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OŚWIADCZENIE

Ja, niżej podpisany oświadczam, że przedłożona praca dyplomowa została wykonana

przeze mnie samodzielnie, nie narusza praw autorskich, interesów prawnych i materialnych

innych osób.
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data podpis

OŚWIADCZENIE

Wyrażam zgodę na udostępnienie osobom zainteresowanym mojej pracy dyplomowej dla

celów naukowo-badawczych. Zgoda na udostępnienie pracy dyplomowej nie oznacza wyraże-

nia zgody na kopiowanie pracy dyplomowej w całości lub w części.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Abstract in English

In this dissertation, we present algorithms and theorems relevant to the enumeration of various

classes of monotone Boolean functions. This work consists of four papers, three published in

peer-reviewed journals and one under review.

We denote the number of monotone Boolean functions of n variables as dn. Two monotone

Boolean functions are said to be equivalent if one can be obtained from the other function

through any permutation of input variables. Let rn denote the number of inequivalent monotone

Boolean functions of n variables. By λn we denote the number of self-dual monotone Boolean

functions of n variables, and by qn we denote the number of inequivalent self-dual monotone

Boolean functions of n variables.

In Paper A we calculate the value:

r8 = 1392195548889993358.

In Paper B we prove the congruence:

d9 ≡ 6 (mod 210).

In Paper C, we calculate the value:

r9 = 789204635842035040527740846300252680.

In Paper D, we confirm the previously known result:

λ9 = 423295099074735261880,

and we calculate:

q8 = 6001501.

7



8



Streszczenie w języku polskim

W niniejszej rozprawie prezentujemy nowe metody i algorytmy do zliczania pewnych klas

monotonicznych funkcji boolowskich. Składa się ona z czterech artykułów, z których trzy

zostały opublikowane w recenzowanych czasopismach, a jeden jest w trakcie recenzji.

Liczbę wszystkich monotonicznych funkcji boolowskich n zmiennych oznaczamy jako

dn. Dwie monotoniczne funkcje boolowskie nazywamy równoważnymi, jeśli pierwszą funkcję

można otrzymać z drugiej poprzez dowolną permutację zmiennych wejściowych. Przez rn oz-

naczamy liczbę nierównoważnych monotonicznych funkcji boolowskich n zmiennych. Przez

λn oznaczamy liczbę samodualnych monotonicznych funkcji boolowskich n zmiennych, a

przez qn oznaczamy liczbę nierównoważnych samodualnych monotonicznych funkcji boolows-

kich n zmiennych.

W Artykule A obliczamy wartość:

r8 = 1392195548889993358.

W Artykule B dowodzimy kongruencję:

d9 ≡ 6 (mod 210).

W Artykule C obliczamy wartość:

r9 = 789204635842035040527740846300252680.

W Artykule D potwierdzamy znany wynik:

λ9 = 423295099074735261880,

oraz obliczamy:

q8 = 6001501.
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Summary of the dissertation

1 Introduction

Consider the set B = {0, 1}. A Boolean function is a function of the form f : Bn → B. There

are 2n elements in Bn and 22n Boolean functions of n variables. There is a partial order on B:

0 ≤ 0, 0 ≤ 1, and 1 ≤ 1. This partial order extends naturally to Bn: for any two elements

x = (x1, . . . , xn) and y = (y1, . . . , yn) in Bn, we have x ≤ y if and only if xi ≤ yi for all i. A

Boolean function f is said to be monotone if for any x, y ∈ Bn, x ≤ y implies f(x) ≤ f(y).

Let Dn denote the set of all monotone Boolean functions of n variables and let dn denote the

cardinality of Dn, also known as the n–th Dedekind number. Dedekind numbers are listed in

the On-Line Encyclopedia of Integer Sequences (OEIS) sequence A000372 (see Table 1.1). The

term dn also corresponds to the number of simple games with n players in minimal winning

form, the number of antichains of subsets of an n set, the number of Sperner families and the

cardinality of a free distributive lattice on n generators [18].

We represent Boolean functions of n variables using binary sequences of length 2n as fol-

lows: the two functions in D0 are 0 and 1. The set Dn+1 is represented by the set of all concate-

nations f0 · f1, where f0, f1 ∈ Dn, and f0 ≤ f1. Hence, the three functions in D1 are: 00, 01,

and 11. The six functions in D2 are: 0000, 0001, 0011, 0101, 0111, and 1111.

This representation of the function f ∈ Dn is the binary sequence of its values. For example,

the sequence 0011 represents the function f ∈ D2 where f(00) = 0, f(01) = 0, f(10) = 1,

and f(11) = 0.

For f, g ∈ Dn, the union of these functions is written as f ∨ g, and the intersection as f ∧ g.

In terms of their binary representations, the union is given by the bitwise OR operation and the

intersection by the bitwise AND operation.

Boolean functions can also be represented by Boolean expressions. Monotone Boolean

functions are functions defined only with unions and intersections (without negation). For ex-

ample, for n = 2, the six functions in D2 can be represented as follows:

11
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0000: f(x1, x2) = 0

0001: f(x1, x2) = x1 ∧ x2

0011: f(x1, x2) = x1

0101: f(x1, x2) = x2

0111: f(x1, x2) = x1 ∨ x2

1111: f(x1, x2) = 1

For n = 3, the majority function 00010111 belonging to D3 can be expressed as

f(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

Determining the exact values of dn has been a longstanding computational challenge. This

problem was posed by Dedekind in 1897 [9], who published the values of dn for n ≤ 4. The

values d5 and d7 were provided by Church [5, 6], while Ward [26] determined the value of d6. In

1990, Wiedemann calculated d8 [27]. His result was confirmed in 2001 by Fidytek, Mostowski,

Somla, and Szepietowski [10]. The calculation of d9 was independently achieved in 2023 by

Jäkel [11] and Van Hirtum, De Causmaecker, Goemaere, Kenter, Riebler, Lass, and Plessl [16].

We announced that d9 ≡ 6 mod 210 in the preprint of Paper B, shortly before these papers

appeared.

Two monotone Boolean functions are said to be equivalent if one can be obtained from the

other through any permutation of input variables. Let Rn represent the set of all equivalence

classes of Dn, and let rn denote the cardinality of the set Rn, also known as the number of

inequivalent monotone Boolean functions of n variables. The values of rn are listed in the

OEIS sequence A003182 (see Table 1.2).

In 1985 and 1986, Liu and Hu [12, 13] calculated rn for n up to 7. Independently, r7 was

calculated by Stephen and Yusun [24]. In Paper A (2021), we calculate the value of r8. The

value of r8 was independently reported in 2022 by Carić and Živković [7]. In Paper C (2024),

we report the value of r9.

For each x ∈ Dn, we have dual x∗ ∈ Dn, which is obtained by reversing and negating all

bits. For example, 1111∗ = 0000 and 0001∗ = 0111. An element x ∈ Dn is self-dual if x = x∗.

For example, 0101 and 0011 are self-duals in D2. Let Λn be the set of all self-dual monotone

Boolean functions of n variables, and let λn denote the cardinality of this set. The value λn is

also known as the n-th Hosten-Morris number (A001206 in OEIS). Let Qn denote the set of all

equivalence classes in Λn and let qn denote |Qn|. Values of qn are described by A008840 OEIS

sequence.

12
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n dn

0 2 Dedekind (1897)

1 3 Dedekind (1897)

2 6 Dedekind (1897)

3 20 Dedekind (1897)

4 168 Dedekind (1897)

5 7581 Church [5] (1940)

6 7828354 Ward [26] (1946)

7 2414682040998 Church [6] (1965)

8 56130437228687557907788 Wiedemann [27] (1991)

9 286386577668298411128469151667598498812366 Jäkel [11] (2023)

Van Hirtum et al. [16] (2023)

Table 1.1: Known values of dn.

The first attempt to solve the problem of determining the values of λn was made, in 1968, by

Riviere [17], who determined all values up to λ5. In 1972, Brouwer and Verbeek provided the

values up to λ7 [8]. The value of λ8 was determined by Mills and Mills [15] in 1978. The most

recent known term, λ9, was obtained by Brouwer, Mills, Mills, and Verbeek [3] in 2013. The

value of λn corresponds to the number of non-dominated coteries on n members [2, Section 1];

and also corresponds to the number of maximal linked systems.

In Paper D, we derive several algorithms for counting self-dual monotone Boolean func-

tions. We confirm the result of [3] that λ9 equals 423,295,099,074,735,261,880. Furthermore,

employing Burnside’s lemma and techniques discussed in [19, 23], we calculate q8 to be

6,001,501.

2 Preliminaries

2.1 Posets

A binary relation that is reflexive, antisymmetric and transitive, when defined on a set P (also

called the carrier), forms a partially ordered set, or simply a poset. In Introduction, we define

partial orders on B and Bn, making them posets. A partial order on Dn is defined as follows:

for two functions f, g ∈ Dn, f ≤ g if f(x) ≤ g(x) for every x ∈ Bn. The interval [f, g] is the

set of functions h ∈ Dn that satisfy f ≤ h ≤ g. Let #[f, g] denote the cardinality of [f, g].

13



n rn

0 2

1 3

2 5

3 10

4 30

5 210

6 16353 Liu and Hu [12] (1985)

7 490013148 Liu and Hu [13] (1986)

Stephen and Yusun [24] (2014)

8 1392195548889993358 Pawelski [19](Paper A) (2021)

Carić and Živković [7] (2022)

9 789204635842035040527740846300252680 Pawelski [20](Paper C) (2023)

Table 1.2: Known values of rn.

We define ⊥ as the constant function that always returns 0. Similarly, we define ⊤ as the

constant function that always returns 1. Hence, #[⊥, f ] denotes the number of functions g that

satisfy g ≤ f , while #[f,⊤] denotes the number of functions g that satisfy f ≤ g.

Two posets P = (X,≤) and Q = (Y,≤) are said to be isomorphic if there exists a bijection

f : X → Y so that for any elements x1, x2 in P , x1 ≤ x2 holds true iff f(x1) ≤ f(x2). We use

the equals symbol = to represent an isomorphism between two posets.

Given two posets (X,≤) and (Y,≤), their Cartesian product is represented as X × Y . In

this product, (a, b) ≤ (c, d) holds if and only if a ≤ c and b ≤ d. For two disjoint posets (X,≤)

and (Y,≤), the disjoint union (sum) is denoted by X + Y , with the order defined as follows:

a ≤ b if and only if (a, b ∈ X and a ≤ b) or (a, b ∈ Y and a ≤ b).

Let Pn denote the chain, the poset with n elements where every pair of elements is compa-

rable. Let An denote the antichain of order n, a poset with n elements where no two distinct

elements are related.

A function f : X → Y is monotone when, for any elements x, y ∈ X with x ≤ y, we

have f(x) ≤ f(y). We represent the set of all monotone functions from X to Y as Y X . When

considering two functions f, g ∈ Y X , we define f ≤ g to be true if f(x) ≤ g(x) for every

x ∈ X . Following this notation, we have Bn = BAn and Dn = BBn .

Lemma 1.1. [23] For three posets R, S, T :

(1) If S and T are disjoint, then RS+T = RS ×RT .

14



n λn qn

0 0 0

1 1 1

2 2 1

3 4 2

4 12 3

5 81 7

6 2646 30

7 1422564 716

8 229809982112 6001501

9 423295099074735261880 –

Table 1.3: Known values of λn (A001206) and qn (A008840).

(2) RS×T = (RS)T and RS×T = (RT )S .

Lemma 1.2. [23]

(a) Ak+m = Ak + Am

(b) Bk+m = Bk ×Bm

(c) Dk+m = (Dk)B
m

These lemmas, presented in different formulations, are commonly used in the literature

for computing Dedekind numbers. Wiedemann [27] used the isomorphism D8 = (D6)
B2 to

compute d8, and Jäkel [11] used the isomorphism D9 = (D5)
B4 to compute d9.

2.2 Permutations acting on a Boolean function

Let Sn denote the set of all permutations of An = {1, 2, . . . , n}. Each π ∈ Sn acts on:

• An by directly permuting its elements,

• Bn as follows: for x ∈ Bn, π(x) = x ◦ π−1,

• Dn as follows: for f ∈ Dn, π(f) = f ◦ π.

For example, the permutation π = (12) ∈ S2 generates the permutation (00)(01, 10)(11) in

B2 and the permutation (0000)(0001)(0011, 0101)(0111)(1111) in D2.

15
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Each permutation π ∈ Sn can be represented as a product of disjoint cycles. The cycle type

of π is the tuple of lengths of these cycles in increasing order. For example, (12)(345)(6789)

has cycle type (2, 3, 4), and its total length is 9.

Given a set X and a permutation π acting on X , the orbit of an element x ∈ X under the

action of π is the set {πk(x) | k ∈ N}.

An element x is said to be a fixed point of a permutation π if π(x) = x. Let Φn(π) denote

the set of all fixed points of π acting on Dn.

We define an equivalence relation ∼ on Dn as follows: f ∼ g if there exists a permutation

π ∈ Sn such that f = π(g). For a function f ∈ Dn, its equivalence class is [f ] = {g ∈ Dn :

g ∼ f}. We denote by γ(f) the cardinality of [f ].

3 Counting inequivalent monotone Boolean functions (Paper

A and C)

Let us recall that by rn we denote the number of inequivalent monotone Boolean functions of n

variables. In Papers A and C, we address the challenge of determining the values of r8 and r9.

We follow Liu and Hu, who explored this problem in the 1980s [12, 13] and used Burnside’s

lemma for calculating the values of rn up to n = 7.

By Burnside’s lemma, the value of rn can be calculated as follows [7, 19, 23]:

rn =
1

n!

k∑

i=1

µi · ϕ(πi), (1.1)

where:

– ϕn(π) = |Φn(π)|, the number of fixed points in Dn under permutation π

– k is the number of different cycle types in Sn,

– i is the index of a cycle type,

– µi is the number of permutations π ∈ Sn with cycle type i,

– πi is a representative permutation π ∈ Sn with cycle type i.

Using this technique, the fundamental challenge was to develop effective algorithms for

counting fixed points in Dn. Due to our inability to translate the Chinese papers, we could

not use the techniques described by Liu and Hu [12, 13] and consequently had to develop our

techniques from scratch.

As the basis for our algorithms to generate or count fixed points in Dn, we use the following

lemmas:
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Lemma 1.3 (Paper C, Lemma 6). Φn(π) = BBn(π),

where Bn(π) is the poset of orbits of Bn under π ∈ Sn, where two orbits C1 and C2 are in

relation C1 ≤ C2 if there exists a c1 ∈ C1 and c2 ∈ C2 such that c1 ≤ c2.

For example, the permutation π = (123) ∈ S3 acting on B3 has four orbits:

{{000}, {001, 010, 100}, {011, 101, 110}, {111}}.

They form the chain P4.

The essence of the algorithm based on this lemma is to count ϕn(π) by generating all

downsets of Bn(π) recursively – the set of such downsets is equivalent to BBn(π). For a pseu-

docode refer to (Paper A, Algorithm 1). A key limitation of this approach is its high memory re-

quirement, as it stores all downsets rather than just counting them. Our calculations, performed

on a machine with 128 GB of main memory, reach up to ϕ9((123)(456789)) = 218542866.

This value represents the upper limit for our implementation and hardware.

Theorem 1.4 ([23], Theorem 4). Consider a partition of the antichain An = {1, . . . , n} into

two disjoint antichains Ak = {1, . . . , k} and Am = {k + 1, . . . n}, where n = k + m; and

two permutations: one π acting on Ak and ρ acting on Am. Suppose that each cycle of π, when

acting on Bk, has the length which is coprime with the length of every cycle of ρ, when acting

on Bm. Then,

Φn(π ◦ ρ) = Φk(π)B
m(ρ).

A detailed pseudocode of the algorithm based on a special case of this theorem, where

m = 1 and ρ is the identity permutation, can be found in (Paper A, Algorithm 2). Carić and

Živković elaborate on this algorithm for situation where m = 2 [7, Theorem 3.1]. In Paper C,

we extend this special case to address cases up to m = 4.

In determining r8, there was a singular instance where the previously mentioned

algorithms fail to work due to constraints in computational resources, specifically for

ϕ8((12)(34)(56)(78)). In the computation of r9, however, there were three scenarios where

challenges arose: ϕ9((12)(34)(56)(78)), ϕ9((12)(34)(56)(789)), and ϕ9((123)(456)(789)).

We describe solutions for these cases in (Paper C, Section 3C-E). Notably, for calculating

ϕ9((12)(34)(56)(789)), we use the implementation of Theorem 1.4, with π = (12)(34)(56)

and ρ = (789).

With d8 and d9 precomputed, our calculation of r8 took approximately a few minutes, and

the calculation of r9 took approximately 10 days. This represents a significant improvement

compared to the technique used by Stephen and Yusun in 2014 [24]. The source code for the

implementations of the algorithms we use to calculate r8 and r9, is available in the GitHub

repository [21].
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Our result concerning the value of r8 was confirmed by Carić and Živković [7] approxi-

mately one year after the publication of the preprint containing our result. The value of r9 has

not yet been confirmed by any other research team.

4 Divisibility properties of Dedekind numbers (Paper B)

In 1990, Wiedemann calculated d8 [27]. His result was confirmed in 2001 by Fidytek,

Mostowski, Somla, and Szepietowski [10]. The impulse for writing Paper B came from the

letter from Wiedemann to Sloane [28] informing about the computation of d8, specifically this

fragment: “Unfortunately, I don’t see how to test it...”. Wiedemann only knew that d8 is even.

As far as we know, the only study concerning divisibility of Dedekind numbers is Yamamoto’s

paper [29], where he shows that if n is even, then dn is also even; he also states (without proof)

that d9 is even and d11 is odd.

In Paper B, we observe that dn ≡ λn (mod 2). The value of λ9 was reported in 2013 [3]

and is even. Hence, d9 ≡ 0 (mod 2). We confirm the value of λ9 in Paper D (the calculation

took about 76 seconds on a 32-thread Xeon machine).

Let us recall that Pn denotes the chain, the poset with n elements where every pair of

elements is comparable. To check divisibility of Dedekind numbers by 3, we use the fact that

Dn+3 is isomorphic to DB3

n . Moreover, there are specific symmetries in B3 which allow us to

show that:

dn+3 ≡ |DP4
n | (mod 3).

Since |DP4
n | = ϕn((123)), we use methods from Papers A and C to calculate |DP4

6 | =

868329572680304346696, which is divisible by 3. Hence, d9 is divisible by 3.

To find the remainders of d9 when divided by 5 and by 7, we use the following congruence.

Theorem 1.5 (Paper B, Theorem 7).

dn+2 ≡
∑

x∈Rn∩Ec
n,m

∑

y∈Ec
n,m

γ(x) ·G(x, y) (mod m).

where:

• γ(x) = #{z ∈ Dn : x ∼ z},

• En,m = {x ∈ Dn : γ(x) ≡ 0 (mod m)},

• Ec
n,m = Dn − En,m,

18



• G(x, y) = #[(x ∨ y),⊤] · #[⊥, (x ∧ y)].

Then, using the Java implementation of Theorem 1.5 on a 32-thread Xeon computer, we

calculate:

∑

x∈R7∩Ec
7,5

∑

y∈Ec
7,5

γ(x) ·G(x, y) = 1404812111893131438640857806,

and

∑

x∈R7∩Ec
7,7

∑

y∈Ec
7,7

γ(x) ·G(x, y) = 299895177645066825375626.

Hence, we have d9 mod 5 = 1 and d9 mod 7 = 6. In summary, we have:

d9 ≡ 0 (mod 2),

d9 ≡ 0 (mod 3),

d9 ≡ 1 (mod 5),

d9 ≡ 6 (mod 7).

The Chinese remainder theorem simplifies these to:

d9 ≡ 6 (mod 210).

The source code implementing the algorithms for calculating the divisibility properties of

Dedekind numbers, including the Java implementation of Theorem 1.5 and the procedures for

determining the remainders modulo 2, 3, 5, and 7, is available alongside the paper [22].

5 Counting self-dual monotone Boolean functions (Paper D)

In Paper D, we present three novel algorithms for computing λn values and we verify the

previously reported λ9 value. These algorithms are based on the following results:

Theorem 1.6 (Paper D, Theorem 10). For every n ≥ 0, we have:

λn+2 =
∑

b∈Rn

γ(b) · #[(b ∨ b∗),⊤].

Theorem 1.7 (Paper D, Theorem 13). For every n ≥ 0, we have:

λn+4 =
∑

a,b,c∈Dn

∑

h∈Dn
h≥(a∨b∨c∨a∗∨b∗∨c∗)

#[a∨b∨c, h]·#[a∨b∗∨c∗, h]·#[b∨a∗∨c∗, h]·#[c∨a∗∨b∗, h].
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Using those two theorems as a basis, we prepare and implement algorithms for calculating

λn (for pseudocode refer to Paper D, Section 6). We obtain:

λ9 = 423295099074735261880,

which confirms the result of Brouwer et al. [3].

In addition, we calculate the number of inequivalent self-dual monotone Boolean functions,

q8 = 6001501. We derive the result using Burnside’s lemma and techniques similar to those we

describe in Papers A and C.

6 Concluding remarks and future work

In this dissertation, we present algorithms and theorems relevant to the enumeration of various

classes of monotone Boolean functions. We use these algorithms and theorems to calculate

the numbers r8, r9, and q8. Furthermore, we confirm the value of λ9, and prove that d9 ≡ 6

(mod 210).

Our capabilities reach a limit in counting inequivalent monotone Boolean functions using

methods we know. The value of r10 cannot be determined using our methods until the value of

d10 is established. Following the trend in determining subsequent Dedekind numbers (see Table

1.1), we estimate that it may take approximately 20-30 years for the value of d10 to be reported.

Regarding the divisibility of Dedekind numbers, our further research could focus on devel-

oping more efficient procedures. However, it appears that at this moment the upper limit for a

divisor in this context is n!. We think that surpassing this boundary, if feasible, could lead to

significant advancements and the development of superior algorithms for calculating Dedekind

numbers.

The most promising direction for future work seems to be the determination of the value of

λ10. We estimate that the complexity of this task is analogous to that of determining the value

of d9, which is achievable with current capabilities, as d9 has recently been computed by two

independent research teams. The algorithms we describe in Paper D should be suitable for this

purpose after appropriate modifications.
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[7] M. Carić, M. Živković, "The number of nonequivalent monotone Boolean functions of 8

variables," IEEE Trans. Inf. Theory, vol. 69, no. 6, pp. 4027-4034 (2023).

[8] A. E. Brouwer and A. Verbeek. Counting families of mutually intersecting sets, Report

ZN 41, March 1972, Math. Centr., Amsterdam.

[9] R. Dedekind, Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler,

Festschrift Hoch. Braunschweig u. ges. Werke II (1897) 103–148.

[10] R. Fidytek, A. W. Mostowski, R. Somla, A. Szepietowski. Algorithms counting monotone

Boolean functions in Information Processing Letters, 2001, issue 79, pages 203–209

[11] C. Jäkel, A computation of the ninth Dedekind number, Journal of Computational Algebra

6-7 (2023)

[12] C. C. Liu and S. B. Hu, A mechanical algorithm of equivalent classification for free dis-

tributive lattices, Chinese J. Comput. 3 (2) (1985), 128–135. In Chinese.

21

https://cs.uwaterloo.ca/journals/JIS/VOL21/Campo/campo3.html


[13] C. C. Liu and S. B. Hu, A note on the problem of computing the number of equivalence

classes of free distributive lattices, J. Wuhan Univ. Natur. Sci. Ed. (1986), no. 1, 13–17. In

Chinese.

[14] D. E. Loeb, A. R. Conway. Voting Fairly: Transitive Maximal Intersecting Families of

Sets, Journal of Combinatorial Theory, Series A, 91 (2000)

[15] C. F. Mills and W. M. Mills. The calculation of λ(8), preprint (1979).

[16] L. Van Hirtum, P. De Causmaecker, J. Goemaere, T. Kenter, H. Riebler, M. Lass, and C.

Plessl, A computation of D(9) using FPGA supercomputing, preprint, 2023. Available at

https://arxiv.org/abs/2304.03039.

[17] N. M. Riviere, Recursive formulas on free distributive lattices, J. Comb. Theory 5 (1968).

[18] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences https://oeis.org

[19] B. Pawelski. On the number of inequivalent monotone Boolean functions of 8 variables,

J. Integer Sequences 25 (2022), Article 25.7.7.

[20] B. Pawelski. On the number of inequivalent monotone Boolean functions of 9 variables,

IEEE Trans. Inf. Theory (2024)

[21] B. Pawelski, Algorithms counting fixed points in sets of monotone Boolean functions,

source code, 2023. [Online]. Available: https://github.com/bpawelski/r9.

[22] B. Pawelski and A. Szepietowski, Divisibility properties of

Dedekind numbers, source code, 2023. [Online]. Available:

https://cs.uwaterloo.ca/journals/JIS/VOL26/Pawelski/pawelski_source_code.zip.

[23] A. Szepietowski, Fixes of permutations acting on monotone Boolean functions, J. Integer

Sequences 25 (2022), Article 25.9.6.

[24] T. Stephen and T. Yusun, Counting inequivalent monotone Boolean functions, Discrete

Appl. Math., 167 (2014), 15–24.
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Abstract

In this paper, we present algorithms for determining the number of fixed points in
the set of monotone Boolean functions under a given permutation of input variables.
Then, using Burnside’s lemma, we determine the number of inequivalent monotone
Boolean functions of 8 variables. The number obtained is 1,392,195,548,889,993,358.

1 Introduction

A monotone Boolean function (MBF) is any Boolean function that can be implemented using
only conjunctions and disjunctions [10]. Let Dn be the set of all monotone Boolean functions
of n variables, and dn the cardinality of this set; dn is also known as the n-th Dedekind number
(sequence A000372 in the OEIS (On-Line Encyclopedia of Integer Sequences)).

Two Boolean functions are equivalent if the first function can be transformed into the
second function by any permutation of input variables. Let In be the set of all n input
variables of a Boolean function. There are n! possible permutations of In—therefore there
are at most n! MBFs in one equivalence class. Let Rn denote the set of all equivalence
classes of Dn and let rn denote the cardinality of this set; rn is described by OEIS sequence
A003182.

In 1985, Chuchang and Shoben [4] came up with the idea to calculate the rn using
Burnside’s lemma. In the following year they calculated r7 [5]. Their result was confirmed
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by Stephen and Yusun in 2012 [10]. In 2018, Assarpour [1] gave lower bound of r8: namely,
1,392,123,939,633,987,512.

In 1990, Wiedemann calculated d8 [11]. His result was confirmed in 2001 by Fidytek,
Mostowski, Somla, and Szepietowski [8].

In this paper we develop algorithms for counting fixed points in Dn under a given permu-
tation of In. Then, we use Burnside’s lemma to calculate r8 = 1, 392, 195, 548, 889, 993, 358.

n dn rn
0 2 2

1 3 3

2 6 5

3 20 10

4 168 30

5 7,581 210

6 7,828,354 16,353

7 2,414,682,040,998 490,013,148

8 56,130,437,228,687,557,907,788 1,392,195,548,889,993,358

Table 1: Known values of dn and rn.

2 Idea of calculating rn using Burnside’s lemma

Burnside’s lemma is a standard combinatorial tool for counting the orbits of set under group
action. Let G denote a finite group that acts upon a set X. Burnside’s lemma asserts that
the number of orbits |X/G| with respect to the action equals the average size of the sets
Xg = {x ∈ X | gx = x} when ranging over each g ∈ G [6, 7]:

|X/G| =
1

|G|
∑

g∈G
|Xg|. (1)

Define Sn to be the symmetric group of In. Each permutation π ∈ Sn can be written as a
product of disjoint cycles. Define the cycle type of π to be the tuple of lengths of its disjoint
cycles in increasing order. For example, the cycle type of permutation π = (1 2)(3 4 5) is
(2, 3), and its total length is 5. The number of different cycle types in Sn for the appropriate
value of n is described by the OEIS sequence A000041. For n = 7 there are 15 cycle types,
and for n = 8 there are 22 cycle types (see the detailed list in Table 6 and Table 7).

In 1985, Chuchang and Shoben [4] presented the following application of Burnside’s
lemma to calculate rn:

rn =
1

n!

∑

π∈Sn

|φn(π)|, (2)

where
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• rn = number of equivalence classes in Dn

• φn(π) = set of all fixed points in Dn under permutation π ∈ Sn.

They also used the fact that |φn(π)| is invariant under permutations with the same cycle
type (also see [7, Remark 287]). We have

rn =
1

n!

k∑

i=1

µiφ(πi), (3)

where

• k = number of different cycle types in Sn

• i = index of the cycle type

• µi = number of permutations π ∈ Sn with cycle type i

• πi = representative permutation π ∈ Sn with cycle type i.

The formula for determining µ for each cycle type is as follows:

µi =
n!

(lk11 · lk22 · · · lkrr )(k1! · k2! · · · kr!)
(4)

with cycle type of r various lengths of cycles, and k1 cycles of length l1, k2 cycles of length
l2, . . . , kr cycles of length lr [7, Proposition 69]. Note that in this formula 1-cycles are not
suppressed. Precomputed values of µ can be found in the OEIS sequence A181897.

3 Algorithms counting fixed points in Dn under a given

permutation of In

The most difficult subproblem to compute rn using Burnside’s lemma is fast counting the
fixed points of Dn under a given permutation of In.

Let Bn denote the power set of In. Each element in Bn represents one of 2n possible
inputs of the Boolean function. Every permutation acting on In regroups elements in Bn and
Dn. We use the notation ∅, x1, x2, x1x2, x3, . . . , x1x2x3 · · · xn to describe elements in Bn. We
represent each Boolean function of n variables by the binary string of length 2n. Each i-th
bit of function in this representation is Boolean output where the argument is an element
from Bn standing in the same position.

For example, consider the following truth table:
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∅ x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

0 0 0 0 1 1 1 1

Table 2: MBF of three variables that returns true iff x3 is true.

MBF from Table 2 can be represented as integer 15 for more convenient computer pro-
cessing. All 6 MBFs in D2 written as integers are: 0, 1, 3, 5, 7 and 15.

For counting fixed points in Dn after acting with a specific permutation π ∈ Sn it is
necessary to lift π ∈ Sn to π′ ∈ SBn . For example, consider permutation π = (1 2 3) and
look at how it regroups elements in B3:

0 1 2 3 4 5 6 7

(1) ∅ x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

(1 2 3) ∅ x3 x1 x1x3 x2 x2x3 x1x2 x1x2x3

Table 3: Regrouping elements in B3 under π = (1 2 3).

Therefore π = (1 2 3) lifts to π′(0)(1 2 4)(3 6 5)(7). Each cycle designates points
belonging to the same orbit. Points in each orbit are set to the same value in each x ∈ φn(π).

In this case, two conditions must be met: each function in φn(π) under π = (1 2 3) has
to have:

• 1-st, 2-nd and 4-th bit set on the same value

• 3-rd, 5-th and 6-th bit set on the same value

Hence, all members of φ3(π) under π = (1 2 3) can be simply found by iteration through
all 20 elements in D3 and checking which are satisfying the above conditions:

n-th bit of MBF

MBF written as integer 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1

23 0 0 0 1 0 1 1 1

127 0 1 1 1 1 1 1 1

255 1 1 1 1 1 1 1 1

Table 4: List of five fixed points in D3 under π = (1 2 3).
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3.1 Generating the set of all fixed points in Dn under permutation
of cycle type of total length n

Instead of doing a naive lookup in Dn for functions satisfying given conditions, we can
generate φn(π) directly.

Given a poset P = (X,≤), downset of P is such a subset S ⊆ X that for each x ∈ S all
elements from X ≤ x ∈ S. Dn is equivalent to the set of all downsets of Bn—therefore each
element in Dn is equivalent to some downset of Bn [3].

Two conditions must be met to generate MBF which is the fixed point in Dn under the
given permutation π:

• All points in the same orbit of π′ should be set to the same value—0 or 1.

• Value of points must respect the order of set inclusion.

For example, consider permutation π = (1 2)(3 4). After lifting it into permutation of
B4, we get π′ = (0)(1 2)(3)(4 8)(5 10)(6 9)(7 11)(12)(13 14)(15).

Now, let us transform this permutation into a binary poset of orbits ordered by set
inclusion. Orbits in the following example are represented by their smallest representative:

0

1

3

4

5 6

7

12

13

15

Figure 1: Poset of orbits of B4 under π = (1 2)(3 4) ordered by set inclusion.

Now it is only necessary to generate all downsets of this poset. In this case, the number
of all downsets is 28:
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The set of structures thus obtained is equivalent to φ4(π) under π = (1 2)(3 4). One can
unpack the downsets obtained thereby to the integer representation of MBF of 2n length.

This algorithm is being used only to generate φn(π) when π has a cycle type of total
length n—for example, we use Algorithm 1 to generate φ4(π) under π = (1 2)(3 4), but to
generate φ5(π) under the same permutation it is cheaper computationally to use Algorithm
2.

Algorithm 1 Generate φn(π) under permutation of cycle type of total length n

Input: Cycle type i of total length n
Output: Set S = φn(π)

1: Determine representative π ∈ Sn of cycle type i
2: Lift π into π′ ∈ SBn

3: Generate set Orbi containing all orbits in π′

4: Order Orbi into poset P by set inclusion
5: Initialize set S of downsets of P
6: Add two downsets: {} and {0} to S
7: for all elements a ∈ P do
8: for all elements b ∈ S do
9: if (b ∪ a) is downset of P then

10: Add downset (b ∪ a) to S
11: end if
12: end for
13: end for

3.2 Generating the set of all fixed points in Dn+1 under permuta-
tion of cycle type of total length n

Each ω in Dn+1 can be split into two functions (α, β) from Dn. Moreover, there is a relation
α � β, which means that for every i-th bit αi ≤ βi [2, 8]. For all π ∈ Sn, as φn+1(π) is subset
of Dn+1, each ω in φn+1(π) can be split into two functions (α, β).

Constructing ω from α is simply adding new variable (xn+1) to α. β contains data about
each possible intersection of α with (xn+1). Hence, α clearly belongs to φn(π)—same as β,
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as its variables are regrouped in the same way. Only difference between them is additional
variable (xn+1) which is fixed point of π, added to each element in β.

0 1 2 3 4 5 6 7
(1) ∅ x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3

(1 2) ∅ x2 x1 x1x2 x3 x2x3 x1x3 x1x2x3

Table 5: Regrouping of elements in B3 under π = (1 2).

Hence, we can take advantage of well-known algorithms for determining Dedekind num-
bers (for example [8, 11]), but instead of giving Dn on input, φn(π) will be given.

To construct Algorithm 2 we use a similar approach that was used by Fidytek et al. [8,
Algorithm 1]. Note that any algorithm from [8] will do the job, however, other algorithms
don’t return a set, but its cardinality.

Algorithm 2 Generating φn+1(π) under permutation π of cycle type of total length n

Input: Cycle type i of total length n
Output: Set S = φn+1(π)

1: Use Algorithm 1 to generate S ′ = φn(π)
2: Convert all elements in S ′ to integers of length 2n bits
3: Initialize set S of integers of length 2n+1 bits
4: for all elements a ∈ S ′ do
5: for all elements b ∈ S ′ do
6: if (a | b) = b then ⊲ “|” is bitwise “OR”
7: Add integer ((a << 2n) | b) to S ⊲ “<<” is logical shift
8: end if
9: end for

10: end for

3.3 Determining |φ8(π)| under π = (1 2)(3 4)(5 6)(7 8)

Determining |φ8(π)| under π = (1 2)(3 4)(5 6)(7 8) is too memory-intensive for Algorithm
1 considering the resources at hand. The width of the poset of orbits of the superset of
π = (1 2)(3 4)(5 6)(7 8) is 38, so the weak lower bound of |φ8(π)| is 238 = 274877906944.
In practice, even the machine with 128GB RAM is insufficient to store such a number of
downsets—so there was a need to develop a better algorithm for this particular case.

The idea of a cheaper calculation of this number was based on Wiedemann’s approach
[11]. He used the fact that each function from Dn+2 can be split into 4 functions from Dn:
αw, βw, γw, δw, and there are following dependencies: αw � βw � δw, αw � γw � δw.

We use a similar approach based on splitting each function from φn+2(π) into 4 parts.
We focus on a special case—when π ∈ Sn+2 is the product of disjoint 1-cycles and at least

7



one 2-cycle. Let τ denote such the permutation. In other words, τ = τ1 · · · τx, and τx is
2-cycle: (n+1 n+2). Let σ denote permutation such that σ ◦ τx = τ .

We can split each function from φn+2(π) into the following functions: α, δ ∈ φn(σ) and
β, γ ∈ Dn. Moreover, α � β � δ, α � γ � δ, and γ = β((1 2)).

For example, τ = (1 2)(3 4) lifts to τ ′(0)(1 2)(3)(4 8)(5 10)(6 9)(7 11)(12)(13 14)(15).
σ = (1 2). Using the above approach we break it down into three parts:

• α as (0)(1 2)(3); being function from φ2(σ)

• βγ as (4 8)(5 10)(6 9)(7 11) being pairs of functions from Dn such that γ = β((1 2))

• δ as (12)(13 14)(15), being function from φ2(σ).

Knowing how each function in φn+2(τ) can be split into two functions from Dn and two
functions from φn(σ), we can derive Algorithm 3:

Algorithm 3 Determining |φn+2(τ)|
Input: Dn and φn(σ)
Output: |φn+2(τ)|

1: Initialize k = 0,
2: for all β ∈ Dn do
3: Determine γ = β((1 2))
4: Initialize down = 0, up = 0
5: for all α ∈ φn(σ) do
6: if (α � (β | γ)) then ⊲ “|” is bitwise “OR”
7: down = down + 1
8: end if
9: end for

10: for all δ ∈ φn(σ) do
11: if ((β & γ) � δ) then ⊲ “&” is bitwise “AND”
12: up = up + 1
13: end if
14: end for
15: k = k + up · down
16: end for

As all above-described algorithms are sufficient to count |φ8(π)| for all π ∈ S8, we do not
explore a more generalized case of Algorithm 3—when π has at least one disjoint 2-cycle.
Performing calculations using a similar approach should speed-up counting, but the relation
between β and γ is more complex than in above-described special case. However, derivation
of such a generalized algorithm seems essential in the future computation of r9–but it will
only be countable after computation of d9.
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4 Implementation and results

The algorithms were implemented in Java and run on a computer with an Intel Core i7-
9750H processor. The results were tested and compared with the results of Chuchang and
Shoben [5] for r7. We found two misprints in their paper, clearly made during the typing
process. Namely, it says that µ11 is 540 (instead of 504), and φ7(π3) is 20688224 (instead of
2068224). We give therefore a complete, correct table of detailed calculation results for r7.
The total computation time of r8 was approximately a few minutes (with d8 precomputed).

i πi µi φ7(πi)

1 (1) 1 2414682040998

2 (12) 21 2208001624

3 (123) 70 2068224

4 (1234) 210 60312

5 (12345) 504 1548

6 (123456) 840 766

7 (1234567) 720 101

8 (12)(34) 105 67922470

9 (12)(345) 420 59542

10 (12)(3456) 630 26878

11 (12)(34567) 504 264

12 (123)(456) 280 69264

13 (123)(4567) 420 294

14 (12)(34)(56) 105 12015832

15 (12)(34)(567) 210 10192

r7 =
1

5040

k=15∑

i=1

µiφ7(πi) = 490013148

Table 6: Detailed calculation results for r7.

9



i πi µi φ8(πi)

1 (1) 1 56130437228687557907788

2 (12) 28 101627867809333596

3 (123) 112 262808891710

4 (1234) 420 424234996

5 (12345) 1344 531708

6 (123456) 3360 144320

7 (1234567) 5760 3858

8 (12345678) 5040 2364

9 (12)(34) 210 182755441509724

10 (12)(345) 1120 401622018

11 (12)(3456) 2520 93994196

12 (12)(34567) 4032 21216

13 (12)(345678) 3360 70096

14 (123)(456) 1120 535426780

15 (123)(4567) 3360 25168

16 (123)(45678) 2688 870

17 (1234)(5678) 1260 3211276

18 (12)(34)(56) 420 7377670895900

19 (12)(34)(567) 1680 16380370

20 (12)(34)(5678) 1260 37834164

21 (12)(345)(678) 1120 3607596

22 (12)(34)(56)(78) 105 2038188253420

r8 =
1

40320

k=22∑

i=1

µiφ8(πi) = 1392195548889993358

Table 7: Detailed calculation results for r8.
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Abstract

We study some divisibility properties of Dedekind numbers. We show that the
ninth Dedekind number is congruent to 6 modulo 210.

1 Introduction

We define Dn to be the set of all monotone Boolean functions of n variables. The cardinality
of this set, dn, is known as the n-th Dedekind number. Values of dn are described by the
OEIS (On-Line Encyclopedia of Integer Sequences) sequence A000372 (see Table 1).

n dn rn
0 2 2
1 3 3
2 6 5
3 20 10
4 168 30
5 7,581 210
6 7,828,354 16,353
7 2,414,682,040,998 490,013,148
8 56,130,437,228,687,557,907,788 1,392,195,548,889,993,358

Table 1: Known values of dn (A000372) and rn (A003182).
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In 1990, Wiedemann calculated d8 [11]. His result was confirmed in 2001 by Fidytek,
Mostowski, Somla, and Szepietowski [4]. The impulse for writing our paper came from
the letter from Wiedemann to Sloane [12] informing about the computation of the eighth
Dedekind number, specifically this fragment: “Unfortunately, I don’t see how to test it...”.
Wiedemann only knew that d8 is even. Despite its obvious importance, there is a lack of
studies on the divisibility of Dedekind numbers. As far as we know, the only paper concerning
this question is Yamamoto’s paper [13], where he shows that if n is even, then dn is also
even; he also states (without proof) that d9 is even and d11 is odd.

Our research aims to fill this lack by proposing new methods to determine the divisibility
of Dedekind numbers. As an application of these methods, we compute remainders of d9
divided by one-digit prime numbers, which (we hope) will help to verify the value d9 after
its first computation.

Our main result is the following system of congruences:

d9 ≡ 0 (mod 2),

d9 ≡ 0 (mod 3),

d9 ≡ 1 (mod 5),

d9 ≡ 6 (mod 7).

By the Chinese remainder theorem, we have

d9 ≡ 6 (mod 210).

Recently, after the preprint of this paper was published on ArXiv, two independent
research teams [5, 7] reported the same value:

d9 = 286386577668298411128469151667598498812366,

which confirms our results.

2 Preliminaries

Let B denote the set {0, 1} and Bn the set of n-element sequences of B. A Boolean function
with n variables is any function from Bn into B. There are 2n elements in Bn and 22n

Boolean functions with n variables. There is the order relation in B (namely: 0 ≤ 0, 0 ≤ 1,
1 ≤ 1) and the following partial order in Bn. For any two elements, x = (x1, . . . , xn),
y = (y1, . . . , yn) in Bn,

x ≤ y if and only if xi ≤ yi for all 1 ≤ i ≤ n.

A function h : Bn → B is monotone if

x ≤ y =⇒ h(x) ≤ h(y).
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Let Dn denote the set of monotone functions with n variables and let dn denote |Dn|. We
have the partial order in Dn defined by:

g ≤ h if and only if g(x) ≤ h(x) for all x ∈ Bn.

We shall represent the elements of Dn as strings of bits of length 2n. Two elements of D0

will be represented as 0 and 1. Any element g ∈ D1 can be represented as the concatenation
g(0) ∗ g(1), where g(0), g(1) ∈ D0 and g(0) ≤ g(1). Hence D1 = {00, 01, 11}. Each element
of g ∈ D2 is the concatenation (string) of four bits: g(00) ∗ g(10) ∗ g(01) ∗ g(11) which can
be represented as a concatenation g0 ∗ g1, where g0, g1 ∈ D1 and g0 ≤ g1. Hence D2 =
{0000, 0001, 0011, 0101, 0111, 1111}. Similarly, any element of g ∈ Dn can be represented as
a concatenation g0 ∗ g1, where g0, g1 ∈ Dn−1 and g0 ≤ g1. Therefore, we can treat functions
in Dn as sequences of bits and as integers. We let � denote the total order in Dn induced
by the total order in integers.

For a set Y ⊆ Dn, by Y 2 we denote the Cartesian power Y 2 = Y × Y , that is the set of
all ordered pairs (x, y) with x, y ∈ Y . Similarly for more than two factors, we write Y k for
the set of ordered k-tuples of elements of Y . We let ⊤ denote the maximal element in Dn,
that is, ⊤ = (1 . . . 1); and ⊥ denote the minimal element in Dn, that is, ⊥ = (0 . . . 0). For
two elements x, y ∈ Dn, we let x|y denote the bitwise or; and x&y denote the bitwise and.
Furthermore, we let re(x, y) denote |{z ∈ Dn : x ≤ z ≤ y}|. Note that re(x,⊤) = |{z ∈ Dn :
x ≤ z}| and re(⊥, y) = |{z ∈ Dn : z ≤ y}|.

2.1 Posets

A poset (partially ordered set) (S,≤) consists of a set S together with a binary relation
(partial order) ≤ which is reflexive, transitive, and antisymmetric. Given two posets (S,≤)
and (T,≤) a function f : S → T is monotone, if x ≤ y implies f(x) ≤ f(y). By T S we
denote the poset of all monotone functions from S to T with the partial order defined by

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ S.

In this paper we use the following well-known lemma; see [3, 10]:

Lemma 1. The poset Dn+k is isomorphic to the poset DBk

n —the poset of monotone functions
from Bk to Dn.

3 Divisibility of Dedekind numbers by 2

In 1952, Yamamoto [13] proved that if n is even, then dn is also even; he also stated (without
proof) that d9 is even and d11 is odd. In order to prove that d9 is even, we will leverage the
duality property of Boolean functions. For each x ∈ Dn, we have dual xd which is obtained
by reversing and negating all bits. For example, 1111d = 0000 and 0001d = 0111. An element
x ∈ Dn is self-dual if x = xd. For example, 0101 and 0011 are self-duals in D2. If x is not
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self-dual, and y = xd 6= x, then yd = x. Thus, non-self-duals form pairs of the form (x, xd),
where x 6= xd. Let kn denote the number of these pairs and let λn denote the number of
self-dual functions in Dn. We have that dn = 2kn + λn. Hence λn ≡ dn (mod 2). Values of
λn are described by the OEIS sequence A001206; see Table 2. The last known term of this
sequence, λ9, was calculated in 2013 by Brouwer et al. [2].

n λn

0 0
1 1
2 2
3 4
4 12
5 81
6 2,646
7 1,422,564
8 229,809,982,112
9 423,295,099,074,735,261,880

Table 2: Known values of λn (A001206).

Corollary 2. We have d9 ≡ λ9 ≡ 0 (mod 2).

One can directly check that dn ≡ λn (mod 2) for n ≤ 8.

4 Divisibility of Dedekind numbers by 3

By Lemma 1, the poset Dn+3 is isomorphic to the poset DB3

n —the set of monotone functions
from B3 = {000, 001, 010, 100, 110, 101, 011, 111} to Dn. Now consider the group S3—the
permutations on {1, 2, 3}. The group S3 is isomorphic to the automorphism group Aut(B3)
of the Boolean lattice B3. The automorphism group Aut(B3) acts in a natural way on DB3

n

by
α(f) = f ◦ α−1

for all α ∈ Aut(B3) and all f ∈ DB3

n . Let O(f) = {α(f) ∈ DB3

n : α ∈ Aut(B3)} denote the
orbit of f under this action and by γ(f) = |O(f)| its cardinality. The orbits form a partition
of Dn+3 = DB3

n . Each of these orbits has one, three, or six elements. Moreover, an orbit O(f)
has one element if and only if f(001) = f(010) = f(100) and f(011) = f(101) = f(110).
Such a function f can be identified with a monotone function from the path P4 to Dn. Hence,

dn+3 ≡ |DP4
n | (mod 3).

It is well known, see [1, 10], that the number of monotone functions from the path
P4 = (a < b < c < d) to a poset S is equal to the sum of the elements of the third power
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of M(S)—the incidence matrix of S. For example, for the poset D1 = {00 < 01 < 11}, we
have

M(D1) =




1 1 1
0 1 1
0 0 1




and

M(D1)
3 =




1 3 6
0 1 3
0 0 1


 .

The sum of the elements of (M(D1)
3) is equal to 15, which is equal to |DP4

1 |—the number
of monotone functions from P4 to D1.

Furthermore, consider D2 = {0000, 0001, 0011, 0101, 0111, 1111} and its incidence matrix:

M(D2) =




1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1




.

Now consider the third power of the incidence matrix of D2:

M(D2)
3 =




1 3 6 6 14 20
0 1 3 3 9 14
0 0 1 0 3 6
0 0 0 1 3 6
0 0 0 0 1 3
0 0 0 0 0 1




.

The sum of the elements of (M(D2)
3) is equal to 105, which is equal to |DP4

2 |—the number
of monotone functions from P4 to D2. In a similar we can compute |DP4

n | for n = 3, 4, 5.
Unfortunately, this method cannot be easily applied for n = 6, because M(D6) is too large.
However, Pawelski [8] proposed another method: |DP4

(n+m)| = |DP4×Bm

n | = |(DP4
n )B

m| (also see

[10]). Using the same program as used in [8] to compute |DP4
5 | we can calculate |DP4

6 | and
the result (see Table 3) is divisible by 3.

Corollary 3. As |DP4
6 | = 868329572680304346696 is divisible by 3, the quantity d9 is also

divisible by 3.

One can directly check that dn+3 ≡ |DP4
n | (mod 3) for n ≤ 5.
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n |DP4
n | |DP4

n | mod 3
0 5 2
1 15 0
2 105 0
3 3,490 1
4 2,068,224 0
5 262,808,891,710 1
6 868,329,572,680,304,346,696 0

Table 3: Known values of |DP4
n |. Note that dn+3 ≡ |DP4

n | (mod 3).

5 Main lemma

In the sequel we shall use another definition of a group acting on DBk

n . In order to do this
it is convenient to identify the lattice Dn = BBn

with the isomorphic up-set lattice Un of
Bn. An isomorphism is given by h : Dn → Un, where h(x) = x−1(1) for all x ∈ Dn. For
β ∈ Aut(Bn) and x ∈ Dn, we have

h(β(x)) = β(h(x)).

Let P and Q be two posets and let PQ be the poset of monotone functions from Q to P .
Now, we can define an action of Aut(P ) on PQ by setting

β(f) = β ◦ f

for all β ∈ Aut(P ) and f ∈ PQ. We let

O(f) = {β(f) : β ∈ Aut(P )}

denote the orbit of f under this action. Additionally, for p ∈ P , we write

[p] = {β(p) : β ∈ Aut(P )}

for the orbit of p under the natural action of Aut(P ) on P .
We use ∼ to denote an equivalence relation on Dn. Namely, two functions p, r ∈ Dn

are equivalent, p ∼ r, if there is an automorphism α ∈ Aut(Dn) such that p = α(r). For
a function p ∈ Dn its equivalence class is the set [p] = {r ∈ Dn : r ∼ p}. We let γ(f)
denote |[f ]|. For m > 1, let En,m = {p ∈ Dn : γ(f) ≡ 0 (mod m)} and Ec

n,m = Dn − En,m.
For the class [p], we define its canonical representative as the one element in [p] chosen to
represent the class. One of the possible approaches is to choose its minimal (according to
the total order �) element [11]. Sometimes we shall identify the class [p] with its canonical
representative and treat [p] as an element in Dn. We let Rn denote the set of equivalence
classes and rn the number of equivalence classes; that is, rn = |Rn|. Values of rn are described
by A003182 OEIS sequence; see Table 1.
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Lemma 4. For every q ∈ Q and every f ∈ PQ, the integer |[f(q)]| divides |O(f)|.
Proof. For every p ∈ [f(q)] we define

G(p) := {g ∈ O(f) : g(q) = p}.

The sets G(p), p ∈ [f(q)] form a partition of O(f) and the sets G(p) have the same cardinality.
Indeed, for every β ∈ Aut(P ),

g ∈ G(f(q)) ⇐⇒ β(g) ∈ G(β(f(q))).

Lemma 5. For arbitrary subset W ⊆ Q, the cardinality of PQ is congruent modulo m to
the cardinality of

{f ∈ PQ : f(W ) ⊆ Ec
n,m}.

Proof. For each automorphism α ∈ Aut(P ) and for each p ∈ P , we have [p] = [α(p)]. Hence,

p ∈ Ec
n,m ⇐⇒ α(p) ∈ Ec

n,m

and for every function f ∈ PQ, we have

f(W ) ⊆ Ec
n,m ⇐⇒ α ◦ f(W ) ⊂ Ec

n,m

Orbits O(f) form a partition of PQ. If f ∼ g (or in other words if f ∈ O(g)), then there
exists automorphism α ∈ Aut(P ), such that g = α ◦ f and

f(W ) ⊆ Ec
n,m ⇐⇒ g(W ) ⊆ Ec

n,m.

So we have two kinds of orbits:

• orbits O(f), where g(W ) ⊆ Ec
n,m for all g ∈ O(f),

• orbits O(f), where g(W ) 6⊆ Ec
n,m for all g ∈ O(f).

Moreover, if f(W ) 6⊆ Ec
n,m, then there exists w ∈ W such that f(w) ∈ En,m, hence, m

divides |[f(w)]| and by Lemma 4, m divides |O(f)|.

6 Counting functions from B2 to Dn

By Lemma 1, the poset Dn+2 is isomorphic to the poset DB2

n —the poset of monotone
functions from B2 = {00, 01, 10, 11} to Dn. Consider the function G that, for every pair
(x, y) ∈ D2

n, takes the value

G(x, y) = re(x|y,⊤) · re(⊥, x&y).
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Observe that G(x, y) is equal to the number of functions f ∈ DB2

n with f(01) = x and
f(10) = y. Function G is well-known, as it is discussed in [3, 4, 11].

For A ⊆ Dn ×Dn let G(A) denote
∑

(x,y)∈A G(x, y). By Lemma 1, we have

dn+2 = G(Dn ×Dn) =
∑

x∈Dn

∑

y∈Dn

G(x, y).

Consider the set W2 = {01, 10}. By Lemma 5, we have

dn+2 ≡ G(Dn ×Dn) ≡ G(Ec
n,m × Ec

n,m) (mod m).

Observe that, for every automorphism π ∈ Aut(Bn) and every x, y ∈ Dn, we have
G(x, y) = G(π(x), π(y)).

Lemma 6. Let Y be a subset Y ⊆ Dn and suppose that π(Y ) = Y for every automorphism
π ∈ Aut(Bn; and let x and y be two equivalent, x ∼ y, elements in Dn. Then

1. G({x} × Y ) = G({y} × Y ).

2. G([x] × Y ) = γ(x) ·G({x} × Y ).

Proof. Notice that condition π(Y ) = Y implies that π is a bijection on Y , or in other words,
π permutes the elements of Y .

For (1), observe that

G({x} × Y ) =
∑

s∈Y
G(x, s) =

∑

s∈Y
G(π(x), π(s))

=
∑

t∈π(Y )

G(π(x), t) =
∑

t∈Y
G(π(x), t) = G({π(x)} × Y ).

We use the fact that π(Y ) = Y .

Observe that for every automorphism π ∈ Aut(bn), we have and π(Ec
n,m) = Ec

n,m. Hence,
by Lemma 6, we get

Theorem 7.
dn+2 ≡

∑

x∈Rn∩Ec
n,m

∑

y∈Ec
n,m

γ(x) ·G(x, y) (mod m).

Here we identify each class [x] ∈ Rn with its canonical representative.

Example 8. Consider the poset D2 = {0000, 0001, 0011, 0101, 0111, 1111}. There are five
equivalence classes: namely, R2 = {{0000}, {0001}, {0011, 0101}, {0111}, {1111}}. Two el-
ements: 0101 and 0011 are equivalent. For m = 2, we have E2,2 = {0011, 0101} and
Ec

2,2 = {0000, 0001, 0111, 1111}. Table 4 presents values of G(x, y) for x, y ∈ D2. Let
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Y = [0011] = {0011, 0101}. For every permutation π ∈ S2, we have π(Y ) = Y . Fur-
thermore, G({0011} × Y ) = G({0101} × Y ) = 9 + 4 = 13; and G([0011] × Y ) = 2 · 13 = 26,
which is divisible by 2.

Similarly, for Z = [0001] = {0001}, we have that π(Z) = Z for every permutation π ∈ S2.
Furthermore, G({0011} × Z) = G({0101} × Z) = 6; and G([0011] × Z) = 2 · 6 = 12, which
is divisible by 2. By summing up all values in Table 4 we obtain G(D2 ×D2) = 168 = d4.

x
y

0000 0001 0011 0101 0111 1111

0000 6 5 3 3 2 1
0001 5 10 6 6 4 2
0011 3 6 9 4 6 3
0101 3 6 4 9 6 3
0111 2 4 6 6 10 5
1111 1 2 3 3 5 6

Table 4: Values of G(x, y) for x, y ∈ D2.

Example 9 (Continuation of Example 8). By summing the relevant values listed in Table
4, we obtain G(Ec

2,2×Ec
2,2) = 6+5+2+1+5+10+4+2+2+4+10+5+1+2+5+6 = 70.

By Theorem 7, we have d4 ≡ 70 (mod 2). Indeed, d4 = 168, which is even.

7 Counting functions from B3 to Dn

In the next two sections, we show that similar techniques can be also applied to functions
in DB3

n and DB4

n . Consider the function H which for every triple (x, y, z) ∈ D3
n returns the

value
H(x, y, z) = re(⊥, x&y&z) ·

∑

s≥x|y|z
re(x|y, s) · re(x|z, s) · re(y|z, s).

Observe that H(x, y, z) is equal to the number of monotone functions f ∈ DB3

n with f(001) =
x, f(010) = y and f(100) = z. Thus, we have

dn+3 = H(D3
n) =

∑

x∈Dn

∑

y∈Dn

∑

z∈Dn

H(x, y, z).

Function H is discussed in [3]. Consider the set W3 = {001, 010, 100}. By Lemma 5, we
have

dn+3 ≡ G(Dn ×Dn ×Dn) ≡ G(Ec
n,m × Ec

n,m × Ec
n,m) (mod m).

Observe that for every automorphism π ∈ Aut(Bn) and every x, y, z ∈ Dn, we have
H(x, y, z) = H(π(x), π(y), π(z)).
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Lemma 10. Let Y and Z be subsets Y, Z ⊆ Dn and suppose that π(Y ) = Y and π(Z) = Z
for every automorphism π ∈ Aut(Bn); and let x and y be two equivalent, x ∼ y, elements in
Dn. Then

1. H({x} × Y × Z) = H({y} × Y × Z).

2. H([x] × Y × Z) = γ(x) ·H({x} × Y × Z).

Proof. (1) H({x} × Y × Z) =
∑

s∈Y
∑

t∈Z H(x, s, t) =
∑

s∈Y
∑

t∈Z H(π(x), π(s), π(t)) =∑
u∈π(Y )

∑
v∈π(Z)H(π(x), u, v) =

∑
u∈Y

∑
v∈Z H(π(x), u, v) = H({π(x)} × Y × Z). We use

the fact that π is a bijection on Y × Z and permutes the elements of Y × Z.

As an immediate corollary, we have the following:

Theorem 11.

dn+3 ≡
∑

x∈Rn∩Ec
n,m

∑

y∈Ec
n,m

∑

z∈Ec
n,m

γ(x) ·H(x, y, z) (mod m).

Here, again, we identify each class [x] ∈ Rn with its canonical representative.

Example 12. Consider D4. There are 168 elements in D4 and 30 equivalence classes in R4.
The distribution of these equivalence classes based on their γ value is presented in Table 5.
For instance, there are six equivalence classes [x] with γ(x) = 1, two equivalence classes with
γ(x) = 3, and so forth. For m = 2, the set Ec

4,2 contains only twelve elements and R4 ∩Ec
4,2

contains eight elements. Similarly, for m = 3, the set Ec
4,3 contains 42 elements and R4∩Ec

4,3

consists of 15 elements.

Example 13. We employed a Java implementation of the Theorem 11. For n = 4 and
m = 2, 3, 4, 6, 12 we have

d7 ≡ 2320978352 (mod 2), and therefore d7 mod 2 = 0,
d7 ≡ 74128573428 (mod 3), and therefore d7 mod 3 = 0,
d7 ≡ 128268820802 (mod 4), and therefore d7 mod 4 = 2,
d7 ≡ 89637133284 (mod 6), and therefore d7 mod 6 = 0,
d7 ≡ 566167187562 (mod 12), and therefore d7 mod 12 = 6.

One can check these values directly by dividing d7 by 2, 3, 4, 6, and 12.

8 Counting functions from B4 to Dn

By Lemma 1, the poset Dn+4 is isomorphic to the poset DB4

n —the set of monotone functions
from B4 to Dn. Consider the function F (also discussed in [3, 4]), which for every six
elements a, b, c, d, e, f ∈ Dn, counts how many functions g ∈ DB4

n satisfy the following
equations: g(0011) = a, g(0101) = b, g(1001) = c, g(0110) = d, g(1010) = e, g(1100) = f .
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k |{f ∈ R4 : γ(f) = k}|
1 6
3 2
4 9
6 6
12 7

Table 5: Number of f ∈ R4 with γ(f) = k.

For A ⊆ (Dn)6 let F (A) denote
∑

(a,b,c,d,e,f)∈A F (a, b, c, d, e, f). By Lemma 1, we have

dn+4 = F (D6
n) =

∑

a∈Dn

∑

b∈Dn

∑

c∈Dn

∑

d∈Dn

∑

e∈Dn

∑

f∈Dn

F (a, b, c, d, e, f).

Consider the set W4 = {0011, 0101, 1001, 0110, 1010, 1100}. By Lemma 5, we have

dn+4 ≡ F (D6
n) ≡ F ((Ec

n,m)6) (mod m)

Observe that for every automorphism π ∈ Aut(Bn) and every a, b, c, d, e, f ∈ Dn, we have
F (a, b, c, d, e, f) = F (π(a), π(b), π(c), π(d), π(e), π(f)). Consider Cartesian product Y =
Y1 × Y2 × Y3 × Y4 × Y5 and let π(y1, . . . , y5) = (π(y1), . . . , π(y5)). Observe that, if π(Yi) = Yi

for every i, then π(Y ) = Y and π permutes the elements of Y .

Lemma 14. Let Y be a subset Y ⊆ D5
n and suppose that π(Y ) = Y for every automorphism

π ∈ Aut(Bn); and let x and y be two equivalent, x ∼ y, elements in Dn. Then

1. F ({x} × Y ) = F ({y} × Y ).

2. F ([x] × Y ) = γ(x) · F ({x} × Y ).

Proof. (1) F ({x} × Y ) =
∑

s∈Y F (x, s) =
∑

s∈Y F (π(x), π(s)) =
∑

u∈π(Y ) F (π(x), u) =∑
u∈Y F (π(x), u) = F ({π(x)}×Y ). We use the fact that π is a bijection on Y and permutes

the elements of Y .

As a corollary we get the following result.

Theorem 15.

dn+4 ≡
∑

a∈Rn∩Ec
n,m

∑

b∈Ec
n,m

∑

c∈Ec
n,m

∑

d∈Ec
n,m

∑

e∈Ec
n,m

∑

f∈Ec
n,m

γ(a) · F (a, b, c, d, e, f) (mod m).

Example 16. We utilized a Java implementation of the Theorem 15. For n = 4 and
m = 2, 3, 4, 6, 12 we get

d8 ≡ 53336702474849828, and therefore d8 mod 2 = 0;
d8 ≡ 3019662424037271148 (mod 3), and therefore d8 mod 3 = 1;
d8 ≡ 25754060568741983624 (mod 4), and therefore d8 mod 4 = 0;
d8 ≡ 14729824485525634108 (mod 6), and therefore d8 mod 6 = 4;
d8 ≡ 15054599294580333880 (mod 12), and therefore d8 mod 12 = 4.

One can check these values directly by dividing d8 by 2, 3, 4, 6, and 12.
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9 Application

To compute remainders of d9 divided by 5 and 7, we chose the algorithm described in Section
6. Our implementation lists all 490,013,148 elements of R7 and calculates γ(x) and re(⊥, x)
for each element x ∈ R7. This feat was previously accomplished only by Van Hirtum in 2021
[6]. It is worth noting that the number of elements x in Rn with γ(x) = n! for n > 1 can be
found in the OEIS sequence A220879 (see Table 6). Using the available precalculated sets,
we can efficiently determine the 7th term of the sequence, which was not recorded in the
OEIS before.

n A220879(n)
1 0
2 1
3 0
4 0
5 7
6 7281
7 468822749

Table 6: Inequivalent monotone Boolean functions of n variables with no symmetries.

Our program’s most critical part, the Boolean function canonization procedure, is based
on Van Hirtum’s fast approach [6, Section 5.2.9] and implemented in Rust. Our program is
running on a 32-thread machine with Xeon cores.

After the preprocessed data has been loaded into the main memory, the test was per-
formed and the value of d8 was recomputed in just 16 seconds. However, using this method
to check the divisibility of d9 for any value of m is significantly more challenging.

In order to determine which remainders can be computed by our methods, we can use
the information in Table 7. Note that

|Ec
7,m| =

∑

x∈R7
γ(x) mod m 6=0

γ(x).

The four smallest Ec
7,m are Ec

7,7 with 9999 elements, Ec
7,3 with 108873 elements, Ec

7,21 with
118863 elements, and Ec

7,5 with 154863 elements. Since d9 is already known to be divisible
by 3, the next step is to compute the remainders of d9 divided by 5 and 7.

9.1 Remainder of d9 divided by 5
∑

x∈R7∩Ec
7,5

∑

y∈Ec
7,5

γ(x) ·G(x, y) = 1404812111893131438640857806,
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k |{f ∈ R7 : γ(f) = k}|
1 9
7 27
21 75
30 5
35 117
42 99
70 90
84 9
105 1206
120 4
140 702
210 3255
252 114
315 2742
360 18
420 26739
504 237
630 47242
720 4
840 75024
1260 1024050
1680 3128
2520 20005503
5040 468822749

Table 7: Number of f ∈ R7 with the given γ(f).

therefore, by Theorem 7, we have d9 mod 5 = 1. We calculated this number in approximately
7 hours. Moreover, using Theorem 15 we have d9 ≡ 157853570524864492086 (mod 5), which
confirms that d9 mod 5 = 1.

9.2 Remainder of d9 divided by 7
∑

x∈R7∩Ec
7,7

∑

y∈Ec
7,7

γ(x) ·G(x, y) = 29989517764506682537562623,

therefore, by Theorem 7, we have d9 mod 7 = 6. We calculated this number in approximately
half an hour.
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On The Number of Inequivalent Monotone Boolean
Functions of 9 Variables

Bartłomiej Pawelski

Abstract—The problem of counting all inequivalent monotone
Boolean functions of nine variables is considered. We solve the
problem using known algorithms and deriving new ones when
necessary. We describe methods to count fixed points in sets of all
monotone Boolean functions under a given permutation of input
variables. With these techniques as a basis, we tabulate the car-
dinalities of these sets for nine variables. By applying Burnside’s
lemma and the numbers obtained, we calculate the number of
inequivalent monotone Boolean functions of 9 variables, which
equals 789,204,635,842,035,040,527,740,846,300,252,680.

Index Terms—Boolean functions, monotone Boolean functions,
Dedekind number, inequivalent monotone Boolean functions

I. INTRODUCTION

LET B denote the set of two bits {0,1} and let Bn denote
the set of n–element sequences of B. A Boolean function

is any function f : Bn → B. There are 2n elements in Bn

and 22
n

Boolean functions of n variables.
We have a partial order in B: 0 ≤ 0, 0 ≤ 1, and 1 ≤ 1.

This partial order induces a partial order on Bn: for any two
elements x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Bn, x ≤ y
if and only if xi ≤ yi for all i.

A Boolean function is said to be monotone if for any x, y ∈
Bn, when x ≤ y, it follows that f(x) ≤ f(y).

We define Dn as the set of all monotone Boolean functions
of n variables. Let dn represent the cardinality of Dn, also
known as the n–th Dedekind number. Dedekind numbers
are listed in the On-Line Encyclopedia of Integer Sequences
(OEIS) sequence A000372 (see Table I). The term dn also
corresponds to the number of simple games with n players in
minimal winning form, the number of antichains of subsets
of an n set, the number of Sperner families and the cardi-
nality of a free distributive lattice on n generators [18]. An
important and recent result is the calculation of d9, which was
independently achieved in 2023 by Jäkel [10] and Van Hirtum,
De Causmaecker, Goemaere, Kenter, Riebler, Lass, and Plessl
[9].

Monotone Boolean functions are instrumental in the design
and study of nonlinear digital filters, like stack filters, which
are widely used in image processing and other applications
where noise sources are non–Gaussian or non–additive [17].
Other practical applications of monotone Boolean functions
include, among others, machine learning algorithms which are
not heuristic [13], optimization of consensus maximization
algorithms for robust fitting in computer vision [20], game
theory [8], and cryptography [6].

B. Pawelski was with the Institute of Informatics, University of Gdansk,
Poland (e-mail: bartlomiej.pawelski@ug.edu.pl)

Two monotone Boolean functions are said to be equivalent
if the first function can be obtained from the second function
through any permutation of input variables. Let Rn represent
the set of all equivalence classes of Dn, and let rn denote
the cardinality of this set, also known as the number of
inequivalent monotone Boolean functions of n variables. The
values of rn are listed in the OEIS sequence A003182 (see
Table I). Note that the value of r9, first reported in this paper,
has subsequently been included in the OEIS. There are at most
n! permutations of n variables, so each equivalence class has
at most n! Boolean functions. Therefore, a lower bound of rn
is given by dn

n! .
In 1985 and 1986, Liu and Hu [11], [12] calculated rn

for values of n up to 7. Independently, r7 was calculated by
Stephen and Yusun [19]. In 2021, the author calculated r8
[14], and this result was independently reported in 2022 by
Carić and Živković [5]. The recent paper by Szepietowski
[16] contributes to the topic by systematizing knowledge
about studying monotone Boolean functions and counting
fixed points of permutations acting on Dn. Notably, one of
the algorithms from Szepietowski’s paper has been applied in
the current study (see Section III-C).

In this paper, our primary contribution is the computation of
r9. Our work focuses on counting the fixed points in D9 under
permutations of the cycle types of its input variables. The
OEIS sequence A000041, which is well-known for enumerat-
ing the number of integer partitions, also provides information
on the number of different cycle types as n increases. Given
this sequence, there are 29 cycle types for n = 9 (see
Table V). Then, we apply a specialized version of Burnside’s
lemma, tailored specifically for these cycle types, similarly
to the approaches found in [5], [11], [12], [14]. Given the
complexity and diversity of these cycle types, we leverage
existing algorithms where suitable and introduce new ones
when demanded by specific computational challenges:

1) Algorithm III-A, corresponding to [14, Algorithm 1].
2) Algorithm III-B, a partially new algorithm, evolved from

[14, Algorithm 2].
3) Algorithm III-C, corresponding to [16, Theorem 4.].
4) Algorithms III-D and III-E: new algorithms, evolved

from [14, Algorithm 3].

The methodology is further elaborated upon in Section III.
Our efforts culminate in the calculation of

r9 = 789204635842035040527740846300252680,

marking the first-ever computation of this number.
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n dn rn

0 2 2
1 3 3
2 6 5
3 20 10
4 168 30
5 7581 210
6 7828354 16353
7 2414682040998 490013048
8 56130437228687557907788 1392195548889993358
9 286386577668298411128469151667598498812366 789204635842035040527740846300252680

TABLE I: Known values of dn and rn.

II. PRELIMINARIES

A. Integer representation of a Boolean function

In the context of the n-dimensional Boolean space, denoted
as Bn, we can consider an array composed of 2n potential
inputs for a given Boolean function. Each of these possible
input combinations is associated with a specific output bit.

In this manner, we represent any Boolean function of n
variables using a binary vector of length 2n, which is called
a truth table representation of a Boolean function (also see
[2] and [3, Chapter II]). Note that a Boolean function of
up to six variables can be effectively represented as a 64-
bit integer, which corresponds to the word length of modern
CPUs, making it a particularly efficient representation for
computing purposes.

For f, g ∈ Dn, the union of these functions is represented
by f ∪ g, and the intersection by f ∩ g. In terms of their
binary representations, the union can be represented using the
bitwise OR operation and the intersection using the bitwise
AND operation.

Example 1. Consider the following truth table:

000 001 010 011 100 101 110 111

0 1 0 1 0 1 0 1

The first row contains the lexicographically ordered ele-
ments of Bn, and the second row a function value f(x) for
a given x ∈ Bn. We represent this Boolean function by the
binary word 01010101, equivalent to the integer 85.

Example 2. The six monotone Boolean functions of two
variables are: 0000 (0 as integer), 0001 (1 as integer), 0011 (3
as integer), 0101 (5 as integer), 0111 (7 as integer), and 1111
(15 as integer).

B. Posets

A binary relation that is reflexive, antisymmetric and transi-
tive, when defined on a set P , forms a partially ordered set, or
simply a poset. In the Introduction, we defined partial orders
on B and Bn making them both posets.

Consider a poset P = (X,≤). A downset of P is defined
as a subset S ⊆ X such that if x ∈ S, then all elements in X
satisfying y ≤ x also belong to S. The set Dn corresponds to
the set of all downsets of Bn. As a result, every element of
Dn can be associated with a specific downset of Bn.

An incidence matrix of a poset, also referred to as an array
in Szepietowski’s paper [16, Section 3] is a binary matrix
that represents the partial order relation between elements in
the poset. For a poset P = (X,≤), its incidence matrix M
has rows and columns indexed by elements in X . The entry
M(x, y) is 1 if x ≤ y, and 0 otherwise.

Consider two posets (X,≤) and (Y,≤). The Cartesian
product X × Y is the poset with the relation ≤ defined by
(a, b) ≤ (c, d) if and only if a ≤ c and b ≤ d. For two
disjoint posets (X,≤) and (Y,≤), by X + Y we denote the
disjoint union (sum) with the order defined as follows: a ≤ b
iff (a, b ∈ X and a ≤ b) or (a, b ∈ Y and a ≤ b).

Let us recall the function f : X → Y is monotone if for any
elements x, y ∈ X such that x ≤ y, we have f(x) ≤ f(y).

We denote the set of all monotone functions from X to Y
by Y X . A partial order on Y X can be defined as follows:
given two functions f, g ∈ Y X , we say that f ≤ g if and only
if f(x) ≤ g(x) for all x ∈ X .

Two posets are said to be isomorphic if their order structures
are analogous. Formally, posets P = (X,≤) and P ′ = (X ′,≤′

) are isomorphic, if there exists a bijection f : X → X ′

such that for all elements x1, x2 in P , x1 ≤ x2 if and only
if f(x1) ≤′ f(x2). We use the equals sign = to denote an
isomorphic relationship between posets.

In the current study, we use the following lemmas:

Lemma 3. [16] For three posets R,S, T :
(1) If S and T are disjoint, then RS+T = RS ×RT .
(2) RS×T = (RS)T and also RS×T = (RT )S .

Lemma 4. [16]
(a) Bk+m = Bk ×Bm.
(b) Dk+m = (Dk)

Bm

.

These lemmas, in various formulations, are standard tools
in the literature for counting monotone Boolean functions.
For example, Wiedemann [21] used the isomorphism D8 =
(D6)

B2

to count the monotone Boolean functions of eight
variables.

C. Permutations acting on variables of a Boolean function

Let Sn represent the set of all permutations of the set
{1, 2, . . . , n}. In this context, we treat Sn as the set of all
permutations of the n variables within a Boolean function. The
action of a permutation π on a Boolean function f essentially
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permutes the input variables of f . For a given Boolean function
f and a permutation π, we denote the resulting function as
π(f).

Each permutation π ∈ Sn can be represented as a product
of disjoint cycles. The cycle type of π is defined as the tuple
of lengths of its disjoint cycles arranged in increasing order.
For example, the type of permutation π = (12)(34)(5678) is
(2, 2, 4), and its total length is 8.

Given a set X and a permutation π acting on X , the orbit
of an element x ∈ X under the action of π is the set of all
images of x obtained by applying π repeatedly. Formally, the
orbit of x is:

Orbπ(x) = {πj(x) | j ∈ N}

where πj(x) denotes the result of applying the permutation π
j times to x.

An element x is said to be a fixed point of π if it remains
unchanged under the action of π. The set Φn(π) contains
all fixed points of π acting on Dn. In this context, let e
represent the identity permutation, where none of the variables
is swapped. This is shown in the first row of Table II, where
each element of B3 remains unchanged.

e 000 001 010 011 100 101 110 111

(12) 000 010 001 011 100 110 101 111

TABLE II: B3 under π = (12).

e 0 1 0 1 0 1 0 1

(12) 0 0 1 1 0 0 1 1

TABLE III: A Boolean function of three variables represented
by 85 becomes 51 under π = (12).

Example 5. As shown in Table III, the Boolean function of
three variables represented by the integer 85 (in binary form
as 01010101) is transformed under permutation π = (12).
After the permutation, the binary representation becomes
00110011, which corresponds to the integer 51. We therefore
have π(85) = 51. This transformation allows us to illustrate
two significant insights:

1) 51 and 85 are equivalent Boolean functions, illustrating
that the application of a permutation on variables can
yield a different, but equivalent, Boolean function;

2) neither 51 nor 85 are fixed points in D3 under the
permutation π = (12), illustrating that under certain
permutations, original functions do not remain invariant.

A simple example of a fixed point in D3 under π = (12)
is the function represented by the integer 255, corresponding
to the binary word 11111111. Indeed, this function remains
invariant under any permutation, which can be observed upon
examining its binary representation.

000

001 010 100

011 101 110

111

000

010 001 100

011 110 101

111

Fig. 1: B3 and B3 under π = (12) on Hasse diagrams

By applying Burnside’s lemma, rn can be calculated as
follows [5], [14], [16]:

rn =
1

n!

k∑

i=1

µiϕ(πi), (1)

where:
– ϕn(π) = |Φn(π)|,
– k is the number of different cycle types in Sn,
– i is the index of a cycle type,
– µi is the number of permutations π ∈ Sn with cycle type

i,
– πi is a representative permutation π ∈ Sn with cycle type

i.
The first application of Burnside’s lemma for calculating rn

we found in the literature was by Liu and Hu [11], [12]. They
used it in 1985 and 1986 to determine rn for values of n up to
7. Computing ϕ9(π) for all cycle types in S9 (excluding the
identity permutation) requires significantly less computational
effort compared to calculating d9, making it feasible with our
available resources.

III. METHODOLOGY

To efficiently calculate ϕ9(π) for all cases, we employ
several algorithms, the details of which are described in this
section.

A. Algorithm III–A

Let Bn(π) denote the poset of orbits of Bn under π ∈ Sn,
where two orbits C1 and C2 are in the relation C1 ≤π C2 if
and only if for every c1 ∈ C1, there exists a c2 ∈ C2 such
that c1 ≤ c2. An illustrative representation of this can be seen
in Figure 2. Note that this figure includes two doublet orbits:
{001, 010} and {101, 110}.

000

{001, 010} 100

011 {101, 110}

111

Fig. 2: B3(π) - poset of orbits in B3 under π = (12).
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Lemma 6. Φn(π) = BBn(π).

Proof. Recall that Φn(π) represents the set of fixed points
of π acting on Dn. Given an orbit in Bn(π), a function in
Φn(π) determines a specific bit value (either 0 or 1) for the
entire orbit. This assignment of bit values to orbits can be
represented as a function from Bn(π) to B, where each orbit
is mapped to a single bit value. The set of all possible ways
to assign bit values to orbits in Bn(π) thus forms the set
BBn(π). Since every function in Φn(π) corresponds uniquely
to such an assignment, and vice versa, we establish a one-to-
one correspondence between Φn(π) and BBn(π).

The essence of this algorithm is to count ϕn(π) by generat-
ing all downsets of Bn(π) recursively and exploiting the fact
proven in Lemma 6, that ϕn(π) = |BBn(π)|. For a pseudocode
of Algorithm III-A, please refer to [14, Algorithm 1].

A significant limitation of this approach, however, is that
it requires storing all elements of the set rather than simply
counting them. This constraint makes the application of this
algorithm highly dependent on the available main memory. For
reference, our calculations were performed on a machine with
128 GB of main memory, and we were able to compute up
to ϕ9((123)(456789)) = 218542866. Hence, in practice, all
sets of fixed points with cardinalities smaller than about two
hundred million can be computed using the resources at our
disposal. The number 218542866 represents the upper limit
of our computational capabilities in the context of hardware
limitations, and not limitations of the method or the algorithm
itself.

B. Algorithm III–B

In order to count the fixed points in Dn under permutations
containing at least one disjoint 1–cycle, we can leverage the
isomorphism delineated by the subsequent lemma:

Lemma 7. Let k denote the number of 1–cycles in a permu-
tation π. Then, Φn+k(π) = Φn(π)

Bk

.

Proof. Start by recalling the definition Φn+k(π) = BBn+k(π).
Using Lemma 4(a), we can express the term BBn+k(π) as
BBn(π)×Bk

, given that the posets Bn(π) and Bk are disjoint
and the last k variables are not affected by π.

Next, by applying Lemma 3(2), BBn(π)×Bk

can be ex-
pressed as (BBn(π))B

k

= Φn(π)
Bk

.

In [14, Section 3.2], we outline the simplest version of
the algorithm that uses this isomorphism for the case where
k = 1. Carić and Živković elaborate on this algorithm for the
situation where k = 2 [5, Theorem 3.1]. Several studies in
the literature provide detailed descriptions of algorithms for
counting monotone Boolean functions. Notably, in the context
of our work, these algorithms are applicable to cases involving
the identity permutation. By Lemma 7, these algorithms can
be adapted to our needs through modification of the input
set. For example, Fidytek et al. [7] describe algorithms for
k ∈ {1, 2, 4}, while a Campo [4, Section 4.1] presents
algorithms for k ∈ {1, 2, 3, 4}.

In order to calculate r9, we extend the application of Lemma
7 to handle cases up to k = 4. To illustrate our approach, for

example, to calculate ϕ9((12)(34)), we first generate the set
Φ6((12)(34)) using our implementation of Algorithm III-A,
and then apply Algorithm III-B with k = 3.

In the calculation of r8, there is only one case where
the algorithms referenced above (detailed in [14]) did not
work due to computational resource limitations: specifically,
ϕ8((12)(34)(56)(78)). In the calculation of r9, we have
three cases: ϕ9((12)(34)(56)(78)), ϕ9((12)(34)(56)(789)),
and ϕ9((123)(456)(789)).

C. Calculation of ϕ9((12)(34)(56)(789))

Let k ∈ {2, 3}. Let τ represent a permutation where all
cycle lengths are coprime to k. Define ϵ as the permutation
obtained from the composition of τ and a single-cycle permu-
tation of length k, ensuring that these permutations are disjoint.
Let Pn denote a special type of poset, known as a chain, where
each pair of n elements is comparable.

Lemma 8. [1], [16] For any n,m ∈ N, the number of
functions from (Bn)Pm is equal to the sum of elements of
the (m− 1)–power of the incidence matrix of Bn.

Corollary 9. For k ∈ {2, 3}, as poset B2((12)) is isomorphic
to the chain P3 and poset B3((123)) is isomorphic to the chain
P4, we have Bn+k(ϵ) = Bn(τ)Pk+1 .

Lemma 8 indicates that the number of functions from a
given poset to another poset, being a chain, can be calculated
by raising its incidence matrix to the appropriate power and
summing all its elements. This provides a computationally
efficient technique for dealing with some complex poset
structures. In Corollary 9, we use this lemma leaning on two
isomorphisms: B2((12)) = P3 and B3((123)) = P4. This
sets the stage for the subsequent corollary, first applied by
Szepietowski [16].

Corollary 10. For k ∈ {2, 3}, ϕn+k(ϵ) is equal to the sum
of elements of the (k − 1)–power of the incidence matrix of
(Bn(τ)).

We use this property to compute

ϕ9((12)(34)(56)(789)) = 807900672006

by summing all the elements of the third power of the
incidence matrix of Φ6((12)(34)(56)), which has 8600×8600
elements. Notably, using Algorithm III-A to compute this
number would have been impossible due to the immense
memory required to store all elements.

D. Calculation of ϕ9((12)(34)(56)(78))

We adopt the notation from the previous subsection with
minor modifications. Let τ represent a permutation where
all cycle lengths are either 1 or 2, and the total length
equals n. Now, denote ϵ as the permutation obtained from the
composition of τ and the single cycle permutation of length
2, ensuring that these permutations are disjoint.

Lemma 11. For k = 2 and n ≥ k, there exists a decomposi-
tion of the poset Bn+2 into four posets: R00, R01, R10, R11,
which forms a poset isomorphic to B2.
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The permutation ϵ acting on Bn+2 affects these four parts
in the following manner:

1) R00(ϵ) is isomorphic to Bn(τ).
2) R01(ϵ) and R10(ϵ) form 2n cycles of length 2: in each

cycle, we have the i-th element of R01 and the i-th
element of R10(τ).

3) R11(ϵ) is isomorphic to Bn(τ).

This method is also described in [14, Algorithm 3] (see also
[5, Section IV], [16, Section 6.5]) as a response to the need
to calculate ϕ8(π) under π with all cycle lengths of 2. Upon
specifying ϵ, Lemma 11 can be proved by listing Bn+2(ϵ) and
decomposing it into four equal parts. Additionally, a computer-
assisted proof for the necessary poset B9((12)(34)(56)(78))
is available at [15] in the file P0.java.

Example 12. Decomposition of B4((12)(34)) according to
Lemma 11:

1) R00 as ((0)(1 2)(3), which is isomorphic to B2((12));
2) R01, R10 as four 2–element cycles: (4 8) (5 10) (6 9) (7

11);
3) R11 as ((12)(13 14)(15)), which is isomorphic to

B2((12)).

Lemma 13. Each function x ∈ Φ9((12)(34)(56)(78)) can be
combined from these four functions:

1) a ∈ Φ7((12)(34)(56));
2) b ∈ D7, b ≥ a;
3) c = τ(b), c ≥ a;
4) d ∈ Φ7((12)(34)(56)), d ≥ b ∪ c.

Proof. Considering the decomposition of the poset Bn+2

given by Lemma 11, we can infer that R00 and R11 are
affected by permutation τ = (12)(34)(56), so they are iso-
morphic to the poset B7((12)(34)(56)). The set of functions
BB7((12)(34)(56)) is equal to Φ7((12)(34)(56)), thus we have
a, d ∈ Φ7((12)(34)(56)). Moving on to the subposets R01

and R10, we find that while the functions b and c belong to
D7, they pair in a bounded manner, specifically c = τ(b).
Moreover, as these four elements are organized on the poset
B2, we must adhere to the constraints: a ≤ b ≤ d and
a ≤ c ≤ d.

Algorithm III-D Calculation of ϕ9((12)(34)(56)(78))

Input: D7 and Φ7((12)(34)(56))
Output: s = ϕ9((12)(34)(56)(78))

1: Initialize s = 0
2: for all b ∈ D7 do
3: Initialize c = τ(b)
4: Calculate down =

|{a ∈ Φ7((12)(34)(56)) : a ≤ (b ∩ c)}|
5: Calculate up =

|{d ∈ Φ7((12)(34)(56)) : d ≥ (b ∪ c)}|
6: s = s+ down · up
7: end for

Φ7(12)(34)(56) contains 12015832 elements, so we can
store it in main memory. The most challenging part is storing
D7 (which would require about 35 TB, see Table IV).

n dn Size of function Size of Dn

0 2 1b 2 B
1 3 2b 3 B
2 6 4b 6 B
3 20 8b 20 B
4 168 16b 336 B
5 7581 32b 29.61 KB
6 7828354 64b 59.725 MB
7 2414682040998 128b 35.138 TB

TABLE IV: Sizes of Dn up to D7.

We overcome this by storing R7, which contains 490013148
elements that fit in main memory. Then, for each x ∈ R7,
we execute an ”unpacking” operation, exploiting 7! = 5040
possible permutations of input variables. Finally, we obtained

ϕ9((12)(34)(56)(78)) = 17143334331688770356814.

E. Calculation of ϕ9((123)(456)(789))

Once again, let us revisit the notation introduced in the
previous subsection with a slight modification. This time, let
τ represent a permutation where all cycle lengths are either
1 or 3, and the total length equals n. Now, denote ϵ as the
permutation obtained from the composition of τ and the single
cycle permutation of length 3, ensuring that these permutations
are disjoint. With these conventions in place, we are able to
state and prove a lemma that resembles the previous one.

Lemma 14. For k = 3 and n ≥ k, there exists
a decomposition of the poset Bn+3 into eight posets:
R000, R001, R010, . . . , R111, which forms a poset isomorphic
to B3.

The permutation ϵ acting on Bn+3 acts on those eight parts
in the following way:

1) R000(ϵ) is isomorphic to Bn(τ).
2) R001(ϵ), R010(ϵ), and R100(ϵ) form 2n cycles of length

3: in each cycle, we have the i-th element of R001, the i-
th element of R010(τ), and the i-th element of R100(τ

2).
3) R011(ϵ), R101(ϵ), and R110(ϵ) form 2n cycles of length

3: in each cycle, we have the i-th element of R011, the i-
th element of R101(τ), and the i-th element of R110(τ

2).
4) R111(ϵ) is isomorphic to Bn(τ).

If ϵ is specified, Lemma 14 can be proved by listing
Bn+3(ϵ) and decomposing it into eight equal parts. Addi-
tionally, a computer-assisted proof for the necessary poset
B9((123)(456)(789)) is available at [15] in the file P1.java.

Example 15. Decomposition of B6((123)(456)) according to
Lemma 14:

1) R000 as ((0)(1 2 4)(3 6 5)(7)), which is isomorphic to
B3((123));

2) R001, R010, R100 as eight 3–element cycles: (8 16 32)
(9 18 36) (10 20 33) (11 22 37) (12 17 34) (13 19 38)
(14 21 35) (15 23 39);

3) R011, R101, R110 as eight 3–element cycles: (24 48 40)
(25 50 44) (26 52 41) (27 54 45) (28 49 42) (29 51 46)
(30 53 43) (31 55 47);

4) R111 as ((56)(57 58 60)(59 62 61)(63)), which is iso-
morphic to B3((123)).
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Lemma 16. Each function x ∈ Φ9((123)(456)(789)) can be
combined from these eight functions:

1) a ∈ Φ6((123)(456));
2) b ∈ D6, b ≥ a;
3) c = τ(b), c ≥ a;
4) d = τ(c), d ≥ a;
5) e ∈ D6, e ≥ b ∪ c;
6) f = τ(e), f ≥ b ∪ d;
7) g = τ(f), g ≥ c ∪ d;
8) h ∈ Φ6((123)(456)), h ≥ e ∪ f ∪ g.

Proof. Considering the decomposition of the poset Bn+3

given by Lemma 14, we can infer that R000 and R111

are affected by permutation τ = (123)(346), so they are
isomorphic to the poset B6((123)(456). The set of functions
BB6((123)(456)) is equal to Φ6((123)(456)).

Moving on to the subposets R001, R010 and R100, we find
that while the functions b, c and d belong to D6, they are
structured as bounded triplets, specifically c = τ(b) and
d = τ(c), A similar structure is evident with the subposets
R011, R101 and R110.

Moreover, as these eight elements are organized on the poset
B3, we must adhere to the constraints: b ≥ a, c ≥ a, . . . ,
h ≥ e ∪ f ∪ g.

Algorithm III-E Calculation of ϕ9((123)(456)(789))

Input: D6 and Φ6((123)(456)
Output: s = ϕ9((123)(456)(789))

1: Initialize s = 0
2: for all b ∈ D6 do
3: Initialize c = τ(b)
4: Initialize d = τ(c)
5: Calculate down =

|{a ∈ Φ7((123)(456)) : a ≤ (b ∩ c ∩ d)}|
6: for all e ∈ D6, e ≥ b ∪ c do
7: Initialize f = τ(e)
8: Initialize g = τ(f)
9: Calculate down =

|{h ∈ Φ7((123)(456)) : h ≥ (e ∪ f ∪ g)}|
10: s = s+ down · up
11: end for
12: end for

The essence of the algorithm allowing to calculate
ϕ9((123)(456)(789)) is fully captured in Lemma 16, which
is similar in spirit to Lemma 13. D6 has 7828354 elements
and Φ6((123)(456)) has 562 elements, so they fit in the main
memory. We completed a calculation in about six hours with
a result

ϕ9((123)(456)(789)) = 221557843276152.

F. Computational results

The algorithms were implemented in Java. Additionally, for
some cases, we have also written the implementation in Rust
(for example, for Algorithm III-D) due to its native support of

128-bit integers. We utilized a machine with 32 Xeon threads,
and each case was calculated separately.

After executing all the implemented algorithms, we estimate
the total computation time to be about 10 days. The simplest
cases are computed almost instantly, while the most challeng-
ing ones (for example, ϕ9((12)(34))) take up to 2 days. The
complexity is primarily due to the size and structure of the
orbit poset associated with each permutation.

Note that ϕ9(e), which represents the value for the iden-
tity permutation, is equal to d9. This specific case was not
computed by us and is therefore not included in the table.

πi µi (1) ϕ9(πi)

(12) 36 B 16278282012194909428324143293364
(123) 168 B 868329572680304346696

(1234) 756 B 5293103318608452
(12345) 3024 B 26258306096

(123456) 10080 B 2279384919
(1234567) 25920 A 3268698

(12345678) 45360 A 1144094
(123456789) 40320 A 97830

(12)(34) 378 B 107622766375525877620879430
(12)(345) 2520 B 5166662396125146

(12)(3456) 7560 B 323787762940974
(12)(34567) 18144 B 70165054

(12)(345678) 30240 B 547120947
(12)(3456789) 25920 A 80720

(123)(456) 3360 B 7107360458115201
(123)(4567) 15120 B 92605092

(123)(45678) 24192 A 197576
(123)(456789) 20160 A 218542866

(123)(456)(789) 2240 E 221557843276152
(1234)(5678) 11340 B 503500313130

(1234)(56789) 18144 A 10182
(12)(34)(56) 1260 B 328719964864138799170044

(12)(34)(567) 7560 A 14037774553676
(12)(34)(5678) 11340 A 66031909836340

(12)(34)(56789) 9072 A 3710840
(12)(345)(678) 10080 A 866494196253

(12)(345)(6789) 15120 A 22062570
(12)(34)(56)(78) 945 D 17143334331688770356814

(12)(34)(56)(789) 2520 C 807900672006

k∑

i=2

µiϕ9(πi) = 586059264378237446637837193706034.

TABLE V: Values of ϕ9(π) under all cycle types of π
(excluding the identity). Column (1) indicates the algorithm
used, corresponding to the subsections in Section 3 (e.g., ’A’
refers to Section 3A, ’B’ to Section 3B, etc.).

IV. CALCULATION OF r9

In April 2023, two research teams independently reported
the following value of d9 [10], [9]:

d9 = 286386577668298411128469151667598498812366.

We can now finally make direct use of Equation 1, obtaining
the following value:
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r9 = 789204635842035040527740846300252680.

We have a high degree of confidence in the accuracy of our
results, supported by the fact that the entire sum:

k∑

i=1

µiϕ9(πi)

we obtained is divisible by 9! = 362880. The source code of
the project is available in the GitHub repository [15].

V. CONCLUSION

The algorithms for generating and counting the fixed points
in the set of monotone Boolean functions under given permu-
tation of input variables have been described. Furthermore,
the methods described were used as a basis for tabulating
the numbers of fixed points under permutations of all cycle
types in D9. By applying Burnside’s lemma and the cardi-
nalities obtained, we computed the number of inequivalent
monotone Boolean functions of 9 variables, which equals
r9 = 789204635842035040527740846300252680.
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Abstract

Let Dn denote the set of monotone Boolean functions with n variables. Elements
of Dn can be represented as strings of bits of length 2n. Two elements of D0 are
represented as 0 and 1 and any element g ∈ Dn, with n > 0, is represented as a
concatenation g0 · g1, where g0, g1 ∈ Dn−1 and g0 ≤ g1. For each x ∈ Dn, we have dual
x∗ ∈ Dn which is obtained by reversing and negating all bits. An element x ∈ Dn is a
self-dual if x = x∗. Let Λn denote the set of all self-dual monotone Boolean functions
of n variables and let λn denote |Λn| The value λn is also known as the n-th Hosten-
Morris number. Any two Boolean functions are said to be equivalent if one can be
transformed into the other by a permutation of input variables. Let Qn denote the set
of all equivalence classes in Λn and let qn denote |Qn|. In this paper, we derive several
algorithms for counting self-dual monotone Boolean functions and confirm the known
result that λ9 equals 423,295,099,074,735,261,880. Furthermore, we calculate q8 to be
6,001,501, which marks the first-ever calculation of this value.

1 Introduction

Let B denote the set {0, 1} and Bn the set of n-element sequences of B. A Boolean function
with n variables is any function from Bn into B. There is the order relation in B (namely:
0 ≤ 0, 0 ≤ 1, 1 ≤ 1) and the partial order in Bn: for any two elements: x = (x1, . . . , xn),
y = (y1, . . . , yn) in Bn, x ≤ y if and only if xi ≤ yi for all 1 ≤ i ≤ n. A function h : Bn → B
is monotone if x ≤ y implies h(x) ≤ h(y). Let Dn denote the set of monotone functions with
n variables and let dn denote |Dn|. We have the partial order in Dn defined by:

g ≤ h if and only if g(x) ≤ h(x) for all x ∈ Bn.

We shall represent the elements of Dn as strings of bits of length 2n. Two elements of D0

will be represented as 0 and 1. Any element g ∈ D1 can be represented as the concatenation
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g(0) · g(1), where g(0), g(1) ∈ D0 and g(0) ≤ g(1). Hence, D1 = {00, 01, 11}. Each element
of g ∈ D2 is the concatenation (string) of four bits: g(00) · g(10) · g(01) · g(11) which can
be represented as a concatenation g0 · g1, where g0, g1 ∈ D1 and g0 ≤ g1. Hence, D2 =
{0000, 0001, 0011, 0101, 0111, 1111}. Similarly, any element of g ∈ Dn can be represented as
a concatenation g0 · g1, where g0, g1 ∈ Dn−1 and g0 ≤ g1.

For each x ∈ Dn, we have dual x∗ ∈ Dn, which is obtained by reversing and negating
all bits. For example, 1111∗ = 0000 and 0001∗ = 0111. An element x ∈ Dn is a self-dual if
x = x∗. For example, 0101 and 0011 are self-duals in D2. Let Λn be the set of all self-dual
monotone Boolean functions of n variables, and let λn denote the cardinality of this set. The
value λn is also known as the n-th Hosten-Morris number (A001206 in On-Line Encyclopedia
of Integer Sequences).

The first attempt to solve the problem of determining the values of λn was made, in 1968,
by Riviere [6], who determined all values up to λ5. In 1972, Brouwer and Verbeek provided
the values up to λ7 [3]. The value of λ8 was determined by Mills and Mills [5] in 1978.

The most recent known term, λ9, was obtained by Brouwer, Mills, Mills, and Verbeek
[2] in 2013. The value of λn corresponds to the number of non-dominated coteries on n
members [1, Section 1]; and also corresponds to the number of maximal linked systems, see
Section 2.1 below and [2, Section 1].

Any two Boolean functions are said to be equivalent if one can be transformed into the
other by a permutation of input variables (see Section 2.3). Let Qn denote the set of all
equivalence classes in Λn and let qn denote |Qn|. Values of qn are described by A008840
OEIS sequence.

In this paper, we derive several algorithms for counting self-dual monotone Boolean
functions. We also confirm the result of [2] that λ9 equals 423,295,099,074,735,261,880.
Furthermore, employing Burnside’s lemma and techniques as discussed in [8, 9], we calculate
q8 to be 6,001,501, which marks the first-ever calculation of this value.

n λn qn
0 0 0
1 1 1
2 2 1
3 4 2
4 12 3
5 81 7
6 2,646 30
7 1,422,564 716
8 229,809,982,112 6,001,501
9 423,295,099,074,735,261,880 –

Table 1: Known values of λn (A001206) and qn (A008840).
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2 Preliminaries

By ⊤ we denote the maximal element in Dn, that is ⊤ = (1 . . . 1), and by ⊥ the minimal
element in Dn, that is ⊥ = (0 . . . 0). For two elements x, y ∈ Dn, by x|y we denote the bitwise
or ; and by x&y the bitwise and. Furthermore, let re(x, y) denote |{z ∈ Dn : x ≤ z ≤ y}|.
Note that re(x,⊤) = |{z ∈ Dn : x ≤ z}| and re(⊥, y) = |{z ∈ Dn : z ≤ y}|. For x ∈ Dn, by
ℓ(x) we denote the number of ones in x, also known as its Hamming weight. For example,
ℓ(0000) = 0 and ℓ(0101) = 2.

Lemma 1. For each x, y ∈ Dn, we have:

1. x∗∗ = x

2. if x ≤ y then y∗ ≤ x∗

3. (x|y)∗ = x∗&y∗

4. (x&y)∗ = x∗|y∗

2.1 Maximal linked system

Let X = {1, . . . , n} and P(X) be the power set of X. A family W ⊆ P(X) is linked if for
all A and B in W , A ∩B is not empty. A family U ⊆ P(X) is maximal linked system (mls)
on X if U is linked and for all W with U ⊆ W ⊆ P(X), either W = U or W is not linked.

If U is linked, then ∅ /∈ U and for each set A ∈ P(X), it is not possible that both A and
its complement Ac = X − A belong to U .

For n = 0, X = ∅, P(X) = {∅} and we have one mls, namely, the empty family. Notice
that the set of self-duals Λ0 is empty and λ0 = 0.

Lemma 2. If n ≥ 1 and a family U ⊂ P(X) is an mls then:

(L1) U is an upset, i.e. if A ⊆ B and A ∈ U , then B ∈ U .

(L2) For every subset A ∈ P(X), exactly one of the two subsets: A or Ac, is in U .

Proof. (L1) For each C ∈ U , A ∩ C ̸= ∅ and B ∩ C ̸= ∅. Hence, either B ∈ U or U is not
maximal.

(L2) We have two cases:
Case 1. For every B ∈ U , A ∩B ̸= ∅. Then either A ∈ U or U is not maximal.
Case 2. There is B ∈ U such that B ∩ A = ∅ and B ⊆ Ac. Hence, Ac ∈ U .

Lemma 3. If U ⊆ P(X) satisfies conditions (L1) and (L2), then U is an mls.
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Proof. First, we prove that U is linked. Suppose, for a contradiction, that there are two
subsets A,B ∈ U with A ∩B = ∅. Then B ⊆ Ac and Ac ∈ U , a contradiction.

U is maximal, because it contains 2n−1 subsets.

For n = 1, the family {{1}} is the only mls on X = {1}.
For n = 2, we have two mlses: {{1}, {1, 2}} and {{2}, {1, 2}}.
Notice that P(X) is isomorphic to Bn and any subset of P(X) can be represented by

a function from Bn to B. For n = 1, the mls {{1}} can be represented as the string 01,
which is the only self-dual in Λ1. For n = 2, the two mlses can be represented as 0101 and
0011 and they form the set Λ2, and so on. For n ≥ 1, the set of mlses on {1, . . . , n} can be
represented as the self-duals Λn.

2.2 Poset

A poset (partially ordered set) (S,≤) consists of a set S (called the carrier) together with
a binary relation (partial order) ≤ which is reflexive, transitive, and antisymmetric. For
example, B, Bn, and Dn are posets. Given two posets (S,≤) and (T,≤), a function f : S → T
is monotone, if x ≤ y implies f(x) ≤ f(y). By T S we denote the poset of all monotone
functions from S to T with the partial order defined by:

f ≤ g if and only if f(x) ≤ g(x) for all x ∈ S.

Notice that Dn = BBn
and Bn = BAn , where An is the antichain with the carrier {1, . . . , n}.

In this paper we use the well known lemma:

Lemma 4. The poset Dn+k is isomorphic to the poset DBk

n —the poset of monotone functions
from Bk to Dn.

2.3 Permutations and equivalence relation

Let Sn denote the set of permutations on {1, . . . , n}. Every permutation π ∈ Sn defines
the permutation on Bn by π(x) = x ◦ π−1 (we treat each element x ∈ Bn as a function
x : {1, . . . , n} → {0, 1}). The permutation π also generates the permutation on Dn. Namely,
by π(g) = g ◦ π. By ∼ we denote an equivalence relation on Dn. Namely, two functions
f, g ∈ Dn are equivalent, f ∼ g, if there is a permutation π ∈ Sn such that f = π(g). For a
function f ∈ Dn its equivalence class is the set [f ] = {g ∈ Dn : g ∼ f}. By γ(f) we denote
|[f ]|. For the class [f ], its representative is its minimal element (according to the total order
induced on Dn by the total order in integers). Sometimes, we identify the class [f ] ∈ Rn with
its representative and treat [f ] as an element in Dn. By Rn we denote the set of equivalence
classes and by rn we denote the number of the equivalence classes; that is rn = |Rn|. Let Qn

denote the set of all equivalence classes in Λn, and let qn denote |Qn|.
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Lemma 5. 1. For every element x ∈ Dn and every permutation π ∈ Sn, we have π(x∗) =
(π(x))∗.

2. If x ∈ Dn is a self-dual, then every equivalent y ∈ [x] is a self-dual.

For n = 2, we have d2 = 6 monotone functions,

D2 = {0000, 0001, 0011, 0101, 0111, 1111}

and r2 = 5 equivalence classes in D2, namely

R2 = {{0000}, {0001}, {0011, 0101}, {0111}, {1111}}.

Furthermore, there are two self-duals Λ2 = {0011, 0101} and they form one equivalence class.
Hence λ2 = 2 and q2 = 1.

For n = 3, we have d3 = 20 monotone functions and r3 = 10 equivalence classes in D3.
There are four self-duals

Λ3 = {01010101, 00110011, 00001111, 00010111}

and they form two equivalence classes:

Q3 = {{01010101, 00110011, 00001111}, {00010111}}.

Hence, λ3 = 4 and q3 = 2.

3 Counting functions from B to Dn

Let n ≥ 0. By Lemma 4, the poset Dn+1 is isomorphic to the poset DB
n —the poset of

monotone functions from B = {0, 1} to Dn. Consider a monotone function H : B → Dn. It
can be represented as the concatenation:

H = H(0) ·H(1)

with H(0), H(1) ∈ Dn and H(0) ≤ H(1). The dual of H is

H∗ = H(1)∗ ·H(0)∗.

Thus, if H ∈ Dn+1 is a self-dual then it is of the form b · b∗ with b ∈ Dn and b ≤ b∗. And vice
versa, if b ∈ Dn and b ≤ b∗, then the concatenation b · b∗ is a self-dual in Dn+1. Therefore,
we have proved the following theorem.

Theorem 6. For every n ≥ 0, the number of self-duals λn+1 is equal to the number of
elements b ∈ Dn that satisfy condition b ≤ b∗. In other words
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λn+1 =
∑

b∈Dn
b≤b∗

1.

Furthermore, Lemma 5 implies

λn+1 =
∑

b∈Rn
b≤b∗

γ(b).

Here we identify each class [b] ∈ Rn with its representative.

The following corollary is presented, in a different form, in [10]

Corollary 7. For every n ≥ 0, we have λn+1 ≤ dn.

Lemma 8. Let b be a function in Dn. Then

• b ≤ b∗, only if ℓ(b) ≤ 2n−1.

• if ℓ(b) = 2n−1 and b ≤ b∗, then b = b∗, and b is a self-dual in Dn.

• if b is a self-dual, then ℓ(b) = 2n−1

• ℓ(b∗) = 2n − ℓ(b), hence,

|{x ∈ Dn : ℓ(x) < dn−1}| = |{x ∈ Dn : ℓ(x) > dn−1}|

As a corollary we have the following theorem.

Theorem 9.
λn+1 = λn +

∑

b∈Rn

ℓ(b)<2n−1

b≤b∗

γ(b).

λn+1 ≤ λn +
1

2
(dn − λn) =

1

2
(dn + λn).

The second part of the theorem is presented, in a different form, in [10]. Notice that
λn+1 = 1

2
(dn + λn) for each n ≤ 3.

4 Counting functions from B2 to Dn

Let n ≥ 0. By Lemma 4, the poset Dn+2 is isomorphic to the poset DB2

n —the poset of
monotone functions from B2 = {00, 01, 10, 11} to Dn. Consider a monotone function H :
B2 → Dn. It can be represented as the concatenation:

H(00) ·H(01) ·H(10) ·H(11)
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and its dual as
H(11)∗ ·H(10)∗ ·H(01)∗ ·H(00)∗.

If H is a self-dual then H(00) = H(11)∗, H(01) = H(10)∗, H(10) = H(01)∗, and H(11) =
H(00)∗.

d∗

b b∗

d

Figure 1: Structure of H : B2 → Dn if H is a self-dual.

If H is a self-dual then it is of the form d∗bb∗d with b, d ∈ Dn and d ≥ b|b∗, see Figure 1.
And vice versa, if b, d ∈ Dn, and d ≥ b|b∗, then the concatenation d∗ · b · b∗ · d is a self-dual
in Dn+2. Hence, we have proved the following theorem.

Theorem 10. For every n ≥ 0, the number of self-duals λn+2 is equal to the number of pairs
b, d ∈ Dn which satisfy condition d ≥ b|b∗. In other words

λn+2 =
∑

b∈Dn

re[b|b∗,⊤].

Furthermore, Lemma 5 implies

λn+2 =
∑

b∈Rn

γ(b) · re[b|b∗,⊤].

Here we identify each class [b] ∈ Rn with its representative.

Corollary 11. For every n ≥ 0, we have λn+2 ≥ dn.

5 Counting functions from B4 to Dn

Let n ≥ 0. By Lemma 4, the poset Dn+4 is isomorphic to the poset DB4

n —the set of monotone
functions from

B4 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011,
1100, 1101, 1110, 1111} to Dn.
Consider a monotone function H : B4 → Dn. It can be represented as the concatenation:

H(0000) ·H(0001) ·H(0010) ·H(0011) ·H(0100) ·H(0101) ·H(0110) ·H(0111)·
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H(1000) ·H(1001) ·H(1010) ·H(1011) ·H(1100) ·H(1101) ·H(1110) ·H(1111)

and its dual as

H(1111)∗ ·H(1110)∗ ·H(1101)∗ ·H(1100)∗ ·H(1011)∗ ·H(1010)∗ ·H(1001)∗ ·H(1000)∗·
H(0111)∗ ·H(0110)∗ ·H(0101)∗ ·H(0100)∗ ·H(0011)∗ ·H(0010)∗ ·H(0001)∗ ·H(0000)∗.

If H is a self-dual then H(0000) = H(1111)∗, H(0001) = H(1110)∗, H(0010) = H(1101)∗,
H(0011) = H(1100)∗, H(0100) = H(1011)∗, H(0101) = H(1010)∗, H(0110) = H(1001)∗,
H(0111) = H(1000)∗.

Theorem 12. For each a, b, c ∈ Dn,
for each h ∈ Dn such that h ≥ a|b|c|a∗|b∗|c∗,
for each d, e, f, g ∈ Dn such that
a|b|c ≤ d ≤ h
a|b∗|c∗ ≤ e ≤ h
b|a∗|c∗ ≤ f ≤ h
c|a∗|b∗ ≤ g ≤ h
the concatenation

h∗ · g∗ · f ∗ · a · e∗ · b · c · d · d∗ · c∗ · b∗ · e · a∗ · f · g · h
represents a self-dual in Dn+4, see Figure 2. And vice versa, each self-dual in Dn+4 is of the
above form.

h∗

g∗ f ∗ e∗

a b c

d

d∗

c∗ b∗ a∗

e f g

h

Figure 2: Structure of H : B4 → Dn if H is a self-dual.
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Theorem 13. The number of self-duals

λn+4 =
∑

a,b,c∈Dn

∑

h∈Dn
h≥(a|b|c|a∗|b∗|c∗)

re[a|b|c, h] · re[a|b∗|c∗, h] · re[b|a∗|c∗, h] · re[c|a∗|b∗, h].

Theorem 14. For each h ∈ Dn such that h ≥ h∗,
for each a, b, c ∈ Dn, h

∗ ≤ a, b, c ≤ h
for each d, e, f, g ∈ Dn such that
a|b|c ≤ d ≤ h
a|b∗|c∗ ≤ e ≤ h
b|a∗|c∗ ≤ f ≤ h
c|a∗|b∗ ≤ g ≤ h
the concatenation

h∗ · g∗ · f ∗ · a · e∗ · b · c · d · d∗ · c∗ · b∗ · e · a∗ · f · g · h

represents a self-dual in Dn+4; see Figure 2. And vice versa, each self-dual in Dn+4 is of the
above form.

Let

F (h) =
∑

a,b,c∈Dn
h≥a,b,c≥h∗

re[a|b|c, h] · re[a|b∗|c∗, h] · re[b|a∗|c∗, h] · re[c|a∗|b∗, h].

Observe that F (h) is the number of self-dual functions H ∈ DB4

n , with H(0000) = h∗

and H(1111) = h.

λn+4 =
∑

h∈Dn
h∗≤h

F (h)

Furthermore, Lemma 5 implies that for any two elements h1 ∼ h2 we have F (h1) = F (h2).
Hence, we have

λn+4 =
∑

h∈Rn
h≥h∗

γ(h) · F (h).

Here again we identify the class [h] ∈ Rn with its representative. Similarly as in Lemma 8
we can observe that h ≥ h∗, only if ℓ(h) ≥ 2n−1. Furthermore, if ℓ(h) = 2n−1 and h ≥ h∗,
then h = h∗, and we have only one self-dual function H ∈ DB4

n with H(0000) = H(1111) = h.
Hence,

λn+4 = λn +
∑

h∈Rn
h∗≤h

ℓ(h)>2n−1

γ(h) · F (h) (1)
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6 Implementation

In this section we present three algorithms based on the results from the previous sections.
We implemented the algorithms in Rust and ran them on a 32-thread Xeon CPU.

Algorithm 1 Calculation of λn+2

Input: Rn with re[x,⊤] for all x ∈ Rn

Output: s = λn+2

1: Initialize s = 0,
2: for all b ∈ Rn do
3: s = s + re[b|b∗,⊤] · γ(b)
4: end for

Algorithm 1 is based on Theorem 6. After loading the preprocessed data into main
memory, λ9 was computed in 15 seconds. However, preprocessing (the calculation of R7 and
its intervals) took approximately 2,5 hours.

Algorithm 2 Calculation of λn+4

Input: Dn; Rn; re[x, y] for all (x, y) ∈ Dn ×Dn

Output: s = λn+4

1: Initialize s = 0,
2: for all a ∈ Rn do
3: for all b ∈ Dn do
4: for all c ∈ Dn do
5: for all h ∈ Dn, h ≥ (a|b|c|a∗|b∗|c∗) do
6: s = s + re[a|b|c, h] · re[a|b∗|c∗, h] · re[b|a∗|c∗, h] · re[c|a∗|b∗, h] · γ(a)
7: end for
8: end for
9: end for

10: end for

Algorithm 2 is based on Theorem 13. Using our implementation of the algorithm, we
calculated λ9 in 76 seconds, and the preprocessing was almost instantaneous.
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Algorithm 3 Calculation of λn+4

Input: Dn; Rn; re[x, y] for all (x, y) ∈ Dn ×Dn

Output: s = λn+4

1: Initialize s = λn,
2: for all h ∈ Rn, h

∗ ≤ h, ℓ(h) > 2n−1 do
3: for all a ∈ Dn, a < h do
4: for all b ∈ Dn, b < h do
5: for all c ∈ Dn, c < h do
6: s = s + re[a|b|c, h] · re[a|b∗|c∗, h] · re[b|a∗|c∗, h] · re[c|a∗|b∗, h] · γ(h)
7: end for
8: end for
9: end for
10: end for

Algorithm 3 is based on Equation 1. The calculation of λ9 using our implementation of
the algorithm lasted approximately 25 minutes.

In all cases, we have obtained the following value:

λ9 = 423295099074735261880,

which confirms the result of Brouwer et al. [2].

7 Calculation of qn

The number of inequivalent self-dual monotone Boolean functions (qn) is listed on the OEIS
A008840 sequence. In order to calculate qn for n ≤ 7, we can use the following simple
approach:

qn =
∑

a∈Rn
a=a∗

1.

However, the calculating of q8 using this approach is beyond reach. In order to calculate
q8 we use Burnside’s lemma, see [8, 9]:

qn =
1

n!

k∑

i=1

µi|Φ(πi,Λn)| (2)

where:

• qn is the number of equivalence classes in Λn

• Φ(πi,Λn) is the set of all elements in Λn which are fixed under πi

11



• k is the number of different cycle types in Sn

• i is index of cycle type

• µi is the number of permutations in Sn with cycle type i

• πi is a permutation in Sn of the cycle type i

For n = 1, we have λ1 = q1 = 1. For n = 2, we have two permutations: the identity
e with |Φ(e,Λ2)| = |Λ2| = 2, and the inversion (12) with three cycles when acting on B2

namely: C1 = (00), C2 = (01, 10), and C3 = (11). Two elements 01 and 10 form a cycle,
hence, if a function f ∈ Dn is a fix of π, then f(01) = f(10). On the other hand, if f is a self
dual, then it represents an mls on {1, 2}, and f(01) ̸= f(10), because 01 and 10 represent
subsets {1} and {2} in {1, 2} which are the complements of each other. Thus, the set of
fixes Φ((12),Λ2) = ∅. By Burnside’s lemma, we have:

q2 =
1

2
(|Φ(e,Λ2)| + |Φ((12),Λ2)|) =

1

2
(2 + 0) = 1.

Indeed, there is one equivalence class in Λ2, namely {0101, 0011}.
We have just shown that Φ((12),Λ2) = ∅. Similarly, we can show that Φ((π),Λ8) = ∅,

if the permutation π = (12)(34)(56)(78). Indeed, for the permutations π, two elements
01010101, 10101010 ∈ B8 form a cycle. Hence, if f ∈ D8 is a fix of π, then f(01010101) =
f(10101010). On the other side, if f is a self-dual, then f(01010101) ̸= f(10101010), because
101010101 and 01010101 represent subsets of {1, . . . , 8} which are the complements of each
other.

Lemma 15. Suppose that n is even, and a permutation π, when acting on {1, . . . , n}, is a
product of disjoint cycles of even length. Then Φ((π),Λn) = ∅.

Proof. If the permutation π, is a product of disjoint cycles of even length, then there exist
two elements x, y ∈ Bn such that:

• x and y represent subsets of {1, . . . , n} which are the complements of each other.

• π(x) = y and π(y) = x, so x, y form a cycle in Bn.

Hence, if f ∈ Dn is a fix of π, then f(x) = f(y). On the other side, if f is a self-dual, then
f(x) ̸= f(y).

Corollary 16. Φ((π),Λ8) = ∅ for each of the following permutations:
(12345678), (12)(345678), (1234)(5678), (12)(34)(5678), and (12)(34)(56)(78).

For n = 3, we have three cycles types:

• the identity e with |Φ(e,Λ3)| = |Λ3| = 4
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• three inversions, with |Φ((12),Λ3)| = 2

• two cycles of length 3 with |Φ((123),Λ3)| = 1

By Burnside’s lemma, we have:

q3 =
1

6
(4 + 3 · 2 + 2 · 1) = 2.

Notice, that the element MAJ = 00010111 ∈ D3 is a self-dual, and is a fix for every
permutation π ∈ S3. Hence, for every π ∈ S3, Φ(π,Λ3) ̸= ∅. Similarly, we can show the
following lemma:

Lemma 17. For each odd n and each permutation π ∈ Sn, we have Φ(π,Λn) ̸= ∅.

Proof. Consider the function MAJ ∈ Dn, which returns MAJ(x) = 1 if and only if ℓ(x) >
n/2. The function MAJ is a self-dual, and is a fix for every permutation π ∈ Sn.

7.1 Algorithms counting fixed points in Λn

In order to count or generate fixes of permutations in Λn we use Lemma 15 and two algo-
rithms.

Algorithm 4 Generation of Φ(π,Λn)

Input: Φ(π,Dn)
Output: S = Φ(π,Λn)

1: Initialize S
2: for all b ∈ Φ(π,Dn) do
3: if b = b∗ then
4: Add b to S
5: end if
6: end for

First algorithm simply runs through the set of fixes Φ(π,Dn) and selects self-duals. For
example, there are five fixes in

Φ((123), D3) = {00000000, 00000001, 00010111, 01111111, 11111111}
and only one of them is self-dual, namely 00010111, so |Φ((123),Λ3)| = 1.

13



Algorithm 5 Calculation of |Φ(π,Λn+2)|
Input: Φ(π,Dn)
Output: s = |Φ(π,Λn+2)|

1: Initialize s = 0,
2: for all b ∈ Φ(π,Dn) do
3: Calculate up = |{h ∈ Φ(π,Dn) : h ≥ (b ∪ b∗)}|
4: s = s + up
5: end for

Second algorithm is based on the following facts. Consider a permutation π acting
on Bn and on Dn. We can say that π also act on Bn+2 and on Dn+2. By [9, Lemma
6], Φ(π,Dn+2) = Φ(π,Dn)B

2
. Every function F ∈ Φ(π,Dn)B

2
can be represented as the

concatenation
F = F (00) · F (01) · F (10) · F (11),

where F (00), F (01), F (10), F (11) ∈ Φ(π,Dn), and

F (00) ≤ F (01), F (10) ≤ F (11).

The dual of F can be represented as

F ∗ = F (11)∗ · F (10)∗ · F (01)∗ · F (00)∗.

If F is a self dual, then it is of the form

dbb∗d∗,

where b, d ∈ Φ(π,Dn) and d∗ ≥ b|b∗. Notice that this implies that d ≤ b&b∗. On the other
side, if b, d ∈ Φ(π,Dn) and d∗ ≥ b|b∗, then dbb∗d∗ ∈ Φ(π,Λn+2).

7.2 Result tables

In this section we present three tables which contain the values of |Φ(πi,Λn)|, for n ∈ {6, 7, 8}
and all permutations.
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i πi µi |Φ(πi,Λ6)|
1 (1) 1 2646
2 (12) 15 372
3 (123) 40 54
4 (1234) 90 18
5 (12345) 144 6
6 (123456) 120 0
7 (12)(34) 45 130
8 (12)(345) 120 18
9 (12)(3456) 90 0

10 (123)(456) 40 18
11 (12)(34)(56) 15 0

q6 =
1

720

11∑

i=1

µi · |Φ(πi,Λ6)| =
21600

720
= 30

i πi µi |Φ(πi,Λ7)|
1 (1) 1 1422564
2 (12) 21 43556
3 (123) 70 1332
4 (1234) 210 216
5 (12345) 504 34
6 (123456) 840 12
7 (1234567) 720 3
8 (12)(34) 105 7212
9 (12)(345) 420 218

10 (12)(3456) 630 76
11 (12)(34567) 504 6
12 (123)(456) 280 210
13 (123)(4567) 420 6
14 (12)(34)(56) 105 1284
15 (12)(34)(567) 210 36

q7 =
1

5040

15∑

i=1

µi · |Φ(πi,Λ7)| =
3608640

5040
= 716
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i πi µi |Φ(πi,Λ8)|
1 (1) 1 229809982112
2 (12) 28 300991356
3 (123) 112 476120
4 (1234) 420 18984
5 (12345) 1344 662
6 (123456) 3360 296
7 (1234567) 5760 46
8 (12345678) 5040 0
9 (12)(34) 210 12716048

10 (12)(345) 1120 18384
11 (12)(3456) 2520 7952
12 (12)(34567) 4032 116
13 (12)(345678) 3360 0
14 (123)(456) 1120 21020
15 (123)(4567) 3360 120
16 (123)(45678) 2688 20
17 (1234)(5678) 1260 0
18 (12)(34)(56) 420 2230724
19 (12)(34)(567) 1680 3152
20 (12)(34)(5678) 1260 0
21 (12)(345)(678) 1120 1488
22 (12)(34)(56)(78) 105 0

q8 =
1

40320

22∑

i=1

µi · |Φ(πi,Λ8)| =
241980137280

40320
= 6001501
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[10] M. Timotijević. Note on combinatorial structure of self-dual simplicial complexes,
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