by Puzyn et 

al. in a pioneering study that highlighted both the advances and challenges in its 

development.70 

Nanomaterials are different from traditional small molecules. They have unique 

physicochemical properties such as size, shape, surface chemistry-related features (e.g, 

agglomeration/aggregation states) as well as environment, which can significantly 

influence their biological activity. Consequently, we cannot predict the biological 

responses of nanomaterials on the basis of solely molecular structure.71,72 

 Since the early days of its development, Nano-QSAR models have tried to address 

this complexity. It correlates the physicochemical descriptors with phenotypic outcomes 

(e.g., in vitro toxicity). While these models demonstrate the predictive power, they often 

lack mechanistic transparency. A critical limitation of early Nano-QSAR efforts was the 

empirical selection of descriptors without a particular underlying reason. 
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Figure 7. Workflow of AOP-informed nano-QSAR modeling aligned with OECD principles. 

 To bridge this gap, the concept of AOP-informed Nano-QSAR modelling has 

emerged. In 2021, the research group led by Dr. Karolina Jagiello introduced this approach 

as a major step forward in the field.73 The paradigm aims to enhance the interpretability, 

regulatory applicability, and predictive robustness of Nano-QSAR models by aligning 

nanomaterial descriptors with biological pathways and key events (KEs) defined within the 

AOP framework, for example, pathways such as agranulocyte adhesion and diapedesis. 

 This dissertation builds upon that foundation by developing and demonstrating a 

proof-of-concept AOP-informed Nano-QSAR framework (see Figure 7). The objective is 

to strengthen the biological fidelity and mechanistic relevance of Nano-QSAR models, 

thereby contributing to the emergence of a modern, mechanism-driven paradigm in 

nanotoxicology and chemical risk assessment. 
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EXPERIMENTAL DATA 

 One of the most challenging steps in developing a QSAR model is obtaining proper 

experimental data. This process becomes more structured and biologically meaningful 

within an AOP context. AOP framework provides a manner to systematically collect and 

organize experimental data from various sources, which can help to identify key biological 

events that are both physiologically and chemically plausible.74  

 The reliability of any QSAR model is essentially determined by the consistency, 

quality and relevance of the input data. Therefore, data should be from peer-reviewed 

literature and reputable public repositories (such as aopwiki.com) or be commissioned 

from Good Laboratory Practice (GLP)-certified facilities. Another important thing is that 

the data was generated under standardised and reproducible conditions such as dose, 

duration, route of administration (e.g., inhalation), target organ or tissue (e.g., lungs) and 

analytical methods to minimize noise or bias that might occur in generated models. The 

representation of detailed metadata is equally important, as it provides essential context for 

understanding the experimental setup. The metadata should include exposure, biological 

models, analytical instrumentation and any deviations from the standard procedures. 

 The dataset must be rigorously quality controlled and statistically assessed for 

homogeneity and coherence before model development can ensue. Homogeneity refers to 

the dataset being consistent both in design (i.e., experiments should be conducted under 

the same conditions) and in toxicological significance. For example, mixing data from 

different sources that are truly heterogeneous (e.g., in vivo and in vitro) can give rise to an 

ambiguity of mechanism and so reduce model interpretability. 

Standard data preprocessing steps such as normalisation, missing values imputation and 

outlier detection are crucial for improving data quality. For example, special attention 

should be given to the physicochemical properties of nanomaterials such as size, surface 

chemistry and residual metal traces, which can vary significantly depending on 
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experimental conditions. If these descriptors are assessed according to a standardised 

procedure, then enhance the reproducibility and predictive performance of the model.  

 In the case of CNT-induced lung fibrosis, AOP 33 (previously AOP 173), recently 

endorsed by the OECD, offers a mechanistic foundation highly relevant to high-aspect-

ratio nanomaterials (HARNs). As demonstrated by Halappanavar and colleagues, this AOP 

outlines a clear sequence of key biological events associated with fibrotic outcomes, 

making it an ideal framework for guiding the selection of experimental data in AOP-

informed Nano-QSAR model development. 

DATASET SPLITTING (TRAINING/VALIDATION SETS) 

 The next critical step in Nano-QSAR modeling is the rational splitting of the dataset 

into training and validation sets. This process is essential for building robust, generalisable 

models and for assessing their predictive performance. 

 In the context of AOP-informed Nano-QSAR, the partitioning strategy must not 

only ensure statistical soundness but also preserve biological relevance. This is especially 

important when dealing with transcriptomics-derived pathway perturbation data linked to 

specific key events (KEs) in an AOP. A poorly partitioned dataset can lead to overfitting or 

underfitting, thereby undermining the biological insight and regulatory reliability of the 

model. Thus, several data splitting strategies can be employed, such as random, stratified 

and ratio-based methods.75 In AOP-informed modelling, care must be taken to avoid data 

leakage, a scenario where mechanistically similar materials appear in both training and 

validation sets, artificially inflating performance metrics. One strategy to mitigate this risk 

is to group materials by mechanistic class or response type and ensure these groups are 

only present in one subset (e.g., training or validation) but not both. Additionally, external 

validation is encouraged by the OECD guidelines for QSAR model development. If 

possible, data from completely independent studies (e.g., different labs, exposure 

protocols, or transcriptomics platforms) should be used as an external test set. This provides 

the most stringent test of a model's generalisability and practical utility. 
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 Finally, cross-validation techniques such as k-fold cross-validation, leave-one-out 

(LOO) may be implemented during model optimisation to reduce variability and ensure 

stability in the prediction outcomes. These approaches also help in the fine-tuning of 

hyperparameters and assessing model robustness in the absence of a large external test set. 

DESCRIPTORS SELECTION 

 The descriptors used in nano-QSAR modeling can generally be derived from either 

experimental characterization or theoretical calculations. Experimental descriptors refer to 

empirically measurable properties such as initial particle size, aspect ratio, diameter, 

specific surface area, zeta potential, and elemental or compositional data. 

 In this dissertation, I exclusively use experimentally derived descriptors obtained 

from our collaborators. These descriptors are reliable for investigation, consistent across 

studies and have had their results validated by standardized experimental procedures and 

hence are highly reliable, reproducible and of regulatory significance. Once a 

comprehensive set of descriptors has been compiled, the next critical step is selecting the 

most meaningful variables to develop a robust and interpretable QSAR model. This process 

aims to identify a minimal subset of descriptors that contribute significantly to the model's 

predictive power, while avoiding redundancy due to high intercorrelation among variables. 

Several approaches can be employed for variable selection: 

• Expert Knowledge Approach: Leveraging domain expertise remains invaluable. 

Experienced QSAR modellers use their understanding of nanomaterial behaviour, 

biological mechanisms, and toxicological pathways to guide initial descriptor 

selection. This approach benefits from literature reviews and prior empirical 

evidence, helping to focus on descriptors most likely to influence the endpoint. 

• Statistical and Correlation Analysis: Variable reduction often involves a two-step 

process. First, a preliminary pre-reduction filters descriptors based solely on their 

statistical properties (e.g., removing variables with low variance or high 
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collinearity), without considering the endpoint (dependent variable, Y). Next, a 

more focused selection incorporates response data, identifying variables that show 

strong correlations with the endpoint and improve model performance. 

• Genetic Algorithms (GA): GAs are powerful heuristic search methods that 

iteratively optimize descriptor subsets based on model fitness criteria. Their ability 

to efficiently explore large descriptor spaces makes them widely used in QSAR 

modeling, especially when dealing with complex nanomaterial datasets. 

• Principal Component Analysis (PCA): PCA reduces dimensionality by 

transforming correlated descriptors into uncorrelated principal components that 

capture the majority of variance in the data. Selecting descriptors based on PCA 

loadings can help retain the most informative structural features while minimizing 

noise. 

The choice of variable selection method should be aligned with the quality and size of the 

dataset, as well as the specific endpoint being modelled. A key consideration in QSAR 

development is maintaining a suitable ratio between the number of observations and 

variables to avoid overfitting and ensure generalizability. It is widely demonstrated that 

ratios should be as large as possible. By carefully selecting a set of descriptors, the Nano-

QSAR models can achieve greater predictive accuracy and interpretability. 

MODEL DEVELOPMENT 

 The next critical step in developing AOP-informed Nano-QSAR model is to ensure 

alignment with the OECD principles, which are essential for establishing model quality 

and regulatory acceptance.76–81 For validation, the developed QSAR model must satisfy 

five key OECD principles: 

1. A Defined Endpoint – The biological or toxicological endpoint that the model 

predicts must be clearly defined. 
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2. An Unambiguous Algorithm – The computational method must be transparent, 

reproducible, and fully documented. 

3. A Defined Domain of Applicability (AD) – The chemical space where the model 

can reliably make predictions must be clearly characterized. 

4. Appropriate Performance Metrics – The model’s goodness-of-fit, robustness, and 

predictive ability must be properly assessed. 

5. Mechanistic Interpretation, If Possible – The model should provide insights into 

the biological mechanisms underlying the predicted effects. 

OECD Principle 1 – A Defined Endpoint 

 The first principle is based on data quality (data curation), to ensure that the endpoint 

being predicted, whether toxicity or physicochemical property, is clearly defined and 

homogeneously measured. This is crucial because endpoints may vary depending on 

experimental protocols or conditions applied, which variability will affect the reliability of 

the model.80 

OECD Principle 2 – An Unambiguous Algorithm 

 Principle 2 emphasizes transparency in the model’s mathematical or computational 

approach. All details about molecular descriptors, algorithms, and calculation procedures 

must be thoroughly documented so that any user can reproduce the predictions. Following 

recommendations by the European Commission Joint Research Centre (JRC), QSAR 

models should be reported using standardized formats such as QMRF (QSAR Model 

Reporting Format) and QPRF (QSAR Prediction Reporting Format), which are necessary 

for regulatory registration (e.g., under REACH). This principle ensures the model’s 

reproducibility and clarity.78 

OECD Principle 3 – A Defined Domain of Applicability 

 The applicability domain (AD) defines the boundaries within which the model’s 

predictions are reliable. Since QSAR models are calibrated on a finite set of compounds, 
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their accuracy depends heavily on the structural similarity of new compounds to those in 

the training set. Predictions made within the AD (i.e., by interpolation) are more 

trustworthy, while those outsides are less reliable.82,83 

In this dissertation, two AD methods are applied: 

Williams Plot: This widely used technique plots standardized residuals against leverage 

values. Leverage (hᵢ) measures the distance of a compound’s descriptor vector from the 

training set centroid and is calculated as: 

ℎ𝑖 = 𝑥𝑖
𝑇(𝑋𝑇𝑋)−1𝑥𝑖      (1) 

Where Xi is a row vector of descriptors for (ith) chemical compounds, and X is a matrix of 

descriptors from the training set. 

The threshold for leverage is defined as: 

ℎ∗ =
3(𝑝+1)

𝑛
       (2) 

Where p is the number of descriptors used in the model and n is the number of chemical 

compounds in the training set.  

 Model limitations with respect to the response space (y-axis) are generally 

constrained within boundaries defined by ±3 standard deviations of the standardized 

residuals. 

As a practical guideline, only predictions falling within a defined applicability domain, 

often visualized as a square area bounded by the critical leverage value (h*) on the x-axis 

and ±3 standard deviation units on the y-axis are considered reliable. 
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Table 2. Statistical information about the Nano-QSAR models80,84–87 
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)

2nEXT

i=1
nEXT

i=1

 CCC > 0.8 

Root mean square 

error for prediction RMSEp =  √
∑ (yi

exp
− yi

pred
)

2
nEXT

i=1

nEXT
 

RMSEp as 

low as 

possible 

Uncertainty 

of prediction 

Average absolute 

error 
AAE =  

1

n
∑ |yi

exp
−  yi

pred
|

n

i=1

 

AAE as 

low as 

possible 

Where 𝑦𝑖
𝑒𝑥𝑝 − the experimental value of the structural property for the ith compound; 𝑦𝑖

𝑝𝑟𝑒𝑑 − the 

predicted value of the property for the ith compound; 𝑦̅𝑖
𝑒𝑥𝑝 − the mean experimental value of the 

property; 𝑦̅𝑖
𝑝𝑟𝑒𝑑 − the mean predicted value of the property; nT – the number of source compounds 

in the training set; nEXT – the number of the source compounds in the validation. 
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 The leverage approach assesses the structural similarity of each compound relative 

to the training set by calculating a distance measure within the descriptor space. This 

method helps identify influential observations (those with high leverage), structural 

outliers (compounds structurally distinct from the training set), and response outliers 

(predictions that deviate significantly from observed values). Identifying these points is 

crucial for evaluating the model’s applicability domain and ensuring trustworthy 

predictions 

Probability-Oriented Distance-Based Approach (ADProbDist): This graphical method 

defines the AD based on average Euclidean distances between new compounds and the 

training set in descriptor space, combined with standardized residuals to account for 

endpoint prediction errors. It provides confidence regions (e.g., 95% or 99%) to evaluate 

if new compounds fall within the model’s reliable prediction domain. 

OECD Principle 4 – Appropriate Measures of Goodness-of-Fit, Robustness, and 

Predictivity 

Model performance must be validated statistically through: 

• Goodness-of-Fit: Measures how well the model fits training data, assessed via the 

coefficient of determination (R²) and root mean square error of calibration 

(RMSEc). High R² and low RMSEc indicate good training performance. 

• Internal Validation: Evaluates model stability using cross-validation methods like 

Leave-One-Out (LOO), Leave-Many-Out (LMO), or bootstrap. Key metrics include 

cross-validation coefficient (Q²CV) and RMSECV. These tests ensure the model is not 

overfitted to training data. 

• External Validation: Tests predictive accuracy on an independent validation set not 

used during training. Metrics such as external validation coefficient (Q²EXT) and root 

mean square error of prediction (RMSEEXT) measure how well the model 

generalizes. Additional parameters, including Q²F1, Q²F2, Q²F3, Concordance 
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Correlation Coefficient (CCC), and Average Absolute Error (AAE), further 

characterize external predictivity. 

A well-performing model will have comparable R², Q²CV, and Q²EXT values close to 1, with 

consistent and low RMSE values. Large discrepancies, especially if R² and Q²CV exceed 

Q²EXT substantially, suggest overfitting and poor predictive power.84–87 

OECD Principle 5 – Mechanistic Interpretation, If Possible 

 The final OECD principle emphasizes that QSAR models should ideally provide 

mechanistic insight by linking descriptors to the biological endpoint. This ensures that a 

model offers more than statistical associations by revealing how specific structural or 

physicochemical features influence toxicity or bioactivity. However, conventional QSAR 

models often prioritize structure–activity correlations without directly mapping 

chemical/material features to molecular initiating events MIEs within an AOP framework. 

To address this gap, Jagiełło et al.73 (2020) proposed a transcriptomic-based, AOP-

informed Nano-QSAR approach that integrates mechanistic biological data into model 

development. 

1.6. MACHINE LEARNING METHODS IN DATA-DRIVEN 

MODELING APPROACH 

  Machine learning (ML) methods used in this work are divided mainly by their 

analytical goals: unsupervised and supervised learning. 

 Unsupervised learning identifies data intrinsic patterns or groupings without relying 

on predefined labels or outcomes. These methods are useful for exploring the underlying 

structure of data, clustering similar nanoforms or detecting hidden patterns. Common 

unsupervised techniques include hierarchical cluster analysis (HCA), principal component 

analysis (PCA) and k-means clustering. In this dissertation, HCA and PCA were employed 

to group nanotubes based on their physicochemical properties and associated biological 
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responses. The theoretical assumptions of these methods will be presented later in the work 

(Section 1.6.1). 

 On the other hand, supervised learning involves modeling the relationships between 

input variables (features or descriptors) and a known outcome (labelled response). This 

approach is essential for selecting significant descriptors that influence endpoints and for 

building predictive models. Supervised techniques include both linear and non-linear 

regression, such as Kernel-weight Local Polynomial Regression (KwLPR), Decision Trees 

(DT), Random forests (RF), Gradient Boosting and XGBoost. These methods have been 

widely applied in nanotoxicology to correlate the physicochemical properties of CNTs with 

their observed biological effects. Effective feature selection is crucial in supervised 

learning to improve model interpretability, reduce overfitting and ensure robustness. The 

theoretical assumptions of these methods will be presented later in the work (Sections 

1.6.2, 1.6.3, and 1.6.4). 

1.6.1. HIERARCHICAL CLUSTERING ANALYSIS METHOD (HCA) 

 Hierarchical clustering analysis (HCA) is a multivariate statistical method that 

facilitates the exploration of complex datasets by identifying similarities and differences 

between objects based on their characteristics in a multidimensional space. The main 

assumption of this method is that the similarity between objects can be assessed using 

distance metrics. The smaller the distance, the more similar the objects; larger distances 

indicate greater dissimilarity. There are several distance measures are commonly used in 

HCA, and the choice of selection often depends on the specific objectives of the analysis:  

• Euclidean distance: Measures the geometric distance between objects in feature 

specific. 

• Squared Euclidean distance: Gives more weight to the difference between objects. 

• Chebyshev distance: Based on the maximum difference among all features, thus 

highlighting extreme dissimilarities. 

• Manhattan distance: Based on the sum of absolute differences between features. 
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Once the distances between all objects are calculated, the next step involves grouping them 

into clusters using a selected linkage method, which determines how clusters are merged: 

• Single linkage: Merges clusters based on the smallest distance between their nearest 

members, emphasizing object similarity. 

• Complete linkage: Uses the largest distance between the members of different 

clusters, emphasizing dissimilarity. 

• Group average: Calculates the average distance between all pairs of objects from 

different clusters, providing a balanced approach. 

• Ward’s method: Minimizes the total within-cluster variance (sum of squared 

deviations) often leading to compact and spherical clusters. 

The outcome of the HCA is typically visualized as a dendrogram, a tree-like diagram that 

illustrates the hierarchical relationships among the analyzed objects. 

1.6.2. PRINCIPAL COMPONENT ANALYSIS (PCA) 

 Principal Component Analysis (PCA) is a powerful technique for analazying 

multidimensional data. It serves two main purposes: (i) uncovering hidden relationships 

among variables, and (ii) reducing the dataset’s dimensionality while retaining most of its 

original information. 

 The assumptions of the PCA method are based on transforming the original dataset 

of correlated variables into a new set of uncorrelated (orthogonal) variables called principal 

components (PCs). These components are linear combinations of the original variables and 

are constructed to capture as much variability as possible. The first principal component 

(PC1) accounts for the highest variance, while subsequent components (PC2, PC3, etc.) 

explain progressively smaller portions. Importantly, the total variance in the dataset 

remains constant after transformation; it is simply redistributed across the new principal 

components. The explained variance percentage of each component, calculated from its 

eigenvalue, indicates how much of the dataset’s variability it captures. 



-44- 

 

 Each original variable contributes to the principal components through factor 

loadings, the coefficients in the linear combinations. Variables with higher absolute loading 

values have a stronger influence on that component, helping to interpret which features 

drive specific patterns in the data. By projecting the dataset into the space defined by the 

first few components (e.g. PC1 and PC2), PCA creates a linear map that makes it easier to 

visualize similarities, groupings and outliers in the data. This dimensionality reduction not 

only simplifies analysis but also enhances interpretability in complex datasets. 

1.6.3. KERNEL-WEIGHT LOCAL POLYNOMIAL REGRESSION 

(KwLPR) 

 The kernel-weighted local polynomial regression (KwLPR) is a nonlinear, locally 

adaptive regression method that falls under the category of lazy supervised learning 

algorithms. It employs locally weighted least squares (LWLS) to estimate the regression 

function m(x), allowing for flexible modelling of complex, nonlinear relationships between 

predictors and response variables in the context of Nano-QSAR modelling. 

 KwLPR operates by fitting a polynomial of degree p within a local neighborhood 

of a query point (x0), the method minimizes the following weighted least square’s function: 

 

𝑚𝑖𝑛𝛽𝑗
∑ {𝑌𝑖 −  ∑ 𝛽𝑗

𝑝
𝑗=0

(𝑥𝑖 − 𝑥0)𝑗}
2𝑛

𝑖=1 𝐾 (
𝑥𝑖−𝑥0

ℎ
)    (3) 

 

Where: X represents the design matrix centered around the query point (x0), Y is the response 

variable (e.g., biological or toxicological endpoint), p is degree of the polynomial, K is the kernel 

function (which defines the neighbourhood shape and assigns weights to data points based on their 

proximity to x0), h is the bandwidth (smoothing parameter) that determines the size of the local 

neighborhood, n is the number of independent variables or data points, b - vector of regression 

coefficients. 

The regression coefficients (b) are obtained by solving the weighted least squares Equation: 
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𝛽̂ =  (𝑋𝑇𝑊𝑋) −1 𝑋𝑇 𝑊𝑦        (4) 

Where: W is a diagonal matrix representing the weights derived from the kernel function. 

 The kernel assigns higher weights to observations closer to x0, gradually reducing 

the influence of points as their distance increases. This localized weighting mechanism 

makes KwLPR particularly effective for handling heterogeneous or nonlinear datasets. 

Especially, to address the challenges posed by small and limited datasets. 

 In contrast, KwLPR offers a locally adaptive and interpretable modelling 

framework, which is particularly suitable for nanomaterials with diverse physicochemical 

profiles and complex dose response relationships. In this dissertation, KwLPR was applied 

to MWCNTs-induced toxicological responses, providing improved predictive accuracy 

and mechanistic insights compared to conventional modelling methods. These results, 

which have been previously published as part of my research (section 4.1), underscore the 

utility of KwLPR in advancing a mechanism-based, AOP-informed predictive toxicology 

framework. 

1.6.4. TREE-BASED LEARNING METHODS 

 Tree-based algorithms constitute a class of supervised machine learning methods 

that are particularly effective for modelling complex, nonlinear relationships, ranking 

feature importance and performing classification/regression tasks. In this study, regression 

tree (RT) approaches were applied to investigate the relationship between the 

physicochemical properties of CNTs and their toxicological effects. These models not only 

facilitated the prediction of biological responses but also enabled the identification and 

priotitization of key descriptors most strongly influencing the modeled endpoints. 

 To comprehensively investigate the structure–activity relationships (SARs) 

underlying CNT-induced toxicity, multiple tree-based machine learning models were 

employed, including Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), 

and eXtreme Gradient Boosting (XGBoost). These models were selected for their strengths 

in model interpretability, predictive accuracy, and feature selection efficiency. A detailed 
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account of the model development process, hyperparameter optimization strategies, and 

validation procedures is provided in Section 4.3. 
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2. RESEARCH PROBLEM, 

HYPOTHESIS AND OBJECTIVES 
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2.1. RESEARCH PROBLEM AND MAIN HYPOTHESIS 

 The increasing production and use of CNTs presents new opportunities and raises 

significant safety concerns, posing critical challenges. As production scales up, so does the 

risk of unintentional release into the environment or occupational settings. This is 

particularly concerning given the current limitations in our understanding of CNTs 

potential impact on human health and ecological systems. 

 Conventional in silico toxicity testing methods (e.g., QSAR) often fail in providing 

mechanistic insights into hazard potential. These models typically rely on simplistic 

correlations with phenotype-based endpoints and lack of integration with biologically 

meaningful or mechanistically relevant outcomes (e.g., pathway-specific AOs). Therefore, 

they provide limited mechanistic interpretation and predictive relevance. 

  toxicology is undergoing a paradigm shift in chemical/advanced material risk 

assessment, developing towards the NGRA framework. This approach incorporates NAMs 

within IATAs and is aligned with the AOP concept. Collectively, these strategies aim to 

streamline testing, reduce animal use, and enhance the mechanistic relevance of hazard 

assessment. They are together promoting the 3Rs principles: Replacement, Reduction, and 

Refinement of animal testing. 

Within this framework, data-rich approaches combining transcriptomics, 

chemoinformatics, bioinformatics, artificial intelligence (AI), and machine learning (ML) 

offer a promising avenue for mechanistic hazard prediction. 

 In this work, the central premise is based on a systems toxicology framework, 

integrating machine learning and Transcriptomic-level data integration to unravel the 

complex mechanisms underlying CNT-induced pulmonary inflammation, with a focus on 

the acute phase response (AR) pathway. Building upon the proof-of-concept study 

proposed by K. Jagiello et al.73 (2021), the author investigated a key inflammatory 

pathway, particularly the “agranulocyte adhesion and diapedesis” pathway, which serves 

as an early indicator of inflammation and tissue damage. 
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In this dissertation, I hypothesize that carbon nanotubes with similar 

physicochemical properties and transcriptomic signatures may trigger similar 

molecular initiating events (MIEs) within the acute phase response (AR) signaling 

pathway, leading to similar downstream adverse outcomes at the tissue level. These 

tissue-level similarities suggest that structural determinants, such as aspect ratio, surface 

area and presence of metal impurities, play a mechanistically causal role in pathway-level 

toxicity as outlined in AOP 33 (lung fibrosis) and AOP 237 (atherosclerosis). To explore 

this hypothesis, the research guided by the following key questions: 

• What physicochemical features of MWCNTs are associated with pulmoanry and 

cardiovascular pathologies mediated by acute inflammation? 

• How do the physicochemical features influence the differences in mechanisms 

between single- and multi-walled carbon nanotubes (S- and MWCNTs) in the acute 

phase response following inhalation exposure? 

• Can we quantitatively link specific metal impurities in carbon nanotubes to their 

transcriptomic impact and the modulation of acute inflammatory responses? 

By addressing these questions, this research aims to understand the role of intrinsic CNT 

properties in driving adverse outcomes. These insights form the foundation of this 

research and justify the development of the study's overarching hypothesis and 

objectives. 

2.2. DETAILED RESEARCH HYPOTHESIS 

 The research hypothesis assumes that the physicochemical properties of S- and 

MWCNTs influence their toxicity by perturbing specific molecular pathways associated 

with early key events (KEs) in identified AOPs, ultimately leading to adverse outcomes 

such as lung inflammation, fibrosis and/or atherosclerosis. This assumption is tested 

through the following three hypotheses for CNT-driven risk assessment. 
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HYPOTHESIS 1. 

 I hypothesized that the structural properties of multi-walled carbon nanotubes 

(MWCNTs) are significantly associated with perturbations in the acute phase response 

signaling (AR) pathway in mouse lungs following inhalation exposure. These perturbations 

can be modeled using an AOP-informed Nano-QSAR approach to predict molecular-level 

inflammatory responses that may lead to lung fibrosis and/or cardiovascular pathologies. 

HYPOTHESIS 2. 

 Single-walled and multi-walled CNTs (S- and MWCNTs) with similar structural 

features can exhibit comparable transcriptomic changes in the acute phase response 

signaling pathway. These shared structural characteristics are hypothesized to underlie 

common mechanisms contributing to pulmonary and cardiovascular toxicity. 

HYPOTHESIS 3. 

 I hypothesize that metal impurities present in CNTs can act as critical drivers of 

transcriptomic disruptions, leading to inflammation and fibrosis following inhalation 

exposure. Specific metal contaminants can be quantitatively linked to early upstream key 

events (KEs) in the acute phase response signaling pathway through global AOP-informed 

Nano-QSAR models. 

2.3. DETAILED RESEARCH OBJECTIVES 

The research hypotheses will be tested by achieving the following objectives: 

OBJECTIVE 1. 

 To identify the structural properties of multi-walled carbon nanotubes (MWCNTs) 

that perturb the acute phase response signaling (AR) pathway in the lungs of mice exposed 

via inhalation to a panel of 14 MWCNTs. This objective aims to support the development 

of a new AOP-anchored Nano-QSAR model capable of predicting molecular-level 
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responses associated with inflammation that may lead to lung fibrosis and/or 

cardiovascular pathologies. 

OBJECTIVE 2. 

 To quantitatively compare S- and MWCNTs in terms of their structural properties 

and associated impact on the acute phase response signaling pathway, with the aim of 

identifying shared structural characteristics and gene expression profiles that may help 

explain their similar modes of action (MoA) related to pulmonary and cardiovascular 

pathologies. 

OBJECTIVE 3. 

 To investigate the role of metal impurities in CNTs as potential contributors to 

transcriptomic disturbances that drive inflammation and fibrosis mechanisms following 

inhalation exposure. This objective aims to develop a global AOP-informed Nano-QSAR 

model that quantitatively links specific metal contaminants in CNTs to gene expression 

changes, particularly within the acute phase response signaling pathway. The model will 

focus on early upstream key events (KEs) associated with pro-inflammatory responses and 

enable the prediction of lung and cardiovascular pathologies induced by metal-containing 

CNTs. 
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3. RESEARCH METHODOLOGY 



-53- 

 

3.1. CONCEPT AND WORK PLAN  

 In my dissertation, particular emphasis is placed on the “acute phase response (AR) 

signaling” pathway. This pathway represents an early upstream event in the inflammatory 

cascade and is initiated during neutrophil influx through the release of acute phase 

reactants. These mediators trigger the synthesis and secretion of pro-inflammatory 

cytokines and chemokines, as well as the recruitment of immune cells into lung tissue. 

Critically, these events can promote fibroblast and myofibroblast proliferation and 

differentiation, thereby contributing to extracellular matrix (ECM) deposition and 

remodeling, key features of lung fibrosis. 

 Moreover, nanomaterial-induced activation of the acute phase response pathway has 

been implicated in linking inhalation exposure to broader health risks, including 

inflammation, fibrosis, cancer, and cardiovascular disease, as recognized in AOP 237. 

Notably, the acute phase protein Serum Amyloid A (SAA) has been shown to drive plaque 

progression in murine models of atherosclerosis, illustrating the systemic consequences of 

local pulmonary inflammation.  

Part I. (section 4.1): Nano-QSAR modelling of MWCNTs 

 In this part of the study, I aimed to explore how specific structural features of 

MWCNTs influence the activation of the acute phase response (AR) signaling pathway in 

the lungs of mice. To do this, I used data from 14 commercially available MWCNTs 

administered at a high single dose of 54 µg/per mouse following inhalation, with lung 

tissue examined one day post-exposure in female C57BL/6. 

 The main goal was to determine which physicochemical properties of the MWCNTs 

were most strongly linked to the activation of the AR pathway, and their potential role in 

triggering early inflammatory responses. I developed a Nano-QSAR model aligned with 

an AOP framework. The model is designed to predict early molecular events driven by 

specific structural features of carbon nanotubes that may eventually lead to adverse health 

effects, such as lung fibrosis or cardiovascular diseases. 
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 This newly developed data-driven model adds to the growing set of transcriptomic-

based, AOP-informed Nano-QSAR models and may serve as an in silico NAM to support 

the safety assessment of MWCNTs using a weight of evidence approach. Ultimately, I 

hope to improve current risk assessment strategies and contribute to the safer design and 

application of nanomaterials in the future. 

Part II. (section 4.2): Grouping of S- and MWCNTs based on toxicity mechanisms 

 In this section, the goal was to compare S- and MWCNTs in terms of their structural 

properties and their impact on the acute phase response signaling pathway. By conducting 

a quantitative comparison, I aimed to identify shared structural features and similar 

biological responses, particularly in the gene expression profiles, that could explain 

common mechanisms of toxicity. 

 Understanding whether S- and MWCNTs with similar characteristics trigger the 

same toxicological pathway is important for grouping them based on their mode of action 

(MoA). This approach may help clarify how both types of CNTs contribute to 

inflammation-related outcomes, such as lung injury and cardiovascular complications. 

Grouping them in this way could also support more efficient hazard assessments and 

inform the development of predictive models for nanomaterials for nanomaterial safety. 

Part III. (section 4.3.): Global Nano-QSAR model development 

 In this part of the study, I focused on understanding the role of metal impurities in 

CNTs as potential contributors to adverse biological effects following inhalation exposure. 

The aim was to investigate how these metal impurities may influence gene expression 

profiles related to inflammation and fibrosis. 

 To achieve this, I developed a global Nano-QSAR model based on the AOP 

framework. This model was designed to quantitatively link specific metal contaminants in 

CNTs to changes in gene expression with a particular focus on the acute phase response 

signalling (AR) pathway. By capturing early upstream key events (KEs) related to the 
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activation of pro-inflammatory immune responses, this model helps predict CNTs-induced 

inflammation, which may eventually lead to lung fibrosis. 

3.2. EXPERIMENTAL DATA USED 

In my research work, I relied on the results of experimental studies conducted by the 

collaborating institutions: 

• The animal studies were performed by Prof. Ulla Vogel at the National Research Centre 

for Working Environmental Copenhagen DK-2100, Denmark. 

• The transcriptomics studies were conducted by Dr. Sabina Halappanavr at the 

Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 

0K9, Canada. 

3.3. APPLIED MACHINE LEARNING METHODS USED 

 In this dissertation, I developed machine learning methods to align with research 

objectives. These methods are categorized into supervised, unsupervised and ensemble 

machine learning techniques based on their functionality. 

Objective 1: I developed a quantitative Nano-QSAR model to predict the relationship 

between key structural descriptors of multi-walled carbon nanotubes (MWCNTs) and the 

acute phase response (BMDL values) using the kernel-weighted local polynomial 

regression (KwLPR) algorithm. 

 Objective 2: I compared the structural properties of single-walled and multi-walled CNTs 

(S- and MWCNTs) and assessed their impact on the acute phase response signaling 

pathway by using a combination of statistical and multivariate analysis techniques aimed 

at identifying shared characteristics that could explain their similar mode of toxicological 

action.  

• Radar plots were used to visualize Pearson correlation coefficients (r) between 

physicochemical properties of S- and MWCNTs and the transcriptional benchmark dose 
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lower limit (BMDL) values associated with the acute phase response pathway. This allows 

for a comparative overview of key property-response relationships. 

• Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) were 

applied to explore and visualize the similarities and differences among CNT types in the 

multidimensional space. These unsupervised methods helped uncover grouping patterns 

and variability in both structural descriptors and inflammation-related gene expressions. 

 

Objective 3: I developed global Nano-QSAR models to predict the relationship between 

the presence of metal impurities in CNTs and both acute phase response (BMDL values) 

as well as gene expression profiles (PC1/PC2), utilising the random forest (RF) algorithm. 

3.4. SOFTWARES USED FOR THE STUDY CONDUCTED 

 For data-driven models development and applicability domain in this study were 

performed in Python (3.12.7)88 and R (4.2.3)89 scripts written in the following libraries: 

Python libraries: 

Numpy (1.24.0).88 

Pandas (1.5.3).90 

Seaborn (0.11.2).91 

Matplotlib (3.6.3).92 

Scikit-learn (1.1.3).93 

SciPy (1.9.3).94 

R libraries: 

Stats (4.4.0).95 

Dplyr (1.1.4).96 

Reshape2 (1.4.4).97 

Ggplots (3.5.1).98 

Caret (7.0-1).99  
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4. RESULTS AND DISCUSSIONS 
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4.1. The Impact of MWCNTs Properties on Lung Pathologies 

and Atherosclerosis Through Acute Inflammation: A New 

AOP-anchored In silico NAM 

4.1.1. SPECIFIC OBJECTIVE AND SUBJECT OF RESEARCH 

 In line with the first objective of this research (see section 2.3), the specific goal of 

this part of the study is defined as follows:  

OBJECTIVE 1. 

 To identify the structural properties of multi-walled carbon nanotubes (MWCNTs) 

that perturb the acute phase response signaling (AR) pathway in the lungs of mice exposed 

to a panel of 14 MWCNTs. This objective supports the development of a new AOP-

anchored Nano-QSAR model designed to predict molecular-level inflammatory responses 

that may lead to lung fibrosis and/or atherosclerosis pathologies. 

4.1.2. EXPERIMENTAL DATA 

 The machine learning models developed in this study relied on experimental data 

(Table 3) provided by collaborating research groups. Dr. Ulla Vogel at the National 

Research Centre for the Working Environment (NRCWE) was delivered the 

physicochemical property data for a panel of 14 multi-walled carbon nanotubes 

(MWCNTs)100–104 Dr. Sabina Halappanavar at Health Canada contributed transcriptomic 

benchmark dose lower confidence limit (BMDL) values.105,106 

The dataset included key physicochemical descriptors, such as aspect ratio, length, 

diameter, surface area, and surface functionalization, which reflect the intrinsic 

characteristics of each nanomaterial. Corresponding BMDL values, derived from previous 

transcriptomic dose–response analyses, quantified pathway-level biological responses 
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relevant to acute-phase signaling and aligned with adverse outcome pathways (AOPs). 

These BMDLs served as transcriptomic indicators of toxicological potency. 

Table 3. Structural properties of MWCNTs and their BMDLAR values 

Experimental data 

CNT 

Physicochemical properties of the MWCNTs Endpoint 

Prist

ine 
OH COOH NH2 

Lengt

h [nm] 

Diamet

er [nm] 

Specific 

surface 

area [m2/g] 

Aspect 

ratio 

BMDLAR[

µg/mouse] 

NM-401 1 0 0 0 4050.0 67.0 18 60 0.17 

NRCWE-026 1 0 0 0 850.0 11.0 246 77 0.58 

NRCWE-048 1 0 0 0 1604.0 15.1 185 106 4.29 

NRCWE-006 1 0 0 0 5700.0 65.0 26 88 5 

NRCWE-047 1 0 0 0 532.5 13.0 216 41 8.91 

NRCWE-049 1 0 0 0 731.1 13.9 199 53 9.34 

NRCWE-043 1 0 0 0 771.3 26.7 82 29 8.57 

NRCWE-046 1 0 0 0 717.2 17.2 223 42 10.76 

NRCWE-045 1 0 0 0 1553.0 28.1 119 55 9.52 

NRCWE-062 1 0 0 0 468.0 8.8 443 53 11.24 

NRCWE-061 0 0 0 1 730.9 16.4 170 45 4.91 

NRCWE-044 0 1 0 0 1330.0 32.6 74 41 14.46 

NRCWE-064 0 0 1 0 213.6 7.5 445 29 14.85 

NRCWE-063 0 1 0 0 345.4 14.2 426 24 15.46 

Pristine – 1 means the absence of surface coatings, while 0 is the presence of functional groups, 

length/diameter – measured by SEM, surface area – measured according to the Brunauer-Emmet-

Teller method, OH and COOH – the amount of functionality measured by CEA (assuming that all 

oxygen was OH- or COOH-group), BMDLAR – BMDL values for Acute phase signaling response 

pathway. 

By combined dataset was used to develop QSAR models capable of predicting the 

biological impact of MWCNTs based on their physicochemical profiles. 
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 4.1.3. METHODOLOGY USED 

 To develop the Nano-QSAR model, I employed the kernel-weighted local 

polynomial regression (KwLPR) method, which is particularly designed for reliable 

modeling with small datasets. The KwLPR approach is based on the assumption that the 

underlying function at any point in the dataset can be approximated by a low-degree 

polynomial, with the kernel function (k) determining the assigned weights to data points, 

giving importance to those closer to the target point (x0), while weight decrease with 

increasing distance. By combining the simplicity of linear regression with the flexibility of 

nonlinear regression modeling, the KwLPR method builds a locally weighted linear model 

at each data point.107 It focuses on observations within the nearest neighborhood, defined 

by the kernel function (K) and the smoothing parameter (bandwidth, h). The theoretical 

basis and detailed implementation of the KwLPR method are discussed in section 1.6.3 

 This Nano-QSAR model quantitatively links the structural features of 14 multi-

walled carbon nanotubes (MWCNTs) to their biological activity, specifically targeting the 

acute phase response signaling pathway. Among the available descriptors, the model 

identified aspect ratio and specific surface area as the most predictive features. These were 

used as independent variables (X), while the transcriptomic BMDL values (BMDLAR) 

served as the response variable (Y) to predict lung inflammation potential. 

 To prepare the dataset, I first ranked the MWCNTs in ascending order based on 

their BMDLAR values. This ranked dataset was then split into a training set (80%) and a 

validation set (20%) using a ratio-based approach.108 Eleven MWCNTs were assigned to 

the training set for model development, while the remaining three were reserved for 

external validation. I performed this split manually to ensure that both subsets reflected the 

overall variability in the data, thereby supporting a more balanced and robust modeling 

process. 

 During model training, I evaluated several kernel types and tuned key parameters 

controlling the local neighborhoods to enhance the flexibility and performance of the 

KwLPR algorithm. Extensive modeling on the training data revealed that the best results 
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were obtained using an Epanechnikov kernel, a fixed bandwidth, and a non-zero constant 

polynomial degree. These hyperparameters were optimized using a leave-one-out cross-

validation approach. 

 As the dataset does not cover the full diversity of carbon nanotubes, it is critical to 

verify whether a given material falls within the model’s applicability domain before 

applying the model to novel CNTs. This step ensures that the predictions are both reliable 

and relevant for new materials. 

Table 4. The detailed splitting data into the training and validation sets for the obtained KwLPR-

based ten Nano-QSAR-AOP-anchored models. 

MWCNTs 
Splitting 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

NM-401 T T T T T T T T T T 

NRCWE-026 T T T T T T T T V T 

NRCWE-048 V V V V V V V V T T 

NRCWE-061 T T T T T T T T T T 

NRCWE-006 T T T T T T T T T V 

NRCWE-043 T T T T T T T T V T 

NRCWE-047 V V T T V V T T T V 

NRCWE-049 T T T V T V V T T T 

NRCWE-045 T T V T T T T V T T 

NRCWE-046 T V T T T T T T V T 

NRCWE-062 T T T T T T T T T T 

NRCWE-044 T T T T T T T T T T 

NRCWE-064 V T T T T T V V T T 

NRCWE-063 T T V V V T T T T V 

T = training set, V = validation set, M = number of models 

I undertook several measures to ensure the robustness of the modeling results. These steps 

were designed to minimize the risk of random correlations and to ensure the findings were 
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not dependent on a single division of the dataset into training and test sets but rather reflect 

an overall trend in the data. To support the validity of aspect ratio and specific surface area 

as key predictors of acute inflammatory responses, I developed 10 individual Nano-QSAR 

models, each using different training and test set compositions. The full details of these 

models are provided in Tables 4, 5 and 6. 

 Furthermore, to evaluate the reliability of the non-linear regression model, I applied 

a distance-based probability (ADProbDist) applicability domain (AD) to assess the model 

prediction uncertainty (refer to section 1.5.2.5). In addition, I used a more straightforward 

approach, partial dependence plots (PDPs), to interpret feature importance in the developed 

Nano-QSAR model. 

4.1.4. RESULTS AND DISCUSSION 

  An AOP-informed Nano-QSAR model was developed using the KwLPR algorithm 

to quantitatively link the physicochemical properties of 14 MWCNTs with the BMDL 

values associated with the ‘acute phase response signaling’ pathway, a key indicator of 

pulmonary inflammation. The characteristics of these MWCNTs are summarized in Table 

3 and include length (nm), diameter (nm), specific surface area (m²/g), and aspect ratio 

(length-to-diameter ratio). 

 Additionally, a few of the nanotubes also have different surface-modified functional 

groups (surface was modified by -COOH, -NH2, and -OH), which might alter their surface 

properties and interactions with biological systems, which can enhance or reduce the 

toxicity of MWCNTs.109 In addition to their core properties, several MWCNTs in the 

dataset featured surface modifications with functional groups such as -COOH, -NH₂, and -

OH, which are known to influence surface reactivity and biological interactions. These 

modifications may enhance or mitigate the toxic potential of MWCNTs by altering their 

bioavailability and cellular uptake.  

 While the study is limited to a panel of 14 MWCNTs, one should be aware that this 

small dataset does not capture the full diversity of carbon nanotube structures and 
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properties. However, the data-driven model developed in this study is based on currently 

available and experimentally consistent datasets for these 14 MWCNTs. It is important to 

emphasize that the reliability and predictive accuracy of data-driven models depend heavily 

on the consistency and quality of the input data. All data should be measured using the 

same standardized protocols to minimize bias and variability. Incorporating data from 

various sources can introduce inconsistencies that may challenge the model's robustness. 

Therefore, I prioritized developing a model that meets strict criteria, even though this 

approach may limit the size of the studied nanotubes. 

 To maximize variability within the dataset, I included both pristine and 

functionalized MWCNTs, with various groups, such as -OH, -COOH, and -NH2. 

Additionally, nanotubes were selected to differ in critical parameters (including aspect ratio 

and surface area) to ensure that the dataset captured a representation range of relevant 

properties, despite its limited sample size. Considering the significance of aspect ratio as a 

crucial structural property influencing MWCNT-induced lung inflammation, it was pre-

selected as a key descriptor in the model. Alongside aspect ratio, the specific surface area 

(BET) was identified as the relevant descriptor based on both literature evidence and expert 

knowledge.73 These two descriptors were ultimately used to build the final Nano-QSAR 

model. 

 Building on the selection of aspect ratio and specific surface area as key descriptors, 

the resulting models demonstrated consistently strong statistical performance. Goodness-

of-fit values (R²) ranged from 0.87 to 0.94, while predictive performance metrics (Q²F1 = 

0.76 - 0.92, Q²F2 = 0.72 - 0.94, and Q²F3 = 0.75 - 0.97) confirmed the model's predictive 

reliability. This rigorous approach reinforces the robustness of our findings and confirms 

that the observed trends are generalizable across different data splits. Details of the 

individual models, along with the models' quality metrics, are provided in Table 6.76,77 The 

modeling strategy adopted also appears to be an optimal solution for analyzing variance in 

performance estimation, particularly given the sensitivity of classical cross-validation 

approaches when applied to small training dataset sizes. It is important to note that the 
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removal of a few data points, or even a single data point, as in the leave-many-out or leave-

one-out cross-validation procedures, does not necessarily lead to a consistent estimate of 

the model. This is especially true when the size of the training dataset is limited. 

Table 5. The best Nano-QSAR model experimental versus predicted BMDL values 

CNTs 
Aspect 

ratio 

Specific surface 

area 

Experimental 

BMDLAR 

Predicted 

BMDLAR 
Set 

NM-401 60.45 18 0.17 1.56 T 

NRCWE-026 77.27 245.8 0.58 0.58 T 

NRCWE-061 44.5 170.4 4.91 6.56 T 

NRCWE-006 87.69 26 5 3.61 T 

NRCWE-043 28.86 82 8.57 11.15 T 

NRCWE-049 52.79 199 9.34 8.60 T 

NRCWE-045 55.33 119 9.52 9.64 T 

NRCWE-046 41.65 223 10.76 10.19 T 

NRCWE-062 53.07 443.2 11.24 12.23 T 

NRCWE-044 40.86 74 14.46 11.66 T 

NRCWE-063 24.36 426.4 15.46 14.47 T 

NRCWE-048 106.37 185 4.29 5.00 V 

NRCWE-047 41.09 216 8.91 9.89 V 

NRCWE-064 28.62 445.2 14.85 13.43 V 
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Table 6. The detailed statistics of the obtained KwLPR-based predicted ten Nano-QSAR-AOP-

anchored models 

No. R2 MAE RMSEc Q2
F1 Q2

F2 Q2
F3 CCC RMSEp AAE 

Model-1 0.91 1.20 1.47 0.94 0.94 0.95 0.92 1.08 1.04 

Model-2 0.89 1.55 1.79 0.88 0.88 0.97 0.91 0.95 0.90 

Model-3 0.94 0.76 1.17 0.89 0.87 0.88 0.86 1.63 1.50 

Model-4 0.92 0.92 1.34 0.86 0.84 0.85 0.83 1.81 1.53 

Model-5 0.90 1.25 1.51 0.89 0.87 0.88 0.86 1.62 1.46 

Model-6 0.94 0.30 0.59 0.85 0.82 0.96 0.79 0.98 0.96 

Model-7 0.91 1.18 1.45 0.82 0.81 0.84 0.81 1.90 1.58 

Model-8 0.92 1.07 1.37 0.78 0.76 0.80 0.78 2.13 1.89 

Model-9 0.87 1.65 1.75 0.78 0.72 0.75 0.69 2.33 2.18 

Model-10 0.92 1.00 1.39 0.76 0.72 0.77 0.85 2.27 1.85 

R2 = goodness of fit (determination coefficient), Q2
F1, Q2

F2, Q2
F3 = predictive ability (external 

validation coefficient), CCC = concordance correlation coefficient, MAE = mean absolute error, 

RMSE = root mean square error for the training set (RMSEc), and the validation set (RMSEp), 

AAE = average absolute error. 

 To assess the predictivity and reliability of the Nano-QSAR model by the principles 

outlined by the OECD, I conducted a thorough examination using various internal and 

external validation metrics for the selected model with the best statistics. These metrics 

encompass measures of goodness-of-fit, external predictive power, and error-based 

indicators, as referred to in Table 6. According to the OECD principles for the validation 

of QSAR models, the developed model was of acceptable quality, as demonstrated by 

Table 6 metrics and the scatter plot (Figure 8) of the experimental versus predicted values. 

The training set and validation set data points were clustered around the trend line, 

indicating that the model was successful in its predictions. 
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Figure 8. A scatter plot of the experimental observed versus predicted BMDLAR values for training 

and validation compounds using the Nano-QSAR model based on the structural properties, 

including aspect ratio and specific surface area. Usually, the color code is measured, green – 

training set, orange – validation set, for model calibration and validation. 

 The predictive uncertainty of the KwLPR-based model was further evaluated using 

the ADProbDist approach to assess its applicability domain.110 The analysis (Figure 9) 

demonstrated that all the compounds studied fell within the optimal prediction space (i.e., 

the green zone). Based on these observations, the KwLPR-based Nano-QSAR model is 

highly applicable for predicting lung inflammation associated with the ‘acute phase 

response signaling’ pathway perturbed following exposure to MWCNTs investigated in 

the study. 
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Figure 9.  The applicability domain of the Nano-QSAR model is estimated by the probability-

oriented distance-based approach (ADprobDist). 

Significance of selected descriptors in the modeled response 

 According to OECD principle 5, providing a mechanistic interpretation of QSAR 

model predictions is essential whenever possible. However, in the case of KwLPR method, 

do not provide the cause-effect relation equation for a quantitative understanding of model 

descriptors and response activity. Thus, I adopted a partial dependence plot (PDPs), Figure 

10.111 The PDP plot visualizes the relationship between a specific explanatory feature (i.e. 

aspect ratio and surface area) and the predicted outcome of the model (here: BMDLAR) 

while marginalizing over the other features. This approach enables us to understand the 

individual contribution of each feature to the model prediction and to determine whether 

the relationship between the target response and feature is linear or more complex. In this 

plot, the Y-axis represents the mean predicted response (in our case, BMDLAR), while the 

X-axis denotes the range of the values for the given descriptor. 
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Figure 10. A) Illustrates the PDP for the aspect ratio of MWCNTs. B) Illustrates the PDP for the 

surface area of MWCNTs. The x-axis represents the feature (A - surface area, B - aspect ratio), 

while the y-axis shows the partial dependence of the predicted BMDLAR values. 

 As shown in Figures 10A and 10B, the magnitude of changes in the model 

prediction associated with aspect ratio is substantially greater than that observed for surface 

area. Therefore, I conclude that the aspect ratio strongly influences BMDLAR. Previous 

studies support this finding, suggesting that the aspect ratio might be a significant factor in 

CNT-induced pulmonary toxicity. Aspect ratio affects the ability of carbon nanotubes to 

penetrate cells, tissues, and organelles, thereby increasing their potential to cause cellular 

damage and trigger inflammatory responses.112,113 

 Further straightforward analysis is that the relationship between the aspect ratio of 

the set of 14 MWCNTs and their effect on the acute phase response signaling pathway 

suggests that nanotubes with lower aspect ratios have less impact (i.e., higher BMDL 

values are required to induce perturbation in the pathway) compared to those with high-

aspect-ratio nanotubes. This trend, at least, is evident when comparing MWCNTs with an 

aspect ratio less the 60 to those between 60 and 80 length-to-diameter ratios. As shown in 

Figure 11, this pattern is clearly visible BMDLAR values against aspect ratio. For instance, 
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NRCWE-063, NRWE-064, and NRWE-044, these carbon nanotubes have the lowest 

aspect ratios, which require the highest doses to disrupt the pathway. In contrast, NM 401 

and NRCWE-026, which have aspect ratios of 60.45 and 77.27, respectively, are the most 

toxic.  

 

 

Figure 11. Exploring the impact of aspect ratio characterizing multi-walled carbon nanotubes on 

acute phase response (AR) pathway (BMDLAR). The size and color of the dots correspond to 

BMDLAR: the biggest red dots refer to the highest doses (less toxic), while the smallest blue dots 

refer to the lowest doses (high toxic).  

 While the PDP plots highlight that the aspect ratio is of primary importance 

concerning the effects of the studied MWCNTs on the acute phase response signaling 

pathway, the surface area also has an influence. The machine learning-driven analysis, as 

shown in Figure 10B supported by Figure 12, suggests, however, that this relationship is 

not straightforward. This contrasts with earlier findings based on the Pearson correlation 

coefficient, where the BET surface area was strongly associated with the acute phase 

signaling pathway. One possible reason for this discrepancy is the difference in how the 

acute phase response was defined. In Danielsen et al.'s study104, toxicity was assessed based 
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on SAA3 protein levels, whereas our analysis used BMDL values derived from the set of 

genes associated with the pathway. Interestingly, there are nanotubes with very different 

specific surface areas that show similar effects on the pathway. For example, NM 401 and 

NRCWE-026 both exhibit the lowest BMDLAR values, 0.17 μg/mouse and 0.58 μg/mouse, 

respectively, indicating high toxicity. Yet, NM-401 has the smallest BET surface area (18.0 

m²/g) among the studied materials, while NRCWE-026 has one of the largest BET surface 

areas (245.8 m²/g). This suggests that specific surface area alone does not explain the 

observed toxic effects. Other factors such as rigidity, surface functionalization and surface 

chemistry may significantly influence the toxicity of MWCNTs. 

 

Figure 12. Exploring the impact of specific surface area characterizing multi-walled carbon 

nanotubes on BMDLAR. The size and color of the dots correspond to BMDLAR: the biggest red 

dots refer to the highest. 

 To better understand how aspect ratio and surface area jointly influence biological 

responses, I have additionally examined their combined effects. By plotting the studied 

MWCNTs in a two-dimensional space defined by aspect ratio vs. specific surface area, I 

was able to visualize potential synergistic effects. In this plot visualization (Figure 13), 
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each nanotube is represented by a dot whose size and color reflect its toxicity: larger green 

dots indicate less toxic materials (requiring higher doses), while smaller red dots indicate 

more toxic ones (requiring lower doses). An arrow marks the direction of increasing 

toxicity across the plot, highlighting the combined influence of both descriptors. 

 

Figure 13. Exploring the impact of standardized aspect ratio and surface area characterizing multi-

walled carbon nanotubes on BMDLAR. The size and color of the dots correspond to BMDLAR: the 

biggest green dots refer to the highest doses (less toxic), while the smallest red dots refer to the 

lowest doses (high toxic). Arrow presents the trend of increasing toxicity. 

 Nanotubes characterized by lower aspect ratios and higher specific surface areas 

generally exhibit reduced toxicity in relation to their ability to perturb the acute phase 

signaling pathway. For example, NRCWE064 and NRCWE063 required significantly 

higher doses to induce a measurable toxic response. In contrast, nanotubes with the highest 

aspect ratios, commonly referred to as high-aspect-ratio MWCNTs (e.g., NRCWE006, 

NRCWE048, and NRCWE026), were demonstrated to be significantly more toxic. These 

nanotubes required much lower doses to induce pathway perturbation, consistent with 
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previous studies suggesting that higher aspect ratios enhance the capacity of CNTs to 

penetrate cellular and tissue barriers, increasing their potential to penetration increases their 

potential to cause cellular damage and trigger inflammatory responses. 

 This study confirms that both the aspect ratio and specific surface area play roles in 

shaping the effects of MWCNTs on the acute phase response signaling. These properties 

are, therefore, important determinants of CNT-induced inflammation, which may 

contribute to the development of lung and cardiovascular pathologies, as outlined in 

AOP33 and AOP237. Inflammation and acute phase response represent early key events 

within these AOP, linking the inhalation of various engineered nanomaterials, including 

CNTs, to adverse outcomes such as fibrosis, atherosclerosis and cancer.114–116 

 However, it is important to note that the current findings do not explain all biological 

interactions that may occur following inhalation and the subsequent onset of pulmonary 

toxicity. Some nanotubes deviate from the observed trends, suggesting that additional 

factors may modulate the toxic response. These include structural rigidity, surface 

modifications and the presence of residual metal purities, and the formation of a protein 

corona. 

 The protein corona, which forms when nanoparticles interact with biological fluids, 

can alter their identity, biodistribution, and cellular uptake, thereby significantly altering 

their toxicological profiles.71,117 The composition and dynamics of the protein corona 

depend on both the physicochemical properties of the nanomaterials (e,g., surface charge, 

functional groups, hydrophobicity) and the biological environment. Inhaled CNTs rapidly 

adsorb lung surfactant proteins and other serum proteins104 potentially modifying surface 

features that drive cellular interactions. As such, inter-individual or material-specific 

variations in protein corona formation may help explain inconsistencies in pulmonary 

toxicity outcomes. 

 The rigidity of MWCNTs, particularly in high aspect ratio structures, has been 

linked with their ability to induce frustrated phagocytosis in macrophages, which can lead 

to chronic inflammation and granuloma formation. Surface chemistry and functionalization 
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also significantly influence CNT toxicity. Functional groups such as -COOH or -OH can 

enhance water solubility and improve dispersion, thereby modifying how these materials 

interact with cells. These modifications may also increase MWCNT reactivity with cellular 

components, exacerbating oxidative stress and inflammatory responses under certain 

conditions.118 

 Metal impurities are often retained from the synthesis process, further contribute to 

MWCNT toxicity. Transition metals such as iron, nickel, and cobalt, commonly used as 

catalysts, can persist even after purification and catalyze the formation of reactive oxygen 

species (ROS), thereby intensifying oxidative stress and promoting the release of pro-

inflammatory cytokines.104  For example, elements like manganese (Mn) and iron (Fe) have 

been associated with increased neutrophil influx, a hallmark of inflammation, shortly after 

exposure, while nickel (Ni) has been linked to a reduced inflammatory response over time. 

These observations suggest that the type and quantity of residual metal impurities can 

modulate the CNT toxicity, possibly by influencing ROS generation and associated 

biological pathways. 

 Additionally, the chirality of CNTs, a property for which data were not available in 

this study, may also play a role in determining their toxicological profiles. This limitation 

emphasizes the need for future investigations to evaluate the influence of the chirality of 

MWCNT-induced responses. 

 In conclusion, the toxicological behavior of MWCNTs is multifaceted, shaped by 

complex interactions among various physicochemical characteristics, including aspect 

ratio, surface area, rigidity, surface chemistry, metal impurities and potential chirality. 

Achieving a deeper mechanistic understanding of these interdependencies is crucial for the 

rational design of safer nanomaterials in industrial and biomedical applications. Thus, 

further research and investigations into the mechanistic pathways and biological 

interactions underlying the MWCNTs-induced inflammatory response are warranted. 

 In conclusion, this study employed a non-linear machine learning regression 

approach to develop an AOP-anchored Nano-QSAR model, aimed at investigating how the 
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structural characteristics of 14 MWCNTs influence lung inflammation at the tissue level. 

These results highlighted the critical role of aspect ratio and specific surface area as key 

drivers in initiating acute inflammation processes, which may subsequently progress to 

fibrosis and atherosclerosis through the acute phase response signaling pathway. 

 By integrating AOP concepts within the Nano-QSAR framework, this study 

provides mechanistic insights into the toxicological effects of nanomaterials, effectively 

linking structural properties with biological outcomes. These results not only deepen our 

understanding of MWCNT-induced pulmonary toxicity but also highlight the utility of 

AOP-informed models as new NAMs in nanomaterial hazard assessment. Ultimately, this 

work advances safer-by-design strategies and contributes to regulatory initiatives aimed at 

improving the risk assessment of ENMs. 
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4.2. Grouping-based on the Physicochemical Properties 

Drives Differences in Transcriptomic Responses Induced by 

Single- and Multiwalled Carbon Nanotubes Following 

Inhalation Exposure 

4.2.1. SPECIFIC OBJECTIVES AND SUBJECT OF RESEARCH 

 In line with the second objective of this research (see section 2.3), the work 

presented in Section 4.2 aims to achieve the following:  

OBJECTIVE 2. 

 To quantitatively compare S- and MWCNTs in terms of their structural properties 

and associated impact on the acute phase response signaling pathway, with the aim of 

identifying shared characteristics and gene expression profiles that may help explain their 

similar modes of action (MoA) related to pulmonary and cardiovascular pathologies. 

4.2.2. EXPERIMENTAL DATA 

 To support this comparative analysis, the data set used in Section 4.1 was expanded 

to include a total of 21 CNTs, comprising both SWCNTs and MWCNTs (Table 7).100,101,103–

106 Specifically, seven SWCNTs (NRCWE-051 to NRCWE-057) and four MWCNTs 

(NRCWE-061 to NRCWE-064) were sourced from Timesnano (Chengdu Organic 

Chemicals Co. Ltd., China). An additional, seven MWCNTs (NRCWE-043 to NRCWE-

049) were obtained from Cheaptubes (Brattleboro, VT, USA). NM-401 was provided by 

the European Joint Research Centre (JRC), Ispra, Italy; NRCWE-026 was sourced from 

Nanocyl (Sambreville, Belgium), and NRCWE-006 (Mistui-7) was generously provided 

by Mitsui, Tokyo, Japan.  
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Table 7. Physicochemical properties of single and multi-walled carbon nanotubes (S- and MWCNTs) 

Physicochemical properties of S- and MWCNTs 

Type Name 
Aspect ratio 

BET 
Functionalization Composition Metal Content 

Length Diameter Pristine OH COOH NH2 C H N O MgO MnO Fe2O3 CoO NiO 

S
W

C
N

T
s 

NRCWE-051 0 1 442.6 1 0 0 0 90.2 0.12 0.08 1.8 0.04 0 1.63 1.08 0.06 

NRCWE-052 0 1 405.7 1 0 0 0 92.9 0.16 0.03 1.3 0.03 0.01 1.05 1.23 0.12 

NRCWE-053 0 1 367.8 0 1 0 0 88.2 0.18 0.24 3 0.02 0.02 0.85 3.82 0.1 

NRCWE-054 0 1 370.8 0 0 1 0 87.9 0.18 0.19 4.8 0.03 0 1.59 3.81 0.13 

NRCWE-055 0 1 453.1 1 0 0 0 91.9 0.2 0.08 2.5 0.03 0.03 4.39 1.33 0.05 

NRCWE-056 0 1 356.7 0 1 0 0 89.6 0.21 0.22 4.4 0.04 0.03 1.26 3.65 0.1 

NRCWE-057 0 1 281.6 0 0 1 0 83.1 0.37 0.22 9.6 0.18 0.04 2.2 2.74 0.14 

M
W

C
N

T
s 

Mitsui7 5730 74 26 1 0 0 0 98.1 0.69 0.02 0.1 0.01 0 0.08 0 0 

NM-401 4048 67 18 1 0 0 0 98 0.69 0.01 0 0.01 0 0.05 0 0 

NRCWE-026 847 11 254 1 0 0 0 85.5 0.15 0.01 1.3 0 0 0.29 0.11 0 

NRCWE-043 771.3 55.6 82 1 0 0 0 96 0.69 0.04 0.2 0.01 0 0.01 0 1.2 

NRCWE-044 1330 32.7 74 1 0 0 0 96.1 0.79 0.02 0.2 0.02 0 0 0 1.04 

NRCWE-045 1553 30.2 119 1 0 0 0 91.6 0.69 0.04 0.6 0.02 0 1.17 0.25 1.34 

NRCWE-046 717.2 29.1 223 1 0 0 0 95.1 1.39 0.02 0.6 0.22 0.3 0.01 0.25 0 

NRCWE-047 532.5 22.6 216 1 0 0 0 96.1 1.09 0.02 0.3 0.22 0.3 0.01 0.25 0 

NRCWE-048 1604 17.9 185 1 0 0 0 95.3 1.79 0.04 0.6 0.19 0.28 0.01 0.24 0 

NRCWE-049 731.1 14.9 199 1 0 0 0 96 1.49 0.07 0.3 0.19 0.29 0 0.25 0 

NRCWE-061 730.85 16.42 170.4 0 0 0 1 96.5 0.22 0.65 0.7 0.01 0.01 0.59 0 1.97 

NRCWE-062 468 8.82 443.2 1 0 0 0 89.1 0.17 0.44 4.2 0.07 0 0.58 4.6 0.22 

NRCWE-063 345.35 14.18 426.4 0 1 0 0 88.2 0.14 0.38 4.3 0.07 0.02 1.95 5.88 0.49 

NRCWE-064 213.62 7.46 445.2 0 0 1 0 88.4 0.17 0.17 5.1 0.03 0.03 1.8 5.51 0.3 

BET = specific surface area (m2/g), C = carbon (% w/w), H = hydrogen (% w/w), N = nitrogen (% w/w), O = oxygen (% w/w)
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The dataset included key physicochemical descriptors, such as aspect ratio (length and 

diameter), specific surface area (BET), surface functionalization (pristine, hydroxy (-OH), 

carboxyl (-COOH), amine (-NH₂)), chemical composition (C, H, N, O), metal impurities 

(Fe₂O₃, CoO, NiO, MgO, MnO). These parameters reflect the intrinsic properties of each 

nanomaterial and are hypothesized to influence their biological activity. 

 To link structural features with toxicological outcomes, previously published 

BMDL values were incorporated. These values, derived from transcriptomic dose–

response analyses, quantify pathway-level activation of the acute phase response signaling 

pathway, aligned with relevant adverse outcome pathways (AOPs). As such, these BMDLs 

serve as transcriptomic indicators of toxicological potency. By integrating 

physicochemical and biological response data, this dataset enables a comparative 

mechanistic analysis aimed at identifying both shared and distinct structural features that 

influence acute phase signaling pathway across SWCNTs and MWCNTs. 

4.2.3. METHODOLOGY USED 

 In this study, transcriptomic data analyses using advanced chemometrics methods 

such as unsupervised clustering and supervised machine learning, provide insights into the 

potential toxicity and biological impacts of CNTs. Hierarchical cluster analysis 

(HCA)119,120, a multivariate method, is commonly used to visualize hierarchical clustering 

and grouping based on their physicochemical property similarities through heatmaps. 

Furthermore, the comparative analysis of the physicochemical properties of S- and 

MWCNTs and their inflammatory responses, a correlation matrix was constructed using 

Pearson’s correlation method and represented through a radar plot. Additionally, principal 

component analysis (PCA)120 was performed to explore the data structure by identifying 

similarities and dissimilarities among variables, object positions, grouping tendencies and 

outliers. 
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4.2.4. RESULTS AND DISCUSSION 

 To achieve the study objectives, a total of 21 single-walled and multi-walled carbon 

nanotubes (S- and MWCNTs) were analyzed following a standardized single-dose 

inhalation exposure (54 µg/ per mouse), with transcriptomic responses assessed on day 1 

post-exposure. This consistent experimental design allowed us to focus on early biological 

responses reflective of acute toxicity. 

 The primary aim of this analysis was to elucidate the relationship between the 

physicochemical characteristics of CNTs and their toxicological potency, particularly the 

activation of the acute phase response (AR) pathway. Table 7 summarizes the key 

structural and compositional features of the studied CNTs, including aspect ratio, specific 

surface area, functional groups, elemental composition, and metal impurities. The results 

presented in this section are organized into two complementary parts: (1) a similarity-based 

investigation of structural and chemical consistency among the CNTs, and (2) a 

comparative mechanistic analysis of how these properties relate to transcriptomic 

responses and inflammatory signaling pathways. 

Investigating Structural and Chemical Consistency in Carbon Nanotubes: A 

Similarity-based Perspective 

 To build on the earlier analysis of physicochemical influences on transcriptomic 

responses, this section explores the intrinsic structural and chemical similarities among 

CNTs. Using hierarchical cluster analysis (HCA) with heatmap visualization (Figure 14), 

I evaluated independent physicochemical properties such as specific surface area, 

elemental composition (C, H, N, O), and metal oxide content (MgO, MnO, Fe₂O₃, CoO, 

NiO) across the panel of 21 S- and MWCNTs. Unsupervised analysis identified six distinct 

similarity-based clusters, providing an integrated view of structural heterogeneity and 

potential shared features that may drive comparable biological outcomes. 

Cluster 1: Hydroxyl (-OH) Functionalized S- and MWCNTs with Moderate Metal 

Content 
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 This cluster includes both single- and multi-walled carbon nanotubes (NRCWE-

063, NRCWE-053, and NRCWE-056) functionalized with hydroxyl (-OH) groups. These 

CNTs exhibit high specific surface areas, ranging from 356.7 to 426.4 m²/g, and 

moderately elevated levels of metal oxides, particularly Fe₂O₃ and CoO. For instance, 

NRCWE-056 contains 4.42% oxygen, confirming successful hydroxylation. Hydroxyl 

functionalization enhances hydrophilicity and improves dispersion in aqueous 

environments, such as biological media. This facilitates cellular uptake and increases 

interactions with biomolecules. Additionally, the presence of transition metals like iron and 

cobalt can catalyze Fenton-like reactions, promoting the generation of reactive oxygen 

species (ROS). These ROS can damage cellular macromolecules and activate pro-

inflammatory signaling cascades.10,11,121 As such, CNTs in this cluster demonstrate 

elevated biological reactivity and a moderate to high toxicological potential. 

Cluster 2: Carboxyl (-COOH) Functionalized S- and MWCNTs with High Oxidative 

Potential 

 Cluster 2 comprises carboxyl-functionalized CNTs (NRCWE-057, NRCWE-064, 

and NRCWE-054) with similarly high specific surface areas (e.g., 445.2 m²/g for NRCWE-

064) and moderate amounts of transition metals, including Fe₂O₃ and CoO. High oxygen 

content confirms extensive surface oxidation. Carboxyl groups impart a strongly acidic 

surface character, promoting electrostatic interactions with positively charged 

biomolecules such as cell membranes and serum proteins.105,106 This enhances 

internalization and tissue penetration, potentially leading to greater intracellular disruption. 

Compared to hydroxylated CNTs, carboxylated CNTs exhibit higher polarity and acidity, 

which may drive more pronounced oxidative stress and inflammation.102 Overall, this 

cluster is associated with a high level of biological reactivity and potential toxicity. 

Cluster 3: Pristine MWCNTs with High Metal Content and Low Functionalization 

 This cluster includes unfunctionalized MWCNTs (NRCWE-046, -047, -048, -049), 

characterized by high carbon purity (>95%) and significant metal oxide content, 

particularly MgO and MnO. They possess moderate specific surface areas (199–223 m²/g) 
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and minimal oxygen and nitrogen content. Although chemically inert due to a lack of 

functional groups, these CNTs are not biologically benign. Their hydrophobic nature and 

poor dispersion in biological media encourage agglomeration, which may impair 

phagocytic clearance and promote biopersistence. Furthermore, elevated levels of 

transition metals can sustain ROS production and provoke chronic low-grade 

inflammation. Hence, despite their low intrinsic surface reactivity, these CNTs may exert 

significant long-term toxic effects. 

  

 

Figure 14. The heat map represents the impact of the physicochemical properties of S- and 

MWCNTs on their adverse responses between similarities and dissimilarities (Euclidean distance 

and Ward method for clustering). 

Cluster 4: Pristine MWCNTs with low specific surface areas and metal contents 
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 Cluster 4 comprises several well-characterized MWCNTs, including NRCWE-043, 

-044, -045, NM-401, and Mitsui-7. These materials are defined by high carbon purity (96–

98%), large diameters, low specific surface areas (18–119 m²/g), and negligible metal 

content. 

The low reactivity of these CNTs results from their chemical inertness, yet their physical 

attributes confer a different kind of hazard. Their large diameters and structural rigidity 

hinder phagocytic uptake, often leading to frustrated phagocytosis and prolonged retention 

in pulmonary tissues. While chemical toxicity is low, their bio-persistence and mechanical 

interactions with alveolar structures may promote granuloma formation and fibrotic 

remodeling.122 This underscores the importance of physical structure, not just surface 

chemistry, in evaluating CNT safety. 

Cluster 5: Pristine S- and MWCNTs with high specific surface area and moderate 

metal content 

 This cluster includes both pristine single- and multi-walled CNTs (NRCWE-026, -

051, -052, -055, -062) with high specific surface areas (>250 m²/g) and moderate 

concentrations of metal oxides, especially Fe₂O₃ and CoO. Despite lacking chemical 

functionalization, their large surface areas enhance interactions with biological membranes 

and proteins. This can increase the likelihood of cellular uptake and immune activation. 

Transition metal impurities further elevate ROS production, contributing to oxidative stress 

(Soto et al., 2007). Notably, NRCWE-055, with a surface area of 453.1 m²/g and 4.39% 

Fe₂O₃, has demonstrated robust inflammatory responses in vivo (Poulsen et al., 2015).101 

This cluster exemplifies how pristine CNTs can be toxic via physicochemical mechanisms 

unrelated to surface functional groups. 

Cluster 6: Amine (-NH2) functionalized MWCNT with moderate metal content 

 This cluster is uniquely represented by NRCWE-061, an MWCNT functionalized 

with amine (-NH₂) groups and containing 1.97% NiO. The amine functionalization imparts 

a positive surface charge, promoting strong electrostatic interactions with negatively 

charged biomolecules such as DNA, proteins, and cell membranes. These interactions can 
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significantly enhance cellular uptake and activate pro-inflammatory pathways. Moreover, 

the presence of nickel oxide, a known immunotoxicant, raises concerns about immune 

hypersensitivity and oxidative injury (Pacurari et al., 2008).123 The combined effects of 

electrostatic reactivity and metal-driven immunotoxicity suggest that this CNT possesses 

high potential for immune modulation and pulmonary inflammation. 

 The six identified clusters of carbon nanotubes (CNTs) reflect distinct 

physicochemical profiles that influence their biological interactions and toxicological 

outcomes. Clusters 1 and 2, comprising hydroxyl- and carboxyl-functionalized CNTs 

respectively, exhibit high surface reactivity and enhanced aqueous dispersibility, 

contributing to increased cellular uptake and a strong potential for oxidative stress and 

inflammation. In contrast, Cluster 3 includes pristine MWCNTs with high metal content 

but low surface functionalization; while chemically inert, these CNTs are toxic due to poor 

clearance and sustained ROS generation from metal contaminants. Cluster 4 represents 

pristine MWCNTs with low surface area and minimal metal content; their large diameter 

and rigidity reduce phagocytic uptake, leading to frustrated phagocytosis and bio-

persistence that can disrupt lung architecture and promote fibrotic responses. Cluster 5 

encompasses pristine SWCNTs and MWCNTs with high surface area and moderate metal 

content; despite lacking functional groups, their large reactive surface and embedded 

metals can still induce significant toxicity through oxidative mechanisms. Finally, Cluster 

6, characterized by amine functionalized MWCNTs, presents a unique immunogenic 

profile due to the positively charged surface and presence of nickel oxide, a known 

immunotoxicant. Collectively, these clusters underscore the importance of integrating both 

chemical and structural features when assessing the safety profiles of engineered 

nanomaterials. 

Comparative Analysis of the Physicochemical Properties of S- and MWCNTs and 

Their Transcriptomics-based Inflammatory 

 The cluster-based analysis of SWCNTs and MWCNTs previously revealed how 

variations in physicochemical properties drive distinct toxicological behaviors, particularly 
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oxidative stress, inflammation, and fibrosis. While these groupings based on properties 

offer valuable insights, they cannot fully capture the intricate biological responses that 

occur at the molecular level. Inflammation and immune activation, for instance, often stem 

from more complex interactions than can be explained by morphology or surface chemistry 

alone. To delve deeper into the biological mechanisms underlying these responses, I 

employed two complementary statistical techniques: Pearson correlation analysis and 

PCA. 

 Pearson correlation was used to examine linear relationships between selected 

physicochemical parameters, such as specific surface area, elemental composition (C, H, 

N, O), and metal oxide impurities (MgO, MnO, Fe₂O₃, CoO, NiO) and adverse pulmonary 

outcomes measured by benchmark dose lower confidence limits for acute responses 

(BMDLAR).102 To ensure consistency and data quality, I excluded variables like CNT 

length (due to missing data for SWCNTs), diameter (uniform across SWCNT samples), 

and surface functional groups (due to their binary categorization). The resulting correlation 

matrix (Figure 15) offers a visual summary of these associations and helps identify key 

drivers of CNT-induced toxicity. 

 In SWCNTs, the analysis uncovered strong positive correlations between the acute 

phase response and the presence of manganese oxide (MnO), as well as elevated hydrogen 

and oxygen content. In contrast, specific surface area was negatively correlated, suggesting 

that more dispersible or less aggregated particles might trigger milder inflammatory 

responses. Among these factors, MnO stood out with the strongest correlation, indicating 

its significant role in triggering immune activation. This is consistent with earlier clustering 

results (Figure 14), where Mn-rich SWCNTs like NRCWE-051 and NRCWE-052 showed 

pronounced inflammatory and oxidative stress signatures. These materials not only 

contained more MnO but also exhibited higher levels of hydrogen and oxygen, supporting 

the idea that a combination of metal impurities and surface reactivity amplifies toxicity 

through oxidative mechanisms. 
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 In MWCNTs, the patterns diverged slightly but remained centered around metal-

driven toxicity. Strong positive correlations emerged between the acute phase response and 

contents of Fe₂O₃, CoO, and oxygen. These results imply that redox-active metal impurities    

 

 

Figure 15. The radar plot provides a visual representation of the Pearson correlation coefficients 

(r) for specific physicochemical properties of S- and MWCNTs, with acute-phase signaling 

response (BMDLAR). 
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and surface properties contribute significantly to the inflammatory potential of MWCNTs. 

Notably, the aspect ratio demonstrated a strong negative correlation with inflammation, 

meaning that shorter, thicker MWCNTs may provoke stronger immune responses.124–126 

This could be due to increased uptake by macrophages or reduced clearance from the lungs. 

When plotted in a two-dimensional space defined by aspect ratio and specific surface area, 

MWCNT samples displayed patterns suggesting that these two properties interact 

synergistically to modulate toxicity.73  

This observation was reinforced by findings discussed earlier in Section 4.1, where samples 

like NRCWE-062 and NRCWE-063, marked by high Fe₂O₃ and CoO levels and relatively 

low aspect ratios, were grouped into clusters with elevated inflammatory and fibrotic 

profiles. The consistency between correlation analysis and clustering patterns strengthens 

the case that both composition and morphology shape transcriptomic responses in exposed 

lung tissue. 

 These findings are consistent with recent literature. For example, Danielsen et al. 

(2024)104 identified similar correlations using Pearson analysis across CNT types. For 

SWCNTs, specific surface area and oxygen content were found to cluster together, 

highlighting their combined impact on toxicity. For MWCNTs, distinct clusters emerged, 

one grouping specific surface area, diameter, length, and cobalt, and another composed of 

manganese and magnesium. Their biological data echoed our findings, where specific 

surface area was the best predictor of neutrophil influx in SWCNTs, while diameter served 

as the strongest predictor for MWCNTs. Notably, metal contents such as Mg and Fe were 

linked to increased neutrophil activity post-exposure, while nickel showed a type-specific 

effect reducing inflammation in MWCNTs but increasing it in SWCNTs. Additional 

support comes from Gandhi et al. (2022)127, who emphasized the role of MnO in pulmonary 

toxicity, although its precise molecular mechanism remains unresolved. Similarly, Hadrup 

et al. (2020)128 demonstrated that Fe₂O₃ exposure can lead to respiratory and cardiovascular 

damage in vivo, adding further weight to the role of metal oxides in CNT toxicity. 
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Together, the correlation analyses presented in Figure 15 help delineate both shared and 

unique determinants of inflammation between CNT types. In SWCNTs, metal oxide 

content, particularly MnO along with elevated hydrogen and oxygen levels, strongly 

correlates with acute phase signaling. These elements likely initiate oxidative stress 

pathways, triggering immune responses. The clustering of Mn-rich SWCNTs in high-

toxicity groups supports this view and emphasizes the role of elemental impurities in early 

molecular events. MWCNTs, on the other hand, appear to follow a dual mechanism. While 

metal oxides like Fe₂O₃ and CoO remain central to their inflammatory potential, physical 

morphology especially a low aspect ratio emerges as a crucial factor. Short, thick 

MWCNTs may interact more readily with immune cells, enhancing their biological impact. 

This geometric influence appears to operate both independently and in synergy with 

surface area, shaping the overall transcriptomic profile observed post-exposure. 

  summary, although both CNT types are influenced by surface chemistry and metal 

content, SWCNT-induced toxicity seems to be more chemically driven, particularly by 

MnO and oxidative elements. In contrast, MWCNT toxicity arises from a combination of 

chemical impurities and physical features. These distinctions highlight the need for tailored 

safety evaluations that consider CNT-type-specific traits when assessing inhalation risks. 

The agreement between our correlation analysis and clustering data strengthens the validity 

of these insights and offers a reliable framework for predicting CNT-induced lung 

responses. 

 Building on the Pearson correlation analysis, which indicated associations between 

specific physicochemical properties of carbon nanotubes (CNTs) and their biological 

effects, I further explored these patterns using Principal Component Analysis (PCA), the 

dataset was expanded to include previously underutilized but mechanistically relevant 

variables such as specific surface area, surface functionalization types (Pristine, –OH, –

COOH, –NH₂), elemental composition (C, H, N, O), and metal oxide content (e.g., MgO, 

MnO, Fe₂O₃, CoO, NiO). No external data were added; the aim was to better be capturing 

the intrinsic variability of SWCNTs and MWCNTs relevant to pulmonary toxicity. 
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 PCA was employed to reduce dimensionality and uncover multivariate patterns that 

relate CNT physicochemical structure to transcriptomic responses (BMDLAR values). The 

resulting PCA biplots (Figures 16a and 16b) demonstrate a clear separation between 

SWCNTs and MWCNTs along the first two principal components (PC1 and PC2), which 

together account for 61.49% of the total variance. A color gradient corresponding to 

BMDLAR values overlays the plots, revealing trends in toxicity that are structural 

differentiation. The scree plot (Figure 16c) confirms that PC1 and PC2 are most 

informative dimensions, as determined by the Malinowski rule with absolute values ≥ ±0.7. 

These groupings indicate that distinct physicochemical profiles are predictive of divergent 

biological responses. 

 PC1 captures the greatest variance and reflects a gradient of surface reactivity and 

metal content. Positive PC1 loadings are associated with high CoO (0.867), oxygen content 

(0.855), specific surface area (0.747), Fe₂O₃ (0.679), and COOH groups (0.564), features 

more common in MWCNTs. Moderate contributions from –OH (0.485) and nitrogen 

(0.577) further characterize this cluster. In contrast, negative PC1 scores are driven by high 

carbon (–0.827), hydrogen (–0.808), and pristine surfaces (–0.791), traits more typical of 

SWCNTs. Thus, PC1 effectively distinguishes CNTs with higher surface reactivity and 

impurity content from more chemically inert forms. PC2 explains additional variance and 

is primarily shaped by NiO (0.832) and NH₂ functionalization (0.756), with moderate 

contributions from nitrogen (0.477) and carbon (0.291). This suggests PC2 captures 

variations associated with nickel presence and amine chemistry. Negative loadings include 

MgO (–0.673), MnO (–0.575), hydrogen (–0.360), and COOH (–0.281), indicating a 

compositional axis reflecting reduced amine modification and distinct metal content. 

Together, PC1 and PC2 define distinct structural subtypes that support mechanistic 

interpretations of biological effects. 
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Figure 16. This figure illustrates the PCA analysis of the first two principal components (PCs) for 

acute-phase response signaling pathways; both (a and b) implies the points are scaled and colored 

according to the acute phase signaling response pathway BMDL range values, with SWCNTs 
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represented by squares and MWCNTs by circles; (c) the panel shows the features displayed by 

Malinowski rule the cut-off loading values ≥ ±0.7 on the first two PCs. 

Interpretation by CNT Type: 

Single-Walled Carbon Nanotubes 

 Among SWCNTs, six CNTs, NRCWE-057, -054, -056, -053, -055, and -051, score 

positively on PC1. These particles share high specific surface areas and surface 

functionalization (e.g., –OH, –COOH), correlating with strong transcriptomic activation in 

acute-phase signaling, consistent with prior HCA and correlation analyses. For example, 

NRCWE-057 (SWCNT–COOH) has one of the highest PC1 scores and the highest 

BMDLAR value (lowest toxicity), supporting the protective role of hydrophilic 

functionalization.104,106 An exception is NRCWE-051 (SWCNT–pristine), which also loads 

positively on PC1 despite lacking surface groups. Its strong transcriptomic potency (low 

BMDLAR) likely stems from high surface area and a previously reported low aspect ratio, 

which enhances cellular uptake and oxidative stress potential. NRCWE-052 is the only 

SWCNT with a negative PC1 score, representing a low-surface-area, minimally 

functionalized form, and shows moderate transcriptomic activation. 

Variation along PC2 is more subtle. NRCWE-057 exhibits a distinctly negative PC2 score, 

suggesting unique transcriptomic effects influenced by its surface chemistry. In contrast, 

NRCWE-053, -054, and -056 cluster near the PC1-PC2 origin, indicating moderate 

biological responses, likely driven by mechanisms beyond surface reactivity, such as 

immunomodulation or redox effects. 

Toxicity Trends for SWCNTs 

• SWCNTs with positive PC1 scores (functionalized, high surface area) generally 

show high BMDLAR values (low toxicity) 

• NRCWE-051 is an exception: pristine, high surface area, but highly toxic (low 

BMDLAR), illustrating the importance of physical structure 
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• NRCWE-052 (negative PC1) shows moderate toxicity, suggesting limited 

biological interaction due to lower surface activity 

These findings highlight surface functionalization and area as key modulators of SWCNT 

toxicity. 

Multi-Walled Carbon Nanotubes 

 Among MWCNTs, several long, rigid, pristine CNTs, Mitsui-7, NM-401, NRCWE-

043, -044, -045, and -026, cluster on the negative PC1 side (group 1b). Characterized by 

low surface areas and high aspect ratios, these materials are associated with bio-persistence 

and asbestos-like toxicity.129–132 Their low BMDLAR values reflect potent activation of 

fibrotic and inflammatory pathways. NRCWE-026, although grouped here, has a less 

negative PC1 score, likely due to a relatively higher surface area, contributing to acute-

phase gene activation. Group 2b includes functionalized, metal-rich MWCNTs (NRCWE-

046 to -049), with the most negative PC1 and PC2 values. Despite functionalization, these 

CNTs exhibit enhanced transcriptomic reactivity, potentially due to high MnO and MgO 

content and intermediate surface areas. Notably, NRCWE-048, despite its thick 

morphology and low surface area, shows high transcriptomic potency, suggesting that 

metal impurities and geometry can override conventional surface area effects.133 Group 3b 

comprises functionalized MWCNTs, NRCWE-061 (–NH₂), -062 (pristine), -063 (–OH), 

and -064 (–COOH), which load positively on PC1 and exhibit high surface area and metal 

oxide content (e.g., CoO, Fe₂O₃). These materials show moderate-to-low toxicity and 

cluster due to shared surface characteristics. NRCWE-061 stands out with high PC1 and 

the most positive PC2 score, indicating selective pathway activation (e.g., cytokine 

signaling rather than inflammation).104,106 

Similarly, NRCWE-043 to -045, while negatively loaded on PC1, have moderate PC2 

values, suggesting additional biological effects such as immune cell recruitment or ECM 

remodeling, potentially better captured by PC2. 

Toxicity Trends for MWCNTs 
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Group 1b (negative PC1): Long, rigid, pristine MWCNTs with high toxicity (low 

BMDLAR), consistent with asbestos-like behavior 

Group 2b (negative PC1 and PC2): Functionalized, metal-rich MWCNTs with moderate-

to-high toxicity 

Group 3b (positive PC1): Functionalized MWCNTs with elevated surface area and 

moderate BMDLAR values, indicating lower toxicity and more biocompatible profiles 

 

 In summary, PC1 and PC2 together form a two-dimensional map that explains key 

aspects of CNT-induced transcriptomic responses. PC1 distinguishes materials based on 

surface reactivity and contamination, while PC2 captures secondary variation due to 

composition and functionalization. Although aspect ratio was not included in the PCA 

input, known values from prior work support the biological interpretations. 

 To meet evolving regulatory demands for nanomaterials safety assessment within 

frameworks such as REACH, OECD grouping guidance, and NGRA, the application of 

Integrated Approaches to Testing and Assessment (IATA) has become essential. IATA 

leverages multiple data sources and methodologies in a weight-of-evidence (WoE) manner 

to support robust, mechanism-informed grouping and read-across strategies, thereby 

minimizing unnecessary testing and advancing regulatory acceptance. 

 In this study, I employed complementary computational approaches within an IATA 

framework, including HCA, Pearson correlation and PCA, to categorize 21 S- and 

MWCNTs. These methods collectively integrate physicochemical similarity and biological 

response data, providing a strong scientific basis for data-driven grouping aligned with 

regulatory principles of structural and toxicodynamic similarity. The six clusters identified 

through HCA revealed systematic and biologically relevant groupings, informed by 

specific surface area/surface modification (-OH, -COOH, -NH2), metal-oxide 

compositions (such as MnO, MgO, Fe2O3, CoO and NiO). These features were not only 

distinct across clusters but also mechanistically meaningful; this mechanistic coherence 

may fulfil OECD criteria for read-across, such as structural similarity, shared mode of 
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action (MoA) and common toxicological outcomes. Pearson correlation analysis further 

refined the mechanistic understanding by quantitatively linking physicochemical 

properties with transcriptomic endpoints, particularly the acute phase response. Strong 

associations were observed with metal oxide content, especially CoO and Fe2O3. These 

findings support mechanism-based grouping and facilitate the integration of AOP-

informed Nano-QSAR models. 

 PCA was employed to capture the dominant axes of variation (PC1 and PC2) in 

physicochemical properties. PC1 clearly distinguished S- and MWCNTs based on 

transition metal enrichment, while PC2 reflected differences in surface area and 

functionalization. These dimensions correspond to molecular initiating events (MIEs) that 

may trigger chronic pulmonary pathologies such as fibrosis and cancer, as outlined in AOP 

33 and AOP 237, and were found to align closely with both correlation analysis and HCA 

clustering results. 

Considering together, this integrative, mechanism-informed approach within the IATA 

framework supports hazard-based grouping, informs tiered testing strategies, and enables 

the rational prioritization of CNTs for further evaluation. This framework aligns with Safe-

by-Design (SbD) principles and the European Commisions vision for sustainable 

nanomaterial innovation and digital safety assessment. Ultimately, it bridges regulatory 

needs with mechanistic insight through the application of NAMs and AOP-based 

frameworks. 
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4.3. Transcriptomics-based and AOP-informed Metal 

Impurities in Carbon Nanotubes: Towards the Global Nano-

QSAR Models 

4.3.1. SPECIFIC OBJECTIVES AND SUBJECT OF RESEARCH 

 In line with the third objective of this research (see section 2.4), the following 

specific aim was presented in section 4.3 

OBJECTIVE 3. 

 To investigate the role of metal impurities in CNTs as potential contributors to 

transcriptomic disturbances that drive inflammation and fibrosis mechanisms following 

inhalation exposure. This objective aims to develop a global AOP-informed Nano-QSAR 

model that quantitatively links specific metal contaminants in CNTs to gene expression 

changes, particularly within the acute phase response signaling pathway. The model will 

focus on early upstream key events (KEs) associated with pro-inflammatory responses and 

enable the prediction of lung and cardiovascular pathologies induced by metal-containing 

CNTs. 

4.3.2. EXPERIMENTAL DATA 

 The dataset used in this study comprised 21 S- and MWCNTs, previously described 

in Section 4.2. It included key physicochemical properties such as specific surface area and 

concentrations of selected metal impurities (Fe₂O₃ and CoO), alongside biological data in 

the form of differentially expressed genes (DEGs). These data were derived from 

transcriptomic dose–response analyses (BMDLAR) within the acute phase response 

signaling pathway (see Table 8).33,100–106 

 This integrated dataset served as the foundation for developing global quantitative 

structure–activity relationship (QSAR) models. These models aimed to predict CNT-
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induced biological effects based on their chemical and transcriptomic profiles. To enhance 

the mechanistic interpretability of the models, the biological responses were further 

represented using principal component scores (PC1 and PC2), capturing the variance 

associated with DEG expression patterns. 

Table 8. Structural properties of S- and MWCNTs and their endpoints. 

Experimental data 

CNTs 

Physicochemical properties of S- and MWCNTs Endpoints 

Surface 

area [m2/g] 
MgO MnO Fe2O3 CoO NiO 

BMDLAR 

[µg/mouse] 
PC1 PC2 

NRCWE-051 442.6 0.04 0.00 1.63 1.08 0.06 0.00 5.23 1.28 

NRCWE-052 405.7 0.03 0.01 1.05 1.23 0.12 7.69 -4.80 -1.30 

NRCWE-053 367.8 0.02 0.02 0.85 3.82 0.10 12.22 -6.29 0.80 

NRCWE-054 370.8 0.03 0.00 1.59 3.81 0.13 5.98 0.30 -0.32 

NRCWE-055 453.1 0.03 0.03 4.39 1.33 0.05 10.29 -3.86 0.42 

NRCWE-056 356.7 0.04 0.03 1.26 3.65 0.10 10.72 -5.26 0.97 

NRCWE-057 281.6 0.18 0.04 2.20 2.74 0.14 18.39 -5.21 -0.87 

Mitsui7 26.0 0.01 0.00 0.08 0.00 0.00 5.00 1.47 7.93 

NM-401 18.0 0.01 0.00 0.05 0.00 0.00 0.17 4.42 4.49 

NRCWE-026 254.0 0.00 0.00 0.29 0.11 0.00 0.58 4.82 12.56 

NRCWE-043 82.0 0.01 0.00 0.01 0.00 1.20 8.57 4.08 -4.20 

NRCWE-044 74.0 0.02 0.00 0.00 0.00 1.04 14.46 1.18 -2.52 

NRCWE-045 119.0 0.02 0.00 1.17 0.25 1.34 9.52 5.52 -4.09 

NRCWE-046 223.0 0.22 0.30 0.01 0.25 0.00 10.76 2.55 -2.26 

NRCWE-047 216.0 0.22 0.30 0.01 0.25 0.00 8.91 2.59 -3.86 

NRCWE-048 185.0 0.19 0.28 0.01 0.24 0.00 4.29 9.69 -2.58 

NRCWE-049 199.0 0.19 0.29 0.00 0.25 0.00 9.34 6.97 -4.29 

NRCWE-061 170.4 0.01 0.01 0.59 0.00 1.97 4.91 -2.38 1.83 

NRCWE-062 443.2 0.07 0.00 0.58 4.60 0.22 11.24 -3.19 -1.81 

NRCWE-063 426.4 0.07 0.02 1.95 5.88 0.49 15.46 -9.65 2.24 

NRCWE-064 445.2 0.03 0.03 1.80 5.51 0.30 14.85 -8.19 -4.39 
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4.3.3. METHODS USED 

 To develop predictive global QSAR models that link the physicochemical 

descriptors of S- and MWCNTs with transcriptomic responses, specifically differentially 

expressed genes (DEGs) and BMDLAR values from the acute phase response signaling 

pathway. I employed a suite of ensemble regression techniques such as Random Forest 

(RF), Gradient Boosting (GB), Extreme Gradient Boosting (XGB), and Decision Tree (DT) 

algorithms from the Scikit-learn library.93,134 

Among these methods, Random Forest was selected as the primary modeling approach due 

to its robustness in capturing complex, non-linear relationships between input features and 

biological responses. This approach is particularly suited for modeling interactions 

between metal impurities, surface properties, and transcriptomic alterations related to pro-

inflammatory key events (KEs), which are implicated in chronic outcomes such as fibrosis, 

cardiovascular, and cancer diseases. The other ensemble methods (GB, XGB, and DT) 

were used for comparison to assess model stability and performance across different 

algorithms. For all ensemble models, the number of estimators was set to 500 (i.e., 

n_estimators=500). 

 The input features (X) consisted of physicochemical properties, such as specific 

surface area and concentrations of Fe₂O₃ and CoO extracted from the literature and Section 

4.2 and detailed in Table 8. The target variable (y) was the pathway-level BMDLAR value, 

representing the transcriptomic potency associated with the acute phase response. To build 

the model, I first ranked the dataset in ascending order based on the BMDLAR values. The 

ranked data were then split into a training set (80%) and a validation set (20%) using a 

stratified, ratio-based approach.108 Seventeen CNTs were assigned to the training set, while 

four were used for model validation. This manual split ensured that both sets reflected the 

diversity and range of the full dataset, thereby supporting robust model training and 

evaluation. 

 To further assess the generalizability of the models, I conducted additional 

validation using an independent test set. Specifically, I randomly removed seven data 
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points (approximately 20% of the full dataset) prior to model training. These excluded 

points served as an unseen test set to evaluate model performance on completely new data. 

This approach minimized overfitting and confirmed that the trained models could reliably 

predict biological outcomes for CNTs not used during model development. 

Table 9. The detailed splitting for the training and test sets of the ten global Nano-QSAR models 

S- and 

MWCNTs 

Splitting 

Mode

l-1 

Mode

l-2 

Mode

l-3 

Mode

l-4 

Mode

l-5 

Mode

l-6 

Mode

l-7 

Mode

l-8 

Mode

l-9 

Mode

l-10 

NRCWE-051 T T T T T T T T T T 

NM-401 T T T T T T T T T T 

NRCWE-026 T T T T T T T T T T 

NRCWE-048 T T T T T T T T T T 

NRCWE-061 V V V V V V V V V V 

Mitsui7 T V T T T T T T T T 

NRCWE-054 T T T T T T T T T T 

NRCWE-052 V T T T T T T T T T 

NRCWE-043 T T T T T T V T T T 

NRCWE-047 V V V V V V V V T V 

NRCWE-049 T T T T V T T T T T 

NRCWE-045 T T T T T T T T T T 

NRCWE-055 T T V T T T T T V T 

NRCWE-056 T T T V T T T V T T 

NRCWE-046 T T T T T T T T V T 

NRCWE-062 T T T T T V T T T T 

NRCWE-053 T T T T T T T T T V 

NRCWE-044 T T T T T T T T T T 

NRCWE-064 T T T T T T T V T T 

NRCWE-063 V V V V V V V T V V 

NRCWE-057 T T T T T T T T T T 
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4.3.4. RESULTS AND DISCUSSIONS 

  The section presents the results of modeling efforts aimed at elucidating the 

relationships between residual metal content in CNTs and the transcriptomic signatures of 

acute phase response toxicity, as measured by BMDL values. Specifically, the study was 

divided into two key objectives: 

Development of a Global AOP-Informed Nano-QSAR Model 

 This model quantitatively links the physicochemical properties of S- and MWCNTs 

to the BMDLAR values derived from the acute phase response signaling pathway. The goal 

was to assess how variations in CNT surface characteristics and metal impurities contribute 

to transcriptomic potency associated with inflammation. 

Clustering Based on Structure–Activity Relationships 

In this part, S- and MWCNTs were grouped according to their principal component 

(PC1/PC2) scores, which represent the magnitude of differentially expressed genes (DEGs) 

in the acute phase response pathway. These scores were then correlated with 

physicochemical descriptors to uncover mechanistic insights and support structure-based 

categorization. 

Together, these complementary analyses provide a predictive and mechanistic 

understanding of CNT-induced transcriptomic responses, highlighting the role of surface 

properties and metal contaminants in driving pro-inflammatory signaling, as discussed 

below: 

Global AOP-informed Nano-QSAR model 

This section focuses on the development of a predictive global AOP-informed 

Nano-QSAR model, aimed at quantitatively linking the physicochemical properties of S- 

and MWCNTs to the acute phase response signaling pathway (BMDLAR). To build this 

model, I utilized the physicochemical profiles of 21 CNTs, as summarized in Table 9. 

These profiles included specific surface area (m²/g) and concentrations of metal impurities 

such as Fe₂O₃, CoO, NiO, MgO, and MnO. All physicochemical characteristics were 
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obtained from experimentally validated sources (Section 4.2), ensuring the reliability of 

the input descriptors. 

By correlating these measured properties with BMDLAR values, the model aimed to 

uncover the key features driving transcriptomic-level inflammatory responses following 

CNT inhalation exposure. This modeling approach supports the broader goal of integrating 

mechanistic insights with predictive toxicology in the context of adverse outcome 

pathways (AOPs). 

 The selection of predictive features for the Nano-QSAR model development on 

previous findings (Section 4.1), which highlighted the significance of descriptors such as 

aspect ratio and specific surface area in driving CNT-induced lung inflammation. However, 

this study specifically aimed to investigate the role of residual metals in modulating acute 

phase responses. To address this, I incorporated two additional descriptors, iron (Fe₂O₃) 

and cobalt (CoO) content, based on prior Sections 4.2, where these metals showed a strong 

correlation with acute phase response markers. 

The resulting model used Random Forest (RF) regression to quantitatively link three key 

physicochemical descriptors, such as specific surface area, iron, and cobalt concentrations 

associated with the acute phase response signaling pathway (BMDL values). These 

features were selected as the most predictive variables for estimating lung inflammation 

outcomes following CNT exposure. 

 To ensure robustness, I evaluated the model's quality and predictive performance 

using multiple metrics. In addition to the RF model, I applied Gradient Boosting (GBoost), 

XGBoost, and Decision Tree (DT) regression methods to determine whether alternative 

ensemble approaches could enhance predictive accuracy or offer further insights. However, 

since neither GBoost nor XGBoost outperformed the RF model, the latter was selected as 

the primary modeling framework for subsequent analysis. 

 In the next step, I developed ten individual global Nano-QSAR models, each using 

different training and test set compositions, as summarized in Table 8. All models were 

evaluated based on key statistical metrics to ensure robustness and predictive reliability. 
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They demonstrated consistently high performance, with goodness-of-fit values (R²) 

ranging from 0.83 to 0.855. Predictive power was further supported by external-

validated performance metrics (Q²F1 = 0.78–0.93, Q²F2 = 0.72–0.93, Q²F3 = 0.83–0.95 

and CCC = 0.89–0.97). The root mean square errors for training and test sets were low 

(RMSEC = 1.97–2.09, RMSEEXT = 1.1–2.06), confirming the models accuracy and 

generalizability across different data splits. 

Table 10. The detailed statistics of the obtained RF-based predicted ten global Nano-QSAR 

models. 

No. 
Model calibration Model validation 

R2 RMSEC Q2F1 Q2F2 Q2F3 CCC RMSEEXT 

Model-1 0.85 1.98 0.90 0.90 0.94 0.94 1.23 

Model-2 0.83 2.09 0.93 0.93 0.95 0.97 1.11 

Model-3 0.84 2.03 0.92 0.91 0.95 0.95 1.11 

Model-4 0.84 2.03 0.89 0.87 0.93 0.95 1.37 

Model-5 0.85 2.00 0.87 0.86 0.93 0.92 1.40 

Model-6 0.85 1.99 0.89 0.86 0.92 0.94 1.41 

Model-7 0.85 2.03 0.87 0.86 0.92 0.94 1.42 

Model-8 0.86 1.97 0.85 0.83 0.92 0.93 1.47 

Model-9 0.85 1.98 0.85 0.81 0.90 0.94 1.62 

Model-10 0.84 2.03 0.78 0.72 0.83 0.89 2.06 

 

 To further validate model robustness, I followed a classical cross-validation strategy 

using small external datasets, consistent with the method described in Section 4.1. This 

approach minimized overfitting and helped assess model generalizability. 

 From these ten models, I selected the best-performing one based on a combination 

of internal and external validation metrics, along with the visual inspection of scatter plots 

comparing experimental and predicted BMDL values (Figure 17a). This evaluation 

followed OECD Principle 4, which emphasizes appropriate measures of goodness-of-fit, 

robustness, and predictability. The selected model met these criteria, with training and 
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validation data points closely clustered around the trend line, indicating strong predictive 

accuracy. The detailed results, including experimental versus predicted values, are 

presented in Table 11. 

Table 11. The best global Nano-QSAR model experimental versus predicted BMDL values 

S- and 

MWCNTs 

Specific 

surface area 
Fe2O3 CoO 

Experimenta

l BMDLAR 

Predicted 

BMDLAR 
Set 

NRCWE-051 442.6 1.625 1.082 0.00 3.26 T 

NM-401 18.0 0.05 0 0.17 2.89 T 

NRCWE-026 254.0 0.29 0.110 0.58 3.08 T 

NRCWE-048 185.0 0.007 0.240 4.29 6.44 T 

Mitsui7 170.4 0.591 0.001 5.00 4.75 T 

NRCWE-054 26.0 0.08 0 5.98 8.27 T 

NRCWE-043 370.8 1.593 3.809 8.57 8.11 T 

NRCWE-049 405.7 1.046 1.232 9.34 9.84 T 

NRCWE-045 82.0 0.008 0.001 9.52 8.32 T 

NRCWE-055 216.0 0.007 0.250 10.29 9.91 T 

NRCWE-056 199.0 0.004 0.250 10.72 10.09 T 

NRCWE-046 119.0 1.17 0.250 10.76 9.38 T 

NRCWE-062 453.1 4.386 1.330 11.24 10.50 T 

NRCWE-053 356.7 1.259 3.648 12.22 11.10 T 

NRCWE-044 223.0 0.008 0.250 14.46 11.87 T 

NRCWE-064 443.2 0.578 4.603 14.85 12.53 T 

NRCWE-057 367.8 0.846 3.821 18.39 14.61 T 

NRCWE-061 74.0 0.004 0.002 4.91 4.98 V 

NRCWE-052 445.2 1.796 5.514 7.69 7.99 V 

NRCWE-047 426.4 1.949 5.875 8.91 9.06 V 

NRCWE-063 281.6 2.197 2.741 15.46 13.03 V 
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Figure 17. (a) The plot experimentally observed versus predicted BMDLAR values for training and 

validation compounds for a global Nano-QSAR model; (b) William’s plot: dot-and-dash lines 

represent  3 standard deviation units, dash line represents the critical value (h* = 0.71). 

 Another important aspect of model validation, as outlined by OECD Principle 3, is 

defining the applicability domain (AD), the theoretical chemical space within which model 

predictions are considered reliable. To evaluate this, I applied the Williams plot approach 

to the best-performing global AOP-informed Nano-QSAR model (Figure 17b). The plot 

displays standardized residuals against leverage values for each data point from both the 

training and validation sets. The results showed that all data points fell within the 

acceptable ±3 standard deviation threshold of residuals, forming a tight distribution around 

the mean. This pattern indicates that the residuals follow a normal distribution and confirms 

that the model predictions are both stable and reliable. Furthermore, no data points were 

identified as outliers or influential points, which further supports the robustness of the 

model. 

 The well-defined applicability domain confirms that the model can be used 

confidently to predict lung inflammation outcomes related to acute phase response 

signaling (BMDLAR values) for S- and MWCNTs within the studied descriptor space. This 
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step reinforces the model’s credibility and highlights its potential utility for supporting 

nanomaterial safety assessments. 

Mechanistic Grouping S- and MWCNTs Based on Structure-Activity Relationships 

and Acute Phase Transcriptomic Profiles 

 To further explore the biological mechanisms underlying CNT-induced 

inflammation, I conducted a principal component analysis (PCA) on differentially 

expressed genes (DEGs) associated with the acute phase response signaling pathway 

(Figure 19). This step aimed to identify distinct transcriptional signatures and uncover how 

structural variations among CNTs influence gene expression patterns. 

 The PCA included all 21 CNT-exposed samples (both S- and MWCNTs), focusing 

on genes that exhibited notable fold changes in either direction. The first two principal 

components (PC1 and PC2) accounted for approximately 40% of the total variance in the 

gene expression dataset, capturing the dominant trends in the transcriptional response. The 

PCA results revealed a clear separation of CNTs along Principal Component 1 (PC1), 

enabling their classification into two mechanistically distinct groups (Figure 19). The PCA 

plot shows that CNTs with negative PC1 scores (Group 1), including NRCWE-063, 

NRCWE-064, NRCWE-053, NRCWE-056, NRCWE-057, NRCWE-052, NRCWE-055, 

NRCWE-062, and NRCWE-06, were characterized by high levels of transition metal 

impurities and moderate to high specific surface area. In contrast, CNTs with positive PC1 

scores (Group 2), such as NRCWE-048, NRCWE-049, NRCWE-045, NRCWE-043, 

NRCWE-047, NRCWE-046, NRCWE-044, and NRCWE-054, exhibited low metal 

content and were generally defined by higher aspect ratios (see section 4.1). These 

physicochemical distinctions were strongly reflected in their transcriptional profiles, 

indicating that structural variations in CNTs play a key role in driving pathway-specific 

gene expression changes. 

 Among the two components, PC1 emerged as the dominant side of variation, 

capturing the major differences in gene expression that correlated with transition metal 

content (particularly Fe₂O₃ and CoO) and specific surface area, both of which have been 



-103- 

 

known to contribute to acute proinflammatory responses (see Section 4.2). While PC2 

accounted for a smaller proportion of variance (15%), it provided additional mechanistic 

insights. This PC appeared to capture the influence of high aspect ratios and very low metal 

contamination. CNTs with high positive PC2 scores, such as NRCWE-026, Mitsui-7, and 

NM-401 (refer to Section 4.1), shared these features. Despite their low metal content, these 

materials were associated with robust transcriptional activity, potentially due to 

mechanisms such as prolonged cellular uptake, biopersistence, lysosomal membrane 

destabilization, and frustrated phagocytosis. 

 To further explore the underlying drivers of transcriptional variance, the 

“Malinowski rule” has been used for the gene loading values (absolute values highlighted 

by ≥ ±0.7) on PC1 and PC2. This analysis revealed 18 genes on PC1, including MAPK3, 

SOCS3, SAA1, MYD88, IL1B, MAP2K2, NFKB2, SOCS1, IL33, NOLC1, CP, ITIH4, 

IL6, CFB, NFKBIE, NGFR, and AKT2. These genes are well-established mediators of 

inflammatory and fibrotic responses, commonly reported in animal models of CNT 

exposure. Their strong contributions to PC1 suggest that they play central roles in the 

lung’s transcriptional response to CNTs. 

To gain further insight into the structure–activity relationships, to quantitatively relate 

the structural features of CNTs to the observed transcriptional signatures captured by 

PC1. 
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Table 12. The best PC1-based Nano-QSAR model experimental versus predicted BMDL values 

CNTs 

Specific 

surface 

area 

Fe2O3 CoO 
Experimental 

BMDLAR 

PC1 

predicted 
Set 

NRCWE-063 426.4 1.949 5.875 -9.65 -6.94 T 

NRCWE-053 367.8 0.846 3.821 -6.29 -4.86 T 

NRCWE-056 356.7 1.259 3.648 -5.26 -4.68 T 

NRCWE-057 281.6 2.197 2.741 -5.21 -4.25 T 

NRCWE-052 405.7 1.046 1.232 -4.80 -2.15 T 

NRCWE-062 443.2 0.578 4.603 -3.19 -3.97 T 

NRCWE-061 170.4 0.591 0.001 -2.38 0.23 T 

NRCWE-054 370.8 1.593 3.809 0.30 -1.77 T 

NRCWE-044 74.0 0.004 0.002 1.18 2.42 T 

NRCWE-046 223.0 0.008 0.250 2.55 3.07 T 

NRCWE-047 216.0 0.007 0.250 2.59 3.91 T 

NRCWE-043 82.0 0.008 0.001 4.08 3.27 T 

NM-401 18.0 0.05 0 4.42 3.63 T 

NRCWE-026 254.0 0.29 0.110 4.82 4.01 T 

NRCWE-051 442.6 1.625 1.082 5.23 2.36 T 

NRCWE-045 119.0 1.17 0.250 5.52 3.57 T 

NRCWE-048 185.0 0.007 0.240 9.69 6.99 T 

NRCWE-064 445.2 1.796 5.514 -8.19 -6.81 V 

NRCWE-055 453.1 4.386 1.330 -3.86 -2.02 V 

Mitsui7 26.0 0.08 0 1.47 3.63 V 

NRCWE-049 199.0 0.004 0.250 6.97 4.84 V 

 

 For this purpose, ten Nano-QSAR models were developed using the Random Forest 

(RF) algorithm, incorporating Fe₂O₃ and CoO content along with specific surface area as 

key input descriptors. Among these, the best-performing model demonstrated strong 

predictive power and generalizability, as detailed in Table 12. The model demonstrated 

robust statistical performance metrics with R2 of 0.88 and a root mean square error of 

calibration (RMSEC) of 1.82. In external validation, the model maintained excellent 
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predictivity, achieving a Q2
EXT of 0.90 and root mean square error of predicted (RMSEEXT) 

of 1.84. These results confirm the model reliability in both training and validation sets and 

highlight its strong capability to predict the transcriptional activity of CNTs not included 

in model development (Figure 18a). This optimized model offers a robust framework for 

linking the physicochemical properties of CNTs to their transcriptional biological activity. 

 Furthermore, I evaluated the applicability domain (AD) of the developed model to 

assess its predictive reliability for compounds with both similar and/or dissimilar structural 

features in the training and validation sets. Notably, one outlier (NRCWE-055) was 

identified within the validation set of S- and MWCNTs (Figure 18b). While this CNT 

exhibited a leverage value (ℎ𝑖) greater than the threshold (ℎ∗) value and within acceptable 

limits. Such compounds are known as good high-leverage points; they may lie outside the 

model’s core domain (interpolation region) but still contribute to model stability and 

prediction quality (Jaworska et al., 2005).135 According to Jaworska et al., compounds with 

ℎ𝑖 > h* and standardized residuals within ±3 standard deviations can support the model 

and make it predictive for new compounds, including those that are slightly different from 

the training set. 

 

Figure 18. (a) The plot experimentally observed versus predicted PC1 values for training and validation 

compounds for a global Nano-QSAR model; (b) William’s plot: dot-and-dash lines represent  3 

standard deviation units, dash line represents the critical value (h* = 0.71). 
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 One should be aware that the current model does not predict perturbation of 

individual genes, since PC1 represents a linear combination of multiple gene expressions. 

However, given that alterations in a single gene expression are insufficient to trigger 

pathway-level responses. In fact, such developing models solely on individual genes may 

be misleading. Instead, predictive models should aim to capture coordinated alterations 

across sets of genes or entire biological pathways. 

 Building on this rationale, previous studies have demonstrated the value of 

transcriptomics-informed predictive models within AOP frameworks. For instance, 

Jagiello et al. (2021)73 developed AOP-guided structure–activity relationship models to 

predict MWCNT-induced pulmonary pathology, focusing on the agranulocyte adhesion 

and diapedesis pathway. More recently, Merugu et al. (2025)136 proposed a novel AOP 

incorporating acute inflammation mechanisms to assess MWCNT-induced lung fibrosis 

and atherosclerosis. Likewise, Muratov et al. (2025)137 constructed over 600 

transcriptomics-based models to predict pulmonary toxicity of titanium dioxide 

nanoparticles. 

 These studies underscore a shift from modeling individual gene perturbations to 

capturing coordinated pathway-level changes. Consistent with this, our PCA-driven Nano-

QSAR approach demonstrates that a small set of physicochemical descriptors, particularly 

metal content and specific surface area can robustly predict PC1-based transcriptomic 

profiles. 
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Figure 19. Score plot illustrating the grouping of S- and MWCNTs in the space of gene 

expressions associated with the acute phase response signaling pathway. In the parentheses, 

information about the percentage of variance explained by each PC is provided. Genes associated 

with PC1 and PC2 are listed (according to the Malinowski rule, absolute loading values ≥ ± 0.7). 

The arrow directions show up- or down-regulation of genes in a given direction of particular PC 

(arrows up – genes up-regulation; arrows down – genes down-regulation). 
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 To gain a deeper understanding of these transcriptional patterns, I focused on 

individual CNTs in the expression profiles of genes with the highest PC1 loadings. These 

findings indicate that S- and MWCNTs elicit distinct regulatory effects on key gene 

families such as MAPK, SOCS, and acute phase response genes, with residual metal 

content being a primary influencing factor. 

For example, MAPK3 (ERK1), a key mediator of signaling in response to oxidative stress 

and inflammatory stimuli, was upregulated in metal-rich CNTs with moderate to high 

surface area (e.g., NRCWE-063, NRCWE-064, NRCWE-053), suggesting activation via 

metal-catalyzed ROS or receptor-ligand signaling.138,139 This aligns with previous studies 

by Poulsen et al.100,101,133, Halappanavar et al.105,106 and Danielsen et al.104, which links 

MAPK pathway activation to CNT-induced inflammation. Similarly, Pacurari et al.123 

reported metal-rich SWCNTs trigger MAPK cascades and ROS-mediated damage. 

Moreover, our results are in line with alternative studies that have explored transcriptomic 

responses in vivo and DNA methylation changes in vitro, further supporting the epigenetic 

and transcriptional relevance of metal impurities in CNTs.140–142 

 Overall, these findings suggest that the central role of MAPK signaling is in 

regulating innate immune responses, inflammatory signaling and cell survival pathways 

following CNT exposure. Conversely, CNTs with low metal content, such as NRCWE-

048, NRCWE-049, and NRCWE-045, were associated with downregulated pro-

inflammatory genes including SOCS3, SAA1, MYD88, and IL1B (Figure 19), which are 

implicated in fibrogenic outcomes and have been well-characterized in animal 

models.100,104,105 Notably, serum amyloid A (SAA1), a key marker of the acute phase 

response, has been identified both as a predictor of systemic inflammation in animal studies 

and as a top-ranked biomarker in machine learning-based models.104,137 

 For examining PC2 loadings revealed genes like IL6ST, FGG, HNRNPK, and 

TNFRSF1A (positive PC2) and MAP2K6, AP3K1 (negative PC2), which play regulatory 

roles in inflammation. CNTs with high PC2 scores (e.g., NRCWE-026, Mitsui-7, NM-401) 

share low metal content, high aspect ratio, rigidity, and biopersistence, structural traits that 
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may influence upstream regulators of inflammation via distinct interactions in the airway 

vs. alveolar regions.138,139,143,144 

 Although our Nano-QSAR models targeted intermediate KEs, the results identified 

several key genes, MAPK3 and SAA1, that could refine the molecular initiating events 

(MIEs) in AOP 33. Currently, MIE definitions are vague, often described broadly as CNT 

cell membrane interactions. These findings provide a molecular basis to sharpen those 

definitions. Thus, beyond offering a methodology to apply AOP frameworks using 

transcriptomic pathways as endpoints in Nano-QSAR, this study also demonstrates how 

such models can inform upstream KEs or redefine MIEs. Additionally, the clear differences 

in gene expression profiles associated with specific surface area vs. aspect ratio in S- and 

MWCNTs (Figure 19) further emphasize the mechanistic role of physicochemical 

properties. In conclusion, this study demonstrated the applicability of a previously 

developed transcriptomic-based, AOP-informed Nano-QSAR model to quantify how the 

structural properties of S- and MWCNTs influence lung tissue inflammatory responses at 

the transcriptomic pathway level. By integrating physicochemical descriptors with gene 

expression data, the model identified specific surface area and the presence of impurities 

(Fe2O3 and CoO) as critical predictors of early biological events triggering the acute phase 

response signaling pathway. 

 Importantly, although all CNTs in the dataset were capable of eliciting acute and 

chronic inflammatory responses, those with higher metal content and surface area showed 

greater transcriptional activation of key inflammatory mediators. This suggests that 

interference with upstream regulatory molecules, potentially through competitive binding 

or ROS-mediated signaling, may hinder immune resolution. Such dysregulation can 

promote persistent tissue injury, contributing to long-term adverse outcomes including 

fibrosis, atherosclerosis, and cancer. 

While this analysis focused specifically on S- and MWCNTs, the acute phase response 

pathway is known to be modulated by a wide range of nanomaterials. This highlights the 

broader applicability of the Nano-QSAR model presented here for predicting biological 
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responses across diverse nanomaterial types. Moreover, several transcriptional biomarkers 

identified in this study, such as MAPK3, SAA1, and SOCS3 may serve as valuable 

endpoints for developing or refining high-throughput in vitro bioassays to assess the 

inflammogenic potential of CNTs. 

Overall, these findings reinforce the utility of integrating Nano-QSAR and AOP 

frameworks to develop mechanistically anchored, predictive models for nanotoxicology. 

Such approaches contribute to a more realistic, pathway-level understanding of 

nanomaterial-induced health risks and support their inclusion in next-generation risk 

assessment (NGRA) workflows. 
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5. CONCLUSION AND FUTURE 

PERSPECTIVES 



-112- 

 

 This dissertation has highlighted the rapid advancement and widespread application 

of carbon nanotubes (CNTs), which turn in presents significant challenges in assessing 

their potential risks to human health and the environment. To address these challenges, this 

research investigated how data-driven, mechanistically anchored Nano-QSAR models can 

improve the prediction and grouping of CNTs based on their potential to induce pulmonary 

toxicity. By integrating cheminformatics, high-throughput transcriptomics, and pathway-

based modeling, the study examined how key physicochemical properties such as aspect 

ratio, specific surface area (BET), surface modifications, and metal impurities are 

mechanistically linked to early molecular events in the acute phase response (AR) signaling 

pathway. The ultimate goal was to support the development of safer nanomaterials and 

advance mechanism-based risk assessment strategies in line with next-generation 

toxicology and evolving regulatory frameworks. 

 The first part of this work focused on applying a previously developed AOP-

anchored Nano-QSAR approach to develop transcriptomic responses triggered by the 

inhalation exposure to MWCNTs. Particular attention was given to the acute phase 

responses (AR) signaling pathway, which plays a crucial role in neutrophil influx and 

initiates the acute immune response. This process, characterized by the recruitment of pro-

inflammatory cells into the lungs, can ultimately lead to lung fibrosis (as outlined in AOP 

33) and atherosclerosis (as per AOP 237) pathologies. To link the structural properties of 

a set of MWCNTs with transcriptional benchmark dose level (BMDLAR) responses of 

genes associated with this pathway, the Kernel-weighted Local Polynomial Regression 

(KwLPR) algorithm was employed. The results emphasized the critical role of the aspect 

ratio and specific surface area of MWCNTs in triggering acute inflammation and, 

subsequently, driving long-term pathologies through the inflammation-mediated 

mechanisms. This newly developed data-driven model (transcriptomic-based, AOP-

informed Nano-QSAR) potentially serves as an in silico new approach methodology 

(NAM) to support the MWCNTs safety assessment based on the weight of evidence.  
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 In the second part of this dissertation, the research was extended to include single-

walled carbon nanotubes (SWCNTs), enabling a comparative analysis with MWCNTs. 

This comparative approach aimed to deepen the mechanistic understanding of the 

molecular-level toxicity in both CNT types, which is essential for precise safety evaluation 

and effective risk mitigation. The study investigated grouping-based comparative analysis 

of physicochemical properties of CNTs and their pulmonary effects, particularly those 

linked to the acute phase response (AR) pathway, assessed at the transcriptomic level.  By 

integrating transcriptomic endpoints with advanced chemometric analyses, the 

consequence, key drivers of downstream lung pathologies such as inflammation and 

fibrosis, were identified. 

 For MWCNTs, structural features such as aspect ratio, specific surface area, surface 

functionalization (e.g., –OH, –COOH, –NH₂) and metal impurities (iron and cobalt) were 

strongly linked to transcriptomic perturbations and fibrogenic responses. In contrast, for 

SWCNTs, although surface area and functionalization were robust predictors of toxicity, 

the relationships appeared more complex and did not follow the linear trends. Metal 

impurities, particularly manganese and magnesium, emerged as prominent drivers of 

toxicity in SWCNTs. These findings suggest that SWCNTs may require distinct 

mechanistic modelling approaches. Further, the complexities observed in SWCNTs could 

be partly attributed to data limitations, such as the insufficient information on their length 

and diameter. 

 In the third part of this dissertation, the previously developed AOP-informed Nano-

QSAR model was employed using a random forest (RF) algorithm to quantify the impact 

of the structural properties of both S- and MWCNTs on the transcriptional benchmark dose 

level (BMDLAR) responses within the acute phase response (AR) signaling pathway. The 

results highlighted that the specific surface area, Fe2O3 and CoO content as major 

predictors of the early biological events that initiate the inflammatory processes, ultimately 

leading to lung fibrosis (as outlined in AOP 33) and atherosclerosis (as per AOP 237) 

pathologies. By employing the grouping strategy, this extended Nano-QSAR framework 



-114- 

 

enabled predicted key events (KEs) across nanotubes based on their modeled 

physicochemical profiles. 

 In conclusion, these results support the integration of Nano-QSAR and Nano-AOP 

modeling approaches for both S- and MWCNTs. This integration can contribute to the 

refinement of AOP33 and its broader applicability, enhancing the mechanistic 

understanding and regulatory assessment of nanomaterial-induced toxicity. 

 This dissertation presents several key strengths that contribute to its novelty and 

scientific value. It is among the first studies to combine transcriptomic pathway analysis 

with cheminformatics in a way that directly aligns with regulatory decision-making. The 

thoughtful selection and application of machine learning methods, including regression, 

classification, and clustering, enabled each modeling task to address specific scientific 

objectives. By focusing on molecular pathway-level responses rather than traditional apical 

endpoints, this work provides mechanistic insights into nanomaterial toxicity, advancing 

beyond descriptive toxicology. Moreover, the emphasis on impurity profiling offers a new 

and often underexplored dimension to ENMs assessment. This aspect contributes to a more 

complete understanding of how metal impurities, such as iron, cobalt, manganese, 

magnesium and nickel, may influence biological outcomes. 

 However, the research is not without limitations. The dataset, particularly for 

SWCNTs, was relatively limited, which may constrain the generalizability of some 

findings. Additionally, the study focused on acute-phase response data from single-dose 

exposures, which does not fully capture the complexity of chronic or low-dose, real-world 

exposure scenarios.  Future work should aim to expand datasets to include a wider array of 

nanomaterials, exposure durations and dose levels. Integrating emerging in vitro and in 

silico systems, such as organ-on-chip systems and physiologically based pharmacokinetic 

(PBPK), will be essential to improving cross-species extrapolation and enhancing human 

relevance. Furthermore, the incorporation of multi-omics data (e.g., proteomics and 

metabolomics) can enrich the mechanistic modelling landscape, paving the way toward 
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systems toxicology approaches. Such integration would allow the development of more 

holistic, dynamic models of nanomaterial-induced adverse outcomes. 

 In summary, this dissertation offers a rational, mechanism-informed prediction of 

nanomaterial toxicity. By integrating AOPs and transcriptomic pathway data into 

computational modeling, it demonstrates the potential of in silico tools to support hazard 

identification, grouping, and read-across for CNTs and similar materials. The work not 

only contributes meaningfully to the scientific foundation of nanotoxicology but also 

supports the advancement of regulatory science, aligning with ethical, mechanistically 

grounded and efficient safety assessment strategies. Ultimately, it supports the broader 

vision of Safe-and-Sustainable-by-Design (SSbD) innovation in nanotechnology, an 

essential step toward sustainable and responsible development of advanced materials. 
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