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1 Name

Anita Magdalena D ↪abrowska

Maiden name: Rezmerska

2 Diplomas, scientific or artistic degrees

• 2008, PhD degree in physics

Nicolaus Copernicus University in Toruń, Poland (NCU)

Title of dissertation: Stochastic evolution of observed quantum systems

Supervisor: Dr habil. Przemys law Staszewski

• 2000, Master’s degree in theoretical physics (NCU)

Title of master thesis: The role of the continuous spectrum in population transfer processes

in a strong laser radiation field

Supervisor: Prof. Dr habil. Jaros law Zaremba

Grade: very good

• 1998 Bachelor’s degree in physics, specialising in theoretical physics (NCU)

Title: Lifetime of excited states of the atom due to spontaneous emission

Supervisor: Prof. Dr habil. Jaros law Zaremba

Grade: very good

3 Information on employment in scientific or artistic institutes or fac-

ulties

• from 01.10.2019 assistant professor, research and teaching group, Department of Mathe-

matical Methods of Physics, Institute of Theoretical Physics and Astrophysics, Faculty of

Mathematics, Physics and Informatics, University of Gdańsk

• 20.11.2018 – 30.09.2019 senior lecturer, Department of Mathematical Modelling in Biomed-

ical Sciences, Department of Theoretical Foundations of Biomedical Sciences and Medical

Informatics, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń

• 01.02.2012 – 19.11.2018 assistant professor, Department of Mathematical Modelling in

Biomedical Sciences, Department of Theoretical Foundations of Biomedical Sciences and

Medical Informatics, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń

• 11.2004 – 31.01.2012 assistant, Department of Mathematical Modelling in Biomedical Sci-

ences, Department of Theoretical Foundations of Biomedical Sciences and Medical Infor-

matics, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń
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• 01.10.2000 – 11.2004 assistant, Department of Mathematical Modelling in Biomedical Sci-

ences, Department of Theoretical Foundations of Biomedical Sciences and Medical Infor-

matics, Faculty of Pharmacy, the Medical University in Bydgoszcz

4 Description of the achievements, set out in art. 219 para 1 point 2 of

the Act

4.1 Cycle of scientific articles related thematically, pursuant to art. 219 para 1. point

2b of the Act

Title of the achievement: Filtering equations and quantum trajectories beyond the Markov regime

Articles constituting an achievement

[H1] Anita D
↪
abrowska, Gniewomir Sarbicki, and Dariusz Chruściński. Quantum trajectories for

a system interacting with environment in a single photon state: counting and diffusive processes.

Physical Review A, 96, 053819-1-053819-11, 2017.

[H2] Anita D
↪
abrowska. From a posteriori to a priori solutions for a two-level system interacting

with a single-photon wavepacket. Journal of the Optical Society of America B, 37(4), 1240-1248,

2020.

[H3] Anita D
↪
abrowska. Photon counting probabilities of the output field for a single-photon

input. Journal of the Optical Society of America B, 40(5), 1299-1310, 2023.

[H4] Anita D
↪
abrowska, Dariusz Chruściński, Sagnik Chakraborty, and Gniewomir Sarbicki. Eter-

nally non-Markovian dynamics of a qubit interacting with a single-photon wavepacket. New

Journal of Physics, 23, 123019-1-123019-18, 2021.

[H5] Anita D
↪
abrowska, Gniewomir Sarbicki, and Dariusz Chruściński. Quantum trajectories for

a system interacting with environment in N -photon state. Journal of Physics A: Mathematical

and Theoretical, 52(10), 105303-1-105303-21, 2019.

[H6] Anita D
↪
abrowska. Quantum trajectories for environment in superposition of coherent

states. Quantum Information Processing, 18, 224-1-224-22, 2019.

[H7] Anita D
↪
abrowska, Marcin Marciniak. Stochastic approach to evolution of a quantum system

interacting with environment in squeezed number state, Quantum Information Processing, 22,

385, 2023. DOI:10.1007/s11128-023-04108-9

The papers [H1, H4, H5, H7] are collaborative papers. The articles [H2, H3, H6] are single-author

papers. A description of each author’s contribution is included in the statements attached to the

application. My contribution is described in the attached list of scientific achievements. Papers

[H1, H5, H6] were written while I was employed at Nicolaus Copernicus University in Toruń.

The remaining papers were written after I began my employment at the University of Gdańsk.
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4.2 Research objectives, results, and description of publications based on them

4.2.1 Introduction and research motivation

Filtering theory uses probability tools to estimate stochastic processes. Let us consider some

stochastic process {Xt; t ∈ T}, T = R+, that cannot be observed directly. Instead, one can

observe some other process {Yt; t ∈ T} correlated with the process {Xt; t ∈ T}. The filter-

ing problem consists of estimating the process X from a measurement of Y with an assumed

optimisation criterion. This means more precisely that, having the results for {Ys; s ≤ t}, we

want to estimate Xt. The most common optimisation criterion is to minimise the mean-square

error [1,2]. From the physics point of view, the filtering theory is a collection of the methods to

estimate the state in the dynamic system with stochastic properties. Classical filtering theory

is used, for example, in engineering and financial mathematics.

The quantum filtering theory [3–10], formulated in the eighties of the previous century within

the framework of the quantum stochastic calculus of Itô type [11,12], provides a description of the

evolution of an open quantum system depending on the results of continuous in time observations

of the environment of that system. In this model we deal with a quantum system interacting

with an environment being usually a boson field (a propagating electromagnetic field). There

also exists a quantum filtering theory for fermionic environments [13–15], but it has not been

the subject of my research so far, and I will not be presenting this version here. It is convenient

to present the filtering model using the concepts of input and output fields, i.e. the fields, re-

spectively, before and after interaction with a given quantum system. One can say that the Bose

field disturbs the free evolution of the quantum system; on the other hand, the measurement

performed on the output field provides us with information about this system. The evolution

dependent on the result of measurement is referred to as a conditional evolution. With the mea-

surement performed continuously in time we can associate some stochastic process. Quantum

filtering theory is formulated within approximations that allow to describe the measurement of

the output field by a family of operators having a joint spectral measure.

The evolution of an open quantum system depending on the results of continuous in time

measurements of the output field is described by an equation called the filtering equation or

stochastic master equation. The form of this equation depends on the type of measurement being

performed (the choice of the field observable) and the state of the input field. The solutions of

this equation are called quantum trajectories.

In many cases, the stochastic master equation preserves the purity of the state, that is, it

transforms a pure state into a pure state. In such a situation, the equation for the density

operator can be replaced by the equation for the conditional vector state. The evolution of the

system is then described by an equation called the stochastic Schrödinger equation, which is

the basis of the Monte Carlo algorithm, described, for example, in the papers [18, 19]. Taking

an average over all possible realisations of the considered stochastic process, we proceed to the

unconditional evolution of the open system, described by a reduced density operator which,

for the input field in the Gaussian state, satisfies the Gorini-Kossakowski-Sudarshan-Lindblad

(GKSL) master equation [20, 21]. In this case, the evolution of the open system is called a

Markovian evolution [22]. It should be noted that not every stochastic master equation is a
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filtering equation. Often, stochastic master equations are used to solve the master equation

without a measurement-related context. There are stochastic equations for open systems that

are not related to a measurement. It should be emphasised that stochastic methods can be

used not only to solve the master equation, which does not preserve a pure state in the general

case, but allow us to better understand the evolution of an open system, and provide tools to

efficiently determine the properties of the output field. They are also the starting point of the

quantum control model [10,23].

Originally, the quantum version of classical filtering theory was developed for a field in a

Gaussian state. In the basic version of the model, the input field is assumed to be in a vacuum

state. Development of techniques for generating of wave packets in non-classical states, such as

a superposition of coherent states [24–26], states of definite number of photons and squeezed

N -photon states [27–35], and the growing area of their applications have brought the need for

new stochastic tools enabling to describe the interaction of non-classical light with a quantum

system. Note that we are talking about non-classical states of the continuous-mode field [36–40].

The time correlations of the input field mean that the reduced evolution of the open system is

not described by the GKSL master equation. In the papers [41–47] one can find generalised

master equations for open quantum systems driven by a wave packet in the single-photon or

N -photon state. Note that when the system interacts with a field in the N -photon state, the

evolution of the system is not described by a single master equation, but by a set of coupled

differential equations. A derivation of the general form of the set of coupled master equations

defining the reduced evolution of a quantum system interacting with a field in the N -photon

state was given in [46].

To derive stochastic equations for non-classical fields, one cannot use directly the methods

developed for the situation when an input field is in a Gaussian state. A stochastic analysis for

an open quantum system interacting with the Bose field prepared in a non-classical state one can

find, for instance, in [48–60] and also in [H1-H3, H5-H7, P2, P3]. Historically, the first method

of determining the filtering equations for a field in a non-classical state involves extending the

Hilbert space of the actual quantum system by the Hilbert space of an auxiliary system which,

together with the input field in the classical state, acts as a generator of the Bose field in the

chosen state [9, 53, 61–64]. The quantum system is cascaded to the auxiliary system [61]. The

input field for this auxiliary system is prepared in the classical state. The field after interaction

with the auxiliary system is the input field for the main system. It is assumed that there is

no initial correlation between the main and auxiliary systems. First, the stochastic master

equation is determined for the system composed of the main and auxiliary systems, then the

partial trace over the auxiliary system is taken, eliminating the degrees of freedom of this system

from the description. Using this method, the set of coupled stochastic equations defining the

conditional evolution for a quantum system interacting with the light in the single-photon state

was determined in [48]. In [52], the filtering equations for the light in the multi-photon state

were obtained in a similar way. Of course, this method of determining the filtration equations

has some limitations. Let us emphasise that the model of the generation of a non-classical field

by an auxiliary system cannot be understood literally as a recipe for conducting an experiment.

This is only a mathematical procedure allowing us to determine quantum trajectories for non-
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classical fields. However, depending on the complexity of the non-classical state, sometimes it

can be very difficult to define a suitable auxiliary system. A different concept was used in the

papers [49, 51, 55]. Here, the Hilbert space of the quantum system is extended by the Hilbert

space of the auxiliary system in such a way that, for the given system, the desired non-Markovian

evolution is obtained. Hence the name of the method—the non-Markovian embedding. In this

method, the auxiliary system and the Bose field are initially in an entangled state. By this

method, the filtering equations for the Bose field in the single-photon state, superposition of

coherent states and the multi-photon state were determined in [49, 51, 55]. The authors of [57],

published in 2017, determined the set of filtering equations for the field in the N -photon state

using a method based on a temporal decomposition of the input state . In a similar manner, the

set of stochastic master equations was obtained for a quantum system interacting with a field

in a squeezed N -photon state in [60].

The evolution of open systems interacting with a wave packet in a non-classical state is quite

complicated. The derivations given in [48, 49, 51, 52, 55, 57, 60] refer to the mathematical tools

that are not widely used by physicists. In particular, the papers [49,51] are very formal.

My motivation for writing papers [H1-H3, H6-H7] was the desire to develop a more funda-

mental method than previously proposed for determining the stochastic evolution of a quantum

system interacting with a field in a non-classical state, revealing the structure of entanglement

between the environment and the system. My goal was also to popularize stochastic tools that

allow for the efficient determination of the evolution of quantum systems interacting with non-

classical fields and the analysis of output field properties. The motivation for writing paper [H5]

was the desire to present a general analysis of the non-Markovian character of the evolution of

a two-level atom interacting with a single-photon field.

In the papers [H1-H3, H5-H7], which make up the scientific achievement that forms the basis

of this proposal, a new way to determine the filtration equations for non-classical fields was de-

fined. In the mentioned papers, the stochastic evolution of an open quantum system interacting

with a field in non-classical states was determined based on a model of repeated interactions

and measurements also called in the literature the collision model [65–87]. Descriptions of the

time discretisation procedure leading to the collision model in quantum optics, its relation to the

input-output formalism, and physical approximations one can find, for instance, in [71,74,80–82].

In the collision model, the environment is approximated by a certain sequence of sub-systems.

When these sub-systems are initially uncorrelated, they do not interact with each other and

they interact with the quantum system only once, the model of repeated interactions leads to

the Markovian dynamics of an open quantum system and allows to approximate with arbitrary

accuracy the evolution governed by the GKSL master equation [88]. A formulation of the dis-

crete stochastic calculus and a description of discrete quantum trajectories for an input field in

the Gaussian state can be found in [7, 66,67,69,74,84,85,87].

The evolution of a quantum system interacting with a field prepared in a non-classical state

is non-Markovian due to the temporal correlations of the field. The influence of such correlations

on the evolution of open systems has been analysed within the framework of the collision model,

for instance, in [73,76–79]. The non-Markovian evolution of an open system will also be obtained

if we assume that the sub-systems of the environment interact with each other or if we allow
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them to interact with the system more than once, and if the system is correlated with the

environment at the initial time.

The following paper provides a brief introduction to quantum filtration theory in its basic

version, i.e. for a field in a vacuum state, a presentation of the model approximations, and a

general introduction to the collision model in quantum optics. These chapters cannot, however,

be regarded as a comprehensive introduction.

4.2.2 Summary of the obtained results

In papers [H1-H4, H6-H7], which constitute the habilitation achievement, a method for deter-

mining filtering equations and quantum trajectories for non-classical fields based on the model

of repeated interactions and measurements was proposed. The presented method for deter-

mining the evolution of the open system is simpler and more intuitive than those proposed by

other authors. The discrete-time approach allows for a better understanding of the proper-

ties of non-classical states, the processes occurring during the interaction of the open system

with the non-classical field, and how quantum trajectories and the filtering equations related to

measurement are determined.

In the publications [H1-H3, H5-H7], the continuous in time evolution of a quantum system

was obtained from the dynamics generated by a discrete in time sequence of (weak) interactions

(collisions) of the quantum system with ancillas forming its environment, defined as a chain

of qubits or harmonic oscillators prepared in an entangled state being a discrete analogue of

the non-classical state of the continuous-mode field. It is assumed that after each interaction,

a measurement is performed on the bath element that has just interacted with the system.

The sequence of measurements carried out on the bath elements leads to a discrete in time

stochastic evolution of the open system. There is no initial correlation between the system and

the environment.

The essential element of each derivation is the discussion regarding the properties of the input

field state. It is the entanglement of the environmental subsystems that causes the difficulty in

determining the equations for the evolution of the open system. In papers [H1-H4, H6-H7], the

problem of conditional evolution is defined in the Hilbert space including the states of the open

system and the input field. When we follow the measurement results of the output field, the

composed system consisting of the system and the input field remains in a pure state. However,

unlike the case of Gaussian fields, the conditional state is not a separable state but an entangled

state of the system and the input field. The papers provide general formulae for the a posteriori

state of the system and the input field. It is shown how this state can be decomposed into the sum

of components representing alternative scenarios occurring in parallel in the experiment. The

approach proposed in the papers allows to simplify the problem of determining the conditional

evolution of an open system. Instead of formulating it using matrix equations, one can use

vector equations. The papers presents sets of coupled equations for conditional vectors related

to random measurement results. If the environment is the field in the N -photon state, we obtain

a set of (N+1)2 coupled equations for conditional operators and only N+1 equations for vectors.

Starting from the discrete model, formulae were finally obtained for the evolution of the
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system conditioned by the results of continuous in-time observation of the output field. Two

types of measurement were considered in the papers. : photon counting measurement and optical

quadrature measurement. The model of repeated interactions and measurements allowed in [H1-

H3, H5-H7] not only to derive differential equations describing the conditional and unconditional

evolution of the quantum system, but also to enable the determination of the general structure

of quantum quantum trajectories related to the measurement. In addition to the formulae for

the trajectories, the papers also provide their physical interpretation. The determined analytical

formulae make it possible to obtain full statistics of the photon counts of the output field and

to provide analytical solutions to the generalized master equation.

In papers [H1-H4] the interaction of the quantum system with the field in the single-photon

state was considered. Based on the collision model, in paper [H1] the sets of coupled filtering

equations was determined for the Bose field in the single-photon state for two types of observa-

tions of the output field. The study considers counting observation, where the photons of the

input field are directly counted, as well as quadrature observation of the field. The reservoir

field is modelled by an infinite chain of qubits. The paper contains formulae for quantum trajec-

tories related to photodetection of output field photons. Note that in the general case we have

infinitely many photon counting scenarios in the output field. The paper gives the formula for

the probability density of counting m photons in the output field at times t1, t2, . . . , tm such that

0 < t1 < t2 < . . . < tm < t and no other photons in the interval from 0 to t and the expression

for the probability of no count up to a given moment. The paper also contains general formu-

lae for conditional mean values of increments of stochastic processes for counting and diffusion

observations. The obtained results are general and can be applied to various quantum systems,

such as atoms, ions, and resonance cavities.

The results of [H1] were utilized in paper [H2] to determine the conditional and unconditional

evolution of a two-level atom interacting with a unidirectional field in a single-photon state. The

paper derives the general form of the a priori state of the two-level atom for the arbitrary initial

state of the atom and any profile of the single-photon field by averaging quantum trajectories

for counting observations. Using the formulae for quantum trajectories, the statistics of photon

counts in the output field were obtained. The general form of the positive-definite measure

associated with photon counts is provided. Formulae were derived for the probability of detecting

a fixed number of photons up to a given time, the mean number of counts up to a given time,

the average photon counting times, and the Mandel parameter.

In paper [H3], the collision model was used to describe the interaction of an open system with

a bidirectional electromagnetic field. In one direction, the field is prepared in a single-photon

state, and in the other direction, it is in the vacuum state. In this case, the system’s environment

is modeled by two chains of qubits. The supplement to the paper provides the derivation of the

set of filtering equations for the bidirectional field. The conditional evolution is determined here

for a two-dimensional counting process. The paper includes the derivation of general formulae

for conditional vectors associated with photon counts by two detectors. The obtained results

allow the determination of the output field state for any open system. The paper derives the

probabilities of photon counts in the output field. From this, the probabilities of wave packet

scattering, reflection, and transmission were obtained.
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As an example of the application of these results, the scattering of a pulse on a two-level

atom is described. The paper includes analytical formulae for any initial state of the atom and

any temporal profile of the photon. It provides detailed results for a photon with an exponential

profile. The influence of destructive and constructive interference of indistinguishable photons

in the scattering process is particularly interesting. It is shown that the key factor here is the

relationship between the lifetime of the excited state of the atom and the pulse width.

The paper [H4] is devoted to analysing the non-Markovian nature of the evolution of a

two-level system (qubit) interacting with a bidirectional field; in one direction, the input field

is prepared in a single-photon state, while in the other, it is in a vacuum state. The reduced

evolution of the qubit is represented then by a hierarchy of master equations. The temporal cor-

relations of the field are responsible for all non-Markovian memory effects of the qubit dynamics.

The analytical solution to the hierarchy of equations for any initial state of the system and for

an arbitrary temporal profile of the photon state is provided and used to show that the set of

these equations is equivalent to a single time-local master equation. The time dependent rates

governing damping (cooling), pumping, and dephasing processes being fully characterized by the

wave packet profile are determined. An immediate consequence of the analysis is the observation

that in general the dynamical map governing the qubit evolution is not invertible which implies

the singularity of rates in the corresponding time-local master equation. It is shown that in

the resonant case whenever time-local generator is regular (does not display singularities) the

qubit evolution never displays information backflow. However, in general the generator might

be highly singular leading to intricate non-Markovian effects.

In in article [H5] the results of [H1] were generalized by considering the field in the N -photon

state. This field state is also called the Fock state. The set of filtering equations for a quantum

system interacting with an environment prepared in a continuous-mode N -photon state was

derived. Here the unidirectional field with photons of the same time profiles was considered. To

determine the conditional evolution of the quantum system depending on the continuous in-time

measurements of the output field, the model of repeated interactions and measurements with the

environment given as an infinite chain of harmonic oscillators was used. It is assumed that the

bath harmonic oscillators do not interact between themselves and they are prepared initially in an

entangled state being a discrete analogue of a continuous-mode N -photon state. The continuous

in time conditional evolution of the quantum system for the photon counting observation was

derived starting from determination of discrete in time recurrence equations for the N + 1

conditional vectors. Subsequently, a set of recursive filtering equations was obtained for the

system operators that depend on the observation results, ultimately leading to continuous-time

stochastic evolution. The article also presents solutions to the derived set of stochastic equations.

The quantum trajectories are used to find the analytical formulas defining the photon counting

statistics in the output field and to provide a solution to the set of coupled master equations.

The quantum trajectories in the continuous case are represented by a proposed diagrammatic

technique with very transparent “Feynman rules”. This technique considerably simplifies the

structure of the solution and enables one to find a physical interpretation for the solution in

terms of a few elementary processes. It should be emphasized that the results are general and

can be applied to various open systems.
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In paper [H6], the set of filtering equations describing the conditional evolution of an open

quantum system interacting with the Bose field prepared in a superposition of coherent states

was determined. This paper provides solutions for two measurement schemes of the output

field: photon counting and homodyne detection. The collision model with the environment,

represented by an infinite chain of qubits, is considered. It is assumed that the bath qubits do not

interact with each other and are initially prepared in an entangled state, being a discrete analogue

of a superposition of continuous-mode coherent states. Due to the temporal correlations present

in the environment, the evolution of the open quantum system becomes non-Markovian. Starting

from a discrete-time description of the problem, the sets of recurrence stochastic equations were

obtained, and finally in the continuous-time limit differential filtering equations were determined.

As an example of the application of the derived equations, the conditional evolution of a cavity

mode initially prepared in a coherent state was considered. The paper presents the conditional

state of the field in the cavity for both photon counting and diffusive observation.

In paper [H7], the sets of filtering and master equations for a quantum system interacting

with a wave packet of light in a continuous-mode squeezed number state were determined. The

problem of the conditional evolution of a quantum system was formulated using the model of

repeated interactions and measurements. In this approach, the quantum system undergoes a

sequence of interactions with an environment defined by a chain of harmonic oscillators. It is

assumed that the environment is prepared in an entangled state, which is a discrete analogue of a

continuous-mode squeezed number state. The paper provides a derivation of a discrete stochastic

dynamics that depends on the results of measurements performed on the field after its interaction

with the system. Stochastic dynamics is considered for a photon counting measurement scheme.

By taking a continuous time limit, the set of differential stochastic equations for the system was

finally obtained. It should be emphasized that in this case, the stochastic evolution of the system

is given by a set of infinitely many coupled equations. The paper contains a general solution

of this set for an arbitrary open system. A construction of analytical formulae for quantum

trajectories and exclusive probability densities that fully characterize the statistics of photons

in the output field are given.

Using stochastic tools, the paper presents a solution to the problem of optimal excitation of

a harmonic oscillator (field in a cavity) by a traveling field prepared in a squeezed N -photon

state. It is assumed that the oscillator is initially in the vacuum state. The paper provides the

condition for perfectly transferring the photons from the input field into the cavity.

4.2.3 Introduction

Markovian and non-Markovian dynamics of open quantum systems

Theory of open quantum systems theory describes of the evolution of a quantum system

interacting with its environment. Interaction with the environment is a source of decoherence,

energy dispersion, spontaneous emission. It is usually assumed that the evolution of a composed

system consisting of a quantum system and its environment is unitary and that there is no initial
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correlations between the systems. The reduced density operator at time t is defined

ϱ(t) = Φtϱ(0) := TrE{U(t)ϱ(0)⊗ η(0)U †(t)}, (1)

where U(t) is the unitary operator describing the evolution of composed system, ϱ(0) and η(0)

stand for the initial state of the system and environment, respectively. Let the initial environ-

mental state η(0) be fixed. For t ≥ 0 the above equation defines a linear map

Φt : T (H)→ T (H), (2)

on the open system’s state space T (H) for the Hilbert space H, thus Φt maps any initial state

of the system to the system’s state at time t

ϱ(0)→ ϱ(t) = Φtϱ(0). (3)

A one-parameter family {Φt; t ≥ 0} one calls a quantum dynamical map. The dynamical map

preserves the Hermiticity and the trace of operators. It is a positive map, i.e., it maps positive

operators to positive operators. An important feature of dynamical map is that it is not only

positive but it is also completely positive. The property

Φt ◦ Φs = Φt+s (4)

satisfied for all t, s ≥ 0 defines the structure of a semigroup. A dynamical map having the

semigroup property has a generator L such that

Φt = exp[Lt]. (5)

In this case for the reduced system density operator one obtains the equation

ϱ̇(t) = Lϱ(t). (6)

As it was proved in [20, 21], the most general form of a semigroup dynamical map has the

following form

Lϱ = −i[HS , ϱ] +
∑
k

γk

(
RkϱR

†
k −

1

2
R†

kRkϱ−
1

2
ϱR†

kRk

)
, (7)

where HS is the Hamiltonian of the quantum system, Rk are system operators, often called

the Lindblad operators, and γk ≥ 0,∀k. The equation (6) with the generator (7) is called the

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation In physical models created

for quantum systems interacting with the environment, obtaining the equation of the form (6)

for reduced evolution requires several approximations [8]. The most important of these is the

Markov approximation. In the case of a differentiable dynamical map for the reduced state ϱ(t)

we obtain the local time equation
˙ϱ(t) = Ltϱ(t), (8)

with the time dependent generator Lt. If {Φt, t ≥ 0} is invertible, then Lt = Φ̇t ◦ Φ−1
t . If the

map is non-invertible at time t = τ then Φt at τ displays singularities. Any time-local generator
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Lt has the form of (7), but the effective Hamiltonian HS , operators Rk, and γk may be time

dependent. Given generator Lt the formal solution for the dynamical map reads as follows

Φt =
←−
T exp

[∫ t

0
Lsds

]
, (9)

where
←−
T stands for the chronological product. It should be stressed that in the case when Lt

is time-dependent, then the transition rates γk are not necessarily non-negative. A quantum

dynamical map {Φt; t ≥ 0} is called divisible if for any t ≥ s one has

Φt = Vt,s ◦ Φs, (10)

where Vt,s is completely positive propagator. If Φt is invertible, then

Vt,s = Φt ◦ Φ−1
s , (11)

Thus any invertible map is divisible. One calls the map {Φt; t ≥ 0} P -divisible if Vt,s is positive

and trace-preserving. If Vt,s is completely positive and trace preserving then {Φt; t ≥ 0} is called

CP-divisible. Following [89], we call the evolution represented by {Φt; t ≥ 0} Markovian if it is

CP-divisible. An invertible map is CP-divisible if and only if all rates are non-negative. The

occurrence of negative values of these coefficients is treated as an indicator of non-Markovian

evolution. If the evolution is Markovian, then for any pair of the initial states ϱ1 and ϱ2 [90]

d

dt
∥Φt(ρ1 − ρ2)∥1 ≤ 0, (12)

where ∥X∥1 = Tr|X| denotes the trace norm of X. Note, that the quantity ∥ρ1− ρ2∥1 describes

the distinguishability of ρ1 and ρ2. The above condition is called the BLP condition, named after

the authors of the paper [90]: Breuer, Laine, and Piilo. In the literature, one can find various

concepts of non-Markovian indicators of the evolution of quantum systems. For any Markovian

evolution [91,92]
d

dt
|detΛt| ≤ 0. (13)

The quantity Vol(t) = |detΛt|Vol(0) is the voluume of the accessible states at time t, hence (13)

implies monotonic decrees of Vol(t). Any P-divisible map (and hence also CP-divisible) satisfies

(13).

Quantum stochastic calculus and quantum filtering theory

In this section we recall some basic rules of quantum stochastic calculus (QSC) in the boson

Fock space [11, 12]. Let us denote by F the symmetric Fock space over the Hilbert space

K = Cn ⊗ L2(R+) of all square integrable functions from R+ into Cn. For any f ∈ K one can

define a coherent vector by the formula

e(f) = exp

(
−1

2
||f ||2K

)(
1, f, (2!)−1/2f ⊗ f, (3!)−1/2f ⊗ f ⊗ f, . . .

)
. (14)

In particular, e(0) = (1, 0, 0, . . .) ∈ F is the Fock vacuum. On the linear span of all the

exponential vectors in F we define the annihilation Bj(t), creation B†
j (t), and number Λij(t)

processes as follows [11,12]:

Bj(t)e(f) =

∫ t

0
fj(s)ds e(f) , (15)

12



B†
j (t)e(f) =

∂

∂ϵj
e
(
f + ϵχ[0,t)

)∣∣∣∣
ϵ=0

, (16)

Λij(t)e(f) = −i
d

dλ
e
(

exp
(
iλPijχ[0,t)

)
f
)∣∣∣∣

λ=0

, (17)

where χ[0,t) is the indicator function of [0, t), ϵ ≡ (ϵ1, . . . , ϵn) ∈ Rn, λ ∈ R and (Pijf)k = δikfj .

The operators Bj(t), B
†
j (t), Λij(t) satisfy the commutation relations of the form

[Bi(t), Bj(t
′)] = [B†

i (t), B†
j (t′)] = 0, [Bi(t), B

†
j (t′)] = δij t ∧ t′, (18)

[Λij(t),Λkl(t
′)] = δjkΛil(t ∧ t′)− δilΛkj(t ∧ t′), (19)

[Bj(t),Λkl(t
′)] = δjk Bl(t ∧ t′), [Λkl(t), B

†
j (t′)] = δlj B

†
k(t ∧ t′), (20)

where t ∧ t′ = min(t, t′). The operators Bj(t), B
†
j (t), and Λij(t) can be written as

Bj(t) =

∫ t

0
bj(s)ds, B†

j (t) =

∫ t

0
b†j(s)ds, Λij(t) =

∫ t

0
b†i (s)bj(s)ds, (21)

where bj(t), b
†
j(t) satisfy the canonical commutation relations

[bj(t), bi(t
′)] = [b†j(t), b

†
i (t

′)] = 0, [bj(t), b
†
i (t

′)] = δjiδ(t− t′). (22)

The Fock space F has a continuous tensor product structure, i.e.

F = F[0,t) ⊗F[t,∞), (23)

where F[0,t) and F[t,∞) are the symmetric Fock spaces over Cn ⊗ L2([0, t)) and Cn ⊗ L2([t,∞)),

respectively. The family {M(t), t ≥ 0} of operators onH⊗F is called a quantum adapted process

if M(t) acts as the identity operator in F[t,∞) and can act non-trivially in H⊗F[0,t). Hudson and

Parthasarathy gave a rigorous meaning to the quantum stochastic differential equation (QSDE)

of the type [11,12]

dM(t) =
n∑

j=1

(
n∑

i=1

Fji(t) dΛji(t) + Ej(t) dAj(t) +Dj(t) dA†
j(t)

)
+ C(t)dt , (24)

where M(t), Fji(t), Ej(t), Dj(t), C(t) are adapted processes on H⊗F . The increments dBj(t) =

Bj(t + dt) − Bj(t), dB†
j (t) = B†

j (t + dt) − B†
j (t), dΛij(t) = Λij(t + dt) − Λij(t) commute with

any adapted process N(t) in H ⊗ F . If M ′(t) is the process which satisfies an equation of the

type (24), then the differential of the product M(t)M ′(t) is given by the formula

d
(
M(t)M ′(t)

)
= dM(t)M ′(t) +M(t)dM ′(t) + dM(t)dM ′(t) , (25)

where dM(t) dM ′(t) can be computed with the help of the multiplication table

dBi(t) dB†
j (t) = δij dt , dBi(t) dΛkj(t) = δik dBj(t) ,

dΛkj(t) dB†
i (t) = δji dB†

k(t) , dΛij(t) dΛkl(t) = δjk dΛil(t), (26)

and all other products vanish. From here on, we will restrict our considerations to the unidirec-

tional bosonic field, i.e. we will assume that K = C⊗ L2(R+).
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We assume that the Bose field interacts with a quantum system (we will briefly call it a

system S). Let HS be the Hilbert space associated with S and B(HS) be the space of linear

bounded operators onHS . For simplicity of notation, we will usually omit a tensor multiplication

by identity operators. The evolution of the composed system consisting of S and the Bose field

is described by the unitarity operator U(t), which satisfies the quantum stochastic differential

equation of the Itô type [11,12,17].

dU(t) =

[
LdB†(t)− L†SdB(t) + (S − I) dΛ(t)−

(
iHS +

1

2
L†L

)
dt

]
U(t),

U(0) = I, (27)

where L, S, HS belong to B(HS), HS stands for the Hamiltonian of S, and S is the unitary

operator describing a process of a direct scattering of light by the system S. From a physical

point of view, (27) is the equation for the evolution operator of the composed system written

in the interaction picture eliminating the free evolution of the Bose field. The unitary operator

U(t) acts non-trivially in HS ⊗F[0,t) and it commutes with the increments dB(t), dB†(t), dΛ(t).

According to the interpretation given by Gardiner and Collet [16], the operators B(t), B†(t),

and Λ(t) describe the input field, i.e. the field before the interaction with the system S.

Any bounded operator of S in the Heisenberg picture

jt(X) = U †(t)(X ⊗ 1)U(t), (28)

is an adapted process, meaning that it acts as an identity operator in the space F[t,+∞). To

determine the differential equation for jt(X) we apply the rules of the quantum stochastic

calculus. In this way we obtain the equation of the form

djt(X) = jt (L∗X) dt+ jt

(
S†[X,L]

)
dB†

t + jt

(
[L†, X]S

)
dBt + jt(S

†XS −X)dΛt, (29)

where

L∗X = i[HS , X] + L†XL− 1

2
L†LX − 1

2
XL†L . (30)

The initial state of the composed system is assumed to be the product state

ρ(0)⊗ ρfield. (31)

where ρ(0) is the initial state of S and ρfield is the state of the input field. The reduced density

operator of S is defined by the partial trace as

ϱ(t) = TrF

(
U(t)ρ(0)⊗ ρfieldU †(t)

)
. (32)

One can check that when the input Bose field is prepared in the vacuum state, then the operator

ρ(t) satisfies the differential equation

ϱ̇(t) = Lϱ(t), (33)

where

Lϱ = −i[HS , ϱ] + LϱL† − 1

2
L†Lϱ− 1

2
ϱL†L . (34)
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Figure 1: Measurement scheme for output field photon counting

The field after the interaction with the system S, called the output field, is given as

Bout(t) = U †(t)B(t)U(t), Bout†(t) = U †(t)B†(t)U(t), Λout(t) = U †(t)Λ(t)U(t). (35)

Making use of the quantum stochastic calculus one can shown that

dBout(t) = jt(S)dB(t) + jt(L)dt, dBout†(t) = jt(S
†)dB†(t) + jt(L

†)dt, (36)

dΛout(t) = dΛ(t) + jt(L
†S)dB(t) + jt(S

†L)dB(t)† + jt(L
†L)dt. (37)

Note that the output field carries information about the system S and for this reason the field

can be treated as the measurement apparatus. In the quantum filtering theory we consider a

continuous in time measurement of the output field. In the basic version of the model, it is

assumed that we use instantaneous detectors with 100% efficiency. The two most commonly

considered measurement schemes are the measurement of Λout(t), in which the photons of the

output field are counted directly, and the measurement of optical quadrature

Y (t) = Bout(t) + dBout†(t). (38)

The measurement of the number observable is illustrated in Figure 1. A schematic of heterodyne

detection can be found in Figure 2. In the latter case, the output field goes to the beam-splitter

and at the other input of the beam-splitter we have a strong field in the coherent state [17,93,94].

The process {Λout(t), t ≥ 0} is called self-nondemolition, it means that the operators of this

family commute with each other [3, 4]:

[Λout(t),Λout(t′)] = 0, ∀t, t′ ≥ 0 (39)

and therefore there exists a joint spectral measure for them. The process {Y (t), t ≥ 0} also satis-

fies the self-nondemolition condition. The measurements of these observables are nondemolition

for the reason that [3, 4]

[Λout(t′), U †(t)(X ⊗ 1)U(t)] = 0, [Y (t′), U †(t)(X ⊗ 1)U(t)] = 0, 0 ≤ t′ ≤ t (40)

for any operator X of the system S. According to (40), the measurement of a given output

process disturbs neither the present nor the future state of the system S.

Quantum filtering theory describes the estimation of the state of S based on the results of

observations of the output processes. Here, the filtering equations for the two types of observa-

tions are presented. They correspond to the situation when S = 1 and the input boson field is
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Figure 2: Optical field quadrature detection scheme

in the vacuum state. For the observation of the process Λout(t), we obtain the filtering equation

of the form

dρ(t) = Lρ(t) +

(
Lρ(t)L†

Tr {L†Lρ(t)}
− ρ(t)

)
dN(t), (41)

where L is the superoperator defined by (34), N(t) is the counting process such that

dN(t) = dΛout(t)− Tr{L†Lρ(t)}dt. (42)

The conditional expectation of the increment dΛout(t) given all results of the measurement up

to t is

E[dΛout(t)|ρ(t)] = Tr{L†Lρ(t)}dt. (43)

For the observation of the optical quadrature, we get the stochastic differential equation

dρ(t) = Lρ(t) +
(
Lρ(t) + ρ(t)L† − ρ(t)Tr{(L+ L†)ρ(t)}

)
dW (t), (44)

where W (t) is the Wiener process related to Y (t) by the formula

dW (t) = dY (t)− Tr{(L+ L†)ρ(t)}dt. (45)

The conditional mean value of dY (t) reads as

E[dY (t)|ρ(t)] = Tr{(L+ L†)ρ(t)}dt. (46)

The conditional state ρ(t) depends on the measurement results of a given process up to time

t and it is called the a posteriori state. Solutions to the filtering equations are also known as

quantum trajectories. Averaging the state of ρ(t) over all possible realizations of the considered

stochastic process up to time t yields the a priori state of S that satisfies the master equation

(33).
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Approximations

Let us consider a quantum system S, which interacts with a propagating electromagnetic

field. We describe here the interaction with the one-dimensional boson field running in one

direction. In this review ℏ = 1. The system S can be an atom, an ion, a field in a resonant

cavity, we will not specify this here. The Hamiltonian of a composed system consisting of the

system S and its environment E can be written as

H = HS +HE +Hint, (47)

where HS is the Hamiltonian of S, HE is the Hamiltonian of the bosonic field, and Hint represents

the Hamiltonian of the interaction between systems. The Hamiltonian generating the free field

evolution has the form

HE =

∫ +∞

0
ωb†(ω)b(ω)dω, (48)

where b(ω) and b†(ω) are respectively the annihilation and creation operators given in the fre-

quency domain. These operators satisfy the canonical commutation relations

[b(ω), b(ω′)] = [b†(ω), b†(ω′)] = 0, [b(ω), b†(ω′)] = δ(ω − ω′). (49)

We assume that the Hamiltonian of the interaction has the linear form

Hint = i

∫ +∞

0
κ(ω)

[
b†(ω) + b(ω)

] [
R−R†

]
dω, (50)

where R is the system operator and κ(ω) is a real function describing the coupling between the

systems. Making the rotating wave approximation (RWA) and transforming the Hamiltonian

into the interaction picture with respect to free dynamics the field we obtain from (50)

H̃int(t) = i

∫ +∞

0
κ(ω)

[
Rb†(ω)eiωt −R†b(ω)e−iωt

]
dω. (51)

We assume that we deal with a narrowband field, i.e. the frequency spread ∆ω (bandwidth) is

much smaller compared to the central frequency ωc. Such field is called the quasi-monochromatic.

The central frequency is located near the characteristic frequency ω0 of the system S. We

make the flat spectrum approximation thus we replace κ(ω) by a constant value. The last

approximation consists of extend the lower limit of integration to infinity. In this way we obtain

the interaction Hamiltonian

H̃int(t) = i
√

Γ(Rb†(t)−R†b(t)), (52)

where

b(t) =
1√
2π

∫ +∞

−∞
b(ω)e−iωtdω. (53)

The operators b(t) and b†(ω) are called white noise operators due to the fact that they satisfy

the singular commutation relation

[b(t), b†(t′)] = δ(t− t′). (54)
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Hence the evolution operator has the form

U(t) =
←−
T exp

[∫ t

0

(
−iHS +

√
Γ
(
Rb†(s)−R†b(s)

))
ds

]
, (55)

where
←−
T is the time-ordering operator.

Collision models in quantum optics

The evolution of an open system can be studied in a convenient and intuitive way using

collision models [82,88]. Here we consider a system S interacting with an environment E modelled

by a sequence of identical quantum systems. We assume that initially there is no correlation

between the system S and its environment. Thus we write the initial state of the composed

system S plus E as

ρ(0)⊗ η(0), (56)

where ρ(0) and η(0) are respectively the states of S and its environment at time zero. In

the basic version of the collision model, we assume that the quantum systems constituting the

environment do not interact with each other. We envisage the dynamics of a composed system

as a series of interactions (collisions) of S with subsequent elements of the environment. It is

assumed that each of them it interacts with S only once. Each collision (each interaction) has

the same duration and it will be denoted by τ . The interaction in the time-interval from kτ to

(k + 1)τ is described by the unitarity operator Vk. The state of the composed system after n

interactions is given as

σn = Vn−1 . . . V0(ρ(0)⊗ η)(Vn−1 . . . V0)
†. (57)

Eliminating the degrees of freedom associated with the environment, i.e. taking the partial trace

over E , we obtain the state of the system S,

ϱn = TrE(σn). (58)

If η(0) is a factorized state and all sub-systems are prepared in the same state η, i.e. η(0) = η⊗n,

then

ϱn = Φn(ρ(0)) = TrEn [Vn−1 (ϱn−1 ⊗ η)V †
n−1], (59)

where by En we denoted the n-th element of the environment. In this case, systems that will

interact with S in the future are not correlated with it. Clearly, the system S is correlated with

all systems which interacted with S in the past. It is easy to check that the (discrete) quantum

map Φn, defined by (59), fulfils the semigroup property

Φn = Φn−m ◦ Φm (60)

for any integer 0 ≤ m ≤ n.

To obtain the collision model from the model described in the previous section, let us divide

the time of interaction T into equal intervals, each of length τ , such that T = Nτ . The evolution

operator of the composed system in the interval from kτ to (k + 1)τ , defined as

←−
T exp

[∫ (k+1)τ

kτ

(
−iHS +

√
Γ
(
Rb†(s)−R†b(s)

))
ds

]
, (61)
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will be approximated by

exp

[∫ (k+1)τ

kτ

(
−iHS +

√
Γ
(
Rb†(s)−R†b(s)

))
ds

]
. (62)

One can show that the difference between (61) and (62) is a quantity of the order O(τ3/2). When

τ → 0 this difference goes to zero and we move from a discrete to a continuous-time description.

The integral over the interaction operator can be written in the form∫ (k+1)τ

kτ

√
Γ
(
Rb†(s)−R†b(s)

)
ds =

√
Γ
(
Rb†k −R

†bk

)√
τ , (63)

where we introduced the field operators

bk =
1√
τ

∫ (k+1)τ

kτ
b(s)ds. (64)

Due to (54), the discrete operators satisfy the commutation rules

[bn, bm] = [b†n, b
†
m] = 0, [bn, b

†
m] = δnm. (65)

The interaction from kτ to (k + 1)τ is described by the operators√
Γ

τ

(
Rb†k −R

†bk

)
. (66)

4.2.4 Filtering equations and quantum trajectories for an open system interacting with a field

in a single-photon state

I start the review of the publications [H1-H7] by presenting the results for the Bose field in

the single-photon state. In the paper [H1] an unidirectional boson field is modelled by an

infinite chain of non-interacting with themselves qubits. A formulation of the discrete quantum

stochastic calculus for a field modelled by a sequence of two-level systems can be found in

the [65,66,86,87]. Using the discrete approximation of the Fock space for the field modelled by

a sequence of qubits, it is not only possible to determine the stochastic evolution for the field

in the vacuum state [67, 69, 84–87], but also in the coherent, squeezed and thermal states [74].

In [H1], the qubit chain is prepared in an entangled state that is a discrete analogue of the

continuous-mode single-photon state [37, 39]. It is assumed that environmental qubits do not

interact with each other, but they interact successively with the quantum system S. Each of the

bath qubits interacts with S only once. The initial state of the total system is a product state,

i.e. initially there is no correlation between the quantum system and the field. The stochastic

evolution of the system S was determined assuming that the measurement is performed on

the environment qubits just after their interaction with the system S. The entanglement of

qubits indicates the presence of nonclassical temporal correlations of the input field and it is

the reason of the non-Markovianity of evolution of the open system. Starting from the discrete

description, the model of the continuous in time measurement and evolution of S was obtained in

the limit, when the time of the interaction of individual qubits with S tends to zero. The filtering
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equations were obtained for two types of the measurement of the output field: photodetection

and heterodyne measurement. In the paper the formulae for the quantum trajectories for the

counting process and the photon counting probabilities which define the whole statistics of

photons in the output field were determined. Moreover, an intuitive and rigorous interpretation

to the quantum trajectories was given. The stochastic equations derived in this paper are

consistent with the results obtained [43,48,57] and [P2].

The paper [H1] considers a quantum system S of the Hilbert space HS interacting with the

environment consisting of a sequence of two-level systems which interact in turn one by one with

the system S each during the time interval of the length τ . The Hilbert space of the environment

is

HE =
+∞⊗
k=0

HE,k, (67)

where HE,k = C2 is the Hilbert space of the qubit interacting with S in the time interval

[kτ, (k + 1)τ). Let us notice that the Hilbert space HE can be split as a tensor product

HE = Hj−1]
E ⊗H[j

E , H
j−1]
E =

j−1⊗
k=0

HE,k , H
[j
E =

+∞⊗
k=j

HE,k. (68)

If jτ is the current moment then Hj−1]
E can be interpreted as the part of the space of the

environment which refers to two-level systems which have already interacted with S and H[j
E

as the space referring to two-level systems which have not interacted with S yet. The ground

and excited states of the qubit of number k we will denote respectively by |0⟩k and |1⟩k. It was

assumed that the environment is prepared in the state

|1ξ⟩ =

+∞∑
k=0

√
τξkσ

+
k |vac⟩, (69)

where |vac⟩ = |0⟩0 ⊗ |0⟩1 ⊗ |0⟩2 ⊗ |0⟩3 . . . is the vacuum vector defined in HE , the operators

σ−k = |0⟩k⟨1|, σ+k = |1⟩k⟨0| act non-trivially only in the space HE,k, and
+∞∑
k=0

|ξk|2τ = 1. In order

to simplify the notation we omit a multiplication by identity operators. Note that |1ξ⟩ has the

additive decomposition property

|1ξ⟩ =
√
τ

j∑
k=0

ξkσ
+
k |vac⟩+

√
τ

+∞∑
k=j+1

ξkσ
+
k |vac⟩ (70)

and one can check the identities

σ−k |1ξ⟩ =
√
τξk|vac⟩, σ+k σ

−
k |1ξ⟩ =

√
τξk|1k⟩. (71)

The vector |1ξ⟩ can be written in the form

|1ξ⟩ =

+∞∑
k=0

√
τξk|1k⟩, (72)

where |1k⟩ = |0⟩0 ⊗ |0⟩1 ⊗ . . . |0⟩k−1 ⊗ |1⟩k ⊗ |0⟩k+1 ⊗ |0⟩k+2 . . .. Thus |ξk|2τ is the probability

that qubit of number k is prepared in the upper state and all the others qubits are in their
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ground states. Let us stress that the environmental state |1ξ⟩ is highly entangled (depending

on the profile ξk). The state |1ξ⟩ is a discrete analogue of a single-photon state in the model of

continuous modes [37,39,40]

|1ξ⟩ =

∫ +∞

0
ξ(t)dB†

t |vac⟩ (73)

with ξ ∈ C and the normalization ⟨1ξ|1ξ⟩ =
∫∞
0 |ξ(t)|

2dt = 1. In the model of repeated interac-

tions the unitary operator defining the evolution of the total system up to the time jτ is given

by

Ujτ = Vj−1Vj−2 . . .V0, U0 = 1, (74)

where Vk acts non-trivially only in the space HE,k ⊗HS and Vk = exp (−iτHk), where Hk is a

bipartite Hamiltonian acting on HE,k ⊗HS such that

Hk = HS +
i√
τ

(
σ+k ⊗ L− σ

−
k ⊗ L

†
)
. (75)

We set ℏ = 1 throughout the text. The Hamiltonian Hk is written in the interaction picture

eliminating the free evolution of the field. Here HS stands for the Hamiltonian of S, σ+k and σ−k
denote respectively the raising and lowering operators acting in HE,k. From the mathematical

point of view, L is an arbitrary bounded operator on HS . One can consider S being a two-level

atom and define L as
√

Γσ−, where Γ is a positive coupling constant and σ− is the atom lowering

operator. If S is a one-sided cavity, then L =
√

Γa, where a is the annihilation operator of a

cavity mode. Since HE,k = C2 one has the following representation

Vk =

(
V00 V01

V10 V11

)
, (76)

with Vij being the system operators and one easily finds

V00 = 1S − iτHS − τ
1

2
L†L+O(τ2), V10 =

√
τL+O(τ3/2), (77)

V01 = −
√
τL† +O(τ3/2), V11 = 1S +O(τ). (78)

The initial state of the composed E + S system is the pure product state of the form

|1ξ⟩ ⊗ |ψ⟩. (79)

The state of the composed system at time jτ (after j interaction) is thus given as Uj−1|1ξ⟩⊗|ψ⟩.
Taking the partial trace over the environment, we obtain the reduced state of S at time jτ :

ϱj = TrE

[
Uj−1|1ξ⟩⟨1ξ| ⊗ |ψ⟩⟨ψ|U †

j−1

]
. (80)

It is assumed that that after each interaction a measurement is performed on the last qubit

which has just interacted with S. In the paper an evolution of S conditioned on the results

of the measurements performed subsequently on the environment qubits at the time instances

τ, 2τ, 3τ, . . . was determined. First the measurement of the observable

σ+k σ
−
k = |1⟩k⟨1|, k = 0, 1, 2, . . . (81)

was considered. The following theorem was proved.
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Theorem 1 The conditional state of S and the part of the environment which has not interacted

with S up to jτ for the measurement of (81) at the moment jτ is given by

|Ψ̃j|ηηηj ⟩ =
|Ψj|ηηηj ⟩√
⟨Ψj|ηηηj |Ψj|ηηηj ⟩

, (82)

where |Ψj|ηηηj ⟩ is the unnormalized conditional vector of the form

|Ψj|ηηηj ⟩ =
√
τ

+∞∑
k=j

ξkσ
+
k |vac⟩[j,+∞) ⊗ |αj|ηηηj ⟩+ |vac⟩[j,+∞) ⊗ |βj|ηηηj ⟩ (83)

where ηηηj is a binary j-vector ηηηj = (ηj , ηj−1, . . . , η1) with ηk ∈ {0, 1}, which represents results

of all measurements of (81) up to the time jτ . We use the notation with |vac⟩[j,+∞) = |0⟩j ⊗
|0⟩j+1⊗. . .. The vectors |αj|ηηηj ⟩, |βj|ηηηj ⟩ from the Hilbert space HS satisfy the recurrence stochastic

equations

|αj+1|ηηηj+1
⟩ = Vηj+10|αj|ηηηj ⟩, (84)

|βj+1|ηηηj+1
⟩ = Vηj+10|βj|ηηηj ⟩+

√
τξjVηj+11|αj|ηηηj ⟩ (85)

and the initial condition |α0⟩ = |ψ⟩, |β0⟩ = 0.

The conditional vectors |αj|ηηηj ⟩, |βj|ηηηj ⟩ depend on all results of the measurements of (81) up

to the time jτ . The vector |Ψ̃j|ηηηj ⟩ indicates that the system S becomes entangled with this part

of the environment which has not interacted with S yet. The physical interpretation of |Ψj|ηηηj ⟩
is very intuitive. Namely, the first term in (83) represents the following scenario: all qubits of

the environment up to time jτ were prepared in the ground state and the qubit prepared in the

excited state appears only in the future. The second term represents the situation in which S has

already interacted with the qubit prepared in the excited state and in the future it will interact

with the environment being in the vacuum. Clearly, sooner or later, it depends on the profile

ξk, the system S meets the qubit prepared in the excited state, so finally only the second term

gives non-zero contribution to (83), and |Ψj|ηηηj ⟩ becomes separable. The paper [H1] provides a

general solution to the set of equations (84) and (85).

In order to obtain the state of S conditioned on all results of the measurements up to the

time jτ , one has to perform a partial trace of |Ψ̃j|ηηηj ⟩⟨Ψ̃j|ηηηj | with respect to the environment

degrees of freedom (the future space of the environment). Thus the a posteriori state of S at

the time jτ is

ρ̃j|ηηηj =
ρj|ηηηj

Trρj|ηηηj
, (86)

where

ρj|ηηηj = |αj|ηηηj ⟩⟨αj|ηηηj |
+∞∑
k=j

τ |ξk|2 + |βj|ηηηj ⟩⟨βj|ηηηj |. (87)

The probability of a particular trajectory ηηηj registered from time 0 to jτ is therefore given by

Trρj|ηηηj . ηk (k = 1, 2, . . .) are random variables with values {0, 1} and hence one deals with

the discrete stochastic process (ηj , ηj−1, . . . , η1). A single realization of this process consists of
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zeros and ones. Let us simplify our notation by skipping the condition ηηηj . The conditional

expectations for ηj+1 were determined:

E[ηj+1|ρ̃j ] = kjτ +O(τ2), E[(ηj+1)
2|ρ̃j ] = kjτ +O(τ2), (88)

where

kj = Tr

(
L†Lρ̃j +

ξ∗j
Trρj

L|βj⟩⟨αj |+
ξj

Trρj
|αj⟩⟨βj |L† +

|ξj |2

Trρj
|αj⟩⟨αj |

)
. (89)

They define expectation values that depend on all the results of measurements from previous

moments. The paper defines a discrete stochastic process

nj =

j∑
k=1

ηk (90)

with the increment ηj+1 = nj+1 − nj =: ∆nj having two possible values: 0 and 1. It was shown

that the stochastic evolution of S corresponding to the process (90) is described by the set of

coupled discrete filtering equations:

ρ̃j+1 = ρ̃j − i[HS , ρ̃j ]τ −
1

2

{
L†L, ρ̃j

}
τ + LρjL

†τ + [|α̃j⟩⟨β̃j |, L†]ξjτ + [L, |β̃j⟩⟨α̃j |]ξ∗j τ (91)

+

{
1

kj

(
Lρ̃jL

† + L|β̃j⟩⟨α̃j |ξ∗j + |α̃j⟩⟨β̃j |L†ξj + |α̃j⟩⟨α̃j ||ξj |2
)
− ρ̃j

}
(∆nj+1 − kjτ),

|α̃j+1⟩⟨β̃j+1| = |α̃j⟩⟨β̃j | − i
[
HS , |α̃j⟩⟨β̃j |

]
τ − 1

2

{
L†L, |α̃j⟩⟨β̃j |

}
τ

+ L|α̃j⟩⟨β̃j |L†τ + [L, |α̃j⟩⟨α̃j |] ξ∗j τ

+

{
1

kj

(
L|α̃j⟩⟨β̃j |L† + L|α̃j⟩⟨α̃j |ξ∗j

)
− |α̃j⟩⟨β̃j |

}
(∆nj+1 − kjτ), (92)

|α̃j+1⟩⟨α̃j+1| = |α̃j⟩⟨α̃j | − i [HS , |α̃j⟩⟨α̃j |] τ −
1

2

{
L†L, |α̃j⟩⟨α̃j |

}
τ + L|α̃j⟩⟨α̃j |L†τ

+

{
1

kj
L|α̃j⟩⟨α̃j |L† − |α̃j⟩⟨α̃j |

}
(∆nj+1 − kjτ) (93)

with the initial condition ρ̃0 = |ψ⟩⟨ψ|, |α̃0⟩⟨β̃0| = 0, and |α̃0⟩⟨α̃0| = |ψ⟩⟨ψ|. Here we have

introduced |α̃j⟩ = |αj⟩
√

Trρj , |β̃j⟩ = |βj⟩
√

Trρj . These discrete stochastic equations specify

the stochastic evolution of the system S for the measurement of (81). The operator ρ̃j is the

normalised conditional state of the system S. The paper simplifies the notation of vectors and

conditional operators by dropping the subscript ηηηj . In the continuous-time limit, τ → 0, one

obtains from (91)-(93) the set of differential filtering equations

dρ̃t = −i[HS , ρ̃t]dt−
1

2

{
L†L, ρ̃t

}
dt+ Lρ̃tL

†dt+ [ρ̃01t , L
†]ξtdt+ [L, ρ̃10t ]ξ∗t dt

+

{
1

kt

(
Lρ̃tL

† + Lρ̃10t ξ
∗
t + ρ̃01t L

†ξt + ρ̃00t |ξt|2
)
− ρ̃t

}
(dn(t)− ktdt) , (94)

dρ̃01t = −i[HS , ρ̃
01
t ]dt− 1

2

{
L†L, ρ̃01t

}
dt+ Lρ̃01t L

†dt+
[
L, ρ̃00t

]
ξ∗t dt

+

{
1

kt

(
Lρ̃01t L

† + Lρ̃00t ξ
∗
t

)
− ρ̃01t

}
(dn(t)− ktdt) , (95)
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dρ̃00t = −i[HS , ρ̃
00
t ]dt− 1

2

{
L†L, ρ̃00t

}
dt+ Lρ̃00t L

†dt

+

(
1

kt
Lρ̃00t L

† − ρ̃00t
)

(dn(t)− ktdt) , (96)

where ρ̃10t = (ρ̃01t )† and the initial condition ρ̃0 = |ψ⟩⟨ψ|, ρ̃010 = 0, and ρ̃000 = |ψ⟩⟨ψ|. Here n(t)

is the continuous-time stochastic counting process describing the counting of the photons in the

output field. For the increment dn(t) = n(t+ dt)− n(t), one gets the Itô rule (dn(t))2 = dn(t).

The mean conditional value of dn(t) was obtained

E[dn(t)|ρ̃t] = ktdt, (97)

where

kt = Tr
(
L†Lρ̃t + Lρ̃10t ξ

∗
t + ρ̃01t L

†ξt + ρ̃00t |ξt|2
)
. (98)

This is the conditional mean value of the number of photons in the interval from t to t + dt

dependent on the measurement results up to time t. In the time interval of the length dt, one

can measure at most one photon.

For the non-selective measurement, we obtain from (94)-(96) a priori evolution of S given

by

˙̃ρt = −i[HS , ρ̃t]−
1

2

{
L†L, ρ̃t

}
+ Lρ̃tL

† + [ρ̃01t , L
†]ξt + [L, ρ̃10t ]ξ∗t , (99)

˙̃ρ01t = −i[HS , ρ̃
01
t ]− 1

2

{
L†L, ρ̃01t

}
+ Lρ̃01t L

† +
[
L, ρ̃00t

]
ξ∗t , (100)

˙̃ρ00t = −i[HS , ρ̃
00
t ]− 1

2

{
L†L, ρ̃00t

}
+ Lρ̃00t L

†. (101)

The paper [H1] also describes the statistics of photons in the output field. Let us note that

all realization of the counting process n(t) may be divided into disjoint sectors that contain

realizations with exactly m counts at some moments tm > . . . > t2 > t1 > 0 and no other

photons from 0 to t. Denote by pt0(tm, tm−1, . . . , t2, t1) the probability density of observing a

particular trajectory corresponding to m counts at t > tm > . . . > t2 > t1 > 0 and no other

photons from zero to t (called also an exclusive probability density). It was shown that

pt0(tm, tm−1, . . . , t2, t1)dtmdtm−1 . . . dt1 =|| |αt|tm,...,t1⟩ ||
2

∫ +∞

t
dt′|ξt′ |2 + || |βt|tm,...,t1⟩ ||

2.

Thus having in disposal the recipes for the conditional vectors, one can describe the whole

statistics of photons in the output field. The probability of no counts up to time t is

P t
0(0) = || |αt|0t

⟩ ||2
∫ +∞

t
dt′|ξt′ |2 + || |βt|0t

⟩ ||2. (102)

The probability of having exactly m counts up to time t reads

P t
0(m)=

∫ t

0
dtm

∫ tm

0
dtm−1. . .

∫ t2

0
dt1p

t
0(tm,tm−1,. . .,t2, t1). (103)
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Introducing a non-Hermitian Hamiltonian G = HS− i
2L

†L and the corresponding (non-unitary)

propagator Tt = e−iGt, one finds

|αt|0t
⟩ = Tt|ψ⟩, |βt|0t

⟩ = −
∫ t

0
dt′Tt−t′ξt′L

†Tt′ |ψ⟩. (104)

For a count at the time t′ and no other counts in the interval from zero to t we have the

conditional vectors

|αt|t′⟩ =
√
dt′Tt−t′LTt′ |ψ⟩, (105)

|βj|t′⟩ =
√
dt′
[
Ttξt′ −Tt−t′L

(∫ t′

0
dsTt′−sξsL

†Ts

)

−
(∫ t

t′
dsTt−sξsL

†Ts−t′

)
LTt′

]
|ψ⟩. (106)

For two counts at t′ and t′′, where 0 < t′ < t′′, and no other counts in the interval from zero to

t, one gets

|αt|t′′,t′⟩ =
√
dt′′dt′Tt−t′′LTt′′−t′LTt′ |ψ⟩, (107)

|βt|t′′,t′⟩ =
√
dt′′dt′

[
Tt−t′′LTt′′ξt′ + Tt−t′ξt′′LTt′

−Tt−t′′LTt′′−t′L
(∫ t′

0
dsTt′−sξsL

†Ts

)
−Tt−t′′L

(∫ t′′

t′
dsTt′′−sξsL

†Ts−t′

)
LTt′

−
(∫ t

t′′
dsTt−sξsL

†Ts−t′′

)
LTt′′−t′LTt′

]
|ψ⟩. (108)

At first sight the above formulae seem to be complicated but the physical interpretation of

individual terms are very intuitive. The term defined by the conditional vector |αt⟩ gives the

contribution to the probability of particular trajectory conditioned on the assumption that the

two level system of the environment prepared in the upper state will appear after the time t, so

all photons measured by us up to t were emitted by the system S. The conditional vector |βt⟩
gives a contribution to the probability based on the assumption that the system S has already

interacted with the two level system of the environment prepared in the upper state.

In the paper [H1] the measurement of the observable

σxk = σ+k + σ−k = |+⟩k⟨+| − |−⟩k⟨−|, (109)

with k = 0, 1, 2, . . ., and

|+⟩k =
1√
2

(|0⟩k + |1⟩k) , |−⟩k =
1√
2

(|0⟩k − |1⟩k) , (110)

being vectors from the Hilbert space HE,k, was also considered.
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Theorem 2 The conditional state of S and this part of the environment which has not interacted

with S up to the time jτ at the moment jτ for the measurement of (109) can be written in the

form of

|Ψ̃j⟩ =
|Ψj⟩√
⟨Ψj |Ψj⟩

, (111)

where |Ψj⟩ is the unnormalized conditional vector of the form

|Ψj⟩ =
√
τ

+∞∑
k=j

ξkσ
+
k |vac⟩[j,+∞) ⊗ |αj⟩+ |vac⟩[j,+∞) ⊗ |βj⟩ (112)

with the conditional vectors |αj⟩, |βj⟩ which satisfy the following recurrence equations

|αj+1⟩ =
1√
2

(V00 + qj+1V10) |αj⟩, (113)

|βj+1⟩ =
1√
2

[
(V00 + qj+1V10) |βj⟩+

√
τξj (V01 + qj+1V11) |αj⟩

]
(114)

with the initial condition |α0⟩ = |ψ⟩, |β0⟩ = 0. By qj+1 = 1,−1 we indicated the result of the

measurement performed at (j + 1)τ on the j-th qubits in the basis (110).

In the paper we defined the stochastic process

wj =
√
τ

j∑
k=1

(
qk − rk−1

√
τ
)
, (115)

where

rj = Tr
(
Lρ̃j + ρ̃jL

† + |β̃j⟩⟨α̃j |ξ∗j + |α̃j⟩⟨β̃j |ξj
)
, (116)

where ρ̃j is the a posteriori state of S at jτ , |α̃j⟩ = |αj⟩/
√

Trρj , and |β̃j⟩ = |βj⟩/
√

Trρj . The

mean conditional values E[qk|ρ̃k−1] ≃ rk−1
√
τ , E[(qk)2|ρ̃k−1] ≃ 1. It was shown in the paper

that the set of difference stochastic equations of S for the process (115) has the form

ρ̃j+1 − ρ̃j = −i[HS , ρ̃j ]τ −
1

2
{L†L, ρ̃j}τ + Lρ̃jL

†τ + [|α̃j⟩⟨β̃j |, L†]ξjτ + [L, |β̃j⟩⟨α̃j |]ξ∗j τ

+

(
Lρ̃j + ρ̃jL

† + |β̃j⟩⟨α̃j |ξ∗j + |α̃j⟩⟨β̃j |ξj − ρ̃jrj
)

∆wj+1, (117)

|α̃j+1⟩⟨β̃j+1| = |α̃j⟩⟨β̃j | − i[HS , |α̃j⟩⟨β̃j |]τ −
1

2
{L†L, |α̃j⟩⟨β̃j |}τ

+ L|α̃j⟩⟨β̃j |L†τ + [L, |α̃j⟩⟨α̃j |]ξ∗j τ

+

(
L|α̃j⟩⟨β̃j |+ |α̃j⟩⟨β̃j |L† + |α̃j⟩⟨α̃j |ξ∗j − |α̃j⟩⟨β̃j |rj

)
∆wj+1, (118)

|α̃j+1⟩⟨α̃j+1| = |α̃j⟩⟨α̃j | − i[HS , |α̃j⟩⟨α̃j |]τ −
1

2
{L†L, |α̃j⟩⟨α̃j |}τ + L|α̃j⟩⟨α̃j |L†τ

+

(
L|α̃j⟩⟨α̃j |+ |α̃j⟩⟨α̃j |L† − |α̃j⟩⟨α̃j |rj

)
∆wj+1, (119)
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where ∆wj+1 = wj+1 −wj = qj+1
√
τ − rjτ . The process wj in the limit τ → 0 converges to the

Wiener process. In the limit τ → 0 we obtain the following stochastic differential equations of

the form

dρ̃t = −i[HS , ρ̃t]dt−
1

2

{
L†L, ρ̃t

}
dt+ Lρ̃tL

†dt+ [ρ̃01t , L
†]ξtdt+ [L, ρ̃10t ]ξ∗t dt

+
(
Lρ̃t + ρ̃tL

† + ρ̃01t ξt + ρ̃10t ξ
∗
t − ρ̃trt

)
dw(t), (120)

dρ̃01t = −i[HS , ρ̃
01
t ]dt− 1

2

{
L†L, ρ̃01t

}
dt+ Lρ̃01t L

†dt+
[
L, ρ̃00t

]
ξ∗t dt

+
(
Lρ̃01t + ρ̃01t L

† + ρ̃00t ξ
∗
t − ρ̃01t rt

)
dw(t), (121)

dρ̃00t = −i[HS , ρ̃
00
t ]dt− 1

2

{
L†L, ρ̃00t

}
dt+ Lρ̃00t L

†dt

+
(
Lρ̃00t + ρ̃00t L

† − ρ̃00t rt
)
dw(t), (122)

where rt = Tr
(
Lρ̃t + ρ̃tL

† + ρ̃10t ξ
∗
t + ρ̃01t ξt

)
, ρ̃10t = (ρ̃01t )†, and initially we have ρ̃0 = |ψ⟩⟨ψ|,

ρ̃010 = 0, and ρ̃000 = |ψ⟩⟨ψ|.

The results published in [H1] can be applied to various quantum systems interacting with

the wave packet in the single-photon state. In the paper [H2], as the system S, I considered a

two-level atom. Using the general formulae from [H1], I determined the conditional evolution

of the two-level atom for the counting observation. The aim of the study was to show the

connection between conditional and unconditional evolution and use the quantum trajectories

to determine the statistics of photons in the output field. An important part of the paper was

also a presentation of the interpretation of quantum trajectories for the case when the Bose field

interacts with a two-level atom.

The a priori state of a quantum system interacting with the field in the single-photon state

in the representation of the counting stochastic process n(t) has the form

ϱ̃t = ρt|0 +
+∞∑
m=1

∫ t

0
dtm . . .

∫ t3

0
dt2

∫ t2

0
dt1ρt|tm,...,t2,t1 , (123)

where ρt|tm,...,t2,t1 is a conditional operator defined by the

ρt|cond = |αt|cond⟩⟨αt|cond|
∫ +∞

t
ds|ξs|2 + |βt|cond⟩⟨βt|cond|, (124)

where |αt|cond⟩, |βt|cond⟩ are conditional vectors depending on the results of photon counts in the

output field up to time t. The sum is taken over all possible pathways of the photon detection for

the number of photons ranging from m = 0 to m =∞ from the time 0 to t. The quantity Trρt|0

is the probability of lack of any detections from 0 to t, while Trρt|tm,...,t2,t1 for all m ≥ 1 is the

probability density of detecting photons at times t1, t2, . . . , tm such that 0 < t1 < t2 < . . . < tm

and no other photons from 0 to t. Clearly, for the two-level system, the sum has at most two

non-zero terms. In the case where initially the atom is in an excited state, two photons will be
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eventually counted in the output field. The formula given in this paper is a generalisation of the

well-known formula for solving the master equation for the field in the vacuum state, which can

be found, for example, in [6].

I assumed in the paper [H2] that the system S is a two-level atom with the eigenstates |g⟩
and |e⟩, and

HS = −∆0σz, L =
√

Γσ−, (125)

where Γ ∈ R+, σ− = |g⟩⟨e|, σz = |e⟩⟨e| − |g⟩⟨g|, and ∆0 = ωc − ω0, where ω0 is the frequency

transition between atomic states, ωc is the carrier frequency of the input wave packet. Using the

formulae determined in [H1], I obtained the conditional vectors relating the absence of photons

in the interval from 0 up to t of the form

|αt|0⟩ =
(
e−i∆0t|g⟩⟨g|+ e(i∆0−Γ

2 )t|e⟩⟨e|
)
|ψ0⟩, (126)

|βt|0⟩ = −
√

Γe(i∆0−Γ
2 )t
∫ t

0
dsξse

(−2i∆0+
Γ
2 )s|e⟩⟨g|ψ0⟩, (127)

where |ψ0⟩ is the initial state of the system. It is seen from the formulae that when the two-level

atom was initially in the ground state and we have not observed any photons up to the time t,

it means that the atom has not met the external photon yet and it is still in the ground state

or it has already met the photon, it absorbed this photon and after the absorption the system

stayed in the excited state up to t. If the atom was initially in the excited state and we have

not observed any photons up to t, it implies that only one scenario has made real—the system

has not met the external photon yet and it is still in the excited state (only the vector |αt|0⟩
gives non-zero contribution to the conditional state of the system). Knowledge of the vectors

(126), (127) allowed me to obtain the unnormalized conditional state of the two-level atom for

not observing any photon up to the time t,

ρt|0 =
(
e−i∆0t|g⟩⟨g|+ e(i∆0−Γ

2 )t|e⟩⟨e|
)
|ψ0⟩⟨ψ0|

×
(
ei∆0t|g⟩⟨g|+ e(−i∆0−Γ

2 )t|e⟩⟨e|
)∫ +∞

t
ds|ξs|2

+ Γe−Γt

∣∣∣∣∫ t

0
dsξse

(−2i∆0+
Γ
2 )s
∣∣∣∣2 |⟨ψ0|g⟩|2|e⟩⟨e|. (128)

By taking the trace of (128), I obtained the probability of not detecting any photons up to t,

Pt(0) =
(
|⟨ψ0|g⟩|2 + e−Γt|⟨ψ0|e⟩|2

) ∫ +∞

t
ds|ξs|2

+ Γe−Γt|⟨ψ0|g⟩|2
∣∣∣∣∫ t

0
dsξse

(−2i∆0+
Γ
2 )s
∣∣∣∣2 . (129)

The first expression refers to the possibility that the system will meet the photon after the time

t, the second term is the probability of absorption of the photon before t and staying after this

absorption in the excited state up to t. Of course, one can easily generalize this expression to

the case of an arbitrary initial state of the system.

For a detection of one photon in the interval [t1, t1 + dt) and no other photons from 0 to t, I

obtained

|αt|t1⟩ =
√

Γe−i∆0te(2i∆0−Γ
2 )t1 |g⟩⟨e|ψ0⟩, (130)
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|βt|t1⟩ = e−i∆0t

[(
ξt1 − Γ

∫ t1

0
dsξse

(2i∆0−Γ
2 )(t1−s)

)
|g⟩⟨g|

+e(2i∆0−Γ
2 )t
(
ξt1 − Γ

∫ t

t1

dsξse
(2i∆0−Γ

2 )(t1−s)

)
|e⟩⟨e|

]
|ψ0⟩. (131)

Thus when the two-level atom was initially prepared in the ground state, then we have |αt|t1⟩ = 0

and the only two scenarios of events are possible. Namely, we detected the photon coming from

the external field or the atom absorbed the photon before time t1, then emitted it at interval

[t1, t1+dt), and stayed in the ground state up to t. These two scenarios are described respectively

by the first and second terms of the formula for |βt|t1⟩. If the atom was initially in the excited

state, it might not meet the photon before t, and we observed the photon emitted by the system

or the atom has met the external photon before t, then we detected it directly from the field

or the atom emitted the photon at t1, then absorbed the photon from the field, and after this

stayed in the excited state up to t.

For detection of two photons at the intervals [t1, t1 + dt) and [t2, t2 + dt) such that 0 < t1 <

t2 < t and no other photons from 0 to t, we have

|αt|t2,t1⟩ = 0, (132)

|βt|t2,t1⟩ =
√

Γe−i∆0te(2i∆0−Γ
2 )(t1+t2)

(
ξt1e

−(2i∆0−Γ
2 )t1 + ξt2e

−(2i∆0−Γ
2 )t2

− Γ

∫ t2

t1

dsξse
(−2i∆0+

Γ
2 )s

)
|g⟩⟨e|ψ0⟩. (133)

Thus if we observed two photons we are certain that the system has already met the photon

(|αt|t2,t1⟩ = 0). The terms in (133) correspond respectively to the following scenarios:

• the first photon came directly from the field and the second one was emitted by the atom,

• the first photon was emitted by the atom and the second one came from the field,

• the first photon was emitted by the atom, then the atom absorbed the photon from the

field, and it emitted the photon at t2.

All these possibilities we have to consider when the initial value of the probability of being in

the excited state is non-zero. Of course, all the others conditional vectors vanish according to

the fact that in our scheme we can not detect more than two photons.

Taking an average over all quantum trajectories, I have determined a general formula for the
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a priori state of an atom of the form

ϱ̃t =

[
1− Γe−Γt

∣∣∣∣∫ t

0
dsξse

γs

∣∣∣∣2
−⟨e|ρ0|e⟩e−Γt

(
1− 4ΓRe

∫ t

0
dt1ξ

∗
t1e

γ∗t1

∫ t1

0
dsξse

−γ∗s

)]
|g⟩⟨g|

+⟨e|ρ0|g⟩e−γt

(
1− 2Γ

∫ t

0
dt1ξt1e

−γ∗t1

∫ t1

0
dsξ∗se

γ∗s

)
|e⟩⟨g|

+⟨g|ρ0|e⟩e−γ∗t

(
1− 2Γ

∫ t

0
dt1ξ

∗
t1e

−γt1

∫ t1

0
dsξse

γs

)
|g⟩⟨e|

+

[
Γe−Γt

∣∣∣∣∫ t

0
dsξse

γs

∣∣∣∣2
+⟨e|ρ0|e⟩e−Γt

(
1− 4ΓRe

∫ t

0
dt1ξ

∗
t1e

γ∗t1

∫ t1

0
dsξse

−γ∗s

)]
|e⟩⟨e|, (134)

where γ = −2i∆0 + Γ
2 and ρ0 is the initial state of the atom. This is the general formula for

the state of the two-level atom interacting with the single-photon wavepacket. It is seen that it

depends on the initial state of the system and on the shape of the wavepackage. For the atom

being initially in the ground state, we can get from (134) the known in the literature [45,47] the

probability of the excitation of the system

P (t) = Γe−Γt

∣∣∣∣∫ t

0
dsξse

γs

∣∣∣∣2 . (135)

The decomposition of the reduced state into quantum trajectories benefits from formulae

for the probability densities of photon counts in the output field. These formulae allow to fully

characterize the photon statistics of the output field. In the paper [H2], I have also shown how

conditional vectors can be used to derive formulae for the probability distributions of waiting

times for photons in the output field. They allow, of course, to obtain the mean times of photon

counts. The mean time of the first count is given by the formula

t1 =

∫ +∞

0
dt1t1p(t1), (136)

where

p(t1) = e−Γt1

(
Γ

∫ +∞

t1

ds|ξs|2 + |ξt1 |2
)
⟨e|ρ0|e⟩

+

∣∣∣∣ξt1 − Γ

∫ t1

0
dsξse

(2i∆0−Γ
2 )(t1−s)

∣∣∣∣2 ⟨g|ρ0|g⟩. (137)

For the mean time of the second count we have the formula

t2 =

∫ +∞

0
dt2t2

∫ t2

0
dt1p(t2, t1) (138)

with

p(t2, t1) = Γe−Γ(t1+t2)

∣∣∣∣ξt1e−(2i∆0−Γ
2 )t1 + ξt2e

−(2i∆0−Γ
2 )t2 − Γ

∫ t2

t1

dsξse
(−2i∆0+

Γ
2 )s
∣∣∣∣2 ⟨e|ρ0|e⟩.(139)
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Figure 3: The system S interacts with a bidirectional field: the right-going single-photon pulse

|1ξ⟩ and the left-going vacuum.

In the paper [H2], I also showed that the stochastic process, n(t), describing photon counts in

the output field, can be associated for a fixed time t with a positive-operator valued measure

{Mt|m} labelled by the number of photons recorded m = 0, 1, 2 up to time t. This allowed

me to obtain a general formula for the mean number of photons recorded between moments 0

and t and the Mandel parameter, Qt, for the output field. In the final section, the results are

illustrated graphically for two pulses: rectangular and exponential with decreasing values.

The paper [H3] is devoted to the scattering of a wave packet in the single-photon state on a

quantum system. The scattering of light on a quantum system is one of core issues in quantum

optics. Many efforts have been put recently to describe the scattering of light prepared in the

N -photon state on quantum systems. The aim of the paper [H3] was to show that the collision

model and quantum trajectories provide convenient tools for analysing the scattering of light in

non-classical states on quantum systems. I formulated the problem of interaction of quantum

system S with a bidirectional boson field defined as two collections of “ancillas” which are two-

level systems (qubits). One of these collections is prepared in an entangled state being a discrete

analogue of the continuous-mode single photon state, and the second collection is prepared in

the vacuum, which means that all its qubits are in the ground state. One can imagine that

one chain describes the field going to the right and the second one refers to the field going to

the left. I assumed that the qubits do not interact with each other but qubits of each chain

interact subsequently with the system S. At a given moment S interacts with only two qubits:

one coming from the left and the other one coming from the right. Any interaction (“collision”)

has the same duration and each of the bath qubits interacts with the system only once. After

the interaction with the system S, a double measurement is performed: one on the field going

to the right and the other on the field going to the left. The schematic of the collision dynamics

is shown in Fig. 3.

Using the collision model and stochastic tools, I determined the photon counting statistics

for a bidirectional output field. First, I determined analytical formulae for discrete quantum

trajectories associated with a two-dimensional counting process to then obtained formulae for

a continuous in time observation of the output field. These expressions have general form and

can be used to characterise the scattering of light on different quantum systems.

As an example of application of the formulae obtained, I considered the light scattering on a
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two-level atom. In addition to a full characterisation of the number of photons counted for the

light in both directions, the paper [H3] also contains expressions for the probability densities

of times of photon detections. These formulae were determined for any photon profile and any

initial state of the atom. Using the formulae for the conditional vectors, the probabilities of no

photon counts up to a given moment, one photon count on the right and zero photons on the

left, PR(t), and vice versa, one photon count on the left and zero photons on the right, PL(t),

were derived. Moreover, the probability of two counts on the right, PRR(t), and the probability

of two counts on the left, PLL(t), up to t were determined. And probabilities of detection from

the left and then from the right, PRL(t), and respectively first from the right and then from the

left, PLR(t), up to time t. The corresponding probability densities depend on the initial state

of the atom, the profile of the photon, and the value of the detuning. On this basis, the mean

number of counts on the left, ⟨NL(t)⟩, and the mean number of counts on the right, ⟨NR(t)⟩, up

to a given moment were found. Example results for an exponentially decaying pulse are shown

in Figure 4. Of course, these results also allow us to find asymptotic probabilities of photon

transition and reflection, which are in agreement with the results obtained in the papers [95–98]

by the other methods. In the paper [H3], I provided general formulae for the asymptotic values

of the probabilities characterising the scattering for an arbitrary initial state of the atom and

for a photon with a decaying exponential profile.

The effect of the single-photon field on the evolution of the two-level atom, in addition to

the detuning magnitude, depends on the shape of the pulse and how long the pulse lasts, or

more precisely on the relationship between the time of interaction of the pulse with the two-

level system and the lifetime of the excited state of the atom due to spontaneous emission. The

results of the paper [H3] show how by changing the parameters of the pulse one can influence the

process of scattering. In order for a photon to be scattered in another direction, it must interact

long enough with an atom to be absorbed beforehand. In [H3] I also determined expressions for

the mean time of photon counts for the given profile.

The results of the paper [H3] can be directly used to determine statistics for the light scat-

tering on the other quantum systems, for instance, on a cavity mode. The results also allow us

to obtain a formula for the state of the output field. A comprehensive supplement to the paper

[H3] contains the derivation of a set of filtering equations for a quantum system interacting with

a bidirectional field.

4.2.5 Non-Markovian dynamics of a qubit interacting with a single-photon wavepacket

Any real quantum system is never perfectly isolated and hence has to be treated as an open

system [8]. Therefore, its evolution is no longer unitary and gives rise to well-known processes of

dissipation, decay, and decoherence induced by the nontrivial system–environment interaction.

When the interaction between the system and the environment is sufficiently weak and the

experimental conditions allow the use of the Markov approximation, the evolution of the open

system is given by the master equation ρ̇ = Lρ, with L being the GKSL generator

L(ρ) = −i[HS , ρ] +
∑
k

γk

(
LkρL

†
k −

1

2
{L†

kLk, ρ}
)
, (140)
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Figure 4: Photon counting characteristics of the output field for the decaying exponential pulse

for the resonance case and chosen parameters together with probability densities of photon count

times for the excited atom at the initial moment.

where HS stands for the effective system’s Hamiltonian (including Lamb shift correction), Lk

are Lindblad operators, and γk ≥ 0. In non-Markovian regime due to correlations between the

system and environment the reduced evolution of the system is no longer governed by (140).

One observes characteristic memory effects such as information bacflow or recoherence.

In the paper [H4], the non-Markovian dynamics of the two-level system (qubit) interacting

with a single-photon wave packet was studied. The single-photon field is characterized by a

central frequency and a temporal profile ξ(t), where t ∈ R. It should be pointed out that ξ(t)

is the slowly varying envelope of the single-photon pulse. The temporal correlations of the

field are responsible for all non-Markovian memory effects of the qubit dynamics. The reduced

evolution of the qubit, obtained within the input-output formalism, is represented then by a

hierarchy of coupled equations. The analytical solution to this hierarchy of equations for any

initial state of the system and an arbitrary profile ξ(t) was presented in the paper and used

to show that the set of these equations is equivalent to a single time-local master equation.

The price one pays for this reduction is a highly nontrivial structure of time-dependent rates in
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the time-local master equation. The coefficients γ±(t), γz(t), governing the damping (cooling),

heating, and decoherence processes, are fully characterized by the wave packet profile and the

detuning value. Knowledge of the formulae defining these coefficients allowed us to determine

the non-Markovian indices of the qubit dynamics. It was established that in the general case, the

dynamical map governing the evolution of the qubit is not reversible, which implies singularities

of the coefficients γ±(t), γz(t), i.e. at the moments when the map is irreversible, the coefficients

are not defined. Interestingly, although the coefficients are not defined at some moments, the

master equation has a regular solution at any moment.

In this paper, a general condition for the invertibility of the dynamical map for a qubit is

found. It is shown that in the case of resonance, the evolution of a qubit can satisfy the BLP

condition, but at the same time it is never CP-divisible. It is also checked that the evolution is

eternally non-Markovian [99,100], i.e. at any time at least one of the coefficients of γ±(t), γz(t)

is negative.

The situation of a single-photon field with a decaying exponential profile is described in

detail. Here, for resonance, a general condition for the reversibility of the dynamical map

is given. The asymptotic behavior of the coefficients defining the local equation in time is

investigated analytically. It is verified that always, regardless of the photon parameters, at least

one of the coefficients at a given moment has a negative value. The paper also gives the results

of numerical analyses for the case of resonance and off-resonance. The off-resonance scenario

is much more complicated, because the number of singular points for the time-local generator

depends to a large extent on the detuning parameter.

We consider a two-level system interacting by two channels with a continuous-mode electro-

magnetic field (bidirectional field). The system interacts with the single-photon field incoming

from one side and the vacuum field incoming from the other side. The interaction Hamiltonian

in the interaction-picture has the form

Hint(t) = i
√

Γ1

(
σ−a

†
1(t)− σ+a1(t)

)
+ i
√

Γ2

(
σ−a

†
2(t)− σ+a2(t)

)
, (141)

where ai(t) and a†i (t) are quantum white-noise operators [9] obeying the communication relation

[ai(t), a
†
j(t

′)] = δijδ(t− t′), (142)

and Γ1,Γ2 are non-negative coupling constants, σ− = |g⟩⟨e|, σ+ = |e⟩⟨g|, where |e⟩ and |g⟩ denote

the excited and ground states of the qubit, respectively. In this case we obtain the following

hierarchy of coupled equations for the family of qubit operators ϱkl with k, l = 0, 1

ϱ̇11(t) = Lϱ11(t) +
√

Γ1 ξ
∗(t)[σ−, ϱ

10(t)]−
√

Γ1 ξ(t)[σ+, ϱ
01(t)], (143)

ϱ̇10(t) = Lϱ10(t)−
√

Γ1 ξ(t)
[
σ+, ϱ

00(t)
]
, (144)

ϱ̇01(t) = Lϱ01(t) +
√

Γ1 ξ
∗(t)

[
σ−, ϱ

00(t)
]
, (145)

ϱ̇00(t) = Lϱ00(t) (146)

with the super-operator

L(ϱ) = − i∆0

2
[ϱ, σz]− Γ

2
{σ+σ−, ϱ}+ Γσ−ϱσ+, (147)
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where Γ = Γ1 + Γ2, ∆0 = ωc − ω0, σz = |e⟩⟨e| − |g⟩⟨g|. Here ωc is the central frequency of the

field and ω0 is the transition frequency of the two-level system. One defines the density operator

of the system ρ(t) := ϱ11(t), and initially

ϱ11(0) = ϱ00(0) = ρ(0) , ϱ01(0) = ϱ10(0) = 0. (148)

Note, that ϱ10(t) =
(
ϱ01(t)

)†
. The qubit is initially in an arbitrary state, ρ(0). Let us emphasis

that ξt is a slowly-varying envelope of the pulse.

In this paper the solution to the hierarchy of equations (143)-(146) is given. One can check

that the dynamical map Λt representing qubit evolution has the form

ρ(0) → ρ(t) = Λtρ(0) =

(
1− Pe(t) C(t)ρge(0)

C∗(t)ρeg(0) Pe(t)

)
, (149)

where the population of the excited state Pe(t) = ρee(t) reads as follows

Pe(t) = A(t) +B(t)Pe(0), (150)

together with

A(t) = κΓe−Γt

∣∣∣∣∫ t

0
dsξ(s)e(−i∆0+

Γ
2 )s
∣∣∣∣2 , (151)

B(t) = e−Γt

(
1− 4κΓRe

∫ t

0
dsξ∗(s)e(i∆0+

Γ
2 )s
∫ s

0
dτξ(τ)e(−i∆0−Γ

2 )τ
)
, (152)

and

C(t) = e(−i∆0−Γ
2 )t
(

1− 2κΓ

∫ t

0
dsξ∗(s)e(i∆0−Γ

2 )s
∫ s

0
dτξ(τ)e(−i∆0+

Γ
2 )τ
)
. (153)

Here κ = Γ1/Γ, hence κ ∈ [0, 1]. Thus, if κ = 0, one deals with the system interacting only with

the vacuum part, and if κ = 1, we observe only an interaction with the single-photon field. The

above formulae provide a complete description of the qubit evolution for an arbitrary photon

profile ξ(t). The asymptotic state of the system is universal: the atom eventually relaxes to

the ground state |g⟩ irrespective of ξ(t). It should be stressed, however, that |g⟩⟨g| is not an

invariant state of the evolution. This is essential difference between Markovian semigroup and

non-Markovian evolution. For a semigroup an asymptotic state always defines an invariant state.

There are two essentially different scenario for the qubit evolution:

1. In this case when the quantities B(t) > 0 and |C(t)| > 0 for all t ≥ 0, the dynamical map

Λt is invertible (eigenvalues {B(t), C(t), C∗(t)} do not vanish), that is, knowing a qubit

state ρ(t) at time t one may reconstruct the initial state ρ(0).

2. The dynamical map Λt is no longer invertible, i.e. there exists t < ∞ such that either

B(t) = 0 or C(t) = 0.

To discuss non-Markovianity of qubit evolution it is convenient to introduce the correspond-

ing time-local master equation for the density matrix. The formula (149) for time evolution of

the qubit density operator ρ(t) defines a dynamical map ρ(0)→ Λtρ(0). By differentiating (149)
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with respect to time, one easily finds that Λt satisfies time-local master equation Λ̇t = LtΛt,

with the following time-local generator

Lt(ρ) = −iω(t)

2
[σz, ρ] +

γ+(t)

2

(
σ+ρσ− −

1

2
{σ−σ+, ρ}

)
+
γ−(t)

2

(
σ−ρσ+ −

1

2
{σ+σ−, ρ}

)
+
γz(t)

2
(σzρσz − ρ), (154)

where σ± = 1
2(σx± iσy), and σx, σy, σz are the Pauli operators. The real valued time-dependent

rates γ+(t), γ−(t), and γz(t), describing, respectively, pumping, damping and pure dephasing,

are defined as follows

γ+(t) = 2
Ȧ(t)B(t)−A(t)Ḃ(t)

B(t)
, γ−(t) = −2

Ḃ(t)

B(t)
− γ+(t), (155)

γz(t) =
1

2

Ḃ(t)

B(t)
−

d
dt |C(t)|
|C(t)|

=
1

2

Ḃ(t)

B(t)
− Re

Ċ(t)

C(t)
, (156)

and

ω(t) =
Ċ(t)|C(t)| − C(t) d

dt |C(t)|
iC(t)|C(t)|

= Im
Ċ(t)

C(t)
. (157)

For the time-local generator (154) one can provide the following characterization [100,101].

Theorem 3 The qubit evolution generated by (154)

• is CP-divisible iff γ±(t) ≥ 0 and γz(t) ≥ 0,

• is P-divisible iff

γ±(t) ≥ 0,
√
γ+(t)γ−(t) + 2γz(t) ≥ 0, (158)

• satisfies BLP condition iff

γ+(t) + γ−(t) ≥ 0, γ+(t) + γ−(t) + 4γz(t) ≥ 0, (159)

• satisfies a geometric criterion (13) iff

γ+(t) + γ−(t) + 2γz(t) ≥ 0, (160)

for all t ≥ 0.

The following theorem was proved in the article [H4].

Theorem 4 Let ∆0 = 0 and ξ(t) ∈ R+. If B(t) > 0 for all t > 0, then there is no information

backflow (BLP condition holds). One has C(t) > 0 for all t > 0 and the coherence, C(t)|ρge(0)|,
decreases monotonically in the course of time. Moreover,

γ+(t) ≥ 0 , γ−(t) ≥ 2Γ , γz(t) ≤ 0, (161)

and hence the evolution is eternally non-Markovian.
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The problem of non-Markovianity of the qubit evolution was illustrated by the case of the

exponential profile

ξ(t) =

0 for t < 0√
Γpe

−Γpt/2 for t ≥ 0
(162)

with Γp = αΓ and α > 0. In this case, analytical formulas for the functions A(t), B(t) and C(t)

were determined and the coefficients γ±(t), γz(t) were explicitly written for the resonance case.

It is worth noting that quite complicated formulas were obtained even in this simple example.

The following theorems were proved in this work.

Theorem 5 The maximal excitation probability for an exponential profile reads

Pmax
e =

4κ

e2
. (163)

and is realized for α = 1 and ∆0 = 0 at t = 2/Γ.

Theorem 6 In the resonance the evolution is invertible iff α ≥ 8κ+ 1.

Corollary 1 In the regular case, i.e. α ≥ 8κ+1, the evolution satisfies BLP condition, i.e. there

is no information backflow.

Theorem 7 One has the following asymptotic behaviour for γ±(t) and γz(t):

• for α ≥ 1

lim
t→∞

γ+(t) = lim
t→∞

γz(t) = 0 , lim
t→∞

γ−(t) = 2Γ, (164)

• for α ∈ (0, 1)

lim
t→∞

γ+(t) = 0 , lim
t→∞

γz(t) =
1

4
Γ(1− α) , lim

t→∞
γ−(t) = Γ(1 + α). (165)

It implies that asymptotically one has

• for α ≥ 1

Lt(ρ) → Γ

(
σ−ρσ+ −

1

2
{σ+σ−, ρ}

)
, (166)

• for α ∈ (0, 1)

Lt(ρ) → Γ(1 + α)

2

(
σ−ρσ+ −

1

2
{σ+σ−, ρ}

)
+

Γ(1− α)

8
(σzρσz − ρ). (167)

The paper also contains the results of numerical analyses. Here, sample plots for the reso-

nance case for two situations: reversible and irreversible dynamics are given, see Fig. 5 and Fig.
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Figure 5: The plots of A(t), B(t), C(t), and Pe(t) for κ = 1, ∆0 = 0 and Pe(0) = 0.5. Left:

regular case α = 9.5. Right: singular case α = 1.

Figure 6: The plots of γ+(t), γ−(t), and γz(t) for Γ = 1, κ = 1, ∆0 = 0. Left: regular case

α = 9.5. Right: singular case α = 1.

6. Numerical analysis also shows that in the resonant case, P-divisibility and BLP condition

coincide. Moreover,

∀t ≥ 0 γ+(t)γz(t) ≤ 0. (168)

In general, one sees that at least one of the three rates is negative at a given time.

The paper describes in detail the off-resonance results. The behavior of different non-

Markovian evolution indicators was compared. The reversibility of the dynamics does not guar-

antee the BLP condition here. It is checked that in this case P-divisibility and the BLP condition

do not coincide.

4.2.6 Filtering equations and quantum trajectories for an open system interacting with a field

in the Fock state

The paper [H5] describes the stochastic evolution of a quantum system interacting with the Bose

field prepared in a Fock state. The paper considers the case where the field photons have the same

time profiles. To determine the conditional evolution of the quantum system, a model of repeated

interactions and measurements was used. The environment is given there as an chain of harmonic

oscillators prepared initially in an entangled state being a discrete analogue of a continuous-
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mode N -photon state. The initial correlations between the environment elements lead to non-

Markovianity of evolution of the quantum system. The conditional evolution, described by the

set of (N + 1)2 coupled filtering equations, was determined for the counting observation of the

output field. The set of differential filtering equations was obtained by first determining the set of

difference equations for discrete evolution. In this paper, formulae for the quantum trajectories

associated with the stochastic counting process were obtained and the photon statistics of the

output field were described. The solution of the set of master equations for both discrete

and continuous evolution is also presented. For the conditional vectors that define quantum

trajectories, a diagrammatic technique is presented to facilitate their determination and give

their physical interpretation. It should be emphasised that the results obtained are of a general

nature and can be applied to various quantum open systems.

The Hilbert space of the bath is given as

HE =
+∞⊗
k=0

HE,k, (169)

where HE,k stands for the Hilbert space of the k-th harmonic oscillator which interacts with S
in the interval [kτ, (k + 1)τ).

The annihilation and creation operators associated with the k-th bath harmonic oscillator

are denoted respectively by bk and b†k, thus we have

bk|N⟩k =
√
N |N − 1⟩k, b†k|N⟩k =

√
(N + 1)|N + 1⟩k, (170)

where |N⟩k is the number state in the Hilbert space HE,k. These operators satisfy the standard

canonical commutation relations:

[bl, bk] = 0, [b†l , b
†
k] = 0, [bl, b

†
k] = δlk. (171)

The unitary evolution of the composed E + S system describing the repeated interactions up to

the time jτ for j ≥ 1 is given by

Ujτ = Vj−1Vj−2 . . .V0, U0 = 1, (172)

where the unitary operator Vk acts non-trivially only on HE,k ⊗HS , that is,

Vk = 1
k−1]
E ⊗V[k, (173)

and V[k = exp (−iτHk) with

Hk = 1
[k
E ⊗HS +

i√
τ

(
b†k ⊗ 1

[k+1
E ⊗ L− bk ⊗ 1

[k+1
E ⊗ L†

)
. (174)

Here HS is the Hamiltonian of S and L ∈ B(HS), where B(HS) is a linear space of bounded

operators acting onHS . For simplicity, the Planck constant ℏ = 1. Using the Fock representation

it was written down

exp (−iτHk) =
∑
MM ′

|M⟩k⟨M ′|k ⊗ 1
[k+1
E ⊗ VMM ′ , M,M ′ = 0, 1, 2, . . . , (175)
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where VMM ′ ∈ B(HS).

It was assumed that the initial state of the composed E + S system is the vector of the form

|Nξ⟩ ⊗ |ψ⟩, (176)

where |ψ⟩ is the initial state of S and |Nξ⟩ is the N -photon state of the environment defined as

|Nξ⟩ =
1√
N !

(
b†
ξ

)N
|vac⟩, (177)

and |vac⟩ = |0⟩0 ⊗ |0⟩1 ⊗ |0⟩2 ⊗ |0⟩3 ⊗ . . . is the vacuum vector in HE ,

b†
ξ :=

+∞∑
k=0

√
τξkb

†
k, b†

k = 1
k−1]
E ⊗ b†k ⊗ 1

[k+1
E . (178)

It was assumed that b†
0 = b†0 ⊗ 1

[1
E , ξk ∈ C and

∑+∞
k=0 τ |ξk|2 = 1. One can check that

bk|Nξ⟩ =
√
Nτξk|(N − 1)ξ⟩. (179)

The vector (177) is a discrete version of the continuous-mode Fock state of the form [36–38,40]

|Nξ⟩ =
1√
N !

(∫ +∞

0
ξtdB

†
t

)N

|vac⟩. (180)

After each interaction the measurement is performed on the element of the bath chain just after

its interaction with S. In [H5] the measurement of the bath observable

Nk = b†kbk, k = 0, 1, . . . (181)

was considered. To represent results of all measurements of (181) obtained up to time jτ , the

stochastic vector ηηηj = (ηj , ηj−1, . . . , η1) was used. The basic result for the discrete model can

be written in the form of the following theorem.

Theorem 8 The conditional state vector of S and the part of the environment which has not

interacted with S up to jτ for the initial state (176) and the measurement of (181) at the

moment jτ is given by

|Ψ̃j|ηηηj ⟩ =
|Ψj|ηηηj ⟩√
⟨Ψj|ηηηj |Ψj|ηηηj ⟩

, (182)

where the unnormalized conditional state vector |Ψj|ηηηj ⟩ ∈ H
[j
E ⊗HS has the following structure

|Ψj|ηηηj ⟩ =

N∑
M=0

|Mξ⟩[j,+∞) ⊗ |ψM
j|ηηηj ⟩. (183)

Moreover, |Mξ⟩[j,+∞) is the unnormalized vector from H[j
E given by

|Mξ⟩[j,+∞) =
1√
M !

√τξjb†j ⊗ 1[j+1
E +

+∞∑
k=j+1

1
[j,k−1]
E ⊗

√
τξkb

†
k ⊗ 1

[k+1
E

M

|vac⟩[j,+∞), (184)
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where |vac⟩[j,+∞) = |0⟩j ⊗ |0⟩j+1 ⊗ . . ., and the conditional vectors |ψ0
j|ηηηj ⟩, |ψ

1
j|ηηηj ⟩,. . . , |ψN

j|ηηηj ⟩
from HS satisfy the set of coupled recurrence equations

|ψM
j+1|ηηηj+1

⟩ =
N−M∑
M ′=0

√(
M +M ′

M ′

)(√
τξj
)M ′

Vηj+1M ′ |ψM+M ′

j|ηηηj ⟩, (185)

where the operators Vηj+1M ′ ∈ B(HS) are defined in (175), and initially |ψN
j=0⟩ = |ψ⟩, and

|ψM
j=0⟩ = 0 for 0 ≤M ≤ N − 1.

The following notation is used here |0ξ⟩[j,+∞) = |vac⟩[j,+∞). The vector |Ψj|ηηηj ⟩ is the entangled

state vector of S and the part of the environment which has not interacted with S yet. Note,

that ‘N + 1’ vectors |Mξ⟩[j,+∞) are mutually orthogonal for different ‘M ’. The state vector

|Ψj|ηηηj ⟩ has the following physical interpretation: it represents a superposition of N + 1 possible

scenarios: the future part of the environment can be in the vacuum state |vac⟩[j,+∞) or in one

of the states |Mξ⟩[j,+∞) for 1 ≤M ≤ N .

The conditional probability of detecting M photons at moment (j+1)τ when the conditional

state of S and the future part of the environment at jτ was |Ψ̃j|ηηηj ⟩ is defined as

pj+1

(
M
∣∣∣ |Ψ̃j|ηηηj ⟩

)
=
⟨Ψj|ηηηj |V

†
[j

(
|M⟩j⟨M |j ⊗ 1[j+1

E ⊗ 1S
)
V[j |Ψj|ηηηj ⟩

⟨Ψj|ηηηj |Ψj|ηηηj ⟩
. (186)

Expanding (175) in the Taylor series one check that

pj+1

(
0
∣∣∣ |Ψ̃j|ηηηj ⟩

)
= 1 +O(τ), (187)

and for all M > 0

pj+1

(
M
∣∣∣ |Ψ̃j|ηηηj ⟩

)
= O(τM ). (188)

Thus the probability of detecting more than one photon behaves like O(τ2). In the continuous

time limit, when τ → dt, the probability of detecting more than one photon in the time interval

of the length dt vanishes. By neglecting all terms of order higher than one in τ and the processes

of detecting more than one photon, we get from (185) the set of N + 1 difference equations of

the form

|ψN
j+1|ηηηj+1

⟩ = Vηj+10|ψN
j|ηηηj ⟩, (189)

and for 0 ≤M < N − 1

|ψM
j+1|ηηηj+1

⟩ = Vηj+10|ψM
j|ηηηj ⟩+

√
(M + 1)τξjVηj+11|ψM+1

j|ηηηj ⟩, (190)

where ηj+1 = {0, 1} and

V00 = 1S − iτHS − τ
1

2
L†L+O(τ2), V10 =

√
τL+O(τ3/2),

V01 = −
√
τL† +O(τ3/2), V11 = 1S +O(τ). (191)

The paper [H5] provides a general solution to the above set of equations.
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The a posteriori state of the system S at jτ has then the form

ρ̃j|ηηηj =
ρj|ηηηj

TrSρj|ηηηj
, (192)

where

ρj|ηηηj =
N∑

M=0

pMj |ψM
j|ηηηj ⟩⟨ψ

M
j|ηηηj |. (193)

The operator ρ̃j|ηηηj is the conditional state of S depending on all results of measurements pre-

formed on the environment elements after their interaction with S up to jτ . The quantity

TrSρj|ηηηj =
N∑

M=0

pMj ⟨ψM
j|ηηηj |ψ

M
j|ηηηj ⟩ (194)

is the probability of a given trajectory.

This paper presents the derivation of the set of filtering equations for the evolution of an

open system conditioned by measurement results. The derivation of the stochastic equations

omits, for simplicity, the index ηηηj . The operators

ρM,M ′

j =

TrE [j

[(
bN−M
j ⊗ 1[j+1

E ⊗ 1S
)
|Ψj⟩⟨Ψj |

((
b†j

)N−M ′

⊗ 1[j+1
E ⊗ 1S

)]
τ (2N−M−M ′)/2ξN−M

j (ξ∗j )N−M ′ , (195)

were introduced, where 0 ≤ M ≤ N and 0 ≤ M ′ ≤ N . One can check that ρN,N
j = ρj

and ρM,M ′

j =
(
ρM

′,M
j

)†
. In the next step, operators ρ̃M,M ′

j =
ρM,M′
j

TrSρj
were defined, such that

ρ̃N,N
j = ρ̃j .

The discrete stochastic process

nj =

j∑
k=1

ηk, (196)

with the increment ∆nj = nj+1−nj = ηj+1 was introduced. Let us emphasis that ∆nj has only

two possible values: 0 or 1. One obtains the conditional mean value

E[∆nj |ρ̃j ] = kjτ +O(τ2), (197)

where kj = TrS

(
L†Lρ̃j + ξ∗jLρ̃

N,N−1
j + ξj ρ̃

N−1,N
j L† + |ξj |2ρ̃N−1,N−1

j

)
.

For a posteriori state of S the difference stochastic equation

ρ̃j+1 = ρ̃j + τ
(
− i[HS , ρ̃j ]−

1

2

{
L†L, ρ̃j

}
+ LρjL

† + [ρ̃N−1,N
j , L†]ξj + [L, ρ̃N,N−1

j ]ξ∗j

)
(198)

+

{
1

kj

(
Lρ̃jL

† + Lρ̃N,N−1
j ξ∗j + ρ̃N−1,N

j L†ξj + ρ̃N−1,N−1
j |ξj |2

)
− ρ̃j

}
(∆nj − kjτ)

with the initial conditions: ρ̃j=0 = |ψ⟩⟨ψ|, ρ̃N,N−1
j=0 = ρ̃N−1,N

j=0 = 0, and ρ̃N−1,N−1
j=0 = N |ψ⟩⟨ψ| was

derived. In order to determine the a posteriori state of S at any time jτ where j > 0 one needs
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the set of (N + 1)2 coupled equations depending on the stochastic trajectory up to time jτ :

ρ̃M,M ′

j+1 = ρ̃M,M ′

j + τ
(
− i[HS , ρ̃

M,M ′

j ]− 1

2

{
L†L, ρ̃M,M ′

j

}
+ LρM,M ′

j L†

+[ρ̃M−1,M ′

j , L†]ξj + [L, ρ̃M,M ′−1
j ]ξ∗j

)
+

{
1

kj

(
Lρ̃M,M ′

j L† + Lρ̃M,M ′−1
j ξ∗j + ρ̃M−1,M ′

j L†ξj

+ ρ̃M−1,M ′−1
j |ξj |2

)
− ρ̃M,M ′

j

}
(∆nj − kjτ) (199)

with the initial condition ρ̃M,M ′

j=0 = N !√
M !M ′!

δMM ′ |ψ⟩⟨ψ| and 0 ≤ M ≤ N , 0 ≤ M ′ ≤ N . From

ρ̃M
′,M

j =
(
ρ̃M,M ′

j

)†
it follows that there are at most (N + 1)(N + 2)/2 independent equations.

Let us stress that the determined equations for N = 1 are consistent with the equations derived

for the environment in single-photon state.

Taking an average of ρ̃j over all realisations of the stochastic process, one obtains the a priori

state

σj = ⟨ρ̃j⟩st, (200)

For the a priori state, σj , one gets the difference equation

σj+1 = σj + τ
(
− i[HS , σj ]−

1

2

{
L†L, σj

}
+ LσjL

† + [σN−1,N
j , L†]ξj + [L, σN,N−1

j ]ξ∗j

)
. (201)

For the operators σM,M ′

j = ⟨ρ̃M,M ′

j ⟩st, one obtains the set of the difference equations

σM,M ′

j+1 = σM,M ′

j + τ
(
− i[HS , σ

M,M ′

j ]− 1

2

{
L†L, σM,M ′

j

}
+ LσM,M ′

j L†

+[σM−1,M ′

j , L†]ξj + [L, σM,M ′−1
j ]ξ∗j

)
(202)

with the initial condition: σM,M ′

j=0 = N !/
√
M !M ′!δMM ′ |ψ⟩⟨ψ|, where 0 ≤M ≤ N and 0 ≤M ′ ≤

N . One can easily check that σN,N
j = σj .

In the continuous time limit from (199) one obtains the set of stochastic differential equations

dρ̃M,M ′

t = dt
(
− i[HS , ρ̃

M,M ′

t ]− 1

2

{
L†L, ρ̃M,M ′

t

}
+ LρM,M ′

t L†

+[ρ̃M−1,M ′

t , L†]ξt + [L, ρ̃M,M ′−1
t ]ξ∗t

)
+

{
1

kt

(
Lρ̃M,M ′

t L† + Lρ̃M,M ′−1
t ξ∗t + ρ̃M−1,M ′

t L†ξt

+ ρ̃M−1,M ′−1
t |ξt|2

)
− ρ̃M,M ′

t

}
(dnt − ktdt) , (203)

where kt = TrS

(
L†Lρ̃t + ξ∗tLρ̃

N,N−1
t + ξtρ̃

N−1,N
t L† + |ξt|2ρ̃N−1,N−1

t

)
, ξt ∈ C,

∫∞
0 |ξt|

2dt = 1,

and initially ρ̃M,M ′

t=0 = N !√
M !M ′!

δM,M ′ |ψ⟩⟨ψ|. Here nt is the couting process that describes the

photon counting in the output field from 0 till t. For the increment dnt = nt+dt−nt one obtains

the conditional mean value

E[dnt|ρ̃t] = ktdt. (204)
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Note that (dnt)
2 = dnt. This means that in the interval [t, t + dt) one can count at most one

photon. Clearly, ρ̃t = ρ̃N,N
t , therefore one of the equations is the equation for the conditional

state. The derived equations are consistent with those determined using the quantum stochastic

calculus of the Itô type in the paper [57].

For the non-selective measurement one get from (202) the set of the differential equations:

dσM,M ′

t

dt
= −i[HS , σ

M,M ′

t ]− 1

2

{
L†L, σM,M ′

t

}
+ LσM,M ′

t L†

+[σM−1,M ′

t , L†]ξt + [L, σM,M ′−1
t ]ξ∗t , (205)

where σM,M ′

t = ⟨ρ̃M,M ′

t ⟩st and initially σM,M ′

t=0 = N !/
√
M !M ′!δMM ′ |ψ⟩⟨ψ|, where 0 ≤ M ≤ N

and 0 ≤M ′ ≤ N .

The paper also determines the conditional vectors that define the quantum trajectories for

a continuous counting observation of the output field. Note that all realization of the counting

process nt may be divided into disjoint sectors containing realizations with exactly s counts in

the interval from time 0 to time t, one in each of the nonoverlapping intervals [t1, t1 + dt1),

[t2, t2 + dt2), . . ., [ts, ts + dts), where t1 < t2 < . . . < ts. The general formula for |ψN−M
t|ts...t1⟩

is rather involved. Instead of providing this general formula, it can be shown that the rules

for conditional vectors consist of some simple formulae - “bricks” - which correspond to some

basic processes. The formula for any conditional vector is built from these elementary bricks. A

graphical representation of these formulae is given in the paper. In the formulae for conditional

vectors, one is dealing with the following processes:

1. free propagation described by the non-unitary operator

Tt = e−iGt, (206)

where G = HS − i
2L

†L is a non-Hermitian Hamiltonian,

2. absorption of a photon by the system S from the environment at time t,

Wt = −T−tξtL
†Tt ←→ −− • −−, (207)

3. emission of a photon by the systems S to the detector at time t,

L̃t = T−tLTt ←→ −− ◦ −−, (208)

4. absorption of a photon by a detector from the environment at time t,

ξt ←→ ∗. (209)

Here are some examples of conditional vectors:

1. for zero counts from time 0 to time t one obtains dla zera

|ψN
t|0⟩ = Tt|ψ⟩ (210)
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and the corresponding trivial diagram: −−−−− , and

|ψN−M
t|0 ⟩ =

√
N !

(N −M) !
Tt

∫ t

0
dtM . . .

∫ t3

0
dt2

∫ t2

0
dt1WtM . . .Wt2Wt1 |ψ⟩, (211)

with the diagram: −−•−−•−− . . .−−•−− with M processes (absorptions) −−•−−,

2. for a count at the time t′ and no other counts in the interval from zero to t:

|ψN
t|t′⟩ =

√
dt′Tt L̃t′ |ψ⟩, (212)

with the diagram: −− ◦ −− ,

|ψN−1
t|t′ ⟩ =

√
Ndt′Tt

[
ξt′ + L̃t′

∫ t′

0
dsWs +

∫ t

t′
dsWsL̃t′

]
|ψ⟩

with the diagram: − ∗ − + − ◦ − • − + − • − ◦ − ,

|ψN−2
t|t′ ⟩ =

√
N(N − 1)dt′Tt

[
L̃t′

∫ t′

0
dt2

∫ t2

0
dt1Wt2Wt1 +

∫ t

t′
dt2

∫ t2

t′
dt1Wt2Wt1 L̃t′

+

∫ t

t′
dt2Wt2 L̃t′

∫ t′

0
dt1Wt1 + ξt′

∫ t′

0
dt1Wt1 +

∫ t

t′
dt1Wt1 ξt′

]
|ψ⟩ (213)

with the diagram: −◦−•−•− + −•−•−◦− + −•−◦−•− + −∗−•− + −•−∗− .

The paper gives a physical interpretation of conditional vectors and the rules defining their

structure.

In the counting representation, the a priori state has the form

σt = ρt|0 +
+∞∑
s=1

∫ t

0
dts

∫ ts

0
dts−1 . . .

∫ t2

0
dt1ρt|ts,ts−1,...,t2,t1 , (214)

where

ρt|0 =

N∑
M=0

pMt |ψM
t|0⟩⟨ψ

M
t|0|, (215)

with pt :=
∫ +∞
t dt′|ξt′ |2, and

dtsdts−1 . . . dt1ρt|ts,ts−1,...,t2,t1 =

N∑
M=0

pMt |ψM
t|ts,ts−1,...,t2,t1

⟩⟨ψM
t|ts,ts−1,...,t2,t1

| (216)

with |ψM
j=0⟩ = δNM |ψ⟩ for 0 ≤M ≤ N . The operator ρt|ts,ts−1,...,t2,t1 is unnormalized conditional

state of the system S. The integrals are taken over all possible realization of the stochastic

process nt. From this, the full statistics of photon counts in the output field can be determined.

In particular, the probability of no counts (no detections) until t is given as

P t
0(0) =

N∑
M=0

pMt ⟨ψM
t|0|ψ

M
t|0⟩. (217)

45



The probability density pt0(ts, ts−1, . . . , t2, t1) of observing a particular trajectory corresponding

to s counts in the interval from 0 to t, one in each of the nonoverlapping intervals [t1, t1 + dt1),

[t2, t2 + dt2), . . ., [ts, ts + dts), where t1 < t2 < . . . < ts is defined by

pt0(ts, ts−1, . . . , t2, t1)dtsdts−1 . . . dt1 =
N∑

M=0

pMt ⟨ψM
t|ts,ts−1,...,t2,t1

|ψM
t|ts,ts−1,...,t2,t1

⟩. (218)

The probability of having exactly s counts up to time t reads as

P t
0(s)=

∫ t

0
dts

∫ ts

0
dts−1. . .

∫ t2

0
dt1p

t
0(ts,ts−1,. . .,t2, t1). (219)

4.2.7 Filtering equations and quantum trajectories for an open system interacting with a field

in a superopositions of coherent states

In the paper [H6], I derived the sets of filtering equations for an open quantum system interacting

with the unidirectional Bose field prepared in a superposition of two coherent states. In order

to determine a conditional evolution of the quantum system, I used a collision model with an

environment given as an infinite chain of non-interacting between themselves qubits prepared

in an entangled state being an analogue of a superposition of continuous-mode coherent states

of the boson field. The elements of the environment chain interact with the quantum system

in turn one by one. Because of the temporal correlations in the input field, the evolution of

open quantum system is non-Markovian in this case. I assumed that the initial state of the

composed system is a product state. I derived the conditional evolution assuming that after

each interaction (collision), the measurement is performed on the last qubit interacted with the

system. I described in this paper the conditional evolution for the two stochastic processes:

counting and diffusion. Starting from the discrete in time description of the problem, I obtained

in the continuous-time limit differential filtering equations which are consistent with the results

published in [48,51]. I showed that the model of repeated interactions and measurements allows

in the continuous time limit to reproduce all results for the superposition of coherent state

received within quantum stochastic calculus of Itô type. I would like to stress that the presented

method is more straight and intuitive than the methods described in [48,51]. It not only allows

us to derive the equations describing the conditional evolution of the system but also enables us

to find the general structure of quantum trajectories.

In the paper [H6], I considered a quantum system S interacting with an environment E
modelled by a sequence of qubits, in the same way as in the article [H1]. The coherent state of

the field is defined as [71,74]

|α⟩ =

+∞⊗
k=0

|αk⟩k, (220)

where

|αk⟩k = e
√
τ(αkσ

+
k −α∗

kσ
−
k )|0⟩k (221)

is the vector from the Hilbert space, HE,k, associated with the qubit of the k-th number. It is

assumed that αk ∈ C and

+∞∑
k=0

|αk|2τ <∞. One can check that the vector |αk⟩k has the following
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properties

|αk⟩k =

(
1− |αk|2

2
τ

)
|0⟩k + αk

√
τ |1⟩k +O(τ3/2), (222)

⟨αk|σ−k |αk⟩ =
√
ταk +O(τ3/2), ⟨αk|σ+k σ

−
k |αk⟩ = τ |αk|2 +O(τ2). (223)

The vector |α⟩ is a discrete analogue of the coherent state [36,37]

|{α}⟩ = exp

[∫ +∞

0

(
αtdB

†
t − α∗

t dBt

)]
|vac⟩ (224)

with αt ∈ C and
∫ +∞
0 dt|αt|2 < +∞, such that

dBt|{α}⟩ = αtdt|{α}⟩. (225)

Note that for the input field prepared in the coherent state, one gets the Markovian evolution

for an open system.

I assumed that the initial state of the composed E + S system is given by

(cα|α⟩+ cβ|β⟩)⊗ |ψ⟩, (226)

where |ψ⟩ is the initial state of S, |α⟩ and |β⟩ are coherent states of HE , and

|cα|2 + cαc
∗
β⟨β|α⟩+ c∗αcβ⟨α|β⟩+ |cβ|2 = 1. (227)

In order to describe the stochastic evolution corresponding to a counting process, I considered

the measurement of the observable

σ−k σ
+
k = |1⟩k⟨1|, k = 0, 1, 2, . . . . (228)

The results then can be formulated in the form of the theorem.

Theorem 9 The conditional state of S and the part of the environment which has not interacted

with S up to jτ for the initial state (226) and the measurement of (228) at the moment jτ is

given by

|Ψ̃j⟩ =
|Ψj⟩√
⟨Ψj |Ψj⟩

, (229)

where

|Ψj⟩ = cα

+∞⊗
k=j

|αk⟩k ⊗ |ψj⟩+ cβ

+∞⊗
k=j

|βk⟩k ⊗ |φj⟩. (230)

The conditional vectors |ψj⟩, |φj⟩ from HS in (230) are given by the recurrence formulae

|ψj+1⟩ = M
αj
ηj+1 |ψj⟩, |φj+1⟩ = M

βj
ηj+1 |φj⟩, (231)

where ηj+1 = 0, 1 stands for a random variable describing the (j + 1)-th output of (228), and

M
αj

0 = 1S −
(
iHS +

1

2
L†L+ L†αj +

|αj |2

2

)
τ +O(τ2), (232)

M
βj

0 = 1S −
(
iHS +

1

2
L†L+ L†βj +

|βj |2

2

)
τ +O(τ2), (233)
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M
αj

1 = (L+ αj)
√
τ +O(τ3/2), (234)

M
βj

1 = (L+ βj)
√
τ +O(τ3/2), (235)

and initially we have |ψ0⟩ = |φ0⟩ = |ψ⟩.

Note that the normalized vector |Ψ̃j⟩, from the Hilbert space

+∞⊗
k=j

HE,k ⊗ HS , is the entangled

state of qubits of the input field and the system S. The conditional vectors |ψj⟩ and |ϕj⟩ depend

on all results of the measurements performed on the bath qubits up to time jτ . In order to

obtain a posteriori state of S one has to take the partial trace of |Ψ̃j⟩⟨Ψ̃j | over the environment.

Thus the a posteriori state of S at the time jτ has the form

ρ̃j =
ρj

Trρj
, (236)

where

ρj = |cα|2|ψj⟩⟨ψj |+ cαc
∗
β

+∞∏
k=j

⟨βk|αk⟩|ψj⟩⟨φj |+ c∗αcβ

+∞∏
k=j

⟨αk|βk⟩|φj⟩⟨ψj |+ |cβ|2|φj⟩⟨φj |. (237)

The quantity Trρj is the probability of a particular trajectory. To derive the set of recurrence

equations describing the stochastic evolution of S, I wrote down the conditional state of S at jτ

in the form

ρ̃j = |cα|2ρ̃ααj + cαc
∗
β ρ̃

αβ
j + c∗αcβ ρ̃

βα
j + |cβ|2ρ̃ββj , (238)

For the discrete evolution, I obtained the set of difference filtering equations of the form

ρ̃ααj+1 − ρ̃ααj = Lρ̃ααj τ + [ρ̃ααj , L†]αjτ + [L, ρ̃ααj ]α∗
jτ (239)

+

{
1

νj

(
Lρ̃ααj L† + ρ̃ααj L†αj + Lρ̃ααj α∗

j + ρ̃ααj |αj |2
)
− ρ̃ααj

}
(∆nj − νjτ) ,

ρ̃αβj+1 − ρ̃
αβ
j = Lρ̃αβj τ + [ρ̃αβj , L†]αjτ + [L, ρ̃αβj ]β∗j τ (240)

+

{
1

νj

(
Lρ̃αβj L† + ρ̃αβj L†αj + Lρ̃αβj β∗j + ρ̃αβj β∗jαj

)
− ρ̃αβj

}
(∆nj − νjτ) ,

ρ̃ββj+1 − ρ̃
ββ
j = Lρβαj τ + [ρ̃ββj , L†]βjτ + [L, ρ̃ββj ]β∗j τ (241)

+

{
1

νj

(
Lρ̃ββj L† + ρ̃ββj L†βj + Lρ̃ββj β∗j + ρ̃ββj |βt|

2
)
− ρ̃ββj

}
(∆nj − νjτ) ,

where

Lρ = −i[HS , ρ]− 1

2

{
L†L, ρ

}
+ LρL† (242)

with the initial condition ρ̃αα0 = ρ̃ββ0 = |ψ⟩⟨ψ|, ρ̃αβ0 = ⟨β|α⟩|ψ⟩⟨ψ|. Here nj is the stochastic

process with the conditional mean value

E[∆nj |ρ̃j ] = νjτ +O(τ2), (243)
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where

νj = |cα|2νααj + cαc
∗
βν

αβ
j + c∗αcβν

βα
j + |cβ|2νββj , (244)

and

νααj = Tr
[(
L†L+ Lα∗

j + L†αj + |αj |2
)
ρ̃ααj

]
, ναβj = Tr

[(
L†L+ Lβ∗j + L†αj + αjβ

∗
j

)
ρ̃αβj

]
,

νβαj = Tr
[(
L†L+ Lα∗

j + L†βj + α∗
jβj

)
ρ̃βαj

]
, νββj = Tr

[(
L†L+ Lβ∗j + L†βj + |βj |2

)
ρ̃ββj

]
.

In the limit τ → dt, I obtained the set of the stochastic differential equations:

dρ̃ααt = Lρααt dt+ [ρ̃ααt , L†]αtdt+ [L, ρ̃ααt ]α∗
t dt

+

{
1

νj

(
Lρ̃ααt L† + ρ̃ααt L†αt + Lρ̃ααt α∗

t + ρ̃ααt |αt|2
)
− ρ̃ααt

}
(dnt − νtdt) , (245)

dρ̃αβt = Lραβt dt+ [ρ̃αβt , L†]αtdt+ [L, ρ̃αβt ]β∗t dt

+

{
1

νt

(
Lρ̃αβt L† + ρ̃αβt L†αt + Lρ̃αβt β∗t + ρ̃αβt β∗t αt

)
− ρ̃αβt

}
(dnt − νtdt) , (246)

dρ̃ββt = Lρββt dt+ [ρ̃ββt , L†]βtdt+ [L, ρ̃ββt ]β∗t dt

+

{
1

νt

(
Lρ̃ββt L† + ρ̃ββt L†βt + Lρ̃ββt β∗j + ρ̃ββt |βt|2

)
− ρ̃ββt

}
(dnt − νtdt) , (247)

with the initial condition ρ̃αα0 = ρ̃ββ0 = |ψ⟩⟨ψ|, ρ̃αβ0 = ⟨β|α⟩|ψ⟩⟨ψ|. The a posteriori state of S is

given as

ρ̃t = |cα|2ρ̃ααt + cαc
∗
β ρ̃

αβ
t + c∗αcβ ρ̃

βα
t + |cβ|2ρ̃ββt , (248)

where the conditional operators ρ̃ααt , ρ̃αβt , ρ̃ββt satisfy Eqs. (245)-(247), and ρ̃βαt =
(
ρ̃αβt

)†
. Here

nt is the counting process with the Itô table (dnt)
2 = dnt. This means that one can measure at

most one photon in the interval of length dt. The conditional mean value

E [dnt|ρ̃t] = νtdt, (249)

where

νt = |cα|2νααt + cαc
∗
βν

αβ
t + c∗αcβν

βα
t + |cβ|2νββt (250)

and

νααt = Tr
[(
L†L+ Lα∗

t + L†αt + |αt|2
)
ρ̃ααt

]
, ναβt = Tr

[(
L†L+ Lβ∗t + L†αt + αtβ

∗
t

)
ρ̃αβt

]
,

νβαt = Tr
[(
L†L+ Lα∗

t + L†βt + α∗
tβt

)
ρ̃βαt

]
, νββt = Tr

[(
L†L+ Lβ∗t + L†βt + |βt|2

)
ρ̃ββt

]
.

For the coherent states with the amplitude αt and βt, that satisfy the conditions∫ +∞

0
|αt|2dt < +∞,

∫ +∞

0
|βt|2dt < +∞, (251)

one gets

⟨β|α⟩ = exp

{
−1

2

∫ +∞

0

(
|αt|2 + |βt|2 − 2αtβ

∗
t

)
dt

}
. (252)
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Let us notice that νtdt is the conditional mean number of photons detected in the time interval

[t, t+ dt). From a physical point of view, the condition (251) means that the average number of

photons in the coherent state is finite.

In the paper [H4] I also studied the stochastic evolution of the system for the measurement

of observable

σxk = σ+k + σ−k = |+⟩k⟨+| − |−⟩k⟨−|, k = 0, 1, 2, . . . , (253)

where

|+⟩k =
1√
2

(|0⟩k + |1⟩k) , |−⟩k =
1√
2

(|0⟩k − |1⟩k) , (254)

are vectors from the Hilbert space HE,k.

The results of the analyses can be summarised by the following theorem.

Theorem 10 The conditional state of S and the part of the environment which has not interacted

with S up to jτ for the initial state (226) and the measurement of (253) at the moment jτ is

given by

|Ψ̃j⟩ =
|Ψj⟩√
⟨Ψj |Ψj⟩

, (255)

where

|Ψj⟩ = cα

+∞⊗
k=j

|αk⟩k ⊗ |ψj⟩+ cβ

+∞⊗
k=j

|βk⟩k ⊗ |φj⟩. (256)

The conditional vectors |ψj⟩, |φj⟩ from HS in (255) are given by the recurrence formulae

|ψj+1⟩ = R
αj

ζj+1
|ψj⟩, |φj+1⟩ = R

βj

ζj+1
|φj⟩, (257)

where ζj+1 stands for a random variable describing the (j + 1)-th output of (253), and

R
αj

ζj+1
=

1√
2

[
1S −

(
iHS +

1

2
L†L+ L†αj +

|αj |2

2

)
τ + (L+ αj)ζj+1

√
τ +O

(
τ3/2

)]
, (258)

R
βj

ζj+1
=

1√
2

[
1S −

(
iHS +

1

2
L†L+ L†βj +

|βj |2

2

)
τ + (L+ βj)ζj+1

√
τ +O

(
τ3/2

)]
, (259)

and initially we have |ψ0⟩ = |φ0⟩ = |ψ⟩.

In this case the stochastic evolution is given by the difference equations of the form

ρ̃ααj+1 − ρ̃ααj = Lρ̃ααj τ + [ρ̃ααj , L†]αjτ + [L, ρ̃ααj ]α∗
jτ

+
[
(L+ αj) ρ̃

αα
j + ρ̃ααj (L† + α∗

j )− µj ρ̃ααj
]

(∆qj − µjτ) , (260)

ρ̃αβj+1 − ρ̃
αβ
j = Lρ̃αβj τ + [ρ̃αβj , L†]αjτ + [L, ρ̃αβj ]β∗j τ

+
[
(L+ αj) ρ̃

αβ
j + ρ̃αβj (L† + β∗j )− µj ρ̃αβj

]
(∆qj − µjτ) , (261)

ρ̃ββj+1 − ρ̃
ββ
j = Lρ̃ββj τ + [ρ̃ββj , L†]βjτ + [L, ρ̃ββj ]β∗j τ

+
[
(L+ βj) ρ̃

ββ
j + ρ̃ββj

(
L† + β∗j

)
− µj ρ̃ββj

]
(∆qj − µjτ) (262)
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with the initial conditions ρ̃αα0 = |ψ⟩⟨ψ|, ρ̃ββ0 = |ψ⟩⟨ψ|, ρ̃αβ0 = ⟨β|α⟩|ψ⟩⟨ψ|. Here we deal with

the stochastic process

qj =
√
τ

j∑
k=1

ζk, (263)

such that

E[∆qj = qj+1 − qj |ρ̃j ] = µjτ +O(τ3/2), (264)

where

µj = |cα|2µααj + cαc
∗
βµ

αβ
j + c∗αcβµ

βα
j + |cβ|2µββj (265)

and

µααj = Tr
[(
L+ L† + αj + α∗

j

)
ρ̃ααj

]
, µαβj = Tr

[(
L+ L† + αj + β∗j

)
ρ̃αβj

]
, (266)

µβαj = Tr
[(
L+ L† + βj + α∗

j

)
ρ̃βαj

]
, µββj = Tr

[(
L+ L† + βj + β∗j

)
ρ̃ββj

]
. (267)

In the continuous in time observation, the stochastic evolution of the quantum system is given

by the set of differential filtering equations

dρ̃ααt = Lρααt dt+ [ρ̃ααt , L†]αtdt+ [L, ρ̃ααt ]α∗
t dt

+
[
(L+ αt) ρ̃

αα
t + ρ̃ααt

(
L† + α∗

t

)
− µtρ̃ααt

]
(dqt − µtdt) , (268)

dρ̃αβt = Lραβt dt+ [ρ̃αβt , L†]αtdt+ [L, ρ̃αβt ]β∗t dt

+
[
(L+ αt) ρ̃

αβ
t + ρ̃αβt

(
L† + β∗t

)
− µtρ̃αβt

]
(dqt − µtdt) , (269)

dρ̃ββt = Lρββt dt+ [ρ̃ββt , L†]βtdt+ [L, ρ̃ββt ]β∗t dt

+
[
(L+ βt) ρ̃

ββ
t + ρ̃ββt

(
L† + β∗t

)
− µtρ̃ββt

]
(dqt − µtdt) , (270)

where

µt = |cα|2µααt + cαc
∗
βµ

αβ
t + c∗αcβµ

βα
t + |cβ|2µββt (271)

and

µααt = Tr
[(
L+ L† + αt + α∗

t

)
ρ̃ααt

]
, µαβt = Tr

[(
L+ L† + αt + β∗t

)
ρ̃αβt

]
, (272)

µβαt = Tr
[(
L+ L† + βt + α∗

t

)
ρ̃βαt

]
, µββt = Tr

[(
L+ L† + βt + β∗t

)
ρ̃ββt

]
. (273)

The process qj in the limit τ → 0 converges to the stochastic process qt with the conditional

probability E[dqt = qt+dt − qt|ρ̃t] = µtdt. One can check that that the stochastic process

wt = qt −
∫ t
0 µsds is the Wiener process.

In paper [H6], I also determined the set of differential equations governing the unconditional

evolution of the system. Moreover, I presented in [H6] analytical results for a priori and a

posteriori dynamics of a cavity mode for both counting and diffusive observations. The cavity

mode was initially prepared in a coherent state.
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4.2.8 Filtering equations and quantum trajectories for an open system interacting with a field

in the squeezed Fock state

In the paper [H7], the filtering and master equations for a quantum system interacting with

wave-packet of light in a continuous-mode squeezed number state were derived. The problem

of conditional evolution of a quantum system was formulated by making use of the model of

repeated interactions and measurements. In this approach, the quantum system undergoes a

sequence of interactions with an environment defined by a chain of harmonic oscillators. The

harmonics oscillators do not interact with each other but they interact with the system one by

one and they are subsequently monitored. Random results of the measurements lead to a random

sequence of the system states. In this paper, it is considered a photon-counting measurement

scheme. It is assumed that the environment is prepared in an entangled state being a discrete

analogue of a continuous-mode squeezed number state.

The set of stochastic recurrence equations describing the conditional evolution of the system

was derived and the analytical solution related to different realization of the stochastic process

was displayed. In the limit of continuous-time observation, the set of stochastic differential

equations describing the a posteriori evolution of the quantum system was obtained. In the

case of the input field prepared in a squeezed Fock state, we obtain the set of infinitely many

equations governing the evolution of the open system. In addition to deriving the differential

equations for the conditional and unconditional evolution of the quantum system, the paper also

presents analytical formulae for quantum trajectories associated with continuous-time photon

detection. It is shown how to use these formulae for quantum trajectories to determine the

whole photon counting statistics in the output field.

In the final part of the work, it is presented how to use knowledge of the formulas for the

conditional vectors to solve the problem of optimal cavity excitation. The time profile of the

photons, which ensures optimal conditions for the transfer of photons from the wave packet to

the resonant cavity, was determined.

In this paper, the notation used differs from that in [H5]. The Hilbert space of the envi-

ronment is the same as in [H5]. We introduce the creation wave-packet operator acting in the

Hilbert space H[j
E :

B̂†
[j [ξ] =

M−1∑
k=j

√
τξk

ˆ̃
b†k, (274)

where
ˆ̃
b†k = 1̂

k−1]
E ⊗ b̂†k ⊗ 1̂

[k+1
E , (275)

ξk ∈ C, and
∑M−1

k=0 τ |ξk|2 = 1. The commutator of B̂†
[j [ξ] and its Hermitian-conjugate operator

B̂[j [ξ] has the form

[B̂[j [ξ], B̂
†
[j [ξ]] =

M−1∑
k=j

τ |ξk|2. (276)

The creation operator (274) can be used to construct the number vectors

|mξ⟩[j =
1√
m!

(
B̂†

[j [ξ]
)m
|vac⟩[j , (277)
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where |vac⟩[j = |0⟩j ⊗ |0⟩j+1 ⊗ . . . |0⟩M−1 is the vacuum vector in H[j
E and m = 0, 1, . . .. We

define the squeezed number state in HE by the formula

|nγ,ξ⟩ = Ŝ[γ, ξ] |nξ⟩ (278)

with the squeeze operator

Ŝ[γ, ξ] = exp
(
γB̂2[ξ]− γ∗B̂†2[ξ]

)
, (279)

where γ = r
2e

−2iϕ. One can check that the mean number of photons for the wave-packet prepared

in the squeezed number state |nγ,ξ⟩ is given by

⟨nγ,ξ| n̂ |nγ,ξ⟩ = c2n+ s2(n+ 1), (280)

where c = cosh r and s = sinh r. Note that any squeezed Fock state |nγ,ξ⟩ can be expanded into

the number states with profiles ξ,

|nγ,ξ⟩ =
+∞∑
m=0

am(nγ) |mξ⟩ . (281)

We assume that the initial state of the composed E + S system has the form

|Ψ0⟩ = |nγ,ξ⟩ ⊗ |ψ0⟩ , (282)

where |ψ0⟩ is the initial state of S.

After each interaction, a measurement is performed on the last harmonic oscillator which

has interacted with the system S. We consider the measurement of the field observable

n̂k = b̂†k b̂k = |n⟩k ⟨n|k , k = 0, 1, . . . . (283)

It is assumed that a detector is perfect and it works instantaneously. To represent the results of

measurements performed up to time jτ the stochastic vector ηηηj = (ηj , ηj−1, . . . , η1) is used.

Theorem 11 The a posteriori state vector of the system S and the input part of the environment

for the initial state (282) and the measurement of the observable (283) at time jτ is given by

|Ψ̃n
j|ηηηj ⟩ =

|Ψn
j|ηηηj ⟩√

⟨Ψn
j|ηηηj |Ψ

n
j|ηηηj ⟩

, (284)

where |Ψn
j|ηηηj ⟩ is the unnormalized conditional vector from H[j

E ⊗HS having the form

|Ψn
j|ηηηj ⟩ =

+∞∑
m=0

|mξ⟩[j ⊗ |ψ
n
j|ηηηj (m)⟩ , (285)

where { |ψn
j|ηηηj (m)⟩}, m = 0, 1, . . . is the set of conditional vectors from HS which satisfy the set

of recurrence equations

|ψn
j+1|ηηηj+1

(m)⟩ =

+∞∑
m′=0

√(
m+m′

m′

)(√
τξj
)m′

V̂ηj+1m′ |ψn
j|ηηηj (m+m′)⟩ , (286)

The operators V̂ηj+1r ∈ B(HS) are defined by (175), and initially we have

|ψn
j=0(m)⟩ = am(nγ) |ψ0⟩ . (287)
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The infinite set of conditional vectors { |ψn
j|ηηηj (m)⟩} with m = 0, 1, . . . depends on the initial state

of the composed system and all results of the measurements up to jτ .

It was shown in the paper that the probability of detecting more than one photon in the

output field in the time interval [kτ, (k + 1)τ) is an expression of order O(τ2). The probability

of such detection is equal to zero in the continuous-time limit and we ignore such cases. Now

by neglecting in (286) all terms of order more than one in τ and the terms associated with

the processes of probability of O(τ2), we obtain from (286) the following the set of difference

equations

|ψn
j+1|ηηηj+1

(m)⟩ =V̂ηj+10 |ψn
j|ηηηj (m)⟩+

√
(m+ 1)τξj V̂ηj+11 |ψn

j|ηηηj (m+ 1)⟩ (288)

with the system operators (191). The paper presents the general solution to this set of equations.

The reduced state of the system S at the time jτ has the form

ρ̃j|ηηηj =
ρj|ηηηj

TrSρj|ηηηj
, (289)

where

ρj|ηηηj =
+∞∑
m=0

|ψn
j|ηηηj (m)⟩ ⟨ψn

j|ηηηj (m)|

N−1∑
k=j

τ |ξk|2
m

. (290)

Initially ρj=0 = |ψ0⟩ ⟨ψ0|. The operator ρ̃j|ηηηj is the conditional state of S depending on the

results of all measurements performed on the output field up to time jτ , and the quantity

TrSρj|ηηηj is the probability of a given trajectory.

This paper presents the derivation of the set of discrete filtering equations for conditional oper-

ators.

Theorem 12 The a posteriori evolution of the system S interacting with the environment pre-

pared in the state (278) for the measurement of (283) is given by an infinite set of the coupled

difference stochastic equations of the form

ρ̃n
′,n′′

j+1 = ρ̃n
′,n′′

j + Lρ̃n
′,n′′

j τ + [
√
n′cρ̃n

′−1,n′′

j −
√
n′ + 1se2iϕρ̃n

′+1,n′′

j , L̂†]ξjτ

+[L̂,
√
n′′cρ̃n

′,n′′−1
j −

√
n′′ + 1se−2iϕρ̃n

′,n′′+1
j ]ξ∗j τ

+

{
1

kj

[
L̂ρ̃n

′,n′′

j L̂† + ξ∗j L̂
(√

n′′cρ̃n
′,n′′−1

j −
√
n′′ + 1se−2iϕρ̃n

′,n′′+1
j

)
+ξj

(√
n′cρ̃n

′−1,n′′

j −
√
n′ + 1se2iϕρ̃n

′+1,n′′

j

)
L̂†

+|ξj |2
(√

n′n′′c2ρ̃n
′−1,n′′−1

j +
√

(n′ + 1)(n′′ + 1)s2ρ̃n
′+1,n′′+1

j

)
−|ξj |2cs

√
n′(n′′ + 1)e−2iϕρ̃n

′−1,n′′+1
j

−|ξj |2cs
√

(n′ + 1)n′′e2iϕρ̃n
′+1,n′′−1

j

]
− ρ̃n

′,n′′

j

}
(∆Nj − kjτ) , (291)

where

Lρ̃ = −i[ĤS , ρ̃]− 1

2

{
L̂†L̂, ρ̃

}
+ L̂ρ̃L̂†, (292)
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kj = TrS

{
L̂†L̂ρ̃n,nj + ξjL̂

†
(√

ncρ̃n−1,n
j −

√
n+ 1se2iϕρ̃n+1,n

j

)
+ξ∗j L̂

(√
ncρ̃n,n−1

j −
√
n+ 1se−2iϕρ̃n,n+1

j

)
+|ξj |2

(
nc2ρ̃n−1,n−1

j + (n+ 1)s2ρ̃n+1,n+1
j

)
−|ξj |2

√
n(n+ 1)cs

(
e2iϕρ̃n+1,n−1

j + e2iϕρ̃n−1,n+1
j

)}
, (293)

and the initial conditions: ρ̃n
′,n′′

j=0 = δn′,n′′ |ψ0⟩ ⟨ψ0| for n′, n′′ ∈ N. The a posteriori state of

S at time jτ is given by ρ̃n,nj . The discrete stochastic process Nj characterizing photon counts

defined by the observable (283) is uniquely determined by the conditional probabilities (given in

the paper).

Taking the average over all trajectories one obtains from (291) the unconditional (a priori)

dynamics of the system S:

σn,nj = ⟨ρ̃n,nj ⟩st. (294)

Theorem 13 The a priori dynamics of S is given by the infinite set of difference master equations

σn
′,n′′

j+1 = σn
′,n′′

j + Lσn
′,n′′

j τ + [
√
n′cσn

′−1,n′′

j −
√
n′ + 1se2iϕσn

′+1,n′′

j , L̂†]ξjτ

+ [L̂,
√
n′′cσn

′,n′′−1
j −

√
n′′ + 1se−2iϕσn

′,n′′+1
j ]ξ∗j τ, (295)

where

σn
′,n′′

j = ⟨ρ̃n
′,n′′

j ⟩st (296)

with the initial condition σn
′,n′′

j=0 = δn′,n′′ |ψ0⟩ ⟨ψ0| for n′, n′′ ∈ N.

Finally, taking the limit of τ → 0 and M →∞ such that T = Mτ is fixed one obtains from

(291) the infinite set of the coupled differential stochastic equations of the form

dρ̃n
′,n′′

t = Lρ̃n
′,n′′

t dt+ [
√
n′cρ̃n

′−1,n′′

t −
√
n′ + 1se2iϕρ̃n

′+1,n′′

t , L̂†]ξtτ

+[L̂,
√
n′′cρ̃n

′,n′′−1
t −

√
n′′ + 1se−2iϕρ̃n

′,n′′+1
t ]ξ∗t τ

+

{
1

kt

[
L̂ρ̃n

′,n′′

t L̂† + ξ∗t L̂
(√

n′′cρ̃n
′,n′′−1

t −
√
n′′ + 1se−2iϕρ̃n

′,n′′+1
t

)
+ξt

(√
n′cρ̃n

′−1,n′′

t −
√
n′ + 1se2iϕρ̃n

′+1,n′′

t

)
L̂†

+|ξt|2
(√

n′n′′c2ρ̃n
′−1,n′′−1

t +
√

(n′ + 1)(n′′ + 1)s2ρ̃n
′+1,n′′+1

t

)
−|ξt|2cs

√
n′(n′′ + 1)e−2iϕρ̃n

′−1,n′′+1
t

−|ξt|2cs
√

(n′ + 1)n′′e2iϕρ̃n
′+1,n′′−1

t

]
− ρ̃n

′,n′′

t

}
(dNt − ktdt) , (297)

where

kt = TrS

{
L̂†L̂ρ̃n,nt + ξ∗t L̂

(√
ncρ̃n,n−1

t −
√
n+ 1se−2iϕρ̃n,n+1

t

)
+ξtL̂

†
(√

ncρ̃n−1,n
t −

√
n+ 1se2iϕρ̃n+1,n

t

)
+|ξj |2

(
nc2ρ̃n−1,n−1

t + (n+ 1)s2ρ̃n+1,n+1
t

)
−|ξt|2

√
n(n+ 1)cs

(
e2iϕρ̃n+1,n−1

t + e2iϕρ̃n−1,n+1
t

)}
(298)
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and the initial condition of the form ρ̃n
′,n′′

t=0 = δn′,n′′ |ψ0⟩ ⟨ψ0|. Here Nt is the stochastic counting

process with the increment dNt = Nt+dt −Nt having the conditional mean value

E[dNt|ρ̃t] = ktdt. (299)

For the process Nt one obtains the relation (dNt)
2 = dNt. Note that kt is the intensity of Nt

and ktdt is the conditional mean number of photons that could be detected from t to t + dt.

Clearly, taking finally the limit of T → +∞, one gets the amplitude ξ ∈ L2 ([0,∞)) with the

normalization condition ∫ ∞

0
|ξt|2dt = 1. (300)

The reduced dynamics of S is given by the infinite set of differential equations

d

dt
σn

′,n′′

t = Lσn
′,n′′

t + [
√
n′cσn

′−1,n′′

t −
√
n′ + 1se2iϕσn

′+1,n′′

t , L̂†]ξt

+ [L̂,
√
n′′cσn

′,n′′−1
t −

√
n′′ + 1se−2iϕσn

′,n′′+1
t ]ξ∗t (301)

with the initial condition σn
′,n′′

t=0 = δn′,n′′ |ψ0⟩ ⟨ψ0|. The a priori state of S is given by σt = σn,nt .

Let us notice that all realization of the counting stochastic process Nt may be divided into

disjoint sectors: Cs containing trajectories with exactly s detected photons in the nonoverlapping

intervals [t1, t1 + dt1), [t2, t2 + dt2), . . ., [ts, ts + dts) lying in the interval from zero to t, where

t1 < t2 < . . . < ts.

The a priori state of S at time t can be express by the stochastic representation as

σt = ρt|0 +

+∞∑
s=1

∫ t

0
dts

∫ ts

0
dts−1 . . .

∫ t2

0
dt1ρt|ts,ts−1,...,t2,t1 , (302)

where

ρt|0 =

+∞∑
m=0

umt |ψn
t|0(m)⟩ ⟨ψn

t|0(m)| (303)

with ut =
∫ +∞
t dt′|ξt′ |2 and

dtsdts−1 . . . dt1ρt|ts,ts−1,...,t2,t1 =
+∞∑
m=0

umt |ψn
t|ts,ts−1,...,t2,t1

(m)⟩ ⟨ψn
t|ts,ts−1...,t2,t1

(m)| .

We have here the sum over all photons detection pathways that might take place from 0 to time

t. They could involve s detections where s could change from 0 to ∞. The operators under

integrals are interpreted as the unnormalized conditioned density operator of S associated with

different scenarios of photon detections. For instance, ρt|0 refers to the situation when we do not

observe any photons up to t while ρt|ts,ts−1,...,t2,t1 to the case when s photons were registered in

the intervals [t1, t1 + dt1), [t2, t2 + dt2), . . ., [ts, ts + dts), where t1 < t2 < . . . < ts, and no other

photons in the interval from zero to t.

The paper contains a complete characterization of conditional vectors {ψn
t|ts,ts−1,...,t2,t1

(m)},
m = 0, 1, 2, . . .. The form of the conditional vectors is given for any quantum system. Along

with the solution, the physical interpretation of the formulae for them was provided.
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In addition to determining the a posteriori and a priori evolution of an open system, the

conditional vectors can be used to find the statistics of photon counts in the output field. The

probability of not observing any photons up to time t is given as

P t
0(0) =

+∞∑
m=0

⟨ψn
t|0(m)|ψn

t|0(m)⟩umt . (304)

The exclusive probability density pt0(ts, ts−1, . . . , t2, t1) for a trajectory corresponding to s de-

tections in the interval from 0 to t in the intervals [t1, t1 + dt1), [t2, t2 + dt2), . . ., [ts, ts + dts),

where 0 < t1 < t2 < . . . < ts is given by

pt0(ts, ts−1, . . . , t2, t1)dtsdts−1 . . . dt1 =
+∞∑
m=0

⟨ψn
t|ts,ts−1,...,t2,t1

(m)|ψn
t|ts,ts−1,...,t2,t1

(m)⟩umt . (305)

Hence the probability of registering exactly s photons up to time t is

P t
0(s)=

∫ t

0
dts

∫ ts

0
dts−1. . .

∫ t2

0
dt1p

t
0(ts,ts−1,. . .,t2, t1). (306)

In the paper, a cavity mode is considered as an example of a system driven by light in the

squeezed Fock state. In this case, the Hamiltonian of the system is of the form

ĤS = ∆â†â, (307)

where ∆ = ω0 − ωc, where ω0 is the frequency of the cavity mode and ωc stands for the central

frequency of the input wave packet. The coupling operator is defined as

L̂ =
√

Γâ, (308)

where Γ is a positive coupling constant. It is assumed that the harmonic oscillator is initially in

the vacuum state.

Using the conditional vectors it was shown that if the input field is prepared in the squeezed

number state |nγ,ξ⟩, then the probability that the mean number of photons inside the cavity at

time t is equal to c2n+ s2(n+ 1) is given by

Pnγ,ξ
(t) =

+∞∑
k=0

Γkk!e−kΓt

∣∣∣∣∫ t

t0

dsξse
(i∆+Γ

2 )s
∣∣∣∣2k |ak(nγ)|2. (309)

Using this formula, the condition for optimal cavity excitation was determined. The result

summarizes the theorem.

Theorem 14 The maximum value of the probability of the transfer of the wave packet photons

into the cavity at time t > t0 for the cavity mode prepared in the vacuum state and the input

field in |nγ,ξ⟩ is

Pmax
nγ,ξ

(t) := max
ξ
Pnγ,ξ

(t) =

+∞∑
k=0

e−kΓt
(
eΓt − eΓt0

)k |ak(nγ)|2, (310)

and is realized only at the resonance (i.e. ∆ = 0) by the pulse of the profile

ξs =

√
Γ

eΓt − eΓt0
e

Γ
2
s (311)

for s ∈ [t0, t], and ξs = 0 elsewhere.
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Thus one obtains perfect transfer, i.e. Pnγ,ξ
(t) = 1, for the squeezed Fock state with photons

having exponential rising temporal profiles in the interval (−∞, t]. The obtained formula is

a generalization of the result for the optimal excitation of a two-level atom by a sinle-photon

field [106].

4.3 The other achievements

The papers [P4, P5] consider the stochastic evolution of an open system in the Markov regime.

The papers [P4, P5] describe a quantum filtration using light in the squeezed state. The num-

bering is according to the List of scientific or artistic achievements which present a major con-

tribution to the development of a specific discipline.

Article [P4] Anita D
↪
abrowska, John Gough. Belavkin filtering with squeezed light sources.

Russian Journal of Mathematical Physics, 23(2), 172-184, 2016.

Summary:

The paper addresses the problem of quantum filtering using the Bose field in a squeezed state.

For the field in the squeezed state, calculations are preformed in the Araki-Woods representation.

It should be stress that the counting process can not be defined for the field in such state.

The first part of the paper considers the situation when the Bose field, interacting with an

open system, is prepared in a coherent state. It is assumed that the output field is sent through

a beam splitter. At the other input of the beam splitter there is the field prepared a squeezed

state. The filtering equation for the a posteriori state dependent on the results of simultaneous

imperfect measurement of the two optical quadratures is determined. Thus in this paper the

stochastic equation with a two-dimensional diffusion process was obtained.

In the second part of this paper, the stochastic equation for an open quantum system is

determined for the case when the input field is in a squeezed state and the evolution of the

system is conditioned by the results of measurement of the optical quadrature of the output

field. As an example, the paper considers the situation where the quantum system interacting

with the environment is a cavity mode. It is shown that the stochastic evolution preserves the

Gaussian state in the considered cases.

My contribution to this paper.

• Participation in the determination of solutions for the stochastic equations.

• Participation in the preparation of the manuscript.

Article [P5] Anita D
↪
abrowska, John Gough. Quantum trajectories for squeezed input processes:

explicit solutions. Open Systems & Information Dynamics, 23(1), 1650004-1-1650004-16, 2016.

Summary:

The paper contains a detail discussion on the solutions of two filtration equations. It is

assumed that the input Bose field is prepared in a Gaussian state. This can be a vacuum state,
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a coherent state, a thermal state or a squeezed state. The Bose field interacts with a cavity

mode (a harmonic oscillator).

In the first part of the paper, the evolution of the open system dependent on the results of

the homodyne observation of the output field is considered. The paper describes the stochastic

evolution of a cavity mode that is initially prepared in a Gaussian state. It is shown that the

a posteriori state is also a Gaussian state in this case. In this paper, the differential equations

for three coefficients that define the state of open system are determined. Only one of these

coefficients depends on the measurement results. It was shown that for the other two, the

inhomogeneous Riccatti matrix differential equation can be determined. The solution of this

equation is given in the paper. It allows, for example, to determine the exact formulae for the

time-dependent variances of the optical quadratures of the field in the cavity. This paper also

gives the condition when the filtration equation preserves the purity of state of the open system.

The results obtained for the stochastic evolution are compared with the solution of the master

equation.

The second part of the paper contains a discussion of the stochastic evolution for a double

homodyne observation, i.e. a simultaneous imperfect measurement of two optical quadratures of

the output field. It was assumed that the output field is mixed with another Bose field prepared

in a squeezed state. Also in this case the Gaussian state of the open system is preserved. For

the two coefficients defining the a posteriori state, the homogeneous Riccati matrix differential

equation is determined. The paper contains a generalisation of the results of [P7].

My contribution to this paper.

• Participation in the determination of solutions for the stochastic equations.

• Participation in the preparation of the manuscript.

I was a corresponding author of this article.

5 Other post-doctoral achievements

Description of results published in the papers [P1-P3] and [P6-P8]

In the articles [P6-P8] the stochastic evolution of an open system in the Markov regime was

considered. The environment was in a vacuum state [P8] and a coherent state [P6, P7]. The

papers are discussed in order from oldest to newest.

Article [P8]: Anita D
↪
abrowska, Przemys law Staszewski. Filtering equation for measurement of

a coherent channel. Journal of the Optical Society of America B, 28(5), 1238-1244, 2011.

Summary:

This paper presents the derivations of the filtering equations for the continuous observation of

the output field in the case of counting and heterodyne detection for an environment defined as a

unidirectional electromagnetic field prepared in a coherent state. The derivation presented here

is based on the use of the quantum stochastic calculus of the Itô type. We defined in this paper

59



a generating map for the output counting process corresponding to the direct photon counting

of the output field. The differential equation for the generating map was determined and its

solution was presented. The solution, having the form of a von Neumann-Dyson series, allowed

us to obtain the formula for the stochastic propagator associated with the output counting

process. Using this formula, the equation for the stochastic state vector for the open system

was obtained for the observation counting photons of the output field. The filtering equation

for heterodyne observation was derived in a similar way. In this case, the output field falls on

the beam splitter. At the other input of the beam splitter is the field in the coherent state. The

starting point here is also the counting process. We first obtain the filtering equation for the

counting process, to finally go to the diffusion observation limit. It is worth noting that both

determined filtration equations preserve the purity of state of the open system. In this paper,

both linear and non-linear versions of the filtration equations are given.

There was a previous paper in the literature [102] in which the filtration equation for the field

in the coherent state was determined, but the method used there was different than proposed in

the papers in [P8] and [P6]. The filtering equations determined in the paper [5] correspond to

the situation where the input field is taken a vacuum state. In the papers [17,103,104] one can

find a description of the output field statistics for the input field taken in the coherent state,

but the equation for the a posteriori state for the observation performed on the field prepared

initially in the coherent state was not determined there.

My contribution to this paper.

• Defining the problem.

• Determination of the filtration equations.

• Preparation of the manuscript.

I was a corresponding author of this article.

Article [P7]: Anita D
↪
abrowska, Przemys law Staszewski. Squeezed coherent state undergoing a

continuous nondemolition observation. Physics Letters A, 375(45), 3950-3955. 2011.

Summary:

This paper considers the stochastic evolution of a cavity mode (a harmonic oscillator) depen-

dent on the results of two types of observations: single and double heterodyne measurements.

The input field is taken in the vacuum state. It is assumed that initially the harmonic oscillator

is in a squeezed coherent state [105]. We proved that in this case the a posteriori state, that is

the state of the system depending on the measurement results, remains the squeezed coherent

state. The differential equations for all coefficients defining the conditional squeezed coherent

state were determined. The squeeze parameter satisfies the Riccati differential equation. It was

shown that the squeeze parameter decreases in time and the open system goes to the vacuum

state. It is worth noting that the mean values of the optical quadratures of the system depend

on the results of measurement whereas their variances are deterministic. The master equation

does not preserved the squeezed coherent state.
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My contribution to this paper.

• Defining the problem.

• Determination of solutions.

• Preparation of the manuscript.

I was a corresponding author of this article.

Article [P6] Anita D
↪
abrowska, Przemys law Staszewski. Posterior quantum dynamics for a con-

tinuous diffusion observation of a coherent channel. Journal of the Optical Society of America

B, 29(11), 3072-3077, 2012.

Summary:

This paper includes the derivation of both a linear and a non-linear filtering equation for

the case where an environment of an open quantum system is the Bose field in a coherent state.

The filtering equations are determined for a balance heterodyne observation [93, 94]. Unlike in

paper [P8], the filtering equation for the diffusion process is not obtained here by taking the limit

of the stochastic equation for the counting process. In this paper one can find the stochastic

differential equation for the generating map defined for the optical quadrature of the output

field. Using this equation, we obtain a differential equation for the stochastic propagator and

hence the equation for the stochastic state vector of the open system.

As an example, the paper considers the situation where the open quantum system is a cavity

mode (harmonic oscillator) prepared initially in a squeezed coherent state. It is shown that the

stochastic evolution preserves the squeezed coherent state. Any initial coherent state becomes

the squeezed coherent state. The coefficients defining the squeezed coherent state depend on

the results of continuous observation. The squeeze parameter decreases in time to zero and the

system approaches a coherent state with an amplitude independent of the initial state of the

system. The results are a generalisation of those published in papers [P7] and [P8].

My contribution to this paper.

• Defining the problem.

• Derivation of the filtering equation.

• Determination of an example of solution to the filtering equation.

• Preparation of the manuscript.

I was a corresponding author of this article.

Article [P3] Anita D
↪
abrowska. Quantum filtering equation for system driven by field in a mixture

of vacuum and coherent state. Acta Physica Polonica A, 132(1), 112-114, 2017.

Summary:

The paper contains a discussion on the optimal state estimation of a quantum system inter-

acting with the unidirectional Bose field prepared in a mixture of vacuum and coherent state.
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I considered the evolution of the open system conditioned by the results of the continuous in

time observation of the optical quadrature of the output field. In this case, instead of a single

equation describing the stochastic evolution of the quantum system, I obtained the set of two

differential equations. In order to determine the set of stochastic equations, I used a method

based on cascaded open systems. I assumed that the input field for an auxiliary system is pre-

pared in a vacuum state and chose the auxiliary system so that the state of the output field

was the mixture of vacuum and coherent states. This output field then interacts with another

quantum system being the system of interest. In the first step, the filtering equation for a system

consisting of the auxiliary system and the main system was given. Then, the stochastic equation

for the main system was determined by taking a partial trace over the auxiliary system.

Article [P2] Anita D
↪
abrowska. Quantum filtering equations for system driven by non-classical

fields. Open Systems & Information Dynamics, 25(2), 1850007-1-1850007-23, 2018.

Summary:

This paper contains an analysis of a behaviour of an open quantum system interacting with

the unidirectional Bose field in the superposition state of the vacuum and single-photon state. In

order to determine the stochastic evolution of the quantum system in this case, the Hilbert space

of this system was enlarged by the space of the auxiliary system, which acts as the generator of

the Bose field in the chosen state. The quantum system is cascaded with the auxiliary system in

such a way that the Bose field after interaction with the auxiliary system is the input field of the

main system. The field before interaction with the auxiliary system is in a vacuum state. The

filtering equations corresponding to the two types of output field measurement were derived,

for photon counting and optical field quadrature observation. In the both cases, the stochastic

evolution is given by the set of four coupled differential equations.

The paper also gives formulae for unconditional and conditional mean values for the in-

crements of the stochastic processes: Λout
t and Bout

t + Boutdagger
t . The paper is not limited to

describing the stochastic evolution of the system, but one can also find there a description of

the photon statistics of the field after interacting with the system. The general recipe for the

probability of no photon counts in the time interval from 0 to t is given, as well as the formula for

the probability density of photon counts at times t1, t2, ..., tn such that 0 < t1 < t2 < ... < tn < t

and no other counts in this interval.

As an example of a system interacting with the Bose field in the superposition state of

vacuum and single-photon states, a two-level atom was considered. The coupling operator is of

the form L =
√
κσ−, where σ− is the lowering operator and κ > 0. The single-photon part was

assumed to have a Gaussian amplitude. The plots for the probability of being in the excited

state and the probability of zero counting until a given moment are given. The paper [P2] also

contains a description of the stochastic evolution of a quantum system interacting with the Bose

field prepared in a mixture of coherent states. The results obtained in the paper are correct,

but the mentioned mixture is an example of classical not non-classical state.

Article [P1] Anita D
↪
abrowska, Sylwia M. Kolenderska, Jakub Szlachetka, Karolina S lowik, Piotr

Kolenderski. Quantum-inspired optical coherence tomography using classical light in a single-

62



photon counting regime. Optics Letters, 49(2), 363-366, (2024).

Summary:

This paper is devoted to Quantum Optical Coherence Tomography (Q-OCT), which presents

many advantages over its classical counterpart, Optical Coherence Tomography (OCT). Specif-

ically, it provides increased axial resolution and is immune to even orders of dispersion. The

core of Q-OCT is the quantum interference of negatively correlated entangled photon pairs,

which, in the Fourier domain, are observed by means of a joint spectrum measurement. In this

paper, the use of a spectral approach in a novel configuration where classical light pulses are

employed instead of entangled photons is explored. The intensity of these light pulses is reduced

to the single-photon level. The paper reports a theoretical analysis along with its experimental

validation to show that although such a classical light is much easier to launch into an exper-

imental system, it offers limited benefits compared to Q-OCT based on entangled light. The

paper includes an analysis of the differences in the characteristics of the joint spectrum obtained

with the entangled photons and with classical optical pulses and points out the source of these

differences.

My contribution to this paper.

• Conducting a theoretical analysis of the problem.

• Preparation of the supplement material.

• Participation in the preparation of the manuscript.

Participation in the work on the articles [P9-P22] and [R1-R5]

A part of my scientific activity after obtaining my doctoral degree involved the application of

statistical methods in scientific research. After obtaining the doctoral degree, I participated in

many research projects carried out in five units of the Collegium Medicum NCU. I participated

in the processes of analyzing and interpreting research results as well as designing research

experiments. I would like to point out that some of the projects were carried out in cooperation

with other research centers in Poland and abroad.

My involvement in the projects consisted of selecting appropriate statistical models to repre-

sent the studied processes and phenomena, performing statistical analyses, and interpreting the

results. The aim of my research was to define the structure of the analyzed data and identify

significant relationships between the studied variables. In my work, I used methods of multivari-

ate analysis. A particularly important aspect of my research has been the issue of adjustment

in comparisons, which involves identifying and accounting for the potential influence of con-

founding factors on the studied variables. Only by considering the impact of these variables is it

possible to interpret the results accurately and avoid drawing misleading conclusions caused by

the effects of confounding factors. The obtained models contributed to a better understanding

of the studied phenomena, and they are used for making diagnostic and therapeutic decisions,

forecasting future outcomes, and identifying potential issues during therapy.

In 2010, I started working with Dr habil. Grzegorz Przybylski, head of the Department

of Lung Diseases, Cancer, and Tuberculosis, Faculty of Medicine, Collegium Medicum of the
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Nicolaus Copernicus University. The earliest papers written with Dr habil. Przybylski, [P22,

R3, R4], concern the influence of environmental risk factors on the development of allergy and

the assessment of asthma knowledge among people with asthma, and the relationship between

knowledge of the disease and quality of life of chronically ill patients. Four further papers [P18,

P19, P21, R2] were based on a retrospective study of more than 2000 of patients treated for

tuberculosis at the Regional Center of Pulmonology in Bydgoszcz between 2001 and 2010. The

papers [P18, P19, R2] analysed the role of social and demographic factors in the incidence of

tuberculosis and examined the impact of these factors on the treatment of tuberculosis. In the

paper [P21], the smoking among the people with tuberculosis was analysed. In [R1] the report

on the relationship between selected elements of a health-promoting lifestyle and quality of life

and asthma control in bronchial asthma patients was presented. The papers [P10, P11, P14]

are concerned with assessing the levels of selected inflammatory and immunological parameters,

including C-reactive protein (CRP) and circulating immune complexes (CIC) and the CRP/CIC

ratio, in people with obstructive lung disease and those treated for lung cancer. The results of

the mentioned work were presented at three international conferences organised by the European

Respiratory Society.

My collaboration with Dr habil. Magdalena Pasinska, from the Department of Clinical

Genetics, Faculty of Medicine, Collegium Medicum NCU, resulted in 3 publications [P12, P20,

R5]. These papers deal with genetic causes of pregnancy failure as well as the influence of

environmental factors on fetal and neonatal well-being. The results of the collaboration were

presented, among others, at the Congress of the Polish Society of Human Genetics in Bydgoszcz

in 2014.

From 2015 to 2019, I was part of a research team led by Prof. Dr habil. Jacek Kubica,

who heads the Department of Cardiology and Internal Medicine at the Faculty of Medicine,

Collegium Medicum NCU. I was a member of the multidisciplinary international team that

carried out the randomised study of name
”
IMPRESSION”. The aim of this study was to evaluate

the effect of morphine on the pharmacokinetics and pharmacodynamics of ticagrelor, a drug

platelet aggregation inhibitor, in patients with myocardial infarction. The study showed the

existence of negative interactions between ticagrelor and morphine, the primary drugs used to

treat patients with myocardial infarction. It confirmed, that morphine attenuates and diminishes

the effect of ticagrelor. Based on the results of the
”
IMPRESSION” study, the European Society

of Cardiology in 2017 revised its recommendations for the use of morphine in patients with

myocardial infarction. I am a co-author of a review article on the effect of morphine on the

delay and attenuation of oral P2Y12 receptor inhibitors in patients with myocardial infarction

[P16].

I also participated in the multicenter
”
UNICORN” project, which involved comparing eso-

phageal and bladder temperature measurements in comatose patients after cardiac arrest who

underwent mild therapeutic hypothermia. The collaboration resulted in papers [P15, P9].

I also participated in the work of the team of Prof. Dr habil. Micha l Marsza l l, who heads the

Department of Medicinal Chemistry at the Collegium Medicum NCU. The research conducted

by the team focused on the search for new biomarkers of cancerous changes in the prostate

gland. It was part of an international project. The collaboration resulted in the paper [P13].
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The paper [P17] was written in collaboration with Dr habil. Dariusz Nowak, and concerned

the results of a pilot study on the effects of chokeberry juice consumption on lipid profile and

endothelial function in healthy people.

6 Current research

• I continue to work on developing stochastic methods for analyzing the interaction of quan-

tum systems with light in non-classical states. In papers [H5, H7], I considered a uni-

directional continuous-mode field with uncorrelated photons of the same time profiles. I

generalized these results to two-photon states of the form

1√
N

∫ +∞

0

∫ +∞

0
ϕ(t2)ξ(t1)dB

†(t2)dB
†(t1)|vac⟩, (312)

where N = 1 + |⟨ξ|ϕ⟩|2 and

⟨ξ|ϕ⟩ =

∫ +∞

0
dtξ(t)∗ϕ(t),

∫ +∞

0
dt|ξ(t)|2 =

∫ +∞

0
dt|ϕ(t)|2 = 1, (313)

In the next step, I considered an arbitrary pure two-photon state of the form∫ +∞

0

∫ +∞

0
Φ(t2, t1)dB

†(t2)dB
†(t1)|vac⟩ (314)

with the amplitude Φ(t2, t1), which, in general, defines photons that are time-correlated.

I have also obtained results for a bidirectional field in a two-photon state∫ +∞

0

∫ +∞

0
ϕ(t2)ξ(t1)dB

†
2(t2)dB

†
1(t1)|vac, vac⟩ (315)

with the field operators that satisfy the commutation relations

[Bi(t), Bj(t
′)] = [B†

i (t), B†
j (t′)] = 0, [Bi(t), B

†
j (t′)] = δij t ∧ t′, (316)

where t ∧ t′ = min(t, t′). Using quantum trajectories for the input field in the state (315),

I obtained results for the state∫ +∞

0

∫ +∞

0
Φ(t2, t1)dB

†
2(t2)dB

†
1(t1)|vac, vac⟩, (317)

which, in general, can be an entangled state of two photons. For the given field states, I

derived stochastic equations for conditional vectors for one- and two-dimensional counting

processes, respectively. These results were published in arXiv:2409.07428, and the paper is

currently under review. The co-author of the paper is Dr habil. Gniewomir Sarbicki. The

paper derives formulas for two-photon absorption in a three-level atom excited by light

in a two-photon state. Formulas for states optimally exciting the atomic system are also

presented. Part of the results was presented this year at two scientific conferences. Dr

habil. Gniewomir Sarbicki contributed to the work on determining the two-photon states

optimally exciting the three-level atom.

Preprint available: Anita D
↪
abrowska, Gniewomir Sarbicki. Quantum trajectories and

output field properties for systems driven by two-photon input field. arXiv:2409.07428
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• Together with Dr habil. Karolina S lowik, Dr habil. Gniewomir Sarbicki, and M.Sc. Ma-

sood Valipour from Nicolaus Copernicus University, I conduct research on the optimal

excitation of multilevel atoms using wave packets with a fixed photon number. A theoreti-

cal description of the excitation of a two-level atom by a wave packet in a single-photon and

N -photon state can be found, for instance, in [44, 45, 47, 95, 106]. The maximum value of

the excitation probability depends not only on the type of light state but also on the shape

of the temporal profile. For a two-level atom, the optimal choice is a single-photon state

with an exponentially rising time profile. In the case of multilevel atoms, the optimization

of excitation depends on more parameters and is therefore more complex. In our work, we

extend the theoretical model, based on the Wigner-Weisskopf approximation, published

in arXiv:2409.07428. We investigate the effect of temporal photon entanglement on the

excitation probability of a three-level atom. Two publications are in preparation. Some of

the obtained results were already presented this year at four scientific conferences.

Preprint available: Masood Valipour, Gniewomir Sarbicki, Karolina Slowik, Anita D
↪
abro-

wska. Optimization of two-photon absorption for three-level atoms. arXiv:2411.13274

• I continue to collaborate with Dr habil. Piotr Kolenderski from Nicolaus Copernicus

University. The collaboration focuses on optical coherence tomography (OCT) and its

quantum version (Q-OCT). In experiments conducted under the supervision of Dr habil.

Kolenderski, non-classical light with temporally entangled photons is used in Q-OCT to

image objects. The results for non-classical light are tested and compared with those

obtained by traditional OCT methods. My contribution involves developing the theoretical

foundations for the methods being tested.
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PWSZ w Tarnowie, 571-585, 2016.

[R2] Grzegorz Przybylski, Anita D
↪
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8 Presentation of significant scientific activity carried out at more than

one university, scientific or cultural institution, especially at foreign

institutions

Activity at Polish universities

• University of Gdańsk (UG)

Papers from postdoctoral achievement having the UG affiliation: H2, H3, H4, and H7.

• Nicolaus Copernicus University in Toruń (NCU)

Papers from postdoctoral achievement having the NCU affiliation: H1, H5, and H6.

Activity in foreign scientific institutions

• The paper [P4] was partly written during my three-week stay in the UK, funded by the

University of Cambridge. Work on the publication was conducted at the Isaac Newton

Institute for Mathematical Science. Length of stay: 21.07–15.08.2014.

• In the period 01.03–31.08.2006 I did a pre–doctoral internship under the supervision of

Prof. V. P. Belavkin at the School of Mathematical Sciences at the University of Notting-

ham.

9 Presentation of teaching and organisational achievements as well as

achievements in the popularisation of science
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Lectures and tutorials conducted at the Faculty of Mathematics, Physics, and Informatics of
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2022/2023, 2023/2024, 2024/2025 (in progress)

• Biothermodynamics with elements of statistical physics, auditorium tutorials, field of

study: medical physics, bachelor’s studies, 30 hours in the academic years: 2019/2020,

2020/2021, 2021/2022, 2022/2023, 2023/2024, 2024/2025 (in progress)

• Elements of statistics, laboratory tutorials, field of study: medical physics, bachelor’s
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• Rotation laboratory, field of study: bioinformatics, bachelor’s studies, 20 hours in the

academic year 2021/2022, 15 hours in the academic year 2023/2024

• Stochastic processes: fundamentals and applications, auditorium tutorials, field of study:

mathematical modeling and data analysis, bachelor’s studies, 15 hours in the academic

year 2020/2021

• Advanced practical mathematics in physics, auditorium tutorials, field of study: physics,

bachelor’s studies, 12 hours in the academic year 2021/2022

Lectures and tutorials conducted at Collegium Medicum NCU in the years 2000–2019

Lectures:

• Mathematics, field of study: biotechnology, bachelor’s studies, 38 hours in the academic

year 2017/2018, 60 hours in the academic year 2018/2019

• Mathematics, field of study: pharmacy, master’s studies, 10 hours in the academic years:

2016/2017, 2017/2018, 2018/2019

• Mathematical and statistical foundations of biomedical sciences, field of study: cosmetol-

ogy, the part-time studies, 5 hours in the academic year 2014/2015

• Medical statistics, language: English, field of study: medicine, 10 hours in the academic

year 2013/2014

• Medical statistics, field of study: medicine, 10 hours in the academic year 2013/2014

• Fundamentals of medical physics, field of study: electroradiology, bachelor’s studies, 30

hours in the academic years: 2013/2014, 2014/2015, 2015/2016, 2016/2017, 2017/2018

• Fundamentals of medical physics, field of study: electroradiology, the part-time studies,

30 hours in the academic years: 2013/2014, 2014/2015

• Medical statistics, a postgraduate program in medical analytics, 5 hours in the academic

years 2014/2015, 2015/2016, 2016/2017, 2017/2018

Tutorials:

• Elements of physics, field of study: biotechnology

• Informatics, fields of study: electroradiology (part-time studies), nursing (part-time stud-

ies), and medicine

• Mathematics, fields of study: biotechnology, pharmacy, and medical analytics

• Mathematical and statistical foundations of biomedical sciences, field of study: cosmetol-

ogy (part-time studies)

• Mathematics with elements of statistics, field of study: cosmetology (part-time studies)

• Medical statistics, Language: English, field of study: medicine
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• Fundamentals of medical physics, field of study: electroradiology

• Statistics, fields of study: medical analytics, pharmacy, and cosmetology

• Medical statistics, field of study: medicine

Coordinator of the following subjects:

• Mathematics, field of study: biotechnology, in the academic years: 2017/2018, 2018/2019,

60 hours of lectures, 60 hours of exercises

• Mathematics, field of study: pharmacy, in the academic years: 2016/2017, 2017/2018,

2018/2019, 10 hours of lectures, 25 hours of exercises

• Medical statistics, Language: English, field of study: medicine, in the academic year

2013/2014, 10 hours of lectures, 5 hours of exercises

• Fundamentals of medical physics, field of study: electroradiology (full-time and part-time

studies) in the academic years: 2013/2014, 2014/2015, 2015/2016, 2016/2017, 2017/2018,

30 hours of lectures and 30 hours of exercises; in the academic year 2013/2014 30 hours of

lectures and 60 hours of exercises; in the academic year 2013/2014 the subject was carried

out in the amount of 30 hours of lectures and 60 hours of exercises

• Medical statistics, field of study: medicine, in the academic year 2013/2014, 10 hours of

lectures, 5 hours of exercises

9.2 Supervision of master’s and doctoral theses

• I am an assistant supervisor in the doctoral project of MSc. Masood Valipour, a participant

in the doctoral program at the Faculty of Physics, Astronomy and Informatics, NCU;

Title of the project: Theoretical characteristics of two-photon absorption for classical and

quantum fields, main supervisor: Dr habil. Gniewomir Sarbicki, professor at Nicolaus

Copernicus University, project in progress

• I supervised the master thesis of Rafa l Kluska. Title of thesis: Relational databases in the

analytical laboratory, Collegium Medicum NCU, 2018

9.3 Organisation work

• currently a member of the program committee for the Medical Physics study program

• currently a member of the program committee for the Nuclear Safety and Radiation Pro-

tection study program

• work from 2021 to 2023 in the team implementing the project of four summer schools GEN-

ERATION QI. Next generation of quantum information scientists. Series of international

schools for students in Gdańsk at the Faculty of Mathematics, Physics and Informatics
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of the University of Gdańsk, names of schools: Quantum computation, Quantum dynam-

ics and open systems, Quantum cryptography, and Picturing quantum weirdness, project

website: https://gqi.ug.edu.pl

• work in the team preparing an application for funding of summer schools at the Faculty of

Mathematics, Physics and Informatics of the University of Gdańsk submitted within the

SPINAKER project — intensive international education programmes 2020

• preparing syllabuses during the curriculum reform of the bioinformatics field of study at

the Faculty of Mathematics, Physics and Informatics of the University of Gdańsk

• work in the team preparing the program of postgraduate studies in biostatistics at the

Faculty of Pharmacy in Collegium Medicum NCU

• supervisor of the first year of medical analytics at the Collegium Medicum NCU, continu-

ously from the academic year 2004/2005 to 2018/2019

9.4 Popularisation of science

• I participated in the science event entitled Nauka? Tak ↪a — to ja lubi ↪e! prepared at the

Faculty of Mathematics, Physics and Informatics of the University of Gdańsk in 2021. I

gave the lecture entitled Is it possible to meet a conditional probability in a hospital, street,

or courtroom? in two secondary schools.

• On March 22, 2019, at the invitation of the Nicolaus Copernicus University Chemistry

Student Association, I gave a lecture titled Regression and linear correlation at the Faculty

of Chemistry Nicolaus Copernicus University. The lecture focused on statistical inference

in regression modeling and its implementation in the SPSS software.

10 Awards

• Individual IV degree award of the Rector of the University of Gdańsk for outstanding

organisational work, teaching and research in the year 2021

• Individual III degree award of the Rector of Nicolaus Copernicus University in Toruń for

achievements in research activities in the year 2018
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