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STRESZCZENIE

Odkrycie odmiennego od klasycznego zachowania układów składających się z małej ilości cząstek
sprowokowało wiele fundamentalnych pytań o naturę naszego świata. Dalszy rozwój mechaniki kwan-
towej otworzył również nowe perspektywy na wykorzystanie zjawisk kwantowych w kontekście nowych
technologii. W związku z tym, badanie zjawisk nieklasycznych stało się jednym z głównych nurtów badań
w dziedzinie fizyki. Wraz z coraz większym zrozumieniem prostych układów zawierających niewielką
liczbę cząstek, problematyka układów bardziej złożonych staje się przedmiotem zainteresowania zarówno
z punktu widzenia złożonych zastosowań, jak i fundamentalnego pytania kiedy efekty kwantowe pozostają
istotne. Motywuje to rozważania nad układami zawierającymi nieokreśloną liczbę cząstek, w których
cechy kwantowe nadal odgrywają ważną rolę.

Niniejsza rozprawa doktorska jest podsumowaniem serii prac współautorstwa doktoranta, skoncen-
trowanych na opisie zjawisk nieklasycznych w układach bozonowych zawierających nieokreśloną liczbę
cząstek, zwłaszcza w reżimie dużej średniej liczby cząstek.

W pierwszym artykule zatytułowanym “Simplified quantum optical Stokes observables and Bell’s the-
orem” zostały opisane nowe obserwable, które pozwalają na wykrycie nieklasyczności Bella, korzystając
z polaryzacyjnych stanów splątanych o nieokreślonej liczbie fotonów. Co istotne zaproponowany po-
miar umożliwia wykrycie nieklasyczności w zakresie średniej liczby fotonów znacznie przekraczającej inne
dotychczasowe podejścia. Zaproponowane obserwable przypisują jako wynik pomiaru ±1 bądź 0 w za-
leżności od znaku zmierzonej różnicy odpowiedzi detektorów wykrywających fotony w dwóch ortogonal-
nych modach polaryzacji. W związku z tym obsrwable te można zrealizować za pomocą dowolnego typu
detektorów natężenia światła, dla których odpowiedź detektorów rośnie wraz z liczbą fotonów.

Drugi artykuł “Bosonic fields in states with undefined particle numbers possess detectable non-
contextuality features, plus more” przedstawia nową reprezentację algebry su(2) na dwumodowej bo-
zonowej przestrzeni Focka. Otrzymany zestaw operatorów pozwolił na zaproponowanie uogólnionego
kwadratu Peresa-Mermina, a tym samym na opis nieklasycznego efektu kontekstualności dla pól bo-
zonowych o nieokreślonej liczbie cząstek. Co więcej, efekt ten jest powszechny dla stanów o dużej liczbie
cząstek, osiągając dla przyjętego kryterium ograniczenie kwantowe w granicach makroskopowej średniej
liczby cząstek. Takie zachowanie jest nietypowe dla rozważań zjawisk kwantowych.

Trzeci artykuł z serii “Generalization of Gisin’s Theorem to Quantum Fields” dotyczy sformułowania
twierdzenia Gisina w kontekście pól kwantowych. Przedstawione uogólnienie tego twierdzenia stwierdza, że
każdy czysty stan splątany pola kwantowego narusza pewną nierówność Bella. Wobec tego nieklasyczność
Bella w ramach kwantowej teorii pola jest obecna dla wszystkich stanów czystych układów splątanych,
nawet jeśli liczba cząstek jest nieokreślona;

Ostatnia praca zatytułowana “Open dynamics of entanglement in mesoscopic bosonic systems” wprowadza
nowy mezoskopowy opis pól bozonowych, który pozwala na rozważenie otwartej ewolucji splątania. Opisy
mezoskopowe mają na celu uproszczenie różnych problemów poprzez uwzględnienie tylko najważniejszych
stopni swobody. Zaproponowany opis opiera się w szczególności na korelacjach w liczbie cząstek. Na
podstawie tych korelacji skonstruowane zostało rozszerzenie zaproponowanego niedawno formalizmu zre-
dukowanego pola, który jednak sam w sobie nie zawiera informacji o splątaniu. Zaprezentowany formalizm
matematycznie odzwierciedla przestrzeń Hilberta dwóch cząstek w ramach pierwszej kwantyzacji i dlat-
ego pozwala na intuicyjne wykorzystanie znanych już narzędzi mechaniki kwantowej. W pracy pokazane
zostało, że zaproponowany formalizm jest w stanie opisać splątanie zarówno stanów gaussowskich, jak i
niegaussowskich. Ponadto formalizm ten nie ogranicza się tylko do opisu splątania. W ramach przykładu
zaprezentowane zostało jak nieklasyczny efekt statystyki sub-Poissonowskiej przekształca się w splątanie
poprzez działanie rozdzielacza wiązki.
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ABSTRACT

The discovery of the quantum behavior of small-scale systems resulted in a plethora of fundamental
questions about the nature of our world. It also provided new avenues for the development of technologies
that utilize quantum phenomena. Therefore, the study of non-classical phenomena became one of the
core subjects in physics. With an increasing understanding of simple systems containing a small and
fixed number of particles, the problems of more complex systems gain increasing attention, both from the
point of view of more complex applications and the fundamental question of when quantum effects play
an important role. This motivates studies of quantum fields in states of undefined particle numbers in
which quantum features still play an important role.

This PhD dissertation summarizes a series of papers, coauthored by the PhD candidate, concentrated
on describing non-classical phenomena in bosonic systems containing an undefined number of particles,
especially in the regime of high average numbers of particles.

The first article “Simplified quantum optical Stokes observables and Bell’s theorem” describes new
observables that allow for the detection of Bell non-classicality of polarization-entangled states with an
undefined number of photons. In particular, the proposed measurement scheme enables detection of non-
classicality in the range of average number of photons that greatly exceeds previous approaches. These
observables can be realized with any intensity measurement for which the response of the apparatus
increases with the number of photons. This is because they are constructed as a sign of the difference in
the response of the detectors detecting photons in two orthogonal polarization modes.

The second article “Bosonic fields in states with undefined particle numbers possess detectable non-
contextuality features, plus more” presents a new representation of su(2) algebra on a two-mode bosonic
Fock space. The resulting set of operators enabled us to propose a generalized Peres-Mermin square,
and thus to describe non-classical effects of contextuality for bosonic fields with an undefined number of
particles. What is more, the effect becomes a common feature of states with a high number of particles,
reaching quantum bounds for the used criterion in the limits of macroscopic average numbers of particles;
a behavior which is rare in considerations of quantum phenomena.

The third article in the series “Generalization of Gisin’s Theorem to Quantum Fields” concerns the
problem of Gisin’s theorem in the context of quantum fields. Our generalization states that any pure
entangled state of a quantum field violates some Bell inequality. Thus, Bell non-classicality within the
framework of quantum field theory is present in pure states of all entangled systems even when the number
of particles is undefined;

The last paper “Open dynamics of entanglement in mesoscopic bosonic systems” proposes a mesoscopic
description of bosonic fields that allows considerations of the open evolution of discrete variable entangle-
ment. Mesoscopic descriptions aim to simplify different problems by considering only the most important
degrees of freedom. The proposed description is based on the correlations in particle numbers. With these
correlations, we build the extension of the recently proposed reduced state of the field formalism, which,
however, by itself does not contain information about entanglement. Our formalism mathematically re-
sembles the first quantization Hilbert space of two particles and therefore allows for the intuitive use of
already known tools of quantum mechanics. We show that it is able to describe the entanglement of both
Gaussian and non-Gaussian states. In addition, this formalism is not limited to describing entanglement.
As an example for this, we consider how the non-classical effect of sub-Poissonian statistics is transformed
into entanglement through the action of the beamsplitter.
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I. INTRODUCTION

The appearance of the mathematical paradigm of quantum mechanics at the beginning of the twentieth
century with its remarkable successes in providing an explanation to the multiple observations which
could not be described within classical theory forced a sudden shift in the way we perceive our universe.
The unintuitive probabilistic character of quantum mechanics posed fundamental questions about how
we should interpret nature. This started a full-of-controversies ongoing debate on the interpretation of
quantum mechanics. One of the milestones in understanding quantum physics started with the famous
EPR paradox [1] based on a peculiar quantum phenomenon later called entanglement. The apparent
conclusion of this paradox was the incompleteness of quantum mechanics. This reasoning was based on a
strong belief inherited from classical mechanics about the determinism of the world and argued that the
probabilistic nature of quantum mechanics emerges from our lack of knowledge about some underlying
deterministic local hidden elements of reality. The following discourse in the physics community [2–4] long
waited for the breakthrough in the form of Bell’s Theorem [5] which stated that predictions of quantum
mechanics are incompatible with any local hidden variable (LHV) model. Finally, experiments [6, 7] were
conducted that followed the predictions of quantum mechanics rather than LHV models. This once and
for all ended this debate and showed that the classical way of thinking solely in terms of deterministic
local hidden variables is invalid.

A deeper understanding of the concept of superposition and entanglement had an impact not only
on the fundamental understanding of physics but also enabled the application of these phenomena in
multiple tasks. The appearance of the concept of the qubit, that is, a two-level system, the state of
which can act as a classical bit but also expands its capabilities by maintaining quantum features, laid
the foundation for the field of Quantum Information. One of the key avenues in this field is quantum
computation, which promises a speed-up in computation tasks for which classical computers require
enormous amounts of time. An example of such a task is the simulation of quantum systems such as
molecules [8, 9]. Therefore, proper quantum simulators would allow for the easier development of new
medicines and materials. The appearance of multiple algorithms for quantum computers that provide a
speed-up, like the famous Shor’s algorithm for factorization of integers [10] or Grover’s search algorithm
[11], made quantum computing one of the primary focus in physics research. At the same time, this
increased interest in research on entanglement, as it underlies numerous quantum computing algorithms
[12]. Another avenue in quantum information is quantum cryptography. It emerged with the proposition
of the first quantum key distribution algorithm BB84 [13], in which the superposition of the state of
the medium used for the distribution of secret key enables detecting eavesdropping. Further on, the
Ekert91 algorithm [14], which is based on entanglement, resulted in the development of the most secure
method of information sharing, i.e., device-independent quantum key distribution [15, 16]. This class of
algorithms relies only on observed correlations without assumptions on the measurement device itself to
provide uncompromised shared bits by utilizing the Bell test. This methodology is based on the fact
that violation of Bell inequality ensures that appearing correlations cannot result from a LHV model, and
therefore third parties cannot have deterministic knowledge about all the outcomes. As data security is
one of the key areas for public security, one could expect entanglement to be at the center of broadly used
technologies of the future.

A crucial problem is finding the best implementation of these new quantum devices. As in quantum
cryptography, information has to be distributed over long distances, the answer is photonic systems [17–
19]. While for quantum computation there are different viable options, photonic systems could be also
utilized in this context. This is especially the case, as one can construct universal photonic quantum
computers using simple linear optics [20]. In fact, there are different possible approaches in reaching
universal quantum computing with photonic systems, for example, gate-based [21, 22], measurement-based
[23, 24], and fusion-based [25]. Besides universal quantum computing, the more task-specific devices are
of interest for presenting quantum advantage, as such devices could be easier to implement. For photonic
systems, the highly studied example of such a task is boson sampling [26], which was shown to be a hard
problem for a classical computer if the conjectured polynomial hierarchy for complexity classes holds.
Therefore, despite the lack of known practical applications of such a task, it is pursued with the goal of
experimental presentation of a quantum advantage. Photonic systems are also considered in the context of
quantum machine learning using, e.g., quantum neural networks [27, 28] or quantum reservoir computing
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[29, 30]. Recent developments in integrated photonics [31, 32] that allow production of on-chip devices are
currently the most promising avenue for scaling quantum photonic devices. However, the bosonic nature
of photonic modes complicates even the simplest systems, as each mode can be occupied by an undefined
number of particles. Therefore, the implementation of qubits in photonic systems is approximate, as
one can expect losses of photons that encode information and also noise coming from additional photons
entering the system from the environment. One is also not confined to consideration of qubits in photonic
modes, but one has infinite-dimensional state space to explore for non-classical effects. All of this adds
complexity to the problem of detecting non-classical phenomena like entanglement. Still, multiple methods
for observing the non-classicality of bosonic states have been introduced [33, 34].

In general, a major obstacle in the implementation of quantum hardware is the decoherence effects,
which can easily appear in complex systems. This is especially true, as the goal of the system size
required for real-life application of quantum computers still exceeds current technology by a few orders
of magnitude, and one needs to prevent the disappearance of quantum effects in such systems for proper
operation. What is more, minimization of the effects of decoherence, for example, using decoherence-free
subspaces [35], is also crucial in quantum cryptography to increase the range at which one can perform
communication schemes. The increasing complexity of the systems also casts a full quantum description
of such systems infeasible. Therefore, one of the important research subjects is the development of simpler
descriptions of such systems that maintain the most important quantum features of the system. Thus,
the goal of such mesoscopic descriptions is to allow for a theoretical analysis of complex systems, which
could be found useful further in designing hardware.

The description of the non-classical phenomena in complex states involving a large number of particles
also has another fundamental motivation. There is still a debate about the transition between the quan-
tum and the classical realms. While it is commonly agreed that decoherence is a necessary step in the
measurement process, one might still think that additional processes not predicted by quantum mechanics
are present on a big enough scale that give rise to objective outcomes of the measurement. Therefore,
one could potentially see the indirect signatures of such phenomena in these intermediate scales, if one
predicts non-classical effect but experimentally observes its disappearance with the system size.

This dissertation explores problems of non-classicality in the limits of macroscopic numbers of photons
and the mesoscopic description of non-classical phenomena of bosonic fields. In particular, the work
concentrates on entanglement, Bell non-classicality and contextuality. The work is structured as follows:
Section II presents preliminary information on the problems investigated, Section III provides an overview
of the results presented in the articles, and Section V presents perspectives for further research.

II. PRELIMINARIES

Let us first recall some concepts that will provide context and notation conventions for the summarized
results of the series of papers presented as part of the PhD dissertation.

A. Entanglement in quantum field theory

To discuss the entanglement, it is necessary to introduce the state space of the theory. Let us briefly
review how the state space is constructed in both first and second quantizations.

1. First quantization state space and entanglement

In first quantization, for problems involving point quantum particles in space, one can describe the pure
state of a single particle by a normalized vector |ψ⟩ in the single-particle Hilbert space H. This vector can
be associated with the wave function ψ(r⃗) in the position representation, which is interpreted as providing
probability density of finding a particle at a given position through the Born rule dP (r⃗) = |ψ(r⃗)|2dr⃗.
Therefore, one chooses the Hilbert space H to be isomorphic to the space of square-integrable functions
L2(M) or its subspace singled out by the evolution equation. Here, M is some flat 3-dimensional manifold
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on which the particle is considered. One can show L2(M) to be separable. This property ensures that
one can construct a countable basis in Hilbert space H. Then, mixed states (density operators) ρ̂ can be
defined as bounded positive operators on space H with trace 1.

A state space of two distinct particles lives in a tensor product of single-particle spaces H1 ⊗H2. For
pure states, one can characterize bipartite entanglement in terms of Schmidt decomposition. Any state
|ψ12⟩ ∈ H1 ⊗H2 can be decomposed as follows [36]:

|ψ12⟩ =
∑
t

λt |ϕt⟩1 ⊗ |φt⟩2 , (1)

where coefficients λt ≥ 0 fulfil relation
∑
t |λt|2 = 1, and vectors |ϕt⟩1 ∈ H1, |φt⟩2 ∈ H2 form two sets

of orthonormal vectors, that is, ⟨ϕt|ϕt′⟩1 = ⟨φt|φt′⟩2 = δt,t′ . Here, δt,t′ denotes the Kronecker delta. An
important feature of Schmidt decomposition is that it is unique up to choice of the phase of the vectors
|ϕt⟩1 , |φt⟩2. Still, phase relations between different terms |ϕt⟩1 ⊗ |φt⟩2 are unique. Now, the pure state
is separable if there exists only one λt ̸= 0, that is if it is a product state |ϕt⟩1 ⊗ |φt⟩2. If the state is not
separable, it is entangled. For mixed state, one has that the state is separable if it can be put as a convex
combination of product states of the subsystems:

ρ̂ =
∑
i

piρ̂
1
i ⊗ ρ̂2i , (2)

where pi can be interpreted as a probability of preparing product state ρ̂1i ⊗ ρ̂2i , and ρ̂ji denotes some
density operator on j-th Hilbert space. Analogously, if ρ̂ is not separable, it is entangled.

2. Second quantization state space and entanglement

In quantum field theory, one constructs the Fock space. One can build an orthonormal basis for this
space starting from the vacuum state |Ω⟩, which is assumed to contain no particles in any mode. Next,
one introduces creation (annihilation) operators â†i (âi) which add (remove) a single particle in some
single-particle state |ai⟩ (which defines a mode, in the field theoretic language). If states |ai⟩ form an
orthonormal basis in the Hilbert space H of single particle states, then creation and annihilation operators
fulfill canonical commutation relations for bosons or anticommutation relations for fermions:

[âi, â
†
j ] = δi,j , [âi, âj ] = [â†i , â

†
j ] = 0, (3)

{âi, â†j} = δi,j , {âi, âj} = {â†i , â
†
j} = 0. (4)

All elements of the Fock basis are obtained by applying all possible monomials of these creation operators
with a proper normalization factor to |Ω⟩:

|n1, n2, ...⟩ =
(â†1)

n1(â†2)
n2 ...√

n1!n2!...
|Ω⟩ , (5)

where ni denotes the number of particles in i-th mode. For bosons and fermions one has
∑
i ni < ∞

while additionally for fermions ni ∈ {0, 1}. Importantly, this basis is countable [37] because one has a
countable number of modes, and the modes always contain a finite number of particles. Let us remark that
the choice of the creation and annihilation operators is not unique. If we decide to use another basis for
single-particle states, say |dk⟩ =

∑
i uki |ai⟩ then one can introduce creation operators associated with this

basis d̂†k =
∑
i ukiâ

†
i . These operators, together with their conjugates, form an identical (anti)commutator

algebra as âi, â
†
i .

Various types of entanglement can be analyzed in the Fock space [38–40]. Here we consider the type
of entanglement of quantum fields that can be directly observed. This entanglement is called the mode
entanglement. To study entanglement, one has to specify at least two distinguishable subsystems. While in
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the Fock space specific particles cannot be distinguished by the construction, one can distinguish different
orthogonal modes. Thus, consider the division of modes into two families of mutually orthogonal modes,
first given by the set of modes {ai}, and the second by {bl}. Now, let each family of modes constitute a
subsystem. Then, some pure state |ψab⟩ from the considered Fock space is separable if it can be written
as:

|ψab⟩ = F ({a†i})G({b
†
l }) |Ω⟩ , (6)

where F ({a†i}) stands for some polynomial of creation operators in modes {ai} and analogouslyG({b†l })
for modes {bl}. For the mixed state, one has that the state of field ρ̂F is separable if it can be put as a
convex combination of separable pure states:

ρ̂F =
∑
j

pj |ψj⟩ ⟨ψj | , (7)

where all states |ψj⟩ have a form (6). Once again, the state is entangled if it is not separable.

3. Entanglement criteria for quantum optical fields

Let us concentrate on optical fields. The important question is how one can access information about
whether the state of the field is ρ̂F entangled. In the case of polarization entanglement, one of the tools for
this task are the Stokes operators [33, 41]. These operators are quantum-optical analogues of the Stokes
parameters commonly used in classical electrodynamics for the description of polarization. One obtains
Stokes operators from Stokes parameters by choosing a quantum model for the intensity of light. If we
consider a specific beam (spatial mode) and model intensity by number of photons, the Stokes operators
read:

Θ̂i = â†i âi − â†i⊥âi⊥ . (8)

Here, âi and âi⊥ are annihilation operators in two orthogonal polarization modes, and i = 1, 2, 3 stands
for three mutually unbiased bases for the considered optical modes. In the description of polarization,
these basis modes could be chosen as:

• i = 1 right-handed and left-handed circular polarisation, {R,L},

• i = 2 diagonal and anti-diagonal polarisation, {D,A},

• i = 3 horizontal and vertical polarisation {H,V }.

In addition, one considers the operator Θ0 = â†i âi+ â†i⊥âi⊥ that describes the total number of photons in
the beam defined by a single spatial (propagation) mode.

An interesting feature of these operators is that whenever one restricts oneself to states from the subspace
where only a single photon is present in the modes, Stokes operators act on these states exactly as Pauli
matrices σ̂i on a qubit. This gives a motivation that Stokes operators could be used to construct criteria for
entanglement concerning discrete degrees of freedom. In fact, a broad class of such criteria can be obtained.
This is because it was shown that from any entanglement indicator for multi-qubit systems, which can
be constructed using tensor products of Pauli matrices, one can obtain an entanglement indicator for the
field by mapping σ̂Xi → Θ̂Xi [42]. Here, the superscript X denotes the subsystem on which the given
operator acts.

An alternative to Stokes operators are normalized Stokes operators [34, 43], which in the situation as
considered above read:

Ŝi = Π̂
n̂i − n̂i⊥
n̂i + n̂i⊥

Π̂, (9)
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where Π̂ = 1 − |0, 0⟩ ⟨0, 0| is a projector into states which has at least a single photon, and n̂i(i⊥) are
photon number operators. The operator Π̂ additionally plays the role of the operator Ŝ0 replacing Θ̂0.
These operators have a bounded spectrum given by rational numbers from the interval [−1, 1]. This fact
is useful in considerations of Bell inequalities, which we discuss later. Importantly, for normalized Stokes
operators, one has an analogous mapping of entanglement indicators using σ̂Xi → ŜXi . It is important to
note that while Stokes parameters are associated with polarization, one can use Stokes operators for the
description of any two orthogonal modes, which do not have to be polarization modes.

B. Entanglement in squeezed states

For decades one of the primary sources of entangled photons has been the parametric down-conversion
process (PDC) [44, 45]. It is a process that can occur in non-linear medium (e.g., BBO crystal). In
PDC photon from the pumping field with wave vector k⃗p and frequency ωp can be annihilated, which is
followed by the creation of a pair of photons with wave vectors k⃗s, k⃗i and frequencies ωs, ωi. These pairs
of photons have to follow a phase matching conditions, which tend to approximate momentum and energy
conservation between the pump photon and the created pair:

k⃗p ≈ k⃗s + k⃗i, (10)
ωp ≈ ωs + ωi. (11)

These conditions are a consequence of the superposition of the emission of the pairs of photons in the
entire volume of the crystal illuminated by the pump field. In the specific case of type I phase matching
with created photons having the same energy and polarization, these photons are propagating on a cone.
This is a result of momentum conservation (phase matching condition concerning momentum), which
requires that components of the momentum of created photons that are perpendicular to the momentum
of pump photon are opposite. In the parametric approximation, in which one treats the pumping field
classically, this process of creation of particle pairs into two phase-matched modes a and b can be to a
good approximation described by the interaction Hamiltonian:

Ĥ = γâ†b̂† + h.c., (12)

where parameter γ is related to the intensity of the pumping field. The state obtained by the unitary
evolution of the vacuum imposed by Ĥ is called a two-mode squeezed vacuum state [46]. One can show
that this state is entangled. However, one can also obtain different types of entangled states from this
process. In particular, for a weak pumping, it can be used to obtain approximately singlet states encoded
in polarization or paths. Assume for now that photons in created pairs have orthogonal polarization to
each other (PDC type II phase matching) and have the same energy. Then, due to the birefringence of
the non-linear crystal (only birefringent crystals have high enough quadratic non-linearity to get a PDC
effect), the photons are no longer propagating on the surface of a single cone. The different refractive
index for the differently polarized photons results in wave vectors k⃗s, k⃗i of not equal length. For a specific
orientation of the crystal, the created photon pairs propagate on two cones. There are two lines on which
the cones intersect. Then one can extract two beams of light from the intersections of the cones. In such a
scenario, one cannot specify the polarization of the beams, as a photon of a given polarization was created
in each beam with the same probability. Let us choose these two polarizations to be H and V , and denote
the modes of the first beam as aH , aV and of the second beam as bH , bV . Then, the effective interaction
Hamiltonian for this process can be put in the following form

Ĥ2×2 = γâ†V b̂
†
H − γâ†H b̂

†
V + h.c.. (13)

Note that this Hamiltonian is simply a sum of two two-mode squeezing Hamiltonians (12). Applying
unitary exp

(
−iĤ2×2t/ℏ

)
to vacuum one obtains the 2 × 2 mode squeezed vacuum state. It can be
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explicitly written as:

|ψ−⟩ =
1

cosh2(Γ)

∞∑
n=0

tanhn(Γ)

n∑
m=0

(−1)m |(n−m),m;m, (n−m)⟩

=
1

cosh2(Γ)

∞∑
n=0

√
n+ 1 tanhn(Γ)

∣∣ψn−〉 . (14)

where Γ = γt/ℏ is called amplification gain. A bright, i.e., with high Γ, state we shall call a bright squeezed
vacuum state (BSV). Here we used the notation for Fock states with occupation numbers given for the
following order of modes: aH , aV , bH , bV . Observe that

∣∣ψ1
−
〉

is simply a two-photon polarization singlet
state. Therefore, for a weakly pumped crystal, i.e., for small Γ the BSV state is effectively a superposition
of the singlet state and the vacuum. In fact, it inherits many features of the singlet state, such as for
example, EPR-like anti-correlations and rotational invariance with respect to simultaneous action of the
same local transformation of basis modes in both parties. In other words, the form of the state is the same
in any common choice of polarization basis for both parties. In addition, this state with an undefined
number of photons can be generated to possess large average numbers of photons [47]. Because of all of
that, it is sometimes referred to as the “macroscopic singlet”.

One can also obtain entangled states that have an undefined number of photons using generalization of
two-mode squeezing to a higher number of modes. Consider three modes a1, b1 and c1 and the following
interaction Hamiltonian in a parametric approximation:

Ĥ = γâ†1b̂
†
1ĉ

†
1 + h.c.. (15)

This Hamiltonian seems to generalize Hamiltonian (12). Experimental realizations of such interactions
have recently been presented [48]. However, this description in terms of the parametric approximation
is pathological, as exp{−iĤt/ℏ} is not a proper unitary operator in Fock space. Let us remark that one
could restore unitarity by considering the pump field also as quantized [49].

Similarly to the construction of the BSV state, one could (keeping in mind the problems with (15))
consider the state of six orthogonal modes generated from the vacuum by the sum of two such Hamilto-
nians:

ĤGHZ = γâ†1b̂
†
1ĉ

†
1 + γâ†2b̂

†
2ĉ

†
2 + h.c.. (16)

This process was first considered in the work co-authored by the author of this thesis [50]. Here, one can
think as an example that sets of modes {a1, a2}, {b1, b2} and {c1, c2} describe now three beams, where
each is propagated to one of the three separate parties. This state is, in fact, a genuinely tripartite
entangled state [50]. What is more, it generalizes a GHZ state to a state with an undefined number of
photons in the analogous manner to how the BSV state generalizes a singlet state. Therefore, it is called
the bright GHZ state (BGHZ). This state can be written in the Fock basis as:

|BGHZ⟩ =
∞∑
k=0

k∑
m=0

Ck−m(Γ)Cm(Γ)(â†1b̂
†
1ĉ

†
1)
k−m(â†2b̂

†
2ĉ

†
2)
m |Ω⟩

=

∞∑
k=0

k∑
m=0

Ck−m(Γ)Cm(Γ) |k −m,m; k −m,m; k −m,m⟩ ,

(17)

where Cq(Γ) are complex coefficients dependent on Γ. Let us comment that finding a general form of
these coefficients still poses an open problem. This is because a parametric approximation is not well
suited for a proper description of the generation of this state, as the series expansion of exp

(
−iĤGHZt/ℏ

)
does not lead to a normalizable state (i.e., exp

(
−iĤGHZt/ℏ

)
is not unitary). This problem is analogous

to the problem of the generalization of single-mode squeezing with Hamiltonians γ(a†)n + h.c. for n > 2
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[49]. However, one can approximately calculate Cq(Γ) for Γ < 0.9 using the series expansion to calculate
the Padé approximants [50] which we briefly discuss below.

Consider first the Hamiltonian Ĥ1 = γâ†1b̂
†
1ĉ

†
1 +h.c.. In the standard approach, this Hamiltonian would

produce the following state from the vacuum:

|Σ1⟩ = e−iH1t/ℏ |Ω⟩ =
∞∑
k=0

ck(â
†
1b̂

†
1ĉ

†
1)
k |Ω⟩ , (18)

where second equality is obtained through series expansion of the exponent. Here, coefficients ck are given
by:

ck =

∞∑
l=0

(−iΓ)k+2l

(k + 2l)!
P kk+2l, (19)

where P kl fulfil the recurrence relation: P kl = P k−1
l−1 + (k + 1)3P k+1

l−1 with conditions P kl = 0 if k > l

and P kk = 1. One can find that the norm of ck is divergent, and so this approach itself does not allow
one to obtain probability amplitudes for the state. However, one can calculate Padé approximants for
this series expansion, which allows avoiding the divergent approximation. This approximation is built to
approximate the function (probability amplitude) with the rational function rather than the power series.
In this approach, one obtains that the evolution of vacuum approximately results in the state:

|Σ1⟩ =
∞∑
k=0

Ck(Γ)(â
†
1b̂

†
1ĉ

†
1)
k |Ω⟩ , (20)

where Ck(Γ) are rational functions:

Ck(Γ) =

∑N
n=0X

k
n(−iΓ)n∑M

m=0 Y
k
m(−iΓ)m

, (21)

where [N/M ] describes the degree of approximation. The coefficients Xk
n, Y

k
m are chosen so that the first

(N +M + 1) terms of the Taylor series expansion of Ck(Γ) are the same as first (N +M + 1) terms of
(19). Then, these Ck(Γ) are used to approximate the BGHZ state 17. This is because ĤGHZ = Ĥ1 + Ĥ2,
where Ĥ2 is analogous to Ĥ1 for modes with subscript 2. The BGHZ state is simply a product state
built from |Σ1⟩ and |Σ2⟩. Note that while it is a separable state in bipartition into modes a1, b1, c1 and
a2, b2, c2, this does not prevent the state from being entangled in different partitions. Further down
we shall be interested in partition a1, a2 and b1, b2 and finally c1, c2 (effectively modes leading to three
separate observation stations) in which state is not factorizable.

C. Bell non-classicality

One of the most remarkable effects which originate from entanglement is the Bell non-classicality. The
work of Bell [51] showed that quantum mechanics is fundamentally incompatible with the local realistic
description advocated by Einstein [1] and followers. This was achieved by showing that predictions of
quantum mechanics violate an inequality which has to be fulfilled by the local hidden variable models.
Such types of inequalities, in general, are called Bell inequalities. Let us discuss this incompatibility based
on the widely known CHSH inequality [52].
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1. CHSH inequality

Consider two spatially separated parties A and B which can perform measurements, each choosing be-
tween two different measurement settings. The parties chose their settings randomly and independently
of each other. Let us denote the settings for party A as A1, A2 and for party B analogously as B1, B2.
Furthermore, let us assume that each measurement has two possible outcomes ±1. Then, parts of some
system are distributed to the parties upon which they perform measurement. Suppose that the measure-
ment process in both parties finishes before any information about the chosen setting traveling with the
speed of light could reach another party. The key assumption for deterministic LHV models is that all the
results of the measurements are determined by some local hidden variables which we denote as λ. Here,
locality manifests itself in the sense that any local operations (choice of measurement setting) performed
on subsystem A (B) do not impact results in subsystem B (A). This is motivated by the fact that in
this scenario information about local operations cannot reach the other party within laws of relativity,
and thus classically results should be determined only by the local variables. We note that results of the
parties in LHV models can depend on each other by classical correlations imposed by a (hidden) common
cause λ during the preparation of the system. Let us denote the result of the measurement in party X for
a given setting Xi conditioned on the configuration of hidden variables as RX(i, λ). One can check that
for given λ: [

RA(1, λ) +RA(2, λ)
]
RB(1, λ) +

[
RA(1, λ)−RA(2, λ)

]
RB(2, λ) = ±2. (22)

This expression is a random variable, and thus one can calculate its expectation value over some probability
distribution ρ(λ) which determines the distribution of local hidden variables supposedly related to the
state of the full system. Note that, one is not able to measure in one run results for all settings. Thus,
in the experiment, one cannot directly have access to this random variable. However, one can separately
obtain expectation values for different terms of (22) since all involve only a single configuration of settings.
Finlay, due to the linearity of the operation of averaging over probability distribution, the result has to
coincide with the expectation value for this inaccessible random variable. Now, clearly, using the fact that∫
ρ(λ)dλ = 1, and due to the equality (22) we have that

|⟨CHSH⟩| ≡
∣∣∣⟨RA(1, λ)RB(1, λ)⟩LHV + ⟨RA(2, λ)RB(1, λ)⟩LHV

+ ⟨RA(1, λ)RB(2, λ)⟩LHV − ⟨RA(2, λ)RB(2, λ)⟩LHV
∣∣∣ ≤ 2. (23)

Here, ⟨RA(i, λ)RB(j, λ)⟩LHV stands for the expectation value for some local hidden variable distribution
ρ(λ). These expectation values are called correlation functions. As we did not make any assumptions on
the distribution ρ(λ) this inequality should hold for any state according to deterministic LHV models.
This inequality is called the CHSH inequality. In fact, one can also show that this inequality also holds for
stochastic LHV models. In such models, one assumes more generally that the outcomes can be randomly
distributed for given λ, i.e., one has a probability distribution of local results P (RX |i, λ) conditioned on
the choice of setting and λ instead of definite values of RX(i, λ). The locality in such models is realized
by the assumption of factorization of joint probabilities:

P (RA, RB |i, j, λ) = P (RA|i, λ)P (RB |j, λ). (24)

Let us now analyze the example of predictions of quantum mechanics for this kind of scenario. Consider
that the source prepares a singlet state encoded in polarization

∣∣ψ1
−
〉

(see (14)) and distributes one beam
to each party. Parties have polarization analyzers that they can rotate by some angle α to measure in
different linear polarization basis. Assigning rotation angle 0 to the {H,V } polarization basis one can
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describe creation operators in rotated measurement basis of party A as:

â†(α) = cosα â†H + sinα â†V

â†⊥(α) = − sinα â†H + cosα â†V ,
(25)

and analogously for party B with â†H(V ) → b̂†H(V ). Then, suppose that the parties assign the result 1 to
events where a single photon is detected in the first basis mode and −1 in the opposite case. Let party A
choose between two settings given by the angles αA1 = 0, αA2 = π/4, and party B between αB1 = π/8 and
αB2 = −π/8. This scenario matches exactly the CHSH scenario. One can directly calculate appropriate
quantum expectation values for this setup to evaluate the left hand side of inequality (23). In the result,
one obtains 2

√
2 ≤ 2, and therefore the inequality is violated showing incompatibility of the predictions

of quantum mechanics with LHV models.

2. CHSH-like inequality for optical fields

One can also build a CHSH-like inequality for general four-mode quantum optical fields using nor-
malized Stokes operators (9). In such a case, one considers the possible results RX(i, λ) to be rational
numbers contained in the interval [−1, 1]. However, due to the fact that CHSH expression ⟨CHSH⟩
is linear in all RX(i, λ) it attains its extreme at the boundary, i. e., when RX(i, λ) = ±1. Therefore,
for such a case one has an unchanged inequality fulfilled by the LHV models. Then, one can see that
the normalized Stokes operators provide such a measurement with results being rational numbers on the
considered interval. Then, in quantum analysis, instead of expectation values ⟨RA(i, λ)RB(j, λ)⟩LHV one
can consider the quantum expectation values ⟨ŜA(i)ŜB(j)⟩ where ŜX(i) stands for a normalized Stokes
operator constructed in the basis corresponding to the i-th setting. In the measurement basis from the
above example, they are given for party A by:

ŜA(i) = Π̂
â†(αAi

)â(αAi
)− â†⊥(αAi

)â⊥(αAi
)

â†(αAi
)â(αAi

) + â†⊥(αAi
)â⊥(αAi

)
Π̂. (26)

Then choosing the same rotation angles as for the case of the singlet state, one can show a violation of
the considered CHSH-like inequality using the BSV state (14).

Let us comment that early attempts to construct Bell inequalities for optical fields relayed on standard
Stokes operators (8), which turned out to be an incorrect approach. In these attempts, one considers as
a quantum correlation functions ⟨Θ̂A(i)Θ̂B(j)⟩/⟨Θ̂A0 Θ̂B0 ⟩ and tries to obtain violation of the, e.g., CHSH
inequality based on them [53, 54]. However, inequalities obtained for this approach have in the derivation
an additional assumption of non-enhancement of intensity. More precisely, the derivation assumes that the
hidden variable that describes the total intensity of light is shared across all the choices of the local settings.
In the result, the violation of such inequalities does not have to imply the violation of local realism. This is
because the violation of this non-enhancement assumption could be the reason for observing the violation
of inequality [55].

3. CH inequality

Let us additionally recall another fundamental Bell inequality, called the CH inequality [56]. This
inequality is built directly from probabilities instead of correlation functions. Let us denote by EXi some
event in the X-th party for the i-th setting. Then only from the properties of probability distributions and
the locality assumption in terms of factorization of joint probabilities (24) one can find the CH inequality:

−1 ≤ P (EA1 , EB1 ) + P (EA2 , EB1 ) + P (EA2 , EB2 )− P (EA1 , EB2 )− P (EA2 )− P (EB1 ) ≤ 0. (27)
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In fact, for the case where one has two possible outcomes per party, this inequality is equivalent to CHSH
inequality [57]. To see this, let us choose all events EXi to be that for a given setting one oberves result
−1. Then, the correlation function:

⟨RA(i, λ)RB(j, λ)⟩ρ(λ) = P (RA = RB |i, j)− P (RA ̸= RB |i, j), (28)

can be rewritten as:

⟨RA(i, λ)RB(j, λ)⟩ρ(λ) = 4P (EAi , EBj )− 2P (EAi )− 2P (EBj ) + 1. (29)

Inserting this to the CHSH expression in (23) one can retrieve the CH inequality (27). Thus, a violation
of one inequality is accompanied by the violation of the second one. One also has a general relation, valid
also for quantum predictions, between the values of the ⟨CHSH⟩ and the CH expression, which we denote
as ⟨CH⟩:

⟨CH⟩ = ⟨CHSH⟩
4

− 1

2
. (30)

However, in general, CH inequality is not equivalent to CHSH-like inequalities derived for a higher number
of possible outcomes. If one derives quantum optical Bell inequality based on intensity rates CH and
CHSH-like forms of these are not equivalent. One has to modify the CHSH inequality to become equivalent
to the CH one (e.g., [58] for the case of inefficient detection)

D. Contextuality

Quantum mechanics is also not compatible with classical concept represented by non-contextual hidden
variable models. Let us briefly discuss the underlying classical intuition behind such a class of hidden
variable models. In quantum mechanics non-degenerate observables define the context of degenerate ones
(which are functions of the former ones), but not in a unique way. A degenerate observable may commute
(be jointly measurable) with infinitely many non-degenerate ones. Thus, it can be measured within many
contexts. Is it possible to model quantum mechanics with hidden predetermined values of measurement
in such a way that functional relations between all jointly measurable observables are satisfied, and the
predetermined values of degenerate observable do not depend on context?

The incompatibility of this class of hidden variable models with quantum mechanics was first shown also
by Bell [59] and independently by Kochen and Specker [60]. This result is commonly known as Kochen-
Specker theorem. Let us present this incompatibility using the simple method presented by Peres [61] and
Mermin [62, 63]. Quantum mechanics represents the values V (Oi) as eigenvalues of Hermitian operators
representing observables Ôi which are the only possible outcomes of measurement of these observables.
Importantly, the sets of compatible observables in quantum description translate into the sets of mutually
commuting observables. Now, if a set of compatible observables, e.g., let us assume this set to be Ôi for
i ≤ n, fulfills some relation:

f(Ô1, ...Ôn) = 0, (31)

the same relation must be fulfilled by each configuration of eigenvalues V (Oi). Consider now the following
table of observables Âij for two-qubit systems called the Peres-Mermin square:

Âij j = 1 j = 2 j = 3

i = 1 σ̂1
3 σ̂

2
0 σ̂1

0 σ̂
2
3 σ̂1

3 σ̂
2
3

i = 2 σ̂1
0 σ̂

2
1 σ̂1

1 σ̂
2
0 σ̂1

1 σ̂
2
1

i = 3 σ̂1
3 σ̂

2
1 σ̂1

1 σ̂
2
3 σ̂1

2 σ̂
2
2

One can check that operators Âij with repeating indices commutes. Therefore, all rows and all columns
provide sets of compatible observables. In fact, the product of operators in each row results in identity,
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and the same holds for the first two columns. However, the product of operators in the last column is
equal to minus identity. Consider a product of hypothetical V (Aij) for each row:[

V (A11)V (A12)V (A13)
][
V (A21)V (A22)V (A23)

][
V (A31)V (A32)V (A33)

]
= 1, (32)

where the equality is obtained as based on the discussed relations each square bracket has to be equal to
1. Now, repeating the same for columns, one gets:[

V (A11)V (A21)V (A31)
][
V (A12)V (A22)V (A32)

][
V (A13)V (A23)V (A33)

]
= −1, (33)

where minus appears due to the expression in the last square bracket. Multiplying these equations by
sides, one has on the left-hand side the product of positive expressions V (Aij)

2 while on the right-hand
side, one has -1. Thus, one gets a contradiction, showing the incompatibility of non-contextual hidden
variable models with quantum mechanics.

Notice that the prediction based on the Peres-Mermin square is completely state-independent. This is in
contrast to the case of the Bell Theorem where one relied on the specific quantum property of some states
to show the incompatibility with local realistic hidden variable models. Here, however, the argument is
solely based on the properties of the observables.

The predictions of quantum mechanics also in the case of contextuality turned out to be better suited
for the description of nature. This is because experimental efforts allowed for falsifying non-contextual
description [64, 65]. Besides the fundamental relevance, the problem of contextuality has also recently
gained interest, as it could be the key feature that enables advantage in quantum computation [66, 67]
and communication tasks [68].

E. Open dynamics and reduced state of the field description

In general, the full quantum description of complex systems becomes quickly infeasible with increasing
system size. This is in particular true when one deals with infinite-dimensional systems involving states
with an undefined number of particles. The complexity of the analysis also increases; as in any practical
scenario, one has to consider the decoherence effects imposed on the system by the interaction with the
environment. Therefore, one of the important problems is to find mesoscopic descriptions of such systems,
which simplify the analysis but still allow obtaining proper predictions about relevant degrees of freedom
in situations where quantum effects play an essential role.

One of the recently proposed mesoscopic descriptions of bosonic systems is the reduced state of the
field (RSF) approach [69]. The RSF formalism seeks simplification of the description by reducing the
infinitely dimensional framework of the second quantization to a finite-dimensional, single-particle-like
Hilbert space typical of the first quantization. Let us recall the construction of RSF.

Consider some density operator ρ̂F on the Fock space of N orthogonal modes {ak}Nk=1. The RSF reduces
this state to two structures on the N -dimesional Hilbert space with orthonormal basis {|k⟩}Nk=1 related to
the described modes (|k⟩ is designated to describe mode ak). These structures are: single-particle density
matrix and averaged field:

ρ̂ =

N∑
k,k′=1

tr
{
ρ̂F â

†
k′ âk

}
|k⟩ ⟨k′| , |α⟩ =

N∑
k=1

tr{ρ̂F âk} |k⟩ . (34)

Observe that ρ̂ after normalization has all the mathematical properties of the density matrix. Similarly
|α⟩ after normalization could be seen as a pure state. However, these reduced states are not real states
and do not have the typical probabilistic interpretation. Instead, the operator ρ̂ depicts the occupation
of modes and coherences, and |α⟩ gives access to information about the local phases of the field. One also
associates observables on single-particle-like Hilbert space with a specific class of observables on the Fock
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space:

Ô =

N∑
k,k′=1

ok,k′a
†
kâk′ ↔ ô =

N∑
k,k′=1

ok,k′ |k⟩ ⟨k′| . (35)

Importantly, this association (reduction) of observables preserves the expectation values:

tr
{
ρ̂F Ô

}
= tr{ρ̂ô}. (36)

The important feature of RSF is that it allows for the consideration of the open evolution of the reduced
states. Often, the open evolution that the system undergoes can be described as roughly Markovian.
In such circumstances, the evolution of the state ρ̂F is given by the GKLS equation [70, 71]. One can
consider a class of such equations that describe particle decay and production, random elastic scattering,
and classical coherent pumping. These equations, using the independent particles approximation, can be
generally put as [69, 72]:

d

dt
ρ̂F = − i

ℏ
[Ĥ, ρF ] +

N∑
k

[(ξkâ
†
k − ξ∗k âk), ρ̂F ] +

∑
j

κj(Ûj ρ̂F Û
†
j − ρ̂F )

+

N∑
k,k′=1

Γk
′,k

↓

(
âkρ̂F â

†
k′ −

1

2
{â†k′ âk, ρ̂F }

)
+

N∑
k,k′=1

Γk
′,k

↑

(
â†k′ ρ̂F âk −

1

2
{âkâ†k′ , ρ̂F }

)
,

(37)

where Hamiltonian Ĥ =
∑
k,k′ ωk,k′ â

†
kâk′ , complex parameters ξk describe classical pumping field, κj de-

scribes probability distribution of scattering processes described by unitary transformations of annihilation
operators Û†

j âkÛj =
∑
k′ u

j
k′,kâk′ with uj being unitary matrix, and Γk

′,k
↕ are creation and annihilation

rates. For this class of evolution equations, one can find the corresponding evolution equations for ρ̂, |α⟩:

d

dt
ρ̂ = − i

ℏ
[ĥ, ρ̂] + (|ξ⟩ ⟨α|+ |α⟩ ⟨ξ|) +

∑
j

κj(ûj ρ̂û
†
j − ρ̂) +

1

2
{γ̂↑ − γ̂T↓ , ρ̂}+ γ̂↑, (38)

d

dt
|α⟩ = − i

ℏ
ĥ |α⟩+ |ξ⟩+

∑
j

κj(ûj − 1) |α⟩+ 1

2
(γ̂↑ − γ̂T↓ ) |α⟩ , (39)

where T stands for transposition, ĥ is the reduced Hamiltonian obtained using (35) and:

γ̂↕ =
∑
k,k′

Γkk
′

↕ |k⟩ ⟨k′| , |ξ⟩ =
∑
k

ξk |k⟩ , ûj =
∑
k,k′

ujk,k′ |k⟩ ⟨k
′| . (40)

Additionally one can consider entropy within RSF:

S[ρ̂; |α⟩] = kB tr{(ρ̂α + 1) log(ρ̂α + 1)− ρ̂α log(ρ̂α)}, (41)

where ρ̂α = ρ̂− |α⟩ ⟨α| and kB is the Boltzmann constant.

One can see the advantages of the RSF approach, as it inherits simple and intuitive first quantization
structures and additionally as it is equipped with multiple tools for the analysis of the state. However,
there are caveats to this description. For example, it was shown that while it is fully derived from quantum
considerations, it is a highly classical description [72]. The described reductions are not appropriate for
a description of entanglement. Furthermore, the entropy (41) possesses properties related to the semi-
classical Wehrl entropy and not to the quantum von Neumann entropy. Observe that, as entanglement
is one of the core resources for quantum information tasks, and the lack of it in the RSF makes this
formalism not well-suited in this form for analysis of multiple relevant systems associated with such tasks.
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III. OVERVIEW OF THE PRESENTED RESEARCH

A. General summary

Let us present a brief overview of the research included in this PhD thesis followed by a more in-depth
summary of each article.

The first two articles [PhD1] and [PhD2] introduce two new sets of observables well suited for revealing
non-clasicality of quantum optical fields for states with an undefined number of particles. In particular,
they theoretically allow for observation of non-classical effects in the limits of high average numbers of
photons. Both sets are inspired by Stokes operators. However, they try to achieve in a different way the
goal of restoring some properties of Pauli matrices, most notably their bounded spectrum ±1. In the first
case of operators which we called the sign Stokes operators we try to mimic the action of the Pauli matrices
on polarization optical qubits assigning result 1 (-1) to outcomes with a higher number of photons in the
first (second) polarization mode. Finally, our procedure reduces the spectrum to three eigenvalues ±1, 0
in contrast to all rational numbers for normalized Stokes operators. This gives the advantage in revealing
Bell non-clasisicality for states with a higher average number of photons. In the second case, we try to
build a new su(2) representation which would also fulfill the anticommutation relations of Pauli matrices.
This is in contrast to Stokes operators, which determine some su(2) representation but do not fulfill this
additional constraint. This set of operators allowed us, among other things, to propose generalization of
the Peres-Mermin square for quantum optical fields that shows contextuality for macroscopically occupied
states.

The third article [PhD3] shows that entanglement is fundamentally associated with Bell non-classicality
not only for systems with a set number of particles but also for states with an undefined number of particles
without constraints on the system size. To prove this claim, we introduce the Schmidt decomposition of the
states in the Fock space. This decomposition itself provides a useful tool in the analysis of entanglement
of quantum fields, and can give an insight into the methods required to reveal entanglement.

The last article [PhD4] provides a mesoscopic formalism for the description of bosonic systems and their
open Markovian evolution. This formalism can be seen as the simplest extension of the reduced state of
the field formalism that allows for entanglement considerations. In the core of this formalism lie particle
number correlations which showed already their role in the entanglement of quantum optical fields through
entanglement criteria based on Stokes operators. The proposed formalism reduces the problem of tracking
state from infinite-dimensional Fock space to the evolution of a two-qudit density matrix upon which one
can perform analysis using tools suited for finite-dimensional systems. Importantly, entanglement of the
reduced two-qudit density matrix indicates entanglement of the full state of the bosonic field. Therefore,
this formalism allows for easy and intuitive analysis of entanglement in bosonic systems. This includes
highly occupied states with undefined photon particle number. This tool shows its versatility, as it can
also describe other quantum effects such as, for example, sub-Poissonian statistics.

The joint effort of these works provides multiple tools for the analysis of various types of non-classicality
of bosonic fields. What is more, using them one can reveal and analyze non-classicality both in scenarios
in which only single particles are present and in scenarios considering highly occupied states.

B. New observables for detecting Bell non-classicality of quantum bosonic fields

While the problem of revealing Bell non-classicality of states of optical qubits is well studied, it is
still underdeveloped for general states of a quantum optical field with undefined number of photons
especially with a high average number of photons. The first approaches utilizing Stokes operators (8)
were unsuccessful, and only recently utilization of normalized Stokes operators (9) led to proper Bell
inequalities which do not treat in trivial way states with a higher number of photons. However, for states
like BSV (14) and BGHZ (17) analysis with Bell inequality based on normalized Stokes operators reveals
Bell non-classicality only in scenarios with a low average number of photons. One potential reason for
that might be the fact that the eigenvalues of normalized Stokes operators for eigenstates |n,m⟩ with
the number of photons in two modes of the same order of magnitude become negligibly small when the
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number of photons n+m increases. Thus, one can imagine that non-classical correlations introduced by
highly occupied states can be easily suppressed or covered by classical correlations introduced, e.g., by
noise.

1. Construction of “sign” observables

To consider high occupation states on approximately equal footing, one can take inspiration from the
qubit case (single-photon subspace). This choice of inspiration for our construction is compeling as for
this scenario one can obtain the maximal violation of the CHSH-like inequality using normalized Stokes
operators. This is because, as we discussed, in this subspace these operators act exactly like Pauli matrices.
In the goal of making new operators in some sense more similar to Pauli matrices for states with higher
photon number, one would like to reduce the spectrum of new observables to more closely correspond to
the spectrum ±1. Looking into the action of Ŝ3 on the qubit states, one can opt to treat in the extended
picture states |n,m⟩ with n > m analogusly to qubit state |0⟩ ≡ |1, 0⟩ and asign to them eigenvalue 1 and
states with n < m as qubits |1⟩ ≡ |0, 1⟩ with eigenvalue −1. This is the path that we have chosen in the
work [PhD1]. As Stokes operators are first and foremost associated with the analysis of the polarization,
let us consider the two modes to be two orthogonal polarization modes, with obvious generalization to any
set of two orthogonal modes. Upon presented motivation, we proposed in the article [PhD1] the following
observables for the analysis of non-classical behaviour of the states, which we call sign Stokes operators:

Ĝ(s) = sign(Θ̂(s)) = sign(n̂s − n̂s⊥) = sign(Us(n̂H − n̂V )U
†
s ), (42)

where s denotes chosen setting associated with some polarization basis {s, s⊥} and n̂s(s ⊥) stand for
the photon number operators in these modes. In the last equation, we introduce the operator Ûs which
denotes a unitary transformation between a linear polarisation basis {H,V } and an arbitrary polarisation
basis {s, s⊥}. This was introduced to intuitively show how one can perform such a measurement, which
is completely analogous to the measurement of the Stokes operators. First, one performs a unitary
operation on the state that transforms photons with polarization s (s⊥) into photons with polarization H
(V ). This transformation involves only phase-shifting and polarization rotation transformation, which can
be achieved by rotation of the axis of the birefringent crystal used for the analysis of linear polarization.
Then this unitary transformation is followed by the photon counting in two output beams from the
crystal, i.e., in chosen linear polarization modes {H,V }. Let us comment that these operators were also
independently proposed in the same year and used in the analysis of BEC states [73], however, only in the
regime of weakly occupied states. Observe that this construction simplifies the Stokes operators, reducing
their spectrum to ±1, 0. The appearance of additional eigenvalue in comparison to Pauli matrices is a
consequence of the fact that states of the form |n, n⟩ do not have an analog in the single-photon subspace.

An important feature of this measurement scheme is the fact that one can use the experimental data to
simultaneously analyze the results for all variations of Stokes operators. This is because all of them only
make a reassignment of the eigenvalues. However, the sign Stokes operators have an additional property
that in fact their expectation value does not depend on the model of the intensity used as long as the
intensity value increases with photon number. In other words, one can replace n̂s → Îs in (42) where Îs is
some intensity operator that can, for example, describe the detector response and obtain exactly the same
prediction. Therefore, one can also use intensity measurements that do not make direct photon counting.
It is also important to note, that in fact by making the spectrum of our operators more similar to the
spectrum of Pauli matrices, we had to pay a price of loosing another property also associated with Pauli
matrices. More precisely, for Stokes operators one can build the Stokes vector ⟨ ˆ⃗Θ⟩ = (⟨Θ1⟩, ⟨Θ2⟩, ⟨Θ3⟩)
norm of which is invariant under unitary transformation of basis modes. The analogous statement holds
for Pauli operators and normalized Stokes operators. This is, however, not true for sign Stokes operators.
This property is crucial in standard derivations of entanglement indicators. Therefore, if one wants to
obtain entanglement indicators based on sign Stokes operators different from Bell inequalities, one has to
develop new methods for their derivation.
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2. Bell inequality violation

Application of the sign function to the Stokes operators effectively performs an alternative normalization
of their spectrum, which is crucial to enable the derivation of the Bell inequalities as discussed in Section
II C 2. To show that our normalization procedure gives an advantage over normalized Stokes operators,
we consider two examples. As a first example, we consider a BSV state. However, for small Γ, this state
is dominated by the vacuum contribution to which Ĝ(s) assigns 0 which prevents observing the violation
of a CHSH-like inequality. To cure that, one can modify slightly sign Stokes operators acting on the beam
of the X-th party by assigning, for example, eigenvalue −1 to zero photon state:

ĜX(s) → ĜX−(s) = ĜX(s)− Π̂ΩX . (43)

Here, operator Π̂ΩX stands for projector onto the subspace of the Fock space characterized by zero
photons in the local beam X. This change preserves the spectrum {±1, 0} of these operators. Thus,
one can analogously obtain a CHSH-like inequality corresponding to these operators as for the case of
normalized Stokes operators discussed in Section II C 2:

|CHSHG−| = |⟨G1−(1, λ)G2−(1, λ) +G1−(1, λ)G2−(2, λ)

+G1−(2, λ)G2−(1, λ)−G1−(2, λ)G2−(2, λ)⟩LHV | ≤ 2.
(44)

Here, GX−(s, λ) stands for hypothetical local hidden values of outcomes corresponding to the measurement
of the observable ĜX−(s) and the averaging is over a distribution ρ(λ). For the analysis, we have chosen
the settings used in Section IIC 1 which are also optimal for the case of violating the CHSH-like inequality
based on normalized Stokes operators using the BSV state. For the second example, we analogously build
Mermin-like inequality to examine Bell non-classicality of the BGHZ state:

|M(3)G−| = |⟨G1−
1 (λ)G2−

1 (λ)G3−
1 (λ)−G1−

1 (λ)G2−
2 (λ)G3−

2 (λ)

−G1−
2 (λ)G2−

1 (λ)G3−
2 (λ)−G1−

2 (λ)G2−
2 (λ)G3−

1 (λ)⟩LHV | ≤ 2.
(45)

Here, GX−
i (λ) represents the local hidden values associated with sign Stokes operators build upon the

Stokes operator Θ̂Xi .

In both cases comparing the results obtained with sign and normalized Stokes operators, we have found
that one obtains stronger violation using sign Stokes operators. Importantly, the range of violation in
terms of Γ is also broader for the case of the sign Stokes operators. Thus, one can observe with our
approach a violation of Bell inequality using states with higher average photon numbers. In the case of
BGHZ our analysis was restricted to Γ < 0.9 due to the limitations of the approximation method used
to calculate the probability amplitudes. However, we find that there is a violation in the entire analyzed
range of Γ for sign Stokes operators, while for normalized Stokes operators, violation is already no longer
present for Γ > 0.77. For the BSV state, the range of violation increases with the cut-off of the maximal
number of photons in (14) used in numerical calculations. Therefore, we conjecture that the violation is
present for any Γ. In the supplementary material, we have provided strong motivation for this conjecture,
based on an analysis of patterns of violation by different terms

∣∣ψn−〉 of (14). Assuming conservation of
observed patterns, one can show that the quantum expectation value of CHSH-like expression for sign
Stokes operators is lower bounded by 2 with the bound reached in the limit Γ → ∞. Therefore, one can
conjecture that theoretically sign Stokes operators reveal Bell non-classicality of states with an arbitrarily
high average number of photons. From a more experimental perspective, we analyzed the robustness of
the violation against uncorrelated noise and inefficient detectors. In the result, we found that also in
this case sign Stokes operators achieve a significant advantage over the normalized variant. Therefore,
sign Stokes operators provide a highly improved measurement scheme for revealing Bell non-classicality
of states of quantum optical fields with undefined photon numbers.
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C. Contextuality with quantum bosonic fields

The incompatibility of quantum mechanics with non-contextual hidden variable models is an active field
of research that is motivated by its potential importance for speedup in quantum computations [66, 67].
Similarly, as in the case of Bell inequalities, the majority of the research was conducted concerning
finite-dimensional systems with a definite number of particles. Therefore, scenarios based on states with
undefined particle numbers are still not well examined. In addition, efforts in this matter were concentrated
on the continuous variable regime [74, 75]. Therefore, one of the main goals of our article [PhD2] was to
analyze the contextuality using states of quantum bosonic fields with undefined number of particles in the
discrete variable regime. We propose a new representation of su(2) on two-mode Fock space that allowed
us to construct a generalization of the Peres-Mermin square for quantum bosonic fields.

1. Construction of Pauli-like operators for bosonic fields

As the Peres-Mermin square is based on Pauli matrices, its generalization could be done if one would
find their counterparts for the bosonic Fock space. One could think of the Stokes operators as a good
candidate, as they provide a su(2) representation similarly to Pauli matrices. However, this is insufficient.
This is because in the construction of the Peres-Mermin square, the anticommutation relations play an
important role, and they are not fulfilled by Stokes operators. Also, the unbounded nature of these
operators as discussed for Bell inequalities can cause problems when dealing with hidden variable models.
However, a simple spectrum reduction, as in the case of sign Stokes operators can cause a loss of properties
associated with su(2).

To address these problems we propose the following set of operators as the counterpart of Pauli matrices
in the two-mode Fock space:

Ĝ0 = 1 −
∑
n |n, n⟩ ⟨n, n| ,

Ĝ1 =
∑
n ̸=m |n,m⟩ ⟨m,n| , (46)

Ĝ2 = −i sign(â†â− â†⊥â⊥)
∑
n ̸=m |n,m⟩ ⟨m,n| ,

Ĝ3 = sign(â†â− â†⊥â⊥),

where 1 stands for the identity on two modes. This set is proposed in such a way that it mimics the
action of Pauli matrices on states |n,m⟩ with the association of states with n > m to |0⟩ and n < m
to |1⟩. As required for operators associated with the representation of the su(2) algebra, these operators
satisfy the identical commutation relation as those of the Pauli matrices:

[Ĝi, Ĝj ] = 2iϵijkĜk, (47)

where i, j, k = 1, 2, 3. This is also the case with the anticommutation relation:

{Ĝi, Ĝj} = 2δij Ĝ0. (48)

These relations result in the crucial for Peres-Mermin square relation:

ĜiĜj = δij Ĝ0 + iϵijkĜk. (49)

Furthermore, the Ĝ0 operator commutes with all Ĝi operators and plays the role of the counterpart to
the identity σ̂0 = 12 on the qubit space. Let us stress a pitfall of our construction. In our work, we do
not propose the experimental realization of the measurement corresponding to the operators Ĝ1 and Ĝ2.
Therefore, this poses an open problem for the development of such a technique outside of the theoretical
realm. Note further that the set (46) is not equivalent to operators Ĝs, with s = 1, 2, 3 standing for three
maximally unbiased polarization bases.
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2. Generalization of the Peres-Mermin square

Using our Pauli-like operators, we propose a version of the Peres-Mermin square suitable for the 2× 2
mode states of quantum bosonic fields. We do so by mapping the original Peres-Mermin square (see
Section IID) as follows: σ̂1

i ⊗ σ̂2
j → Ĝ1

i Ĝ2
j . Using the convention of notation of Section II D we denote

elements of the Peres-Mermin square by Âij . The relation (49) ensures that one can find the analogous
sets of compatible observables as the ones for the two-qubit case (sets of operators Âij with one shared
index).

To analyze the problem of contextuality consider operator:

Ô = Â11Â12Â13 + Â21Â22Â23 + Â31Â32Â33

+Â11Â21Â31 + Â12Â22Â32 − Â13Â23Â33,
(50)

where, in each term, is either poroduct of the elements of a column or row of the generalized Peres-Mermin
square. With this operator, one can formulate an inequality that has to be fulfilled by non-contextual
hidden variable (NCHV) models. The procedure of obtaining the bounds for the NCHV models [76] is,
in fact, analogous to obtaining the bounds for Bell inequalities for LHV models presented in the Section
II C 1. Although our Pauli-like observables have a different spectrum than Pauli matrices, i.e., ±1, 0, one
obtains the same non-contextual bound for our observable as for the case for an analogous if one would
build the operator (50) with the original Peres-Mermin square. The obtained inequality reads:

⟨A11A12A13 +A21A22A23 +A31A32A33

+A11A21A31 +A12A22A32 −A13A23A33⟩NCHV ≤ 4,
(51)

where Aij stand for hidden values corresponding to outcomes of measurement of observables Âij .

Now concerning quantum predictions, one can find that Ô = 6Ĝ1
0 Ĝ2

0 as the first five terms of (50) are
all equal to Ĝ1

0 Ĝ2
0 while the last term is equal to −Ĝ1

0 Ĝ2
0 . Observe that the operator Ĝ1

0 Ĝ2
0 is a projection

into the subspace of the Fock space spanned by states |k, l;n,m⟩ with k ̸= l and n ̸= m. Therefore, for a
state ρ̂ the expectation value of operator Ô is given by:

⟨Ô⟩ρ = 6− 6P (k = l ∨ n = m|ρ), (52)

where P (k = l ∨ n = m|ρ) stands for the probability for the state ρ of detecting the same number of
particles in both modes of at least one of the parties. Clearly, whenever P (k = l ∨ n = m|ψ) < 1

3 the
inequality (51) is violated and the contextuality is revealed.

Let us comment that whenever one considers states with a single photon per party (two optical qubits),
one retrieves the original Peres-Mermin square for which on has ⟨Ô⟩ρ = 6 for any state. Note that this
state-independence is lost in general in our approach. However, one could argue that approximately one
regains state-independence in the regime of a high average number of photons. To see this, first consider
two modes. For each set number of particles n shared between the modes, there is either 0 (odd n) or 1
(even n) Fock state which has the same number of particles in both modes. Therefore, with increasing n,
the ratio between the Fock states with equal and unequal number of particles converges to 0. Based on
this discussion, it is clear that also in the four-mode case the Fock states with equal number of particles in
modes of at least one party (only those can contribute to P (k = l ∨ n = m|ρ)) also form a minority when
a high particle number in both parties is considered. Therefore, if there is no specific mechanism that
favors states from this minority class, their contribution in most cases will diminish in high occupations
states, and one will have in general ⟨Ô⟩ρ ≈ 6. A primary example of such a mechanism that favors
these specific states is the interaction corresponding to two-mode squeezing or its generalization into more
modes. Such interactions originating from non-linearities are rather weak, and naturally occurring high
occupation states rarely have their origin in such processes. Still, even if two-mode squeezing is present
(being a dominant process in state preparation), one could reveal contextuality based on resulting states
by choosing different partition of modes into subsystems, as it is the case, e.g., with the BSV state. Figure
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FIG. 1. Quantum expectation value ⟨Ô⟩ as a function of average total number of particles ⟨ntot⟩ (51) for BSV, four
mode coherent and thermal state. Magenta dashed line denotes quantum bound and black dashed line denotes
NCHV model bound. In the paper [PhD2] only the plot for BSV is given.

1 considers three examples of described behaviour. First, for the BSV state, second, for the Gibbs thermal
state of four non-interacting modes, and third example for four modes in coherent states with the same
amplitude. Note that, as expected, in all three cases ⟨Ô⟩ converges to 6 with an increasing total average
number of particles ⟨ntot⟩.

3. Different types of non-classicality

The proposed Pauli-like operators can be also used to reveal entanglement and Bell non-classicality. One
can derive Bell inequalities exactly in the same way as for the normalized and sign Stokes operators. For
the entanglement, one finds that the proposed operators admit the mapping of entanglement indicators
analogous to Stokes operators. More precisely, having an entanglement indicator written in terms of Pauli
matrices, one obtains the entanglement indicator for the quantum bosonic field by mapping σXi → ĜXi .
Based on the examined example of BGHZ state we observe an interesting property of the used non-
classicality criteria that one approaches the quantum bounds in the limits of high average particle numbers.
This is completely opposite to the other approaches, as, for example, normalized Stokes operators. More
precisely in such scenarios one is closest to quantum bounds for a small number of particles and from
some point observed non-classical behaviour diminishes with an increasing number of particles, and this
is something that one would normally not expect.

D. Generalization of Gisin’s theorem to quantum fields

One of the fundamental results in quantum mechanics is Gisin’s theorem. It answers the question of
whether entanglement of pure states is always connected with Bell non-clasicality. The first version for
two-particles by Gisin [77] was then developed [78–81] to state that for each pure entangled state of the
system containing an arbitrary number of particles with arbitrary dimensions of single-particle spaces,
there exists a Bell inequality violated by this state. However, this does not give a final answer to the
problem, as the analysis of the problem was carried out within the first quantization, which requires fixing
the number of particles considered. This therefore does not cover all scenarios in quantum field theory in
which one can deal with entangled states with an undefined number of particles such as, e.g., the BSV
state. In the article [PhD3] we extend Gisin’s theorem to cover this case.
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1. Outline of the proof

First we introduce a crucial tool for our proof of Gisin’s thoerem for quantum fields. This tool is a field
Schmidt decomposition in the Fock space. Note that from the construction, the Fock space has no tensor
product structure which allows the standard Schmidt decomposition. Therefore, to construct Schmidt
decomposition we first divide the modes of the field into two families {ai}, and {bl} (here i and l are
countable indices). The families have the property for bosons [âi, â

†
j ] = δij , [b̂i, b̂

†
j ] = δij [âi, b̂

†
l ] = 0 and an

anti-commutator version of these holding in the fermionic case. One might think of modes {ai} and {bl} as,
e.g., spatially separated. Now, each Fock basis state can be associated with two vectors n⃗j = (nj1, n

j
2, ...)

and m⃗j′ = (mj′

1 ,m
j′

2 , ...) for which the following relations are fulfilled
∑{ai}
i=1 n

j
i < ∞,

∑{bl}
l=1 m

j′

l < ∞.
These vectors describe the distributions of a finite number of particles among two groups of orthogonal
modes {ai} and {bl}. Each Fock state for the selected modes, either bosonic or fermionic, can then be
written as ∣∣∣n⃗j ; m⃗j′

〉
=

1

NaNb

∏
i

(â†i )
nj
i

∏
l

(b̂†l )
mj′

l |Ω⟩ = f({a†i}, j)g({b
†
l }, j

′) |Ω⟩ , (53)

where Na(b) stand for a normalization factor, and f({a†i}, j) denote a specific monomial of creation op-

erators in modes {ai} and analogously g({b†l }, j′) for modes {bl}. Importantly, the set {
∣∣∣n⃗j ; m⃗j′

〉
}jj′ ,

indexed by two countable indices j, j′, is a countable orthonomal basis in the Fock space considered.
Let us consider two Hilbert spaces HA, HB spanned respectively by abstract orthogonal basis vectors

f̃(j), g̃(j′) with indices j, j′ shared with elements of the set {
∣∣∣n⃗j ; m⃗j′

〉
}jj′ . Then the linear map:

f({a†i}, j)g({b
†
l }, j

′) |Ω⟩ 7→ f̃(j)⊗ g̃(j′), (54)

is an isomorphism between the the considered Fock space and HA ⊗ HB. One can now map any pure
state from Fock space into state in HA ⊗ HB, which can then be decomposed with standard Schmidt
decomposition. By then mapping this state back into Fock space, one arrives in the Schmidt-decomposed
form of the original state:

|ψ⟩ =
∑
t

λtF ({a†i}, t)G({b
†
l }, t) |Ω⟩ , (55)

where λt are Schmidt coefficients resulting from (1) and F ({a†i}, t), G({b
†
l }, t) stand for polynomials

of creation operators in corresponding groups of modes {ai}, {bl}. These polynomials fulfill the local
orthogonality relation given by:

⟨Ω|F ({a†i}, t)
†F ({a†i}, t

′) |Ω⟩ = ⟨Ω|G({b†l }, t)
†G({b†l }, t

′) |Ω⟩ = δt,t′ . (56)

What is important is that the uniqueness of the decomposition is preserved. This is up to the local choice
of phase factors for polynomials F ({a†i}, t), G({b

†
l }, t), which, however, results in a unique polynomial

F ({a†i}, t)G({b
†
l }, t).

Based on the Schmidt decomposition and the definition of separability (6) one can observe that any
mode entangled state |ψent⟩ can be put in the form:

|ψent⟩ = λ1F ({a†i}, 1)G({b
†
l }, 1) |Ω⟩+ λ2F ({a†i}, 2)G({b

†
l }, 2) |Ω⟩+ λR |R⟩

=
√
|λ1|2 + |λ2|2 |ϕ12⟩+ λR |R⟩ , (57)

where λ1, λ2 ̸= 0 and |R⟩ stands for state emerging from the rest of the terms in Schmidt decomposition,
i.e., for t > 2, and λR is the amplitude corresponding to this state, which can be zero.

One can think of the state |ϕ12⟩ emerging from the first two terms as a state in some 2× 2 dimensional
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(two-qubit) subspace. Note that the state |ϕ12⟩ is clearly entangled within the considered subspace. From
original Gisin’s theorem there exists a CHSH inequality which is violated on the positive side by such
two-qubit state. Due to the correspondence of the CHSH inequality with the CH inequality for qubits (30)
there is also a CH inequality which is violated on the positive side by such a state. One can now construct
the Bell operator corresponding to this CH inequality and embed it properly in the Fock space. Let us
denote it by ĈH. By construction, one has: ⟨ĈH⟩ϕ12

> 0. However, we need to find the violation in the
context of the full state |ψent⟩. One can use the following: for any operator Ô that acts non-trivially on
the considered subspace but assigns eigenvalue 0 to all states from its orthogonal complement, one has
that its expectation value is given by:

⟨Ô⟩ψent
= (|λ1|2 + |λ2|2)⟨Ô⟩ϕ12

+ |λR|2⟨Ô⟩R = (|λ1|2 + |λ2|2)⟨Ô⟩ϕ12
. (58)

Here in the second equality, the second term disappears as |R⟩ is a state from the orthogonal complement
of the considered subspace. As this operator is constructed based on projectors into the considered 2× 2
dimensional subspace or its local parts, it fulfills the relation (58). Thus, we finally get:

⟨ĈH⟩ψent
= (|λ1|2 + |λ2|2)⟨ĈH⟩ϕ12

> 0, (59)

what indicates violation of the CH inequality for the state |ψent⟩. Therefore, we showed that Gisin’s
theorem holds also for any pure mode-entangled states of a single quantum field. Generalization to any
finite number of distinguishable fields is straightforward.

2. Further application of Schmidt decomposition in the Fock space

The Schmidt decomposition in Fock space can be used as a tool in designing experimental setups that
reveal non-classical effects based on entanglement. In particular, it provides a sufficient condition for the
necessity of using ancillary resources for experimental revealing of non-classicality of entangled states.
These resources could be, for example, coherent states in ancillary modes.

Consider a state |ψ⟩. One is not able to reveal non-classicality originating from entanglement of this state
using passive optics if all projections of the state |ψ⟩ into the subspace given by

∑
i ni = n,

∑
i′ mi′ = m,

i.e., with set number of particles for each party, have Schmidt rank 1, that is:

∀n,m
1

N
Πnm |ψ⟩ = Fn({a†i}, 1)G

m({b†l }, 1) |Ω⟩ . (60)

Here N stands for a normalization factor, Πnm denotes a projector onto the subspace with n and m

particles in first and second party respectively, and Fn({a†i}, 1), Gm({b†l }, 1) are polynomials of creation
operators that have terms that are only of order n, m in creation operators respectively.

The primary reason for such a condition appearing is the fact that currently realizable measurements
do not allow direct measurements of projections into states such as (|n⟩ + |m⟩)/

√
2. All experimentally

realizable measurements at the end simply consist of some intensity (particle number) measurement in
some modes. Thus, one has to be able to reduce the problem into such a measurement. Whenever criterion
(60) is fulfilled, one is unable to propose a measurement of this kind that would reveal entanglement-based
effects without additional resources (modifications to the setup). This is because the expectation value of
any observable that can be written solely using projections into Fock states (this is the case for perfect
photo-detection) is a weighted average over the expectation values of this observable for states 1

NΠnm |ψ⟩.
In the case considered, all 1

NΠnm |ψ⟩ are separable; thus, any criterion based on such observables will not
show entanglement. However, by adding ancillary modes {c†i} in a suitable state, one might find that the
modified state |ψ + ancila⟩ = fa({c†i}) |ψ⟩, where fa({c†i}) stands for a polynomial of creation operators
in ancillary modes, does not satisfy the condition (60), when written in terms of final modes (essentially,
the ones observed by the detectors). Then it might be possible to reveal the entanglement of such a state
using photo-detection. In fact, if this is not the case, one knows that the ancillary system was not designed
properly for the given problem.



26

Note that, ancilla is not formally entangled with modes constituting |ψ⟩. Still, to ensure that non-
classicality emerges, the ancilla photons must be indistinguishable with the "signal" photons from the
original state |ψ⟩. Of course, if this indistinguishably is not perfect, the entanglement effect persists if
this imperfection is small, up to a certain threshold.

E. Open dynamics of entanglement in mesoscopic bosonic fields

Simplifying the description of quantum systems is of great importance in the perspective of scaling
up the system size under theoretical considerations to mesoscopic scales. This is of particular interest
in the context of scaling up quantum technologies. Such simplifications require one to choose only part
of the degrees of freedom to be relevant for the given study and dismiss the others from the analysis.
However, to obtain a coherent framework, one has to additionally ensure that the remaining information
about degrees of freedom is sufficient to allow a sensible description of their evolution. In this matter,
one is among other things interested in describing decoherence effects imposed by the interaction with the
environment which results in open evolution.

Bosonic quantum systems are of interest from the quantum information perspective, as they can po-
tentially find applications in both the cybersecurity sector and quantum computing. Let us recall that
recently an easy and intuitive mesoscopic description of such systems was proposed, that is, the reduced
state of the field formalism (RSF) [69]. However, it has the caveat that one is unable to access informa-
tion about entanglement within this framework. Because entanglement is crucial for quantum information
tasks in article [PhD4] we propose an extension of the RSF formalism to adapt it to the description of
this quantum phenomenon.

F. Construction of the extended reduced state of the field formalism

In the simplest form our extended RSF framework consists of two structures: the single particle density
matrix from the original formulation, and extended reduced state:

ρ̂ =

N∑
k,k′=1

tr
{
ρ̂F â

†
k′ âk

}
|k⟩ ⟨k′| , (61)

ρ̂4 :=

N∑
k,k′,n,n′

tr
{
ρ̂F â

†
n′ ânâ

†
k′ âk

}
|n, k⟩ ⟨n′, k′| . (62)

The extended reduced state follows the convention of assigning kets to annihilation operators and bras
to creation operators in the matrix elements, i.e., expectation values. Clearly, this structure keeps infor-
mation about all particle number correlations in the state. In previous sections, the important role of
such correlations from the perspective of detecting non-classical phenomena was already marked. The
introduction of the extended reduced state ρ̂4 allows one to consider in the analysis an additional class of
observables that are reduced in analogy to (35):

Ô4 =
∑

n,n′,k,k′

on′,n,k′,kâ
†
n′ ânâ

†
k′ âk → ô4 =

∑
n,n′,k,k′

on′,n,k′,k |n′, k′⟩ ⟨n, k| . (63)

This reduction also preserves expectation values in the sense tr
{
ρ̂F Ô4

}
= tr{ρ̂4ô4}.

In addition, an important feature of this extension is the fact that the evolution equation can be derived
for ρ̂4 which corresponds to (37) . We shall present here the equation for the case of no coherent pumping.
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This equation for Markovian open evolution reads:

d

dt
ρ̂4 = − i

ℏ
[ĥ⊗ 1+ 1⊗ ĥ, ρ̂4] +

∑
j

κj(ûj ⊗ ûj ρ̂4û
†
j ⊗ û†j − ρ̂4)

+
1

2
{(1⊗ γ̂↑ + γ̂↑ ⊗ 1)− (1⊗ γ̂T↓ + γ̂T↓ ⊗ 1), ρ̂4}

+ (ρ̂⊗ γT↓ )
τL + (γ↑ ⊗ ρ̂)τL + γ↑ ⊗ ρ̂+ ρ̂⊗ γ↑ + (γ↑ ⊗ 1)τL ,

(64)

with τL : |n,m⟩ → |m,n⟩ and ĥ, γ̂↕, ûj as in (38) . To solve this equation one clearly first has to find
the time evolution of the ρ̂. Therefore, to use this equation, one has to first consider the evolution
equation of the original RSF formalism (38). Here, the first Heisenberg-like term corresponds to the
unitary evolution of the system. The second term describes random unitary scattering, and the remaining
terms are responsible for dissipation or incoherent pumping from the environment. Note that, one can
also include coherent pumping in two ways. One can either add additional structures to the formalism
(see [PhD4]) or consider an additional mode in the coherent state and linearly couple it to the pumped
mode.

Note that ρ̂4 is in general not Hermitian, contrary to ρ̂ and thus has no state-like properties. However,
to consider entanglement, one has to first choose the bipartition of modes. To do so, two sets of indices
can be chosen that correspond to the modes and determine the subsystems IA, IB with IA ∩ IB = ∅.
Given this selection, one can apply the following projection to the operator ρ̂4:

ρ̂4 → ρ̂Π := Π̂IA,IB
ρ̂4Π̂IA,IB

=
∑

i,n∈IA

∑
j,m∈IB

ρijnm |i, j⟩ ⟨n,m| , (65)

where ρijnm = ⟨â†nâiâ†mâj⟩ and

ΠIA,IB
=

∑
i∈IA

∑
j∈IB

|i, j⟩ ⟨i, j| . (66)

One can find that ρ̂Π after normalization possesses all the mathematical properties of a density matrix of
two qudits. The dimension of each qudit is determined by the number of modes in a given party. This
could be seen as a density matrix on the two-particle-like Hilbert space constructed as the tensor product
of single-particle-like Hilbert spaces for considered subsystems used in the original RSF. This makes a
direct connection between our extended formalism and the original RSF approach. It is important that,
while ρ̂Π and ρ̂ have state-like properties, they do not inherit probabilistic interpretation associated with
the states. Here, the diagonal elements of ρ̂Π instead of probabilities describe the correlation of particle
numbers between modes. Let us comment that whenever evolution does not couple modes between the
parties, one can directly consider evolution of ρ̂Π instead of full ρ̂4.

1. Entanglement within extended reduced state of the field formalism

The important aspect is how one can examine entanglement within the extended RSF formalism.
Crucial for this aspect is the fact that whenever the reduced two-particle-like state ρ̂Π is entangled, the
original state of the field ρ̂F is also entangled. In other words, the entanglement of ρ̂Π is a sufficient
criterion for the entanglement of ρ̂F . The proof of this statement is based on the proof of the mapping
of entanglement indicators for Stokes operators [42] or Pauli-like operators Ĝi [PhD2]. Due to this result,
one can simply apply any method of revealing the entanglement for two qudits to ρ̂Π. In the case two-
qubits, i.e., four modes , one can use the PPT criterion [82] for the entanglement which is sufficient
and necessary. Therefore, in such a scenario, if one does not reveal the entanglement, then the state ρ̂Π
does not contain information about it. However, this does not indicate that ρ̂F is necessarily separable.
Observe that to apply this methodology, one has to have at least four modes. However, one can also
reveal the entanglement of two-mode states by proper extension of the state to four modes. An example
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of such an extension is to take the state of two additional modes as a copy of the original state ρ̂F .
In the article we consider an example of entangled Gaussian state (BSV) , and non-Gaussian state of

the single photon which was symmetrically beam-splitted into two modes. In both cases, our methodol-
ogy allows for detecting entanglement. Furthermore, for the BSV state we find that ρ̂Π allows detecting
entanglement for any finite amplification gain Γ (see (14)), that is, for any average number of photons
characterizing the state. Then analysis of the time evolution imposed on these states by thermal envi-
ronment allowed us to show that entanglement for both these states is robust against low-temperature
damping. What is more, we observed that for the BSV state limit of amplification gain Γ → ∞ provides
the longest time for which ρ̂Π shows entanglement. This is for any temperature of the thermal bath.

2. Other types of non-classicality

The extended RSF can also be used in the description of another type of non-classicality. In particular,
one can consider the quantum effect of sub-Poissonian statistics and its connections to entanglement. In
this matter, we consider a generalization of the Mandel Q parameter:

Qij :=
⟨â†i âj â

†
j âi⟩ − ⟨â†i âj⟩⟨â

†
j âi⟩

⟨â†i âi⟩
− 1 < 0, (67)

where whenever inequality holds one finds quantum phenomenon. For i = j one has the normal Mandel
Q parameter, the negativity of which indicates sub-Poissonian statistics. When i ̸= j negative value of
this parameter indicates entanglement. Then using tools of the extended RSF formalism, we showed the
relation between the entanglement created by beam splitting a single occupied mode into two modes and
sub-Poissonian statistics of the input mode:

Qout
12 +Qout

21 = Qin
11. (68)

Here, we assume that the input mode a1 is occupied and the superscripts denote whether the parameter
Qij is calculated for the input or output modes of the beamsplitter. From this relation, one clearly sees
how sub-Poissonian statistics is directly transformed into entanglement.

Finally, let us make a comment that contrary to the analysis of entanglement, it is not sufficient to
keep only ρΠ to consider sub-Poissonian statistics. For such an analysis, one needs the full ρ4. This is an
additional reason for the formulation of the extended RSF using ρ4.

IV. PERSPECTIVES FOR FURTHER RESEARCH

The presented research focused on providing tools for describing non-classical phenomena of states with
an undefined particle number. What is more, the special emphasis was put on the regime with high
average particle number. The results show that quantum field theory predicts the non-classical behavior
of states also on such scales. Going outside of such fundamental considerations towards a more pragmatic
approach, the question arises whether there are quantum information tasks where such states could give
some kind of an advantage. In relation to this question one might ask if the proposed measurement scheme
given by sign Stokes operators could be used in some device-independent quantum cryptography protocol,
and what would be the pros and cons of such an approach. This is a promising avenue, as violation of
Bell inequalities using this measurement scheme is more robust against noise and losses than for previous
approaches in the context of states with an undefined number of particles.

Furthermore, while the experimental realization of sign Stokes operators is conceptually straightforward,
this is not the case for proposed Pauli-like operators. As these operators work extremely well in revealing
the non-classiclaity of states with a high average number of photons, at least in the examined cases, it is
an interesting problem to propose some experimental realization of such operators.

The extended reduced state of the field framework also opens multiple paths for further development.
For example, one can try to perform a classification of states based on its mesoscopic properties in
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terms of reduced states and of the role of these properties for quantum information tasks. Furthermore,
this formalism allows for easy analysis of open dynamics of,e.g., different quantum optical setups, by
specifying mesoscopic properties of the sources. This is possible because, among other things, one can
easily include passive optical elements into the framework. What is more, one can consider what other
non-classical phenomena could be described using this formalism. One such example could be higher-
order polarization, sometimes called hidden polarization [83], as one could use this formalism to consider
second-order polarization tensors. The first quantization-like structure associated with the formalism
allows for using multiple tools from quantum mechanics. Thus, one can look for the tools that can be
applied to the reduced state with the results that have a useful interpretation in the context of the full
state of the field, as in the case of the PPT criterion and entanglement.

Further, one can still look for new tools for detecting the quantumness of states with an undefined
number of particles in highly occupied regimes. On the one hand, this can be done in the sense of finding
more robust measurement schemes. On the other hand, one can consider methods of detecting different
types of non-classicality for such states like, for example, steering.

Finally, going back fully to fundamental questions, it is an interesting topic how the connection between
entanglement and Bell non-classicality translates into theories which concern curved spacetimes. This
problem is non-trivial, as for example the concept of a particle is in general not well defined in the quantum
field theory in curved (classical) spacetime [84]. There could also be differences in the predictions between
when one considers quantum theory of gravity like loop quantum gravity or when one assumes classical
spacetime.
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Simplified quantum optical Stokes 
observables and Bell’s theorem
Konrad Schlichtholz*, Bianka Woloncewicz* & Marek Żukowski

We discuss a simplified form of Stokes operators for quantum optical fields that involve the known 
concept of binning. Behind polarization analyzer photon numbers (more generally intensities) are 
measured. We have two outputs, say, for horizontal and vertical polarization. If the value obtained 
in horizontal output is greater than in vertical one we put 1. Otherwise, we put − 1. For equal photon 
numbers, we put 0. Such observables do not have all properties of the Stokes operators, but can be 
employed in Bell type measurements, involving polarization analyzers. They are especially handy 
for states of undefined number of photons, e.g. squeezed vacuum and their realisation is intuitive. 
We show that our observables can lead to quite robust violations of associated Bell inequalities. 
We formulate a strongly supported numerically conjecture that one can observe with this approach 
violations of local realism for the four mode squeezed vacuum for all pumping powers (i.e. gain 
values).

The discussion about what is the essence of quantumness started with the first attempts of formulating quantum 
mechanics. With the emblematic paper of Einstein et al.1 the problem of completeness of quantum mechanics 
became a point of discussion among the scientific community. This started with the response by Bohr2. Many 
years later, after the paper of Bell3 the challenge of revealing non-classicality, in terms of violation of local real-
ism, has entered the core of contemporary research. All that in the meantime gained in importance with the 
emergence of quantum information and communication.

The ultimate test of non-classicality is the violation of Bell inequalities. This is now also the essence of testing 
of device-independent quantum communication protocols. Formulations of Bell’s theorem for situations of fixed 
numbers of particles have already a vast literature, and well established methods, see e.g. reviews4–7. However, 
if one moves to situations with undefined numbers of particles, still the situation is quite open. This is of course 
e.g. the case of general quantum optical fields. A lot of approaches are tested.

Polarization entanglement experiments are classic examples of experimental tests of Bell’s inequalities. The 
two photon experiments are a realization of two qubit-entanglement8,9. A deceptively obvious step in the direction 
towards optical fields of undefined photon numbers is to use quantum Stokes observables. The usual definition 
of these runs as follows. If one assumes that the intensity of light is proportional to the photon number, then 
(standard) quantum Stokes observables are given by �̂i = â†i âi − â†i⊥âi⊥ , where â is an annihilation operator. 
Indices i = 1, 2, 3 mark three mutually unbiased (fully complementary) polarization analyzers settings. The 
indexes, i and i⊥ stand for two orthogonal polarizations. E.g., one might choose the i’s to represent horizontal-
vertical, {H ,V} , diagonal-antidiagonal, {45◦,−45◦} , or right-left handed circular, {R, L} , polarization analyzer 
settings. The zeroth Stokes operator is given by the total photon number operator �̂0 = N̂ = â†i âi + â†i⊥âi⊥

10.
If we are interested in the degree of polarisation of light we use 

(

∑

i〈�i〉2
〈�0〉2

)1/2 . Obviously, this parameter is not 
a formal quantum observable (a self-adjoint linear operator). Neither is 〈�i〉

〈�0〉 . This is one of the reasons why 
attempts to build Bell inequalities using such parameters and their correlators for observation stations A and B 
in the form of 

〈�A
i �

B
j 〉

〈�A
0�

B
0 〉

 fail and lead to misleading conclusions11. This is because such attempts involve additional 
assumptions, beyond the usual ones for Bell inequalities, which limit the range of local hidden variable theories 
for with such Bell inequalities must hold.

Bell inequalities for Stokes parameters can be formulated if one introduces normalized Stokes observables12–14:

where �̂ = I− |����| , and |�� is the vacuum state (of the optical beam in question).

(1)Ŝj = �̂
n̂j − n̂j⊥
n̂j + n̂j⊥

�̂,
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It has been shown that such operators allow for the construction of stronger entanglement criteria, and they 
are a handy tool for formulation of Bell inequalities. One of their properties, crucial in this case, is the fact that 
these operators have a spectrum bounded by −1 and 1. That is, they have the basic property of observables which 
allows one to derive the CHSH-Bell inequalities. Thus, a derivation of a version of CHSH inequality applicable 
for such Stokes operators is essentially a replacement procedure. With the recent development of measurement 
techniques allowing photon number resolving detection15,16 the discussion about normalized Stokes parameters 
stops to be only theoretical and its use in experiments is becoming feasible.

Note that what makes Pauli operators so straightforwardly applicable to Bell inequalities is their dichotomic 
nature. One of the attempts to construct field operators of a similar property was the formulation of pseudo-spin 
operators. For example, the z component of pseudo-spin is (−1)n̂ , where n̂ is the total photon number operator in 
the given optical mode17,18. The spectrum of pseudo-spin operators is the same as the spectrum of Pauli matrices, 
but their use introduces great difficulties from the experimental point of view. Even a loss of one photon (due to 
e.g. detector inefficiency) or a single dark count reverses the result of a measurement.

Here we analyze a simpler approach, which leads to proper Bell inequalities for polarization measurements 
of quantum optical fields. Our aim is to construct a family of operators that would have the usual spectrum for 
Bell experiments and would be robust with respect to experimental noise. We present polarization quantum 
field observables that have spectrum limited to ±1 and 0. Our initial ideas on such binning can be found in19. 
The approach to binning presented here is concurrent with the method used in20 in the context of correlation in 
Bose-Einstein condensates. With the observables, we construct Bell inequalities. We test their resilience under 
losses and noise for 2× 2 mode bright squeezed vacuum and bright GHZ radiation. The observables are realiz-
able in the laboratory with standard measurement devices. They are described in the next section.

New operators: sign Stokes operators
It was shown that Bell inequalities constructed with normalized Stokes operators can be violated by macroscopic 
states of light such as 2× 2 (bright) squeezed vacuum (BSV)14 and its GHZ-like generalization (BGHZ)21. How-
ever, for a higher mean number of photons, the violation of Bell inequalities by these states is quickly damped. 
This results in lowering of the threshold values for pumping strength after which violation cannot be observed.

We address those problems by another normalization scheme, based on the so-called binning, which we call 
Sign approach normalization. To obtain new operators, we use the sign function and apply it to Stokes operators:

where s denotes the chosen setting related with the corresponding polarization basis with the eingenstates given 
by s and s⊥ . Subscripts H and V refer to horizontal and vertical polarizations, and the operator Ûs is a unitary 
transformation that transforms the polarization modes H, V into another orthogonal pair of, in general, elliptic 
polarization modes {s, s⊥} . From (2) we see that the eigenstates of G(s) are |jsks⊥� = 1√

j!k!
â
†j
s â

†k
s⊥|��, where â†s  

and â†s⊥ are creation operators related to the respective polarization modes of the given beam. The spectral form 
of (2) is given by:

Formula (3) clearly shows that the new operators are well-defined Hermitian operators and that each Ĝ(i) has 
three eigenvalues ±1 and 0. Although formula (2) implies photon number operators, the basic idea of sign as 
well as standard and normalized Stokes operators is based on differences and sums of intensities. These in turn 
do not need to be modeled with photon counts. Note that formula (3) does not imply any particular model of 
intensity as long as the intensity increases with number of counts (even nonlinearly).

The action of the sign function on Stokes operators can be regarded as some form of the binning strategy 
used in the context of polarization measurements. Binning strategies are e.g. used in homodyne schemes for 
observing non-classicality22–25.

We shall call the new operators sign Stokes operators. Following the usual approach, we shall define a triad of 
sign Stokes operators, related to the three maximally complementary settings of a polarization analyzer. For the 
usual triad of such settings, we denote by Ĝ1 the sign operator the eigenstates of which refer to {s = D, s⊥ = A} 
polarization basis, and by Ĝ2 and Ĝ3 for respectively {R, L} and {H ,V} bases. However, this notation is also 
extended to other triads of maximally complementary settings.

The sign operators share some properties of Stokes and normalized Stokes operators. Importantly, once 
one has a photon-number-resolving detection setup, the data collected in each run allows one to compute the 
obtained values of each of Stokes operators for the given basis i: standard, normalized, and sign ones, as they 
depend solely on the measured photon numbers ni and ni⊥ . As we see, the new approach is in fact just a new form 
of data analysis that turns out to be simple and efficient. Further, in order to measure different sign operators Ĝs′ , 
that is, to move from s to s′ , it is enough to change the polarization analysis basis. Being useful from experimental 
point of view, unfortunately sign Stokes operators do not share all properties of quantum Stokes operators, what 
puts some limitations on their use in entanglement detection.

Stokes‑like vector cannot be formed out of sign Stokes operators.  Standard Stokes operators 
form a Stokes vector. We will discuss this property for pure states. However, it works also for mixed ones. We 
have �−̂→� �ψ = (��̂1�ψ , ��̂2�ψ , ��̂3�ψ) where |ψ� is an arbitrary state of the optical field. The Euclidean norm 
of this vector fulfills : ||�−→� �ψ || ≤ ��̂0�ψ . We can construct an analogue vector for normalized Stokes opera-

(2)Ĝ(s) = sign(n̂s − n̂s⊥) = sign(�̂s) = sign(Ûs(n̂H − n̂V )U
†
s ),

(3)Ĝ(s) =
∑

k>j

(

|ks , js⊥��ks , js⊥| − |js, ks⊥��js , ks⊥|
)

.
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tors and ||�Ŝ�ψ || ≤ �Ŝ0�ψ ≤ 113. These norms remain invariant under any unitary transformation between 
two triads of mutually maximally complementary polarization analysers. This transformation can be put as 
a3′ = U11a3 + U12a3⊥ and a3′⊥ = U21a3 + U22a3⊥ , where Uij are elements of a certain two-dimensional unitary 
matrix. Properly defined Stokes vector has its Euclidean norm invariant with respect to such mode transforma-
tions. As a transformation of this kind can also be expressed as a transformation of the state, one can introduce 
|ψ ′� , which is in the following relation with |ψ� . If |ψ� = f (a†3, a

†
3⊥)|�� , then f (a†3′ , a

†
3′⊥

)|�� = |ψ ′� , where f(x, y) 
is a polynomial of both variables. We put this relation as |ψ ′� = Û†

mode|ψ�, as it is obviously a specific unitary 
transformation of the state.

For such mode transformations we have ||�−̂→� �ψ || = ||�−̂→� �ψ ′ || and ||�−̂→S �ψ || = ||�−̂→S �ψ ′ || . The norm of Stokes 
vectors, standard and normalized, is constant under any unitary transformation of the triads polarization analy-
sis bases. These features of Stokes observables play a key role in the construction of entanglement indicators 
involving Stokes operators.

Such properties are not shared by sign operators. Let us construct �−̂→G �ψ = (�Ĝ1�ψ , �Ĝ2�ψ , �Ĝ3�ψ) . It can be 
shown that ||�−→G �ψ || �= ||�−→G �ψ ′ || . It is enough to find one counterexample. Consider the state |ψ� = |3H , 0V � 
i.e. the Fock state with 3 photons polarized horizontally. It can be easily checked that for this state ||�−→G �ψ || = 1 . 
Now let us apply a unitary transformation on optical modes of |ψ� such that the creation operators transform as 
follows: â†H → â†(α) = cosαâ†H + sin αâ†V and â†V → â†⊥(α) = − sin αâ†H + cosαâ†V . Let α = π/8 . One gets: 
||�−→G �ψ ′ || ≈ 1, 5 . Thus, the norm is not an invariant of the unitary transformations, and additionally it is not 
bounded by 1. This fact prohibits one to use methods of construction of entanglement indicators presented 
in13, which work via a simple replacement of Pauli operators in entanglement conditions for qubits, by Stokes 
operators, standard or normalized. Still, as we shall see, there is no obstacle to using this method in the case of 
construction of Bell inequalities.

Rotational covariance of polarization variables is not a necessary feature required to derive Bell inequalities 
(however, see26 for the consequences of demanding exactly that). This allows one to construct CHSH and CH 
inequalities for fields with sign Stokes observables.

CHSH inequality.  To derive Bell inequalities satisfied by any local realistic description, we start by defining 
local hidden values that predetermine the output of the measurement of sign Stokes operators (2). We denote the 
local hidden variables by � . The functions IX(s, �) and IX(s⊥, �) give the predetermined outcomes of the intensity 
measurements of polarizations s, s⊥ in the local beam for the observer X. We define the local hidden values for 
sign operators as GX(s, �) = sign(IX(s, �)− IX(s⊥, �)) . These local hidden values are ±1 and 0, thus one can use 
standard methods to derive CHSH inequality. The alternative settings will be denoted here by s, s′ for the first 
observer and r, r′ for the second observer. The resulting CHSH inequality reads:

For further reference, we put it as |CHSHG| ≤ 2.
However, this inequality cannot be violated by states with a significant vacuum component, e.g. the (polariza-

tion) four-mode squeezed vacuum state, which will be our working example, see next sections. This situation is 
analogous to the case of normalized Stokes operators, see14. Following ideas of14 we modify sign Stokes operators 
as follows:

where �̂�X is the projector on the subspace of the Fock space of states with no photons in the local beam. Such a 
projection allows for reduction of the impact of vacuum term, which often appears with the highest probability. 
Also local hidden values need to be modified:

•	 GX−(s, �) = sign(IX(s, �)− IX(s⊥, �)) if IX(s, �)+ IX(s⊥, �) �= 0
•	 GX−(s, �) = −1 if IX(s, �)+ IX(s⊥, �) = 0

As this modification does not change local hidden values GX−(s, �) ∈ {0,±1} we use the following CHSH 
inequality:

Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour.  We are going to analyze how 
the use of sign Stokes operators in CHSH inequality helps to reveal the non-classicality of quantum states. Our 
working example is 2× 2 mode squeezed vacuum state (BSV) which is the generalization of EPR singlet. It reads:

where Ŵ is the amplification gain and

(4)|�G1(s, �)G2(r, �)+ G1(s, �)G2(r′, �)+ G1(s′, �)G2(r, �)− G1(s′, �)G2(r′, �)�LHV | ≤ 2.

(5)ĜX(s) → ĜX−(s) = ĜX(s)− �̂�X ,

(6)
|CHSHG−| = |�G1−(s, �)G2−(r, �)+ G1−(s, �)G2−(r′, �)

+ G1−(s′, �)G2−(r, �)− G1−(s′, �)G2−(r′, �)�LHV | ≤ 2.

(7)|ψ−� =
1

cosh2(Ŵ)

∞
∑

n=0

tanhn(Ŵ)

n! (a†Hb
†
V − a†Vb

†
H )

n|�� = 1

cosh2(Ŵ)

∞
∑

n=0

√
n+ 1 tanhn(Ŵ)|ψn�,
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Subscripts H1(2) and V1(2) specify the polarization of each mode and to which of the two optical beams it corre-
sponds. We use the convention that a†s  denotes the creation operator for the photon heading observer A, and b†s  
is the creation operator related to the observer B. The amplification gain determines the intensity of the pumping 
field and thus Ŵ sets the expectation value of the intensity of the BSV state.

Assume that both observers choose to measure only linear polarizations. thus, the angles by which the meas-
urement polarization basis is rotated with respect to {H ,V} basis define the settings. With the notation used in 
“Stokes-like vector cannot be formed out of sign Stokes operators” section for unitary transformation between 
linear polarization modes we chose for the first observer αs = 0 , αs′ = π/4 , and for the second one αr = π/8 
and αr′ = −π/8 . It was shown that these settings are optimal in case of violation of CHSH inequality with nor-
malized Stokes operators for BSV14.

Figure 1 shows quantum predictions for CHSHG− (6) and the values of CHSH expression for normalized 
Stokes parameters for BSV taken from14 as a function of the amplification gain Ŵ . Sign Stokes operators give 
|�ψ−|CHSHG−|ψ−�| > 2 for a wider range of an amplification gain that is up to Ŵtr ≈ 2.16 . For normalized 
Stokes operators, this maximal value of amplification gain is significantly lower, i.e. Ŵtr ≈ 0.8866 . Thus, with sign 
Stokes operators it is possible to reveal the non-classicality of BSV for a much higher value of amplification gain.

In Fig. 1 we can see that for Ŵ ≈ 2.1 for sign Stokes operators |CHSHG−| drops down suspiciously suddenly. 
We presume that such behaviour might be a consequence of a cut-off. The expansion of |ψ−� was cut off in the 
numerical calculations at |ψn=150� . This still requires further investigation.

Because of the rotational invariance of |ψ−� , it is a “super-singlet”, the expectation values of the correlators 
entering the Bell inequalities depend, if we measure linear polarizations on both sides, only on relative angle of 
the orientation of the polarization analyzers at the two spatially separated observation stations.

Note that standard, normalized, and sign Stokes operators are composed of functions of photon number 
operators, which do not change the number of photons. Thus, the expression �ψ−|CHSHG−|ψ−� consists of two 
terms: vacuum term, that is CHSH inequality averaged over the vacuum component of BSV and non-vacuum 
term. The vacuum and non-vacuum terms in (6) for our settings are both negative. That is why we can consider 
the CHSH inequality in question as the sum of absolute values of these both terms. The vacuum term can be 
easily calculated:

The non-vacuum term �CHSHG−�nv = �ψ−|CHSHG−|ψ−� − ��|CHSHG−|�� results from the expectation values 
of |ψn� . Note that as Ŵ increases, the role of non-vacuum terms in �ψ−|CHSHG−|ψ−� increases too. For small Ŵ 
the contribution of vacuum term is dominant.

In Fig. 1 the value of the non-vacuum |�CHSHG−�nv| is presented. The calculation is performed for BSV 
state truncated to n = 150 , blue curve, n = 47 , green curve, and n = 15 , red curve. These numbers increase 
approximately as a geometrical sequence by 

√
10 what allows as to analyze the behaviour of �CHSHG−�nv within 

(8)|ψn� = 1√
n+ 1

n
∑

m=0

(−1)m|(n−m)H1
,mV1 ,mH2 , (n−m)V2

�.

(9)|��|CHSHG−|��| = 2

cosh4 Ŵ
.

Figure 1.   (a) The blue curve: the value of the CHSHG− expression based on sign operators, see (6), and the 
green dashed curve: CHSHS− based on normalized Stokes operators14 in a function of amplification gain Ŵ 
of the BSV state. The numerical results were obtained with a cut-off of the expansion of the BSV state at the 
term |ψn=150� . The maximal values of amplification gain ( Ŵtr ), such that for all Ŵ < Ŵtr CHSH inequalities 
are violated, are Ŵtr ≈ 0.88 for normalized Stokes operators14 and Ŵtr ≈ 2.16 for sign Stokes operators. Thus, 
with sign Stokes operators, the range of violation with respect to amplification gain is much larger than in the 
case of normalized Stokes operators. (b) The graphs show the non-vacuum term of CHSHG− as a function of 
amplification gain Ŵ for the BSV state, which was computed for cutoffs of 15, 47, 150 photons. This is done to 
illustrate that the descent of the curves for high Ŵ ’s is an artefact of the applied cutoff. The blue curve represents 
calculations with the cutoff at 150 photons,for the green dashed curve it is at 47 photons and for the red dot-
dashed curve at 15 photons. The cutoff seems to be responsible for the decrease of the value in (a) for high Ŵ’s.
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the whole order of magnitude. All curves asymptotically go to 2 (classical bound) up to some point for which 
they both start to decrease. Note that the curves for n = 15 and n = 47 start to decrease for smaller Ŵ than the 
curve for n = 150 . It is highly probable that the decrease is conditioned by not including components with a 
high enough number of photons and the non-vacuum term |�CHSHG−�nv| goes asymptotically to 2 from the left. 
The vacuum term goes asymptotically to 0 from the right, see (9). Thus, our hypothesis is that CHSH inequality 
with sign Stokes operators is violated for BSV for any Ŵ . In Supplementary Discussion A we present a reasoning, 
based on a numerical calculation, supporting this conjecture.

CHSH inequality with losses.  One of the crucial aspects of experimental realization of Bell experiments 
is detectors with high efficiency η . Here, we will analyze the critical value of efficiency ηc such that for η < ηc one 
cannot observe a violation of (6). We model inefficient detectors in the standard way: a perfect detector ( η = 1 ) 
with a beamspliter with transmissivity √η in front of it. We denote by k the number of photons that reach the 
beamsplitter. Of these, only κ ≤ k counts are registered due to losses on the beamspliter. The probability of reg-
istration of κ photons is given by the binomial distribution:

In Fig. 2 we can see the minimal value of efficiency ηc for which the violation of CHSH inequality can be observed 
for normalized and sign Stokes operators in function of Ŵ . Note that for small Ŵ (up to Ŵ ≈ 0.3 ) the curves for 
sign and normalized Stokes operators behave almost identically. However, as Ŵ increases, the value of ηc for sign 
Stokes operators grows slower than that for normalized ones. Such a change in rate of growth for a higher Ŵ 
should be expected because, for a high number of photons, loss of one photon matters less in the case of sign 
Stokes operators.

CHSH inequality with noise.  In a realistic scenario of a Bell experiment apart from photon losses one 
shall consider also noise. Our noise is modeled in the similar way as “white noise” for qubits. Let us introduce 
four squeezed vacuum states which are related with the Bell state basis for two qubits27:

and

Our noise model can be defined as follows:

Note that ρnoise is uncorrelated. Let q be the visibility. The noisy state reads:

(10)p(κ|k) =
(

k

κ

)

ηκ(1− η)k−κ .

(11)|�±� = 1

cosh2(Ŵ)

∞
∑

n=0

tanhn(Ŵ)

n! (a†Hb
†
H ± a†Vb

†
V )

n|��,

(12)|�±� = 1

cosh2(Ŵ)

∞
∑

n=0

tanhn(Ŵ)

n! (a†Hb
†
V ± a†Vb

†
H )

n|��.

(13)ρnoise =
1

4
(|φ+��φ+| + |φ−��φ−| + |ψ+��ψ+| + |ψ−��ψ−|).

(14)ρ′ = q|BSV��BSV | + (1− q)ρnoise ,

Figure 2.   (a) Critical efficiency ηc versus Ŵ for the CHSH inequalities for the BSV state. A blue curve represents 
ηc for sign approach and a green dashed curve for normalized Stokes operators. (b) Critical value of q versus Ŵ 
for the BSV state. A blue curve represents qc for sign approach and a green dashed curve for normalized stokes 
operators. Assuming that asymptotic behaviour of violation of CHSH inequality for sing parameters discussed 
in “Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour” section is correct the qc 
for the sign Stokes operators goes to 1 in the limit Ŵ → ∞.
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The value 1− q determines the probability of registering noise. Figure 2 shows the minimal value of visibility 
qc that ensures the violation of CHSH inequality for normalized and Stokes operators. We see that sign Stokes 
operators have a similar advantage over normalized Stokes operators as in the case of losses, i.e. for small Ŵ 
normalized and sign Stokes operators are similarly resistant to noise. As Ŵ increases sign Stokes operators result 
to be significantly more efficient, Moreover from the results shown on Fig. 2 and the reasoning presented in 
“Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour” section we can conclude 
that qc → 1 when Ŵ → ∞.

CH inequality.  Going along with the idea of sign operators and rate approach to CH inequality14 we can 
construct a new CH inequality for quantum optical fields. Let us move directly to the quantum scenario and 
start with the CH operator ( CHR ) for intensity rates. In14 the rates are defined by R̂+(s) = �̂n̂s/(n̂s + ns⊥)�̂ . 
Note that such an operator is simply the first term of normalized Stokes operator (1). Its eigenvalues are rational 
numbers in (1/2, 1] for photon number states |ns ,ms⊥� where n > m and in [0, 1/2) for states where n < m . If 
m = n the eigenvalue of the rates is 1/2. Combining the idea CH inequality for rates and the concept sign Stokes 
operators we construct operators for CH inequality based binning. We seek for operators of eigenvalues with the 
following properties: we have 1 when m > n and 0 if n ≤ m . Such a dichotomic observable is simply a projector 
onto subspace n > m:

The expectation value of P̂X(s) is equal to the probability that the observer X will see n > m . We shall denote by 
�P̂X(j)P̂Y (k)� the quantum joint probability of obtaining the same result n > m by observers X and Y for their 
respective polarization basis j and k. Had these probabilities in the experiment been classical, and if the assump-
tions of local realism hold Clauser–Horne inequality tailored for the quantum scenario is given by:

Figure 3 shows the expectation value of the CH expression (16) and its rate counterpart for the same settings as 
in the case of CHSH inequality. The ‘sign’ approach gives violation of upper bound of CH expression for all Ŵ 
while the rate approach gives a violation only for Ŵ < 0.8866 which is the same case as for CHSH. Note that this 
CH inequality is not equivalent to CHSH inequality (6) (see Supplementary Discussion A)

Violation of Bell inequalities with sign approach for Bright GHZ state
As another example, let us consider a Bright GHZ state which is a generalization of the two beam squeezed 
vacuum considered above, to three beam emissions.

Such a process for years was thought to be infeasible, but current experimental progress allows one to think 
of such a possibility. The usual parametric approximation of the theoretical description of generation process of 
such states, which describes the pumping field as classical, does not work because of the divergence of perturba-
tion series. Still, with an employment of a version of Padè approximation one can find an approximate parametric 
description, with convergent perturbation series, see21. The approximation gives a state of the following form:

(15)P̂(s) =
∑

n>m

|ns ,ms⊥��ns ,ms⊥|.

(16)
−1 ≤�CHP� =

〈

P̂1+(θ)P̂
2
+(φ)+ P̂1+(θ)P̂

2
+(φ

′)+ P̂1+(θ
′)P̂2+(φ)− P̂1+(θ

′)P̂2+(φ
′)− P̂1+(θ)− P̂1+(φ)

〉

≤ 0.

Figure 3.   Quantum predictions for expectation value of CH expression for the ‘sign’ approach (blue curve) 
and rate approach14 (green dashed curve) as a function of the amplification gain Ŵ for BSV state. The numerical 
results were obtained with a cut-off of the expansion of the BSV state at the term |ψn=50� . The upper bound of 
CH inequality for the ‘sign’ approach is violated in the whole range of Ŵ covered in the figure, while the violation 
of the inequality in the case of the normalized Stokes operators is quickly damped and after that CH expression 
goes asymptotically from bellow to the classical bound.
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The method of obtaining the coefficients Cm(Ŵ) can be found in21, and we base our numerical computations on 
the results established in this reference. The symbols â†p , b̂†p and ĉ†p stand for creation operators in two orthogonal 
polarization modes p = i, i⊥ , of a beam which goes to respectively observers A, B and C. For simplicity, we 
assumed the polarization modes to be H, V, that is, i = 3.

Mermin‑like inequality.  Let us consider Mermin-like inequality for quantum optical fields21:

where SXi (�) are local hidden values corresponding to normalized Stokes operators with polarization bases: 
{45◦,−45◦} , {R, L} , for i = 1, 2 respectively. The observers are now marked by X = 1, 2, 3 . The inequality (18) 
generalizes Mermin inequality for three qubits28 for three photon beams with two polarisation modes each from 
a parametric source, for details see:21. Of course, in general the settings 1, 2 could be different.

The derivation of this inequality requires only that local hidden values are bounded by ±1 . Because local 
hidden values for sign Stokes operators fulfil this requirement, we can replace SXi (�) by GX

i (�) and obtain a new 
inequality

However, this inequality is not violated by the BGHZ state. We have to again modify sign Stokes operators (as 
well as normalized Stokes operators):

One can easily write modified local hidden values for such operators as in “CHSH inequality” section and obtain 
inequality:

Figure  4 presents quantum values of |�BGHZ|M̂(3)G−|BGHZ�| and of analogous expression, 
|�BGHZ|M̂(3)S−|BGHZ�| , for a Mermin inequality for modified normalized Stokes operators, ŜX−i = ŜXi − �̂�X , 
which is of the form (18) with ŜX−i  replacing ŜXi  . All that is with respect to the amplification gain Ŵ . The range 
of Ŵ for which the inequality is violated by BGHZ state in the case of sign Stokes operators exceeds the range of 
applicability of the method used to approximate the probability amplitudes for BGHZ state. We also stress that 
this result is more robust than in the case of normalized Stokes operators. The graphs in Fig. 4 are discontinued 
at Ŵ = 0.9 because for higher values the approximation of ref.21 breaks down.

Mermin‑like inequality with losses.  We use the model of losses due to inefficient detectors as in “CHSH 
inequality with losses” section for the inequality (21). In Fig. 4 critical values of efficiency of detectors ηc , for sign 
and normalized Stokes operators, are compared. We can see that for small Ŵ inequalities exhibit similar resist-
ance to losses. However, with increasing Ŵ difference between the performance of sign and normalized Stokes 
observables increases in favour of the former ones.
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Figure 4.   (a) Quantum values of |M(3)G−| expression (blue curve) and |M(3)S−| (green dashed curve) as a 
function of the amplification gain Ŵ for BGHZ state. (b) Critical efficiency ηc versus Ŵ for Mermin inequalities 
for the BGHZ state. The blue curve represents ηc for the sign approach and a green dashed curve for normalized 
Stokes operators.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10101  | https://doi.org/10.1038/s41598-022-14232-8

www.nature.com/scientificreports/

Conclusions and some open questions
We have proposed, based on a version of the binning approach19,20, new Stokes-like polarization observables for 
quantum optical fields which have a clear operational meaning. In presented examples, the sign Stokes observa-
bles allow observation of Bell non-classicality of squeezed-vacuum-type states for pumping powers, for which 
normalized Stokes observables fail to do so. Sign Stokes operators are easier in experimental realization than 
normalized ones. Also, they are more resistant to imperfect detection and presence of a noise. One could be 
tempted to use sign Stokes observables to derive entanglement indicators not based on Bell inequalities. How-
ever, such Stokes observables do not possess properties which are commonly used in derivations of bounds for 
separable states. Simply a triad of them does not form a Stokes vector with proper covariance properties. Thus, 
this requires a different approach. Similar questions arise when one thinks of a steering condition involving sign 
Stokes observables.

Another question would be if there is a type of state for which normalized Stokes operators allow for violating 
of some Bell inequality and for which this is impossible using sign Stokes operators.

The presented results give a possible way to search for violations of local realism in situations with undefined 
particle numbers, which are so common in especially quantum optics. The associated Bell inequalities are cor-
rectly defined. That is, the sole assumption is local realism (and tacitly freedom of the choice of the random set-
tings for all observers involved). No additional “reasonable” assumptions are used. As, according to our numerical 
estimates, one can conjecture that the associated inequalities are violated for an arbitrary Ŵ , they may serve as 
tool to reveal Bell non-classicality of bright quantum optical states, see29. This indicates that such states may find 
an application in, e.g. quantum communication, provided one finds new suitable Bell inequalities which would 
lead to more robust violations of local realism.
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1 Supplementary Discussion A: Asymptotic violation of CHSH inequality
Here we present the numerical argumentation for our hypothesis that CHSH inequality (6) with sign Stokes operators is violated
for BSV for any Γ.

Let us start with the analysis of quantum predictions for expectation values of (6) for states |ψn⟩ i.e. |⟨CHSHG−⟩ψn |, for
n ̸= 0, and compare them with analogue expression for normalized Stokes operators.
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Figure 1. a) ⟨CHSHG−⟩ψn for sign Stokes operators (blue points) and analogue for normalized Stokes operators ⟨CHSHS−⟩ψn

(green points) operators for
∣∣ψn

−
〉

as a function of n. The points: n = 1 and n = 2 of both approaches coincide. For normalized
Stokes operators only singlet state contribute to the violation and all points converge to 1 which is the bound for separable
states. In the case of sign Stokes operators all points are concentrated around the classical bound for CHSH inequality. b)
⟨CHSHG−⟩(Γ)N versus N. Γ = 1 circles, Γ = 2 dots, Γ = 3 squares, Γ → ∞ stars. For any Γ values of ⟨CHSHG−⟩(Γ)N go to 2 with
growing N. The case of Γ → ∞ bounds ⟨CHSHG−⟩(Γ)N from bellow.

FIG.1 shows results for n = 1, ...,100 for sign Stokes operators and normalized Stokes operators. For normalized Stokes
operators only for n = 1 we get |⟨CHSHS−⟩ψn | ≥ 2. For sign operators, the values of |⟨CHSHG−⟩ψn | concentrate around 2 with
growing n. More detailed analysis (see FIG. 2) reveals two patterns: an oscillating one for odd n’s and a pattern converging to 2
from below for even n’s. The period of odd n’s is equal to T = 8 in the sense that points n = 2k+1 and n = 2k+1+T where
k ∈ N corresponds to e.g. two adjacent maximums in the pattern. The even pattern also has an internal structure repeatable with
T = 8.

The periodicity of the pattern values being above and below 2 provides us the natural grouping of |⟨CHSHG−⟩ψn |. Let us
examine a weighted average ⟨CHSHG−⟩(Γ)N of |⟨CHSHG−⟩ψn | for a given Γ over N-th period for Γ > 2:

⟨CHSHG−⟩(Γ)N =
∑

T+T (N−1)
n=1+T (N−1) |⟨CHSHG−⟩ψn ||

〈
ψn
−
∣∣ψ−

〉
|2

∑
T+T (N−1)
n=1+T (N−1) |

〈
ψn
−
∣∣ψ−

〉
|2

, (A1)

1
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Figure 2. a) ⟨CHSHG−⟩ψn versus n. Blue darker dots depict odd n and green dots stand for even n. We can observe two
patterns occurring. The first pattern for odd n’ oscillates around the bound with decreasing amplitude and period T = 8. The
second pattern for even n’ converges to 2 from below with growing n. This pattern also has an internal structure which is
repeatable with T = 8 (increase, decrease, increase, increase). Note that only

∣∣ψn
−
〉

with odd n violate CHSH inequality for
sign Stokes operators. However, not all

∣∣ψn
−
〉

for odd n exhibit non-classical correlations. Still, for every n in the odd pattern
for which there is no violation (6) we have 3 different odd n’ for which violation occurs. b) Quantum predictions of ⟨CHP⟩ for∣∣ψn

−
〉

versus n. Blue darker dots depict odd n and green dots stand for even n. In this case, there are also two patterns. The
oscillating odd pattern with the same properties and the convergent even pattern. However, in this case, the even pattern goes to
bound from above, and clearly have a higher impact on violation of (16) by the BSV state. This shows that CH inequality (16)
is not equivalent to CHSH inequality (6).

where |
〈
ψn
−
∣∣ψ−

〉
|2 = (n+1) tanh2n

Γ

cosh4
Γ

. Fig. 1 shows values of ⟨CHSHG−⟩(Γ)N −2 for Γ = 1,2,3 and Γ → ∞.

We observe that ⟨CHSHG−⟩(Γ)N is a decreasing function of Γ. All calculated values of ⟨CHSHG−⟩(Γ)N exceed 2 and violate
the inequality (6). Also ⟨CHSHG−⟩(Γ)N for any given Γ converges to 2 with growing N. Moreover the curve corresponding to
Γ → ∞ is the most relevant for our analysis because it bounds the ⟨CHSHG−⟩(Γ)N from bellow.

We recall that the quantum prediction for the expectation value of the CHSH inequality (6) consists of two terms: the
vacuum term and the non-vacuum term:

| ⟨ψ−|CHSHG− |ψ−⟩ |= | ⟨Ω|CHSHG− |Ω⟩ |+ |⟨CHSHG−⟩nv|=
2

cosh4
Γ
+ |⟨CHSHG−⟩nv|. (A2)

The non-vacuum term ⟨CHSHG−⟩nv can be written as the weighted average of ⟨CHSHG−⟩(Γ)N :

|⟨CHSHG−⟩nv|=
∞

∑
N=1

⟨CHSHG−⟩(Γ)N

T+T (N−1)

∑
n=1+T (N−1)

|
〈
ψ

n
−
∣∣ψ−

〉
|2. (A3)

Assuming that there is no change in the pattern of ⟨CHSH⟩ψn as n increases (see the discussion below) we can bound from
below the value of |⟨CHSHG−⟩nv| by replacing ⟨CHSHG−⟩(Γ)N with 2:

|⟨CHSHG−⟩nv| ≥
∞

∑
n=1

2(n+1)
tanh2n

Γ

cosh4
Γ

= 2(tanh2
Γ+ sech2

Γ tanh2
Γ). (A4)

Equality due to our assumptions should be only reached in the limit of Γ → ∞. This is because in the regime of high values of Γ

only terms with high n are significant and ⟨CHSHG−⟩(Γ)N from the assumption reach 2 only when N → ∞. Expression (A4) as
expected has an asymptotic value 2. If we add the vacuum term to the RHS of (A4) we obtain constant function equal to 2.
Thus, the above reasoning supports the conjecture that for any Γ:

| ⟨ψ−|CHSHG− |ψ−⟩ | ≥ 2. (A5)
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Finally, let us argue why for higher n’s the same pattern is expected. Note that
∣∣ψn

−
〉

can be written in the following form:

∣∣ψn
−
〉
=

1
n!
√

n+1
(â†

H b̂†
V − â†

V b̂†
H)

n |Ω⟩ . (A6)

Given some point in the pattern ⟨CHSHG−⟩ψn to obtain the next corresponding point in the pattern we only have to apply
operator (â†

H b̂†
V − â†

V b̂†
H)

T to the state
∣∣ψn

−
〉

and normalize it by the factor n!
√

n+1
(n+T )!

√
n+T+1

. To obtain the next k-th corresponding
point we have to apply this operator k times. Thus, applying such operator has to preserve some internal symmetries. There is
no reason for existence of k such that it suddenly stops to preserve those symmetries. Therefore, the pattern should be continued
for any period N.
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Abstract
The paradoxical features of quantum theory are usually formulated for fixed number of particles.
While one can now find a formulation of Bell’s theorem for quantum fields, a
Kochen–Specker-type reasoning is usually formulated for just one particle, or like in the case of
Peres–Mermin square for two. Is it possible to formulate a contextuality proof for situation in
which the numbers of particles are fundamentally undefined? We introduce a representation of the
su(2) algebra in terms of boson number states in two modes that allows us to assess nonclassicality
of states of bosonic fields. This representation allows to show contextuality, and is efficient to
reveal violation of local realism, and to formulate entanglement indicators. A form of an
non-contextuality inequality is derived, giving a bosonic Peres–Mermin square. The entanglement
indicators are built with Pauli-like field observables. The non-clasicality indicators are effective.
This is shown for the 2 × 2 bright squeezed vacuum state, and a recently discussed bright-GHZ
state resulting from multiple three photon emissions in a parametric process.

1. Introduction

Quantum phenomena without any classical analogue are the fuel of many protocols of interest in quantum
technologies, constituting the main resources for their different applications. To name a few, contextuality
has been addressed as the key ingredient providing the speed-up in quantum computation over the classical
one [1], the violation of a Bell inequality enables one to implement secure cryptographic schemes [2] and
entangled probes allow one to achieve better precision in metrological tasks [3].

In parallel, research on the quantum properties of bosonic fields, notably first of all quantum light, has
constituted one of the pillars in the development of quantum technologies, and it is still of paramount
importance. Nonclassicality of a state of a quantum field can be revealed in many ways, ranging from
looking at the negativity or singularity of a certain quasi-distribution function [4], to criteria to establish
the nonseparability of a multimode field [5]. Following the approaches borrowed from finite-dimensional
systems, another strategy to show whether a field admits a classical description or not is to introduce a set of
inequalities that are fulfilled by measurement probabilities which are possible to model by a classical
local-realistic theory, but are violated when taking into account the quantum mechanical predictions.

If the local hidden variable theory imposes some constraints on the structure of the joint probabilities or
on the statistical correlations of measurements on multipartite systems, then these constraints can usually
be put in a form of linear Bell inequalities. While if we consider hidden variable theories in which
predetermined measurement values of any (degenerate) observable do not depend on the context in which
the observable is measured, then the constraints are of Kochen–Specker type. A context is defined by a
non-degenerate observable, which commutes with the observable in question, see e.g. [6].

Here, we focus on the quantification of different forms of nonclassicality for optical fields introducing a
suitable set of operators defined in terms of the number states of two modes of the field. Their
mathematical expressions are handy and allow us to map some results derived for qubit-systems to optical

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac919e
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8094-7373
https://orcid.org/0000-0003-3745-5204
https://orcid.org/0000-0001-7882-7962
mailto:antonio.mandarino@ug.edu.pl


New J. Phys. 24 (2022) 103003 K Schlichtholz et al

states. We remark here that, despite our efforts, we still do not have a clear picture of how such
measurements can be implemented in an experimental scenario. This poses an interesting experimental
challenge.

2. Pauli-like operators for bosonic fields

Let us introduce a set of Hermitian operators for optical fields which generalize the Pauli matrices in a Fock
space describing two distinguishable modes of a bosonic field:

Ĝ0 = 𝟙−
∑

n

|n, n〉〈n, n|,

Ĝ1 =
∑
n �=m

|n, m〉〈m, n|,

Ĝ2 = −i sign(â†â − b̂†b̂)
∑
n �=m

|n, m〉〈m, n|,

Ĝ3 = sign(â†â − b̂†b̂),

(1)

where â†, b̂† are creation operators of two orthogonal bosonic modes, 𝟙 is the two mode identity and
|n, m〉 = 1√

n!m!
a†nb†m|Ω〉, with |Ω〉 being the vacuum. Function sign(x) gives ±1 for x ∈ R

± and 0 for

x = 0. The operator Ĝ3 coincides with one of sign Stokes operators introduced in [7]. The operators Ĝi can
also be written in more compact form:

Ĝi =
(

Ŝ†R P̂†
R

)
σi

(
ŜR

P̂R

)
=

−→
V †σi

−→
V , (2)

where σi is the ith Pauli matrix,
−→
V † =

(
Ŝ†R P̂†

R

)
and

P̂R =
∑
m>n

|n, m〉〈n, m|, (3)

ŜR =
∑
m>n

|n, m〉〈m, n|. (4)

These operators fulfill the same commutation relation as Pauli matrices:

[Ĝi, Ĝj] = 2iεijkĜk, (5)

where i, j, k = 1, 2, 3. They also fulfill the anticommutation relation:

{Ĝi, Ĝj} = 2δijĜ0, (6)

and from that follows (for details, see appendix A):

ĜiĜj = δijĜ0 + iεijkĜk. (7)

The Ĝ0 operator plays an analogous role of the identity, i.e. σ̂0 = 𝟙, and obviously it commutes with all the
other Gi operators. Since these operators satisfy the commutation relation in (5), they are a representation
of the two-boson su(2) algebra. Such a representation has advantages over the standard two mode
representation of su(2) [8] given by:

Ŝi =
1

2
A†σiA, (8)

where A† = (â†, b̂†). The new set of operators defined in the equations in (1) fulfills the anticommutation
relation (6), in contrast to the Stokes operators in equation (8). The anticommutation property turns to be
crucial in a generalization of the Peres–Mermin square for bosonic fields, because it will let us recover the
algebra of the tensor product of Pauli operators acting on two qubits. Moreover, the Ĝi operators are
bounded (see appendix B) contrary to those previously introduced in (8). We remark that the new
operators under unitary transformation of the modes do not form an equivalent su(2) representation. In fact,
given two sets of new operators, Gi and G′

i, for different modes basis namely â, b̂ and â′, b̂′, they are not
linked through unitary transformation of the modes (see appendix C) as it is for the Stokes operator
defined in (8).

2
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3. Contextuality for quantum optical fields

The Kochen–Specker theorem [9] asserts that quantum mechanics is not compatible with any local hidden
variable noncontextual theory. Here, noncontextuality means that the value for an observable predicted by
such a theory is independent of the experimental context, namely the set of other co-measurable
observables are simultaneously measured. In classical physics, the measurement outcomes of several
observables do not depend on the order in which such quantities are measured. At the same time, quantum
mechanics forbids existence of joint probability distributions for non-compatible observables.
Noncontextual description of quantum measurements has been experimentally falsified for systems with a
definite number of particles [10, 11]. However, few attempts have been proposed till now to quantify and
measure it for systems allowing states with an undefined number of particles, such as quantum optical fields
[12, 13]. Finding such examples is not an academic question, as one can imagine that in future there might
be quantum informational processes based on such systems and such states.

3.1. Peres–Mermin square for optical observables
We introduce a version of the Peres–Mermin square [14, 15] for the 2 × 2 mode states of quantum optical
fields, given that the operators Ĝi fulfill (7) as Pauli matrices do. Following the convention already
introduced in [12], we denote by Âpq observables such that if two of those observables share a common
index, they commute, i.e., the order in which they are measured does not have an impact on the outcome.
We chose nine of such observables by mapping the Peres–Mermin square in the following way
σ̂1

i ⊗ σ̂2
j → Ĝ1

i Ĝ2
j , where superscripts denote the measuring parties. The Peres–Mermin square for the set of

observables of the quantum optical fields reads:

Âij j = 1 j = 2 j = 3

i = 1 Ĝ1
3Ĝ2

0 Ĝ1
0Ĝ2

3 Ĝ1
3Ĝ2

3

i = 2 Ĝ1
0Ĝ2

1 Ĝ1
1Ĝ2

0 Ĝ1
1Ĝ2

1

i = 3 Ĝ1
3Ĝ2

1 Ĝ1
1Ĝ2

3 Ĝ1
2Ĝ2

2

Following the method proposed in [16] to test whether quantum mechanics violates the bound imposed
by a noncontextual hidden variable (NCHV) theory, we consider the following operator:

Ô = Â11Â12Â13 + Â21Â22Â23 + Â31Â32Â33 + Â11Â21Â31 + Â12Â22Â32 − Â13Â23Â33, (9)

where, in each term, one index is shared among the three operators Âpq. We make here an observation: the
observables we have introduced are not dichotomic, whereas they have spectrum {−1, 0, 1}. This is in
contrast to the observable used in the original construction of the Peres–Mermin square, namely the
spin− 1

2 observables. However, the maximal average value of the expression (9) in a NCHV model
computed via the method given in [16] yields the same value 4, both for dichotomic observables and for
our generalized Pauli-observable for two radiation modes. Thus, we obtain the inequality:

〈A11A12A13 + A21A22A23 + A31A32A33 + A11A21A31 + A12A22A32 − A13A23A33〉NCHV � 4. (10)

For the quantum case we observe that the first five terms of (9) have the same form Ĝ1
0Ĝ2

0 and the last term
is equal to −Ĝ1

0Ĝ2
0. Thus, as expected 𝟙→ Ĝ0. The operator Ĝ1

0Ĝ2
0 is a projection into the subspace of states

having a different number of photons in both modes per each part. The subspace of such states is spanned
by vectors |k, l;m, n〉 which are a†k

1 b†l
1 a†m

2 b†n
2 |Ω〉 after normalization. The lower indices of creation operators

denote measurement parties, |Ω〉 is the vacuum state and k �= l, n �= m. Meanwhile, states having the same
number of particles in both modes in one of the parties i.e. k = l ∨ n = m are in its orthogonal
complement, to which we will refer as the diagonal subspace. As a consequence, the expectation value of
such an operator for a generic state |ψ〉 is

〈Ĝ1
0Ĝ2

0〉ψ = 1 − P(d|ψ), (11)

where P(d|ψ) is the probability that we get as outcome an eigenvalue corresponding to a state belonging to
the diagonal subspace when measuring Ĝ1

0Ĝ2
0 on the state |ψ〉. We can write the expectation value of the

operator defined in equation (9) as a function of the probability appearing in equation (11):

〈Ô〉ψ = 6 − 6P(d|ψ). (12)

3
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Thus, we can detect contextuality if:

P(d|ψ) <
1

3
, (13)

as we have a violation of the inequality (10). A pitfall of this approach is that we lose state independence
when considering the inequality violation. Again, the reason relies on the spectrum of our observables and,
in particular, on the existence of the zero eigenvalue. However, we can still test the contextuality of a large
class of states useful for the implementation of quantum optical technologies.

We stress that such construction to generalize the Peres–Mermin square using standard Stokes operators
(2Ŝi) and their normalized modification [17] fails to give satisfactory results due to the fact that both
version of Stokes operators do not fulfill the anticommutaion relations of Pauli matrices.

3.2. Bright squeezed vacuum case
To substantiate our approach, we check when we observe a violation of the inequality in (10) considering as
paradigmatic example the 2 × 2 bright squeezed vacuum (BSV). This state consists of two orthogonal
modes per part and it can be written in the form:

|ψ−〉 =
1

cosh2(Γ)

∞∑
n=0

tanhn(Γ)

n!
(a†1b†2 − a†2b†1)n|Ω〉

=
1

cosh2(Γ)

∞∑
n=0

√
n + 1 tanhn(Γ)|ψn〉,

(14)

where a†X , b†X(aX , bX) are the creation (annihilation) operators of the two orthogonal modes assigned to one
of the two beams transmitted to the measurement part X = 1, 2. Furthermore, the parameter Γ denotes the
amplification gain and it is related to the power of the coherent source impinging on the nonlinear crystal
in the parametric down conversion process and

|ψn
−〉 =

1√
n + 1

n∑
m=0

(−1)m|(n − m)a1 , mb1 ;ma2 , (n − m)b2〉. (15)

We note that when n is even, in the superposition in (15) there is always one term that belongs to the
diagonal subspace, namely the one having (n − m)ax = mbx , where x = 1, 2. In contrast, for n odd, there are
never terms from the diagonal subspace. Thus, by means of (14) the conditional probability of observing a
result that can be associated with a state belonging to the diagonal subspace whenever a BSV state is
prepared reads:

P(d|BSV) =
1

cosh4(Γ)

∞∑
n=0

tanh4n(Γ) = sech(2Γ). (16)

From that follows that for Γ > 0.89 the BSV state does not allow a NCHV description, because in this range
inequality (13) is fulfilled. In the limit of high pump power, namely for Γ→∞, we have P(d|BSV) = 0.
Thus, in the limit of mean photon number tending to infinity we obtain the same violation as in the case of
qubits, which we shall address in the next section.

3.3. Qubit case
The original formulation of the Peres–Mermin square was in terms of qubit observables, so we can check if
it is possible to retrieve the original Peres–Mermin square for qubits within the formalism we developed in
section 2. Restricting to states with a single photon excitation per mode, we have a four dimensional
subspace of a bipartite system (where the reduced state for each party has dimension two) and we recover
the two qubits measurement scenario. As this subspace does not contain any diagonal states, we have the
following:

〈Ô〉qubit = 6. (17)

We recall that it is the same quantum expectation value as if one would construct analog of (9) using
original Peres–Mermin square based on Pauli matrices [16]. Moreover, when the operators ĜX

i act on states
having one excitation per each beam X (note that each beam consists of two bosonic modes), they behave
exactly as the standard Pauli matrices. Therefore, the original result is retrieved with its state independence
and the original Peres–Mermin paradox can be obtained in our approach. Note that state independence is
also retrieved for subspaces of states restricted to odd number of bosons per beam as it does not contain any
diagonal state.

4
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4. Entanglement

We address now if operators Ĝi can detect entanglement and whether they constitute advantage for this aim.
To address the problem, we start proving that for any entanglement indicator written in the n-qubits of the
form:

Ŵ =

3∑
s1,...,sn=0

ws1,...,sn

n⊗
i=1

σ̂i
si

, (18)

exists a correspondence that maps the n-qubits entanglement indicator into a 2n-bosonic modes
entanglement indicator, that reads:

Ŵ → ŴG =

3∑
s1,...,sn=0

ws1,...,sn

n∏
i=1

Ĝi
si
. (19)

such that for any separable state ρsep the following relation holds

Tr
{

ŴGρsep

}
= 〈ŴG〉sep � 0. (20)

The proof proceeds in an analogous way to the one given in [18] for Stokes operators. To show how the
mapping works we start with the case of n = 2. In order to prove (20) we have to show that for any mixed
state ρ it is possible to find a density matrix M̂ρ describing a two-qubit state, which fulfill the following
relation:

〈WG〉ρ
〈Ĝ1

0Ĝ2
0〉ρ

= Tr
[
ŴM̂ρ

]
. (21)

We compute the expectation value of Ĝ1
ηĜ2

ν on a pure state |φ〉 using for the operators the expressions in
equation (2), obtaining as a result:

〈Ĝ1
ηĜ2

ν〉|φ〉 =
2∑

k,l=1

2∑
n,m=1

σkl
η σ

mn
ν 〈Φkm|Φln〉

= Tr
[
σ̂1
η ⊗ σ̂2

νM̂φ

]
,

(22)

where |Φln〉 = V̂1
l V̂2

n|φ〉 and V̂ i
l is the lth element of the vector

−→
V that acts on the modes of the ith party as

in (2). The matrix M̂φ has elements of the form 〈Φkm|Φln〉. This matrix is Gramian, therefore it is positive.
Moreover, the following inequality:

0 < Tr
[
M̂φ

]
= 〈Ĝ1

0Ĝ2
0〉φ � 1, (23)

holds with the exception for cases where |φ〉 is in the subspace of diagonal states. However, those cases are
not interesting as the expectation value of ŴG is 0 and thus it cannot change the bound for separable states
(20). We can now define the density matrix for a two-qubits system which fulfills (21) for a pure state
ρ = |φ〉〈φ|:

M̂|φ〉 =
M̂φ

〈Ĝ1
0Ĝ2

0〉φ
. (24)

For a mixed state ρ, which is a convex combination of states |φi〉〈φi|, we get the following density matrix:

M̂ρ =

∑
ipiM̂φi∑

ipi Tr
[
M̂φi

] . (25)

Consider a pure separable state of two-beam bosonic field
∣∣ψ12

〉
sep

= F†
1F†

2|Ω〉 where F†
X is polynomial in

the creation operators of the beam X. For such states, the following factorization occurs:

sep〈Φkm|Φln〉sep = 〈Ψ1
k|Ψ1

l 〉〈Ψ2
m|Ψ2

n〉, (26)

where
∣∣ΨX

l

〉
= V̂X

l F†
X|Ω〉. Thus, the matrix M̂ψ12 factorizes into M̂1

ψM̂2
ψ, where matrix elements of M̂X

ψ are

given by
〈
ΨX

k

∣∣ΨX
l

〉
. The matrix M̂X

ψ after normalization is a well defined density matrix of qubit based on

analogous arguments to those presented for M̂ρ. Due to the factorization of the density matrix M̂ψ , it
describes a pure separable state in the two-qubit space, thus:

〈Ŵ〉M̂ψ
� 0. (27)

5
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As a mixed state is separable iff it is a convex combination of pure separable states, the matrix associated
with such separable mixed state ρ′ of the form (25) is a convex combination of two-qubit separable density
matrices M̂ψi . Using (27), we get that for any separable mixed state ρ′ following inequality holds:

〈Ŵ〉M̂ρ′
=

∑
ipi Tr

[
M̂ψi

]
〈Ŵ〉M̂ψi∑

ipi Tr
[
M̂ψi

] � 0. (28)

Thus, from the formula (21) we get:
〈ŴG〉sep = 〈ŴG〉ρ′ � 0, (29)

which is the condition for ŴG to be an entanglement indicator.
We check if such a mapping is true for any n-qubit case. Let us start extending it to the three qubits

scenario. In such a case, any pure partially separable state of the three-beam bosonic field
∣∣ψ123

〉
can be

written in factorized form, for example
∣∣ψ123

〉
sep

= F†
1F†

23|Ω〉 where F†
XY is a polynomial of creation

operators associated with beams X and Y. Now we can analogously find the density matrix for three-qubit
state M̂ψ123 = M̂1

ψM̂23
ψ which partially factorizes. Because the expectation value for any three-qubit

entanglement indicator is non-negative for partially factorizable three-qubit density matrices, inequality
(20) holds also for the three-beam case. Further extensions can be made following the previous arguments.

4.1. Entanglement of the bright GHZ state
Now we can adopt entanglement indicators for n-qubit states to examine the entanglement of states of
bosonic fields. Let us recall the bright GHZ state (BGHZ), whose construction and entanglement has been
presented in [19] for some range of amplification gain. This state is a generalization of two beam squeezed
vacuum into the case of three beams. Current advancements in quantum optical experiments allow one to
think about such generalizations to be feasible experimentally in the near future [20]. The usual methods
used in the theoretical description of the generation of squeezed states, such as the parametric
approximation turns out to be not well suited for this generalization. This is because the perturbation series
in such approximation diverges. Still, using the Padé approximation one can find approximate convergent
parametric description. The resulting state has the following form:

|BGHZ〉 =
∞∑

k=0

k∑
m=0

Ck−m(Γ)Cm(Γ) × (â†1â†2â†3)k−m(b̂†1b̂†2b̂†3)m|Ω〉, (30)

where â†X , b̂†X are creation operators in two orthogonal modes signed to an observer X and Cm(Γ) are
complex coefficients which can be obtained with the method from [19] for Γ < 0.9. In appendix D, we
report how to construct the BGHZ state via the Padé approximation, and the full expressions of the
coefficients Cm(Γ). We can use our mapping σ1

i ⊗ σ2
j ⊗ σ3

k → Ĝ1
i Ĝ2

j Ĝ3
k to obtain a new entanglement

indicator from the entanglement indicator tailored for GHZ state presented in [21]:

W =
3

2
Ĝ1

0Ĝ2
0Ĝ3

0 − Ĝ1
1Ĝ2

1Ĝ3
1 − 1

2
(Ĝ1

0Ĝ2
3Ĝ3

3 + Ĝ1
3Ĝ2

0Ĝ3
3 + Ĝ1

3Ĝ2
3Ĝ3

0). (31)

We use now this indicator to check the entanglement of the BGHZ state. It easy to see from
equation (30) that it can be written as a superposition of states:

|ψnm〉 =
1√
2

(
|na1 , mb1 ; na2 , mb2 ; na3 , mb3〉+ |ma1 , nb1 ;ma2 , nb2 ;ma3 , nb3〉

)
, (32)

and diagonal states (with the same number of bosons in all modes) because states of superposition (32)
have the same amplitudes in (30) independently from the exact form of coefficients Cq(Γ). Note that the
states |ψnm〉 are eigenstates of the operator Ĝ1

1Ĝ2
1Ĝ3

1 with eigenvalue 1. This is because the first element of
the superposition (32) is turned into the second and vice versa under the action of Ĝ1

1Ĝ2
1Ĝ3

1. The action of
such an operator on a diagonal state yields 0 and thus:

〈Ĝ1
1Ĝ2

1Ĝ3
1〉BGHZ = 〈Ĝ1

0Ĝ2
0Ĝ3

0〉BGHZ. (33)

An analogous equality is true for the last three terms of (31) because those operators acting on |ψnm〉
give (−1)2 and for diagonal states we get 0. The term 〈Ĝ1

0Ĝ2
0Ĝ3

0〉BGHZ is simply the probability of observing
result corresponding to non-diagonal states. As reported in appendix D the construction of BGHZ is valid
only for the range of values of the amplification factor such as 0 < Γ < 0.9. As a consequence:

〈W〉BGHZ = −〈Ĝ1
0Ĝ2

0Ĝ3
0〉BGHZ < 0. (34)

6
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Figure 1. Expectation values of the entanglement indicator W for the BGHZ state versus Γ as in equation (31). From the curve
one can observe that with increasing Γ the probability of measuring eigenvalues associated with non-diagonal states increases.
The range of Γ is dictated by the fact that the method of calculating the probabilities of the BGHZ state has finite range of
applicability [19].

The inequality in the preceeding equation is numerically confirmed and we report the result in figure 1.
From that follows that for any Γ the state |BGHZ〉 is entangled. Figure 1 presents −〈W〉BGHZ versus Γ, for
values of the amplification factor such that the |BGHZ〉 is well defined. We note that for terms of the BGHZ
state with a fixed number of bosons per party k, the ratio between the number of diagonal states present in
the superposition and the number of non-diagonal states drops to 0 also for even k. Moreover, because
〈Ĝ1

0Ĝ2
0Ĝ3

0〉BGHZ increases when Γ increases, based on figure 1, the probability of observing eigenvalues
corresponding to diagonal states decreases. This is valid at least in the range where we performed
calculations. Thus, the probability distribution has no tendency to concentrate at the diagonal states with
growing Γ as having corresponding eigenvalue 0 would indicate otherwise non-increasing pattern on the
curve. However, as terms with greater photon numbers are generated by the same Hamiltonian such
behaviour should be rather preserved also for Γ > 0.9. Thus, the probability of obtaining a result
corresponding to a diagonal state, namely P(d|BGHZ) = 1 − 〈Ĝ1

0Ĝ2
0Ĝ3

0〉BGHZ, seems to decrease with
growing Γ for any of its values and converge to 0, as the number of terms whose amplitudes have a relevant
magnitude for the outcomes grows, while the diagonal terms become a minority among them and this
effect is not countered by the concentration of probability distribution at the diagonal states. Thus, for
Γ→∞ the expectation value of W should converge to the value of the three-qubit case, namely −1.

4.2. Necessary and sufficient condition to detect entanglement for a state of 2 × 2 modes using
operators
A family of conditions for Pauli observables for two qubits which together form a necessary and sufficient
condition for entanglement has been proposed in [22]. It was adapted to the case of Stokes operators in
[18] using a mapping that has inspired our work. Using the analogous mapping between qubit conditions
and the studied case, shown in (19), we can write a necessary and sufficient condition for detecting
entanglement with the operators Ĝi for the two party scenario. It is

〈Ĝ1
1Ĝ2

1 + Ĝ1
2Ĝ2

2〉2 + 〈Ĝ1
3Ĝ2

0 + Ĝ1
0Ĝ2

3〉2 � 〈Ĝ1
0Ĝ2

0 + Ĝ1
3Ĝ2

3〉2, (35)

and the family of conditions which can be obtained from (35) by cyclically permuting the indices 1, 2, 3 of
one party or both.

We shall employ this criterion to study the entanglement of the BSV state as defined in equation (14). It
is easy to notice that Ĝ1

0Ĝ2
3|BSV〉 = −Ĝ1

3Ĝ2
0|BSV〉 and Ĝ1

0Ĝ2
0|BSV〉 = −Ĝ1

3Ĝ2
3|BSV〉. Thus, we have to

consider the first term of the lhs of the inequality (35). One can also observe that Ĝ1
1Ĝ2

1|BSV〉 = Ĝ1
2Ĝ2

2|BSV〉,
because the sign part in Ĝ1

2Ĝ2
2 cancels the signs coming from i2 when acting on the BSV state. It turns out

that:

Ĝ1
2Ĝ2

2

∣∣ψ2n+1
〉
= −

∣∣ψ2n+1
〉

, (36)

Ĝ1
2Ĝ2

2|ψ2n〉 = Ĝ1
0Ĝ2

0|ψ2n〉. (37)

7
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We calculate the first term in lhs of (35):

〈Ĝ1
1Ĝ2

1 + Ĝ1
2Ĝ2

2〉2 = 4

[ ∞∑
n=0

(
tanh4nΓ

cosh4Γ
− tanh4n+2Γ

cosh4Γ

)
− sech 2Γ

]2

= 16 sech4(2Γ)sinh4Γ.

(38)

This expression is always greater than zero for Γ �= 0, therefore the operators Ĝi are able to detect
entanglement for any Γ > 0 in agreement to what has been showed using Stokes operators [18].

5. Bell inequalities for the BGHZ state

In this section, we would like to show that operators Ĝi can allow for detecting Bell nonclassicality. Let us
introduce the modification of operators Ĝi:

Ĝi− = Ĝi −
∞∑

n=0

|n, n〉〈n, n|. (39)

This modification effectively assigns the value −1 to the cases when an equal number of bosons is measured
in both modes. The introduced modification of the operators makes them dichotomic observables as the
Pauli matrices with the same spectrum of ±1. Therefore, we can write the Mermin inequality [23] using the
operators Ĝ j

i−:

|〈G1
1−(λ)G2

1−(λ)G3
1−(λ) − G1

1−(λ)G2
2−(λ)G3

2−(λ) − G1
2−(λ)G2

1−(λ)G3
2−(λ)

− G1
2−(λ)G2

2−(λ)G3
1−(λ)〉LHV| � 2,

(40)

where λ is a local hidden variable and G j
i−(λ) are the local hidden values associated with the outcomes of

measurement of operators Ĝ j
i−.

Now, we check whether it is possible to violate the inequality in (40) with the BGHZ state. As this state
always has the same configuration of the number of bosons per any party, the operators G1

i−G2
j−G3

k−
effectively reduce to:

Ĝ1
i−Ĝ2

j−Ĝ3
k−|BGHZ3〉 =

(
Ĝ1

i Ĝ2
j Ĝ3

k −
∞∑

n=0

|n〉〈n|
)
|BGHZ3〉, (41)

where |n〉 is the state having the same number of particles, n, in all the modes. Using (33) one can find that:

〈Ĝ1
1−Ĝ2

1−Ĝ3
1−〉BGHZ = 1 − 2P(d|BGHZ), (42)

where P(d|BGHZ) = 1 − 〈Ĝ1
0Ĝ2

0Ĝ3
0〉BGHZ. We have used here the fact that only diagonal states contained in

BGHZ are states with the same number of photons in all modes. One can also see that:

〈Ĝ1
1Ĝ2

2Ĝ3
2〉BGHZ = i2〈Ĝ1

1Ĝ2
1Ĝ3

1〉BGHZ

= −〈Ĝ1
0Ĝ2

0Ĝ3
0〉BGHZ,

(43)

and from that follows:

〈Ĝ1
1−Ĝ2

2−Ĝ3
2−〉BGHZ = −〈Ĝ1

0Ĝ2
0Ĝ3

0〉BGHZ − P(d|BGHZ) = −1. (44)

Analogous results hold for last two terms of (40), hence for the BGHZ state we get:

4 − 2P(d|BGHZ) � 2. (45)

This inequality is violated for any Γ > 0 because 2P(d|BGHZ) < 2 and as it was discussed in section 4.1,
and for Γ→∞ we retrieve the three-qubit case. This situation is opposite to the case where for
constructing Mermin inequality normalized Stokes operators were used [19]. This is in the sense that for
normalized Stokes operators the range of violation is finite (Γ < 0.77) and the strongest violation is
obtained for low values of Γ.

8
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The introduced modification allowed for violation in the whole range of Γ. Without this modification,
one would get:

4 − 4P(d|BGHZ) � 2, (46)

which is not violated for small Γ. However, in the limit of high values of Γ, the behaviour of this inequality
does not deviate significantly from (45).

6. Conclusions

The quantification of nonclassical properties of bosonic fields has always played a pivotal role for the
development of quantum technologies. Nowadays, the experimental techniques for counting the number of
particles present in a bosonic mode open new avenues to detect and quantify several nonclassical resources
[24–27]. However, special care must be taken when generalizing some concepts formulated for fixed
number of particles, to situations inherently involving undefined particle numbers, see e.g. discussion in
[28–32]. Here, we introduce a set of new Stokes-like observables for two modes of a bosonic field, which
turns out to be a representation of su(2) algebra. Using these operators we construct a generalization of the
Peres–Mermin square for a four-modes bosonic field, which allows to observe contextuality for states with
an undefined number of particles. This shows that contextuality is not only a phenomenon observable for
low dimensional quantum systems, and supersedes the approaches relying on the phase-space formalism
[12, 13]. Particle-counting detection allows to extend the results to massive bosonic fields beyond the
optical ones. Our generalization is not state independent, and the restriction to a single-boson excitation
per party retrieves the original formulation of the Peres–Mermin square.

We also present a mapping of n-qubit entanglement indicators to entanglement indicators for bosonic
fields, which uses the Pauli-like observables, which enter our Peres–Mermin square. This allows us e.g. to
show that a BGHZ state, a parametric process involving multiple emission to triple of polarization
correlated photons, is entangled for any brightness. We also provide a necessary and sufficient criterion for
four mode states, which allows to detect entanglement with the Pauli-like observables. Its efficiency is
shown for the 2 × 2 BSV state. Lastly, we show a violation of the Bell inequality, based on the operators that
we have introduced, for the BGHZ state in the whole range of the amplification gain. For all the three
studied quantifiers of the nonclassicalicality of a field, we have observed that the results obtained for qubits
can be recovered once one considers states with one particle in each beam heading to each detection station.
Note that, the previous generalizations of the Pauli formalism in an optical context, in form of standard
Stokes operators, and normalized Stokes operators, see e.g. [33], do not allow to generalize the
Peres–Mermin construction.

As a final remark, we address an open question that arises from our results. How can be experimentally
realized a measurement of such observables? Conceptually, the measurement of Ĝ3, the last operator from
proposed set, does not pose any difficulty, however measuring the another two operators seems to involve a
highly nontrivial experimental procedure. This question may be of great significance for observing
nonclassical aspects of quantum optical fields for macroscopic states as those observables seem to be
optimal for this kind of states. Thus, this construction can stimulate advancements in experimental
methods in quantum optics. Once it will be achieved, we forecast that such a strategy can also be fruitful to
quantify the nonclassicality of other bosonic fields, such as many-body systems of massive particle
composing Bose Einstein condensate [27]. Another interesting task is to operationally construct a
generalization of the proposed scheme to also cover optical realizations of generalized Gell–Mann
observables. This would involve multiport beamsplitters [34].
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Appendix A. Anticomutation and commutation relations

Firstly, let us check if {Ĝ1, Ĝ3} = 0. This can be verified by acting with Ĝ1Ĝ3 and Ĝ3Ĝ1 on the basis vectors
|n, m〉 and |m, n〉 for n > m. Knowing that Ĝ1 swaps modes and that states |n, m〉(|m, n〉) are eigenvectors of
Ĝ3 with eigenvalue 1(−1) we get for |n, m〉:

Ĝ1Ĝ3|n, m〉 = Ĝ1|n, m〉 = |m, n〉,

Ĝ3Ĝ1|n, m〉 = Ĝ3|m, n〉 = −|m, n〉,

and for |mn〉

Ĝ1Ĝ3|m, n〉 = −Ĝ1|m, n〉 = −|n, m〉,

Ĝ3Ĝ1|m, n〉 = Ĝ3|n, m〉 = |n, m〉.

Because diagonal states have eigenvalue 0 for both those operators, we have Ĝ3Ĝ1 = −Ĝ1Ĝ3 and thus, the
anticommutation relation is fulfilled.

Now let us check if {Ĝ1, Ĝ2} = 0. One can observe that Ĝ2 = −iĜ3Ĝ1 and so we have:

Ĝ2Ĝ1 = −iĜ3Ĝ1Ĝ1 = −iĜ3Ĝ0 = −iĜ3,

Ĝ1Ĝ2 = −iĜ1Ĝ3Ĝ1 = −iĜ1(−Ĝ1Ĝ3)

= iĜ0Ĝ3 = iĜ0Ĝ3.

In the previous expression, we have used the fact that Ĝ2
1 = Ĝ0 which is easily seen form the fact that

flipping modes two times does not change a state. We have also used that Ĝ0Ĝi = ĜiĜ0 = Ĝi which follows
from that Ĝ0 has a common zero eigenvalue for diagonal states with any Ĝi and it has eigenvalue 1 for other
states (this also shows that Ĝ0 commutes with any Ĝi). As a result, we obtain {Ĝ1, Ĝ2} = 0.

Now we check if {Ĝ2, Ĝ3} = 0. Using the fact that Ĝ2
3 = Ĝ0 we get:

Ĝ2Ĝ3 = −iĜ3Ĝ1Ĝ3 = −iĜ3(−Ĝ3Ĝ1) = iĜ0Ĝ1,

Ĝ3Ĝ2 = −iĜ3Ĝ3Ĝ1 = −iĜ0Ĝ1 = −iĜ1.

Thus, the anticommutation relation under consideration holds.
Lastly, we check if Ĝ2

2 = Ĝ0:

Ĝ2
2 = −iĜ3Ĝ1(−iĜ3Ĝ1) = −Ĝ3Ĝ1Ĝ3Ĝ1

= Ĝ3Ĝ3Ĝ1Ĝ1 = Ĝ2
0 = Ĝ0.

Taking all these relations together, we have:

{Ĝi, Ĝj} = 2δijĜ0.

Let us now check the commutation relations. We start with [Ĝ3, Ĝ1]. Using the anticomutation relations,
previously proved, we have:

Ĝ3Ĝ1 − Ĝ1Ĝ3 = 2Ĝ3Ĝ1 = 2iĜ2, (A1)

where the last equality follows from Ĝ2 = −iĜ3Ĝ1. In case of [Ĝ1, Ĝ2] we have:

Ĝ1Ĝ2 − Ĝ2Ĝ1 = −2Ĝ2Ĝ1

= 2iĜ3Ĝ1Ĝ1 = 2iĜ3.
(A2)

Finally, for [Ĝ2, Ĝ3] we have:
Ĝ2Ĝ3 − Ĝ3Ĝ2 = −2Ĝ3Ĝ2

= 2iĜ3Ĝ3Ĝ1 = 2iĜ1.
(A3)

Thus, the commutation relations for the set of operators Ĝi are as follows:

[Ĝi, Ĝj] = 2iεijkĜk (A4)

10



New J. Phys. 24 (2022) 103003 K Schlichtholz et al

Adding the anticommutation relation and commutation relation, we obtain:

(ĜiĜj − ĜjĜi) + (ĜiĜj + ĜjĜi) = 2ĜiĜj = 2iεijkĜk + 2δijĜ0,

and from this follows an analogous relation as for the Pauli matrices:

ĜiĜj = δijĜ0 + iεijkĜk. (A5)

Appendix B. Spectrum of operators

We can characterize the set of eigenvectors for operators Ĝi. In the case of Ĝ1 we have:

1√
2

(|n, m〉+ |m, n〉) for eigenvalue 1,

1√
2

(|n, m〉 − |m, n〉) for eigenvalue − 1,

|n, n〉 for eigenvalue 0.

Let us now assume that n > m. For the operator Ĝ2 we obtain:

1√
2

(|n, m〉+ i|m, n〉) for eigenvalue 1

1√
2

(|n, m〉 − i|m, n〉) for eigenvalue − 1,

|n, n〉 for eigenvalue 0.

Finally, for the operator Ĝ3 we have:

|n, m〉 for eigenvalue 1 ,

|m, n〉 for eigenvalue − 1,

|n, n〉 for eigenvalue 0.

Considering the three basis vectors |n, n〉, |n, m〉, |m, n〉 we can write the three orthonormal eigenvectors for
any of the operators, we can sum up that this set of eigenvectors characterizes all eigenvectors of Ĝi and that
the spectrum of operators Ĝi is ±1, 0.

Appendix C. Unitary transformation of modes

It can be shown that the set of operators Ŝi =
1
2 A†σiA after unitary transformation, which is equivalent to

cyclic permutation of the basis, will result in an equivalent set of operators only changing their labelling.
However, the same is not true for the set of operators Ĝi

To see that, let us consider two orthonormal mutually unbiased polarization bases {H, V} (horizontal,
vertical) and {D, A} (diagonal, anti-diagonal) and their creation operators, respectively: a†H, b†V and a†Db†A. If
one writes the Ŝ(D)

3 operator based on a†D, b†A one expects that this operator rewritten in the {H, V} basis
will coincide with the operator Ŝ(H)

1 based on a†H, b†V. We show that this is not true for operators Ĝi on the
basis of a counterexample.

As Ĝi and Ŝi coincide in the one photon subspace up to coefficient, the first nontrivial counterexample
can be shown in the two-photon subspace. Let us consider Ĝ(D)

3 restricted to two photon subspace:

Ĝ(D|2)
3 := |2D, 0A〉〈2D, 0A| − |0D, 2A〉〈0D, 2A|. (C1)

After rewriting this operator in {H, V} basis we obtain:

Ĝ(D|2)
3 = − 1√

2

(
|2H, 0V〉〈1H, 1V|+ |0H, 2V〉〈1H, 1V|+ |1H, 1V〉〈2H, 0V|+ |1H, 1V〉〈0H, 2V|

)
. (C2)

As this operator does not coincide with Ĝ(H|2)
1 , the operators Ĝi do not share the considered property with

the operators Ŝi.

11
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Appendix D. Bright GHZ state

Here we briefly recall construction of BGHZ state.
Consider a Hamiltonian of the following form:

Ĥa = γâ†1â†2â†3 + h.c. (D1)

where â†i stand for creation operators in three orthogonal modes. This interaction Hamiltonian is a
parametric approximation, essentially replacement of the quantum description of the laser field by a
classical amplitude of electromagnetic field, of the process of down conversion of photons from the
pumping laser field (described by the parameter γ) into triples of photons. However, this parametric
approximation does not lead to a normalizable state. If one treats seriously Ha than straight ahead
calculation of the evolution of the vacuum state leads to the following:

|Σn〉 = eiHa t |Ω〉, (D2)

what after a series expansion could be put as:

|Σn〉 =
∞∑

k=0

ck(â†1â†2â†3)k|Ω〉. (D3)

If one puts Γ = tγ, we have the following formal recurrence:

ck =

∞∑
l=0

(iΓ)k+2l

(k + 2l)!
Pk

k+2l, (D4)

where Pk
l obey the relation: Pk

l = Pk−1
l−1 + (k + 1)3Pk+1

l−1 with Pk
l = 0 if k > l and Pk

k = 1. However, such
approach to the parametric approximation fails to properly describe a generated state as series (D4) do not
converge for any Γ > 0, as for the case of the problem of the generalization of squeezing with Hamiltonians
proportional to (a†)n + h.c. for n > 2 [35]. However, one can obtain approximate parametric description
for Γ < 0.9 of such state by using Padé approximants [19]. In such a case we have:

|Σn〉 =
∞∑

k=0

Ck(Γ)(â†1â†2â†3)k|Ω〉, (D5)

with Ck(Γ) being rational functions (Padé approximants of degree [N/M]):

Ck(Γ) =

∑N
n=0 Xk

n(iΓ)n∑M
m=0 Yk

m(iΓ)m
, (D6)

with coefficients Xk
n, Yk

m such that the first (N + M + 1) terms of the Taylor series expansion of Ck(Γ) match
the first (N + M + 1) terms of (D4). For the calculations in this paper we use degree [40/40].

The BGHZ state involving modes a and b could be thought as arising from the Hamiltonian:

Ĥ = Ĥa + Ĥb, (D7)

where Ĥb = γb̂†1b̂†2b̂†3 + h.c.. Due to the fact that Ĥa commutes with Ĥb, down conversions to modes ai are
independent from conversions to modes bi i.e.:

ei(Ĥa+Ĥb)t = eiĤat eiĤbt . (D8)

We have the same situation in the case of their not-parametrically approximated versions with quantum
operators describing the laser field, provided the two processes are linked with annihilation of pump
photons of orthogonal polarizations. That is, if the pump field annihilation operators can be denoted as ĉ
and ĉ⊥, the fully quantum interaction Hamiltonian in proportional to ĉb̂†1b̂†2b̂†3 + ĉ⊥â†1â†2â†3 + h.c.. Thus the
approximated structure of BGHZ state can be put in the form as in equation (30).
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Rev. Mod. Phys. 84 777–838
[6] Mermin N D 1993 Hidden variables and the two theorems of John Bell Rev. Mod. Phys. 65 803–15
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a single photon Phys. Lett. A 435 128031
[30] Das T, Karczewski M, Mandarino A, Markiewicz M, Woloncewicz B and Żukowski M 2022 Comment on ‘single particle
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Abstract
We generalize Gisin’s theorem on the relation between the entanglement of pure states and Bell
non-classicality to the case of mode entanglement of separated groups of modes of quantum fields
extending the theorem to cover also states with undefined particle number. We show that any pure
state of the field which contains entanglement between two groups of separated modes violates
some Clauser–Horne (CH) inequality. In order to construct the observables leading to a violation
in the first step, we show an isomorphism between the Fock space built from a single-particle space
involving two separated groups of modes and a tensor product of two abstract separable Hilbert
spaces spanned by formal monomials of creation operators. In the second step, we perform a
Schmidt decomposition of a given entangled state mapped to this tensor product space and then
we map back the obtained Schmidt decomposition to the original Fock space of the system under
consideration. Such obtained Schmidt decomposition in Fock space allows for construction of
observables leading to a violation of the CH inequality. We also show that our generalization of
Gisin’s theorem holds for the case of states on non-separable Hilbert spaces, which physically
represent states with actually infinite number of particles. Such states emerge, for example, in the
discussion of quantum phase transitions. Finally, we discuss the experimental feasibility of
constructed Bell test and provide a necessary condition for realizability of this test within the realm
of passive linear optics.

1. Introduction

The superposition principle is one of the quantum phenomena that has impacted our fundamental
understanding of nature the most. Especially, the concept of entanglement, which emerges from the
superposition principle, exposes the failure of classical intuitions like local realism presented in the EPR
paradox [1] and discussed in the entire Bell-inequalities literature [2–7]. The introduction of Bell inequalities
[8] allowed for a direct proof of the incompatibility of quantum mechanics with local hidden variable (LHV)
probabilistic models giving rise to the phenomenon of Bell non-classicality. Those theoretical predictions
were then experimentally tested confirming the predictions of quantum mechanics [9, 10].

This confirmation, however, does not answer the question whether Bell non-classicality is a general
feature of pure entangled states. Especially the question of whether Bell non-classicality can also be revealed
by arbitrarily weakly entangled states. The first step in answering this question was formulation of Gisin’s
theorem [11] which states that any entangled two-qubit state violates some Bell inequality. This was followed
by an extension to a higher number of systems [12] with a recent complement [13]. The theorem was further
generalized to an arbitrarily large number of particles and the arbitrary dimension of single-particle Hilbert
spaces [14, 15]. However, those generalizations do not provide a full answer to the question, since the
analysis therein is performed in terms of first quantization, which requires fixing the number of particles.
However, it is known that entanglement also exists for states with an undefined number of particles [16–19],
which requires the second quantization for its description. Therefore, the natural framework for treating this
problem is provided by quantum field theory which more closely describes nature and allows for better
insight into the foundations of physical theories.
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In this paper, we present a generalization of Gisin’s theorem to an arbitrary entangled pure state in
quantum field theory. We present the construction of the Schmidt decomposition for multimode states in
the Fock space, which then leads to the construction of the state-specific Clauser–Horne (CH) inequality
[20] violated by the given arbitrary entangled state. We show that our generalization holds also in the case of
a non-separable extension of the Fock space (which includes states with an infinite number of particles) in
terms of entanglement of quasi-particles. Finally, we show the necessary condition for Bell non-classicality to
be observed by projective particle-number-non-mixing measurements realizable within passive linear optics.
This condition allows for determining whether the homodyne measurement or another non-projective
POVM-type measurement is necessary to demonstrate Bell non-classicality for a given mode-entangled state.

2. Preliminaries

In order to consider entanglement, one has to introduce the state space of the theory. Let us briefly recall the
construction of the state space in the first and second quantizations.

2.1. First quantization state space and entanglement
The state of a single particle in the first quantization is specified by a normalized vector |ψ〉 in the
single-particle Hilbert spaceH. This Hilbert space, in general, is isomorphic to the space associated with
wave functions i.e. space of square-integrable functions L2(M) on a given d-dimensional manifoldM in
which the particle lives or to its subspace determined by the evolution equations. Therefore, as L2(M) is
separable Hilbert spaceH is also separable, which is equivalent to saying that one can construct a countable
basis inH. Then, the state space of two distinct particles is given by the tensor product of the corresponding
single-particle spacesH1 ⊗H2. Such a construction gives rise to a natural division of the system into two
subsystems among which the entanglement can be considered. In general, in the case of two separable
Hilbert spaces constructed by means of a tensor product, one can decompose any state |ψ12〉 ∈ H1 ⊗H2 in
terms of Schmidt decomposition [21]:

|ψ12〉=
∑
t

λt|ϕt〉1 ⊗ |φt〉2, (1)

with coefficients λt ⩾ 0 which fulfill
∑

t |λt|2 = 1, and vectors |ϕt〉1 ∈H1, |φt〉2 ∈H2 forming sets of
orthonormal vectors i.e. 〈ϕt|ϕt ′〉1 = 〈φt|φt ′〉2 = δt,t ′ where δt,t ′ stands for the Kronecker delta. Importantly,
this decomposition is unique up to the choice of phase of vectors |ϕt〉1, |φt〉2. Upon this decomposition, one
can uniquely determine whether a state is entangled or separable, since for any separable state ∃!λt 6= 0. The
number r of nonzero λt ’s is referred to as the Schmidt rank of the state.

2.2. Second quantization state space and entanglement
In quantum field theory, the state space for a given field is given by the Fock space. This space is constructed
upon a single-particle Hilbert spaceH as the direct sum of the symmetrized or antisymmetrized tensor
product of arbitrarily large number of copies ofH:

F (H)+(−) =
∞⊕
n=0

S+(−)

(
H⊗n

)
, (2)

where S+ stands for symmetrization and S− for antisymmetrization. The operation Sq accounts for the
indistinguishability of particles of given species with q=+ for bosons and q=− for fermions. The infinite
direct sum allows for a description of an arbitrary number of particles. Note that this space, in fact, does not
contain states with an infinite number of particles, since all well-defined states have always zero probability to
find an infinite number of quanta. In this space, one introduces the creation â†i and annihilation âi operators,
which add or remove a single particle in the mode ai. These operators fulfill canonical commutation or
anticommutation relations for bosons and fermions, respectively:[

âi, â
†
j

]
= δi,j,

[
âi, âj

]
=
[
â†i , â

†
j

]
= 0, (3){

âi, â
†
j

}
= δi,j,

{
âi, âj

}
=
{
â†i , â

†
j

}
= 0. (4)

Note that the modes correspond to the choice of orthonormal basis vectors in a single-particle spaceH, and
thus the construction of the creation and annihilation operators is not unique. The canonical basis in F(H)q

2
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is the Fock basis (occupation-number basis) and it can be always constructed from the vacuum state |Ω〉,
defined by the relation âi|Ω〉= 0, which contains zero quanta, using creation operators â†i :

|n1,n2, . . .〉=

(
â†1

)n1 (
â†2

)n2
. . .

√
n1!n2!. . .

|Ω〉, (5)

where
∑

i ni <∞ for bosons, and for fermions ni ∈ {0,1}. Note that the Fock space is separable, as the
countable basis ofH induces a countable number of modes, and there is only a finite number of quanta in
those modes.

Different types of entanglement were considered in the Fock space [22–24]. One of them is the concept of
entanglement of indistinguishable particles emerging from the symmetrization procedure in Fock space
construction. However, let us comment that this type of entanglement is not directly accessible by nature and
rather seems to be a mathematical artifact of the construction of the Fock space. This is because one cannot
build local observables without some effective distinguishability. As an example, consider the following state
of two indistinguishable bosons in two modes

|1,1〉= 1√
2
(|a1〉1|a2〉2 + |a2〉1|a1〉2) , (6)

where kets indices mark the corresponding single-particle Hilbert spaces. However, those indices are not
accessible as the environment has to couple to all single-particle Hilbert spaces in the same way due to
indistinguishability. However, this does not preclude the possibility of utilizing indistinguishability of
particles to obtain conditional multipartite interference effects, see e.g. [25–27], which by nature do not
demand addressing of inaccessible particle labels.

The entanglement of quantum fields that can be directly observed is the mode entanglement. In this
approach to entanglement, the effective distinguishability is obtained due to the orthogonality of modes,
which allows for probing their properties separately by construction of mode-local observables. Let us divide
modes emerging from some single-particle Hilbert spaceHAB into two families {ai}, {bl} (where i and l are
countable indices). A state |ψa,b〉 in the Fock space F(HAB)q is separable iff:

|ψa,b〉= F
(
a†i

)
G
(
b†l

)
|Ω〉, (7)

where F(a†i ), G(b
†
l ) are some polynomials of the creation operators in modes {ai}, {bl} respectively.

3. Schmidt decomposition in Fock space

Let us start with an explicit construction of the Schmidt decomposition in Fock space. Note that construction
of the Fock space (2) does not have a natural form of a tensor product of two Hilbert spacesH1 ⊗H2 which
is used in a standard Schmidt decomposition. Therefore, as a first step, we prove that the Fock space
F(HAB)q is isomorphic to the tensor product of two abstract separable Hilbert spacesHA ⊗HB. Note that
in the following, the type of field determined by q will not play any role, and the result will be valid for both.

Let us denote by {n⃗j}∞j=1 and {m⃗j ′}∞j ′=1 sets of all vectors of the form n⃗j = (nj1,n
j
2, . . .) and

m⃗j ′ = (mj ′

1 ,m
j ′

2 , . . .) where
∑{ai}

i=1 n
j
i <∞,

∑{bl}
l=1 m

j ′

l <∞. These two sets describe all possible distributions
of a finite number of particles among two groups of orthogonal modes {ai} and {bl}, which can in principle
contain an infinite (though countable) number of modes. Note that an arbitrary element of an
occupation-number basis of F(HAB) can be represented by two integer indices j, j ′ as follows:

|j, j ′〉= |⃗nj;m⃗j ′〉= 1

NaNb

∏
i

(
â†i

)nji∏
l

(
b̂†l

)mj ′
l |Ω〉= f

(
a†i , j
)
g
(
b†l , j

′
)
|Ω〉, (8)

in whichNa/b is a normalization factor, and f(a†i , j), g(b
†
l , j

′) denote suitable monomials of creation
operators in modes {ai}, {bl} respectively. Under such constraints {|j, j ′〉}jj ′ is a countable orthogonal basis
of F(HAB) with natural inner product:

〈jj ′|kk ′〉= δ⃗nj ,⃗nkδm⃗j ′ ,m⃗k ′ = δj,kδj ′,k ′ , (9)

in which the deltas are equal to one iff the two vectors are equal and zero otherwise.
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Since the monomials f(a†i , j), g(b
†
l , j

′) are uniquely defined via indices j, j ′, we can construct two Hilbert

spacesHA,HB over scalars C as spanned by abstract orthogonal basis vectors f̃( j), g̃( j ′) respectively, with
scalar products specified by:

〈̃f( j) |̃f(k)〉= δj,k

〈g̃
(
j ′
)
|̃g(k ′)〉= δj ′,k ′ . (10)

The vectors f̃( j), g̃( j ′) are in one-to-one correspondence with f(a†i , j), g(b
†
l , j

′), however, they forget about the

mode structure specified by {ai}, {bl}. Now arbitrary vector inHA has a form w=
∑

jwj̃f( j), and a scalar
product between arbitrary two vectors w and z reads:

〈w|z〉HA =
∑
j

(
wj

)∗
zj, (11)

and analogous relations hold for vectors inHB. Note that, since the set of indices {j, j ′} is countable, the
Hilbert spacesHA(B) are, in fact, separable.

Now we define a linear map I : F(HAB)→HA ⊗HB by specifying its action on basis elements of
F(HAB):

I (|j, j ′〉) = I
(
f
(
a†i , j
)
g
(
b†l , j

′
)
|Ω〉
)
:= f̃( j)⊗ g̃

(
j ′
)
, (12)

in which the tensor product in the definition refers to a standard algebraic tensor product betweenHA and
HB. The map I is clearly bijective. It also preserves scalar product:

〈kk ′|jj ′〉= δk,jδk ′,j ′ = 〈Ω|g
(
b†l ,k

′
)†

f
(
a†i ,k

)†
f
(
a†i , j
)
g
(
b†l , j

′
)
|Ω〉

I()−−→ 〈̃f(k)⊗ g̃(k ′) |̃f( j)⊗ g̃
(
j ′
)
〉HA⊗HB

= 〈̃f(k) |̃f( j)〉HA〈g̃(k ′) |̃g
(
j ′
)
〉HB = δk,jδk ′,j ′ . (13)

Therefore, map I is an isomorphism, and F(HAB) andHA ⊗HB are isomorphic. Note that this is not a
canonical isomorphism, since it is basis-dependent, similarly to a Choi–Jamiolkowski isomorphism [28, 29].

Since by construction bothHA andHB are separable Hilbert spaces, any vector ϕ ∈HA ⊗HB possesses
a Schmidt decomposition:

ϕ =
∑
t

λtF̃(t)⊗ G̃(t) , (14)

with F̃(t), G̃(t) being some orthonormal basis vectors in spacesHA(B).
Now, let us consider an arbitrary state |ψ〉 in F(HAB) and find its Schmidt decomposition. By using

isomorphism I one gets:

|ψ〉= I−1 (I (|ψ〉)) = I−1

(∑
t

λtF̃(t)⊗ G̃(t)

)
=
∑
t

λtI−1
(
F̃(t)⊗ G̃(t)

)
, (15)

in which we used Schmidt decomposition (14) for the vector I(|ψ〉). Since F̃(t) and G̃(t) are clearly linear
combinations of original basis vectors F̃(t) =

∑
j q

t
j f̃( j), G̃(t) =

∑
j ′ p

t
j ′ g̃( j

′), we have:

I−1
(
F̃(t)⊗ G̃(t)

)
=

∑
j

qtj f
(
a†i , j
)∑

j ′

ptj ′g
(
b†l , j

′
) |Ω〉= F

(
a†i , t
)
G
(
b†l , t
)
|Ω〉, (16)

where F(a†i , t), G(b
†
l , t) are polynomials of creation operators in corresponding groups of modes {ai}, {bl}.

Finally we obtain:

|ψ〉=
∑
t

λtF
(
a†i , t
)
G
(
b†l , t
)
|Ω〉. (17)

As inverse isomorphism I−1 preserves orthogonality, all terms in (17) are orthogonal to each other and what
is more locally orthogonal:

〈Ω|F
(
a†i , t
)†

F
(
a†i , t

′
)
|Ω〉= 〈Ω|G

(
b†l , t
)†

G
(
b†l , t

′
)
|Ω〉= δt,t ′ . (18)
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Furthermore, due to uniqueness of the Schmidt decomposition of states fromHA ⊗HB, the decomposition
on the Fock space is also unique for the given partition {ai}, {bl} . This uniqueness is up to the choice of the
phase factor for polynomials F(a†i , t), G(b

†
l , t) which however always results in the same phase factor for the

state F(a†i , t)G(b
†
l , t)|Ω〉.This provides a generalization of the Schmidt decomposition for an arbitrary vector

in a Fock space, built from a single-particle space with two separated groups of modes.
Note that, a crucial step in building this decomposition is the choice of mutually orthogonal groups of

modes {ai}, {bl}, which allows for the construction of subsystems and associating separate Hilbert spaces to
them. However, the choice of particular local bases within the modes {ai} and {bl} is irrelevant for Schmidt
decomposition, as it is unique. The different choice of modes local to subsystems, respectively {a ′

i } and {b ′
l },

results only in rewriting operators F(a†i , t), G(b
†
l , t) in terms of these modes and thus finding different

polynomials of creation operators in these modes which satisfy F ′(a ′
i †, t) = F(a†i , t) and G ′(b ′

l †, t) = G(b†l , t).

4. Gisin’s theorem for quantum fields

Let us now prove the central result of the work which states that for any pure entangled state there exists a
Bell inequality which is violated. Let us alternatively state the notion of mode entanglement in terms of
Schmidt decomposition, based on definition of separable states (7), what will become useful in further
considerations. The following statement clearly is a consequence of the fact that the Schmidt
decomposition (17) exists for any pure state of the field and is unique.

Lemma 1. The state of the field |ψ〉 is separable with respect to the partition of modes into families {ai}, {bl} iff
its Schmidt decomposition (17) admits ∃!λt 6= 0, that is:

|ψ〉= F
(
a†i ,1

)
G
(
b†l ,1

)
|Ω〉, (19)

and otherwise state |ψ〉 is entangled.

In other words, state is entangled iff its Schmidt decomposition has at least two non-zero terms, i.e. it has
a form:

|ψent〉= λ1F
(
a†i ,1

)
G
(
b†l ,1

)
|Ω〉+λ2F

(
a†i ,2

)
G
(
b†l ,2

)
|Ω〉λR|R〉

=
√

|λ1|2 + |λ2|2|ϕ12〉+λR|R〉, (20)

where |R〉 is some state emerging from the terms for t> 2 which is orthogonal to the first two terms and λR is
the amplitude corresponding to this state (it can be zero). In the above representation of a Schmidt
decomposition we have introduced a partition of the decomposed state into a 2× 2 dimensional subspace
corresponding to the two highest Schmidt coefficients (which in the case of entangled states are necessarily
non-zero), and the rest. This partition is crucial in our proof, as the Bell inequality violation will be firstly
shown on the effective two-qubit subspace related to λ1 and λ2.

Now, assume that the set S := {F(a†i , t)G(b
†
l , t)|Ω〉}t is complete (spans the entire Fock space F(HAB)).

This holds without loss of generality, as if the decomposition of the state |ψ〉 does not contain terms
corresponding to the full complete set, one can extend the set S to a complete set by choosing an orthogonal
basis of the Schmidt form in the orthogonal complement of this set. In such a case, the basis elements of the
extended part of the set S are included in the Schmidt decomposition of a state |ψ〉 simply with λt = 0.
Consider now a subspace of a space of all well-defined operators on the Fock space F(HAB) spanned by the
following operators:

Pk,k
′,n,n ′

ab = F
(
a†i ,k

)
G
(
b†l ,n

)
|Ω〉〈Ω|G

(
b†l ,n

′
)†

F
(
a†i ,k

′
)†
, (21)

where k,k ′,n,n ′ ∈ {1,2}. Local operators which represent observables local with respect to the parties can be
written as:

Pk,k
′

a =
∑
t

F
(
a†i ,k

)
G
(
b†l , t
)
|Ω〉〈Ω|G

(
b†l , t
)†

F
(
a†i ,k

′
)†
,

Pk,k
′

b =
∑
t

F
(
a†i , t
)
G
(
b†l ,k

)
|Ω〉〈Ω|G

(
b†l ,k

′
)†

F
(
a†i , t
)†
. (22)

Clearly expectation value of any operator Ô from the subspace spanned by operators (21) and (22) calculated
on the state |ψent〉 consists of two terms:

〈Ô〉ψent =
(
|λ1|2 + |λ2|2

)
〈Ô〉ϕ12 + |λR|2〈Ô〉R =

(
|λ1|2 + |λ2|2

)
〈Ô〉ϕ12 , (23)
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where the second term in the first row is equal to zero as the state |R〉〈R| is in the subspace orthogonal to all
operators (21).

Clearly |ϕ12〉 is entangled in the considered 2× 2 dimensional subspace, and therefore from the original
Gisin’s theorem there exists a Clauser–Horne–Shimony–Holt (CHSH) inequality, which is violated by such a
state on the positive side. Following [11] we can directly construct such a CHSH inequality and the
corresponding observables and settings leading to a violation. The CHSH inequality from Gisin’s original
work has the following conditional form:

E
(
α⃗, β⃗

)
− E

(
α⃗, β⃗ ′

)
+ E

(
α⃗ ′, β⃗

)
+ E

(
α⃗ ′, β⃗ ′

)
⩽ 2, if E

(
α⃗, β⃗

)
⩾ E

(
α⃗, β⃗ ′

)
,

E
(
α⃗, β⃗ ′

)
− E

(
α⃗, β⃗

)
+ E

(
α⃗ ′, β⃗

)
+ E

(
α⃗ ′, β⃗ ′

)
⩽ 2, if E

(
α⃗, β⃗

)
< E

(
α⃗, β⃗ ′

)
, (24)

where the correlation function for two-qubit system is defined as E(α⃗, β⃗) = 〈α⃗ · σ⃗⊗ β⃗ · σ⃗〉. The settings are
parametrized by vectors:

α⃗= (sinα,0,cosα) ,

β⃗ = (sinβ,0,cosβ) ,

α⃗ ′ = (sinα ′,0,cosα ′) ,

β⃗ ′ = (sinβ ′,0,cosβ ′) . (25)

Assuming the two-qubit state in a specific Schmidt form:

|ψ〉= λ1|01〉+λ2|10〉, (26)

the optimal settings are specified by the following angles:

α= 0,

α ′ =− sign(λ1λ2)
π
2 ,

cosβ =−cosβ ′ = (1+ 4|λ1λ2|)−
1
2 . (27)

In order to apply the CHSH inequality (24) to the state |ϕ12〉 one has to translate qubit observables:

α⃗ · σ⃗⊗ β⃗ · σ⃗

to field operators spanned by the local to parties operators (22). Since the two effective qubit subspaces in
|ϕ12〉 are spanned by operators {F(a†i ,1),F(a

†
i ,2)} and respectively {G(b†l ,1),G(b

†
l ,2)}, the field operators

representing qubit Pauli observables have the following form:

Σx (ai) = P12a + P21a ,

Σy (ai) =−i
(
P12a − P21a

)
,

Σz (ai) = P11a − P22a ,

Σx (bl) = P12b + P21b ,

Σy (bl) =−i
(
P21b − P12b

)
,

Σz (bl) = P22b − P11b , (28)

where for the operators on modes {bl} a flip of basis elements is taken into account in accordance with (26)
(namely for the second effective qubit G(b†l ,1) plays the role of |1〉 and G(b†l ,2) of |0〉). In the above

formulae the operators Pkk
′

a and Pkk
′

b are counterparts of raising and lowering operators σ+ and σ− in the
first quantization picture, and they are defined by equation (22). Finally, an arbitrary qubit observable is
mapped into the following field observable:

α⃗ · σ⃗⊗ β⃗ · σ⃗ 7→
(
α⃗ · Σ⃗(ai)

)(
β⃗ · Σ⃗(bi)

)
, (29)

in which Σ⃗(ai) = (Σx(ai),Σy(ai),Σz(ai)) and analogously for Σ⃗(bl). Finally, the CHSH inequality for fields is
built using the following correlation function:

E
(
α⃗, β⃗

)
ϕ12

=
⟨(
α⃗ · Σ⃗(ai)

)(
β⃗ · Σ⃗(bi)

)⟩
ϕ12

, (30)
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in which the caligraphic notation on the left-hand-side indicates that we deal with the correlation function
for fields not for qubits. By construction, one of the following CHSH inequalities is always violated for the
state |ϕ12〉:

E
(
α⃗, β⃗

)
ϕ12

−E
(
α⃗, β⃗ ′

)
ϕ12

+ E
(
α⃗ ′, β⃗

)
ϕ12

+ E
(
α⃗ ′, β⃗ ′

)
ϕ12

⩽ 2, if E
(
α⃗, β⃗

)
ϕ12

⩾ E
(
α⃗, β⃗ ′

)
ϕ12

,

E
(
α⃗, β⃗ ′

)
ϕ12

−E
(
α⃗, β⃗

)
ϕ12

+ E
(
α⃗ ′, β⃗

)
ϕ12

+ E
(
α⃗ ′, β⃗ ′

)
ϕ12

⩽ 2, if E
(
α⃗, β⃗

)
ϕ12

< E
(
α⃗, β⃗ ′

)
ϕ12

. (31)

Due to the factor (|λ1|2 + |λ2|2) in the formula (23), the above inequalities need not be violated on the entire
initial state |ψent〉. However, we can easily prove that the corresponding CH inequalities are violated on |ψent〉
whenever the CHSH inequalities are violated solely on |ϕ12〉. Let us start from defining these new
inequalities. In 2× 2 dimensional spaces a positive violation of the CHSH inequality is equivalent to a
positive violation of a CH inequality (see e.g. [30], section 2.5.2). The correspondence between the two
inequalities is due to the following relation between correlation functions and probabilities:

E
(
α⃗, β⃗

)
= 4p

(
0,0|α⃗, β⃗

)
− 2p(0|α⃗)− 2p

(
0|β⃗
)
+ 1, (32)

which holds whenever the outcomes of the measured observables are dichotomic. In the above we have
chosen outcomes labeled by (0, 0), however, any choice of the outcomes is valid, what is important is that
they are fixed in the above relation. In our scenario, the field observables (28) are dichotomic when restricted
to the subspace spanned by the first two Schmidt bases elements in (20), therefore, on this subspace the
mapping between CHSH and CH inequality holds exactly. The CH inequalities corresponding to the CHSH
inequalities (31) have the following form:

p
(
0,0|α⃗, β⃗

)
+ p
(
0,0|α⃗ ′, β⃗

)
+ p
(
0,0|α⃗ ′, β⃗ ′

)
− p
(
0,0|α⃗, β⃗ ′

)
− p(0|α⃗ ′)− p

(
0|β⃗
)
⩽ 0,

p
(
0,0|α⃗, β⃗ ′

)
+ p
(
0,0|α⃗ ′, β⃗

)
+ p
(
0,0|α⃗ ′, β⃗ ′

)
− p
(
0,0|α⃗, β⃗

)
− p(0|α⃗ ′)− p

(
0|β⃗ ′

)
⩽ 0, (33)

in which the probabilities are specified as follows:

p
(
0,0|α⃗, β⃗

)
=
⟨

1
4

(
1lA + α⃗ · Σ⃗(ai)

)(
1lB − β⃗ · Σ⃗(bl)

)⟩
ϕ12

,

p(0|α⃗) =
⟨

1
2

(
1lA + α⃗ · Σ⃗(ai)

)⟩
ϕ12

,

p
(
0|β⃗
)
=
⟨

1
2

(
1lB − β⃗ · Σ⃗(bl)

)⟩
ϕ12

. (34)

In the above formulas 1lA/B denotes the following operators which act as projectors onto the local subspace of
interest and identity on the second subsystem:

1lA = P1,1a + P2,2a ,

1lB = P1,1b + P2,2b .
(35)

Now, violation of one of the CHSH inequalities (31) on |ϕ12〉 implies violation of the corresponding CH
inequality from among (33) on |ϕ12〉. It suffices to show that the CH inequality is then also violated on the
entire state |ψent〉. Let us denote the Bell operator for a CH inequality as ĈH. Then whenever any of the CH
inequalities (33) is violated, we have for the corresponding Bell operator: 〈ĈH〉ϕ12 > 0. This yields:

〈ĈH〉ψent =
(
|λ1|2 + |λ2|2

)
〈ĈH〉ϕ12 > 0, (36)

an therefore violation of the CH inequality on the state |ϕ12〉 implies a violation of the inequality by the state
|ψent〉. This ends the proof.

Note that the violation of the CHSH inequalities on the state |ϕ12〉 (31) does not imply violation of these
inequalities on the entire state |ψent〉, therefore the transition to the CH inequality is necessary for the proof
to hold. The two inequalities are not equivalent on the entire state space, since then the measurements
defined by operators (28) are no longer dichotomic. One has to be very careful when trying to prove CHSH
inequality violation on the entire state space based on its violation on the subspace, since this can lead to false
conclusions on Bell non-classicality, see e.g. [31].
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4.1. Two distinguishable fields
One can also consider the entanglement of two or any finite number of fields species. For simplicity, let us
consider the case of two fields as the other cases follow analogously. In such a case, the state space is given by
the tensor product of two Fock spaces F(HAB)q ⊗F ′(HA ′B ′)q ′ where we already assumed partition of
modes into families {ai}, {bl} and {a ′

i }, {b ′
l }. Note that one of those families of modes per primed or

unprimed pair could be empty. Once again, one can represent the occupation number basis vectors for the

first field as n⃗j,m⃗j ′ and ⃗(n ′)
j
, ⃗(m ′)

j ′

for the second using suitable monomials of creation operators in modes
corresponding to the considered partition:

|⃗nj, ⃗(n ′)
j
;m⃗j ′ , ⃗(m ′)

j ′

〉= f
(
a†i ,(a

′
i )

†
, j
)
g
(
b†l ,(b

′
l )

†
, j ′
)
|Ω〉, (37)

where indices j, j ′ are again countable and |Ω〉 stands for tensor product of vacuum states of both fields. We
use here the fact that creation operators for distinguishable fields commute, and therefore one can group
them as it is presented on the right-hand side. Now one can see that the isomorphism (12) can be trivially
generalized to this case. This results in the isomorphism between space F(HAB)q ⊗F ′(HA ′B ′)q ′ and
separable spaceHA,A ′ ⊗HB,B ′ whereHA,A ′(B,B ′) are counterparts toHA,(B). Once again, one can apply the
Schmidt decomposition on the state mapped toHA,A ′ ⊗HB,B ′ in order to obtain the decomposed state in
the tensor product of Fock spaces. The resulting general form of the Schmidt decomposition of the state
|ψ〉 ∈ F(HAB)q ⊗F ′(HA ′B ′)q ′ is the following:

|ψ〉=
∑
t

λtF
(
a†i ,(a

′
i )

†
, t
)
G
(
b†l ,(b

′
l )

†
, t
)
|Ω〉, (38)

where F(a†i ,(a
′
i )

†, t), G(b†l ,(b
′
l )

†, t) are polynomials of creation operators of respective modes. Upon this one
can build a CH inequality for any entangled pure state, which would be violated in full analogy to the
construction ending at formula (36).

5. Non-separable Hilbert spaces

The issue of whether non-separable Hilbert spaces are useful for Quantum Field Theory is subtle and
controversial. On the one hand, a separable Hilbert space is sufficient to describe scattering processes (see,
e.g. [32], chapter 2.6). On the other hand, for some applications, it is convenient to introduce big Hilbert
spaceH ′ =

⊕∞
n=0H⊗n, whereH⊗n for n→∞ is treated as an infinite tensor product, which describes the

system of actually infinite number of particles. Such big Hilbert space is non-separable and contains as its
subspaces all Fock spaces emerging from all different choices of basis solutions for field equations (these Fock
spaces are defined in a similar way, but withH⊗n interpreted as representing only potentially infinite number
of particles). This big Hilbert spaceH ′ is, in fact, built from these Fock spaces. The creation and annihilation
operators corresponding to these Fock spaces are then related by non-unitary transformations (for example,
by Bogoliubov transformations) leading to appearance of an effective description in terms of quasi-particles
[33]. Then the infinite particle states are effectively hidden in different ‘vacuum’ states of the corresponding
Fock spaces. Big non-separable Hilbert space is useful, for example, in statistical mechanics for description of
phase transitions: taking the thermodynamic limit, in which the density of a system remains constant, while
its spatial dimensions tend to infinity, demands considering actually infinite number of particles in the
system.

Therefore, in principle, one can consider the big multimode Hilbert spaceH ′, with modes grouped into
two disjoint subsetsA and B, which define the local structure for a Bell-type reasoning. This space is
formally spanned by number states {|⃗nν〉A|m⃗µ〉B}, in which vectors n⃗ν and m⃗µ represent infinite sequences
of integers without cut-off conditions used in defining the Fock space. Such sets of vectors are certainly
uncountable. Note that the cardinality of this set of basis vectors is ℵℵ0

0 which is the same as saying that its
cardinality is of the continuum c and therefore it can be indexed symbolically by real indices ν,µ. In order to
justify in what sense Gisin’s theorem generalizes to such a case, we have to recall a very important result in
mathematical physics, namely the generalization of Gleason’s theorem for non-separable Hilbert spaces.
Recall that in the case of separable Hilbert spaces, Gleason’s theorem states that any assignment
m : {Π̂i} 7→ [0,1] of a probability distribution to a family of projectors onto closed subspaces of a Hilbert
space of dimension greater than two is represented bym(Π̂i) = Tr(ρmΠ̂i), in which ρm is a normalized
positive-semidefinite matrix, typically called a density matrix. This theorem has been generalized to the case
of a non-separable Hilbert space [34]. This generalization states that if the cardinality of a set of basis vectors
in a given Hilbert space is given by the Ulam number and under the assumption of the continuum
hypothesis, any assignment of a probability distributionm : {Π̂η} 7→ [0,1] to a (possibly uncountable) family
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of projectors onto closed subspaces of the Hilbert space is represented bym(Π̂η) = Tr(ρmΠ̂KmΠ̂η), in which
Π̂Km is a projector onto a separable subspace Km of the entire Hilbert space and ρm is a state on the separable
space Km. Therefore, one can say that any state on a non-separable Hilbert space is in fact represented by a
state on a separable subspace. In the context of the big Hilbert space introduced in the previous paragraph, as
the continuum c is an Ulam number, this theorem implies that any state on the big space is represented by a
state belonging to some Fock space or at most finite combinations of them. Since our generalization of
Gisin’s theorem works for any state on any Fock space, it effectively works for any state defined on the big
Hilbert space. In appendix the Schmidt decomposition of the state inH ′ in terms of extended occupation
number basis is presented, which then allows for analogous direct construction of a CH inequality that is
always violated for an entangled state of the field modes.

6. Examples

Let us consider a few examples of Schmidt decompositions of entangled states with undefined particle
numbers. The first example is of particular importance, as for this state, one cannot reveal its entanglement
by projecting it into specific particle numbers and trying to map the problem to the language of first
quantization. Therefore, this example in particular was not covered by previous generalizations of Gisin’s
theorem. This example is the two-mode squeezed vacuum state, which in its Schmidt form can be written as:

|Ψ〉=
∞∑
n=0

λn+1

(
â†1

)n(
b̂†1

)n
|Ω〉=

∞∑
n=0

λn+1|n;n〉. (39)

Note that, here for clarity we use the following notation for Fock states:

|n1,n2, . . .;m1,m2, . . .〉 :=
1

NaNb

[(
â†1

)n1 (
â†2

)n2
. . .
][(

b̂†1

)m1
(
b̂†2

)m2

. . .
]
|Ω〉, (40)

with semicolon dividing again modes of the two subsystems. Now one can choose the following partition for
investigating the CH inequality violation:

|Ψ〉= Nλ1λ2

[
1√

|λ1|2 + |λ2|2
(λ0|0;0〉+λ1|1;1〉)

]
+λR|R〉, (41)

in which Nλ1λ2 =
√
|λ1|2 + |λ2|2. Here, the construction of the CH operator based on the operators (28)

requires the ability to implement measurements that perform projections onto states of the form
cosθ|0〉+ eiϕ sinθ|1〉. However, it is not known how to perform such a projection experimentally. One can
find a violation of some Bell inequality for states from subspace in which the CH operator is constructed
using homodyne measurements [35]. However, such measurements cannot project the state |Ψ〉 onto this
subspace. Thus, testing CH inequalities based on Schmidt decomposition is not always feasible
experimentally, and this problem is described in more detail in the next section. Still, this is only a technical
limitation, and fundamentally, this state does not admit any LHV model.

However, there exist states with an undefined photon number for which one can experimentally test the
CH inequality violation constructed as in (36). As an example we consider the 2× 2 bright squeezed vacuum
state of four modes {a1,a2}, {b1,b2} [4], which can be put into the following Schmidt form :

|ψ−〉=
1

cosh2 (Γ)

∞∑
n=0

tanhn (Γ)
n∑

m=0

(−1)m |(n−m) ,m;m,(n−m)〉, (42)

where the parameter Γ denotes the amplification gain. Consider the following partition of the state:

|ψ−〉=
√
2tanh(Γ)

cosh2 (Γ)

[
1√
2
(|1,0;0,1〉− |0,1;1,0〉)

]
+αR|R〉. (43)

If the modes would represent a possible photon paths (two per subsystem) then the first term is simply a
typical dual-rail-encoded singlet. The measurements corresponding to the operator subspace (22) are simply
given by Stokes operators or Sign Stokes operators [36, 37] restricted to the single-particle subspace and act
on it like Pauli operators. Such operators can be implemented using photon-number-resolving detectors.
However, taking another partition of the state (42) including states with more than one photon, one would
need to, for example, implement generalized Pauli operators for quantum fields [38], the experimental
realization of which is unclear.
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As a final example we consider the BGHZ state [39] of six modes {a1,a2,a3,a4}, {b1,b2} which is a
generalization of the GHZ state to states with an undefined number of photons. This state emerges from a
generalization of two-mode squeezing to three-mode squeezing. This state has the following Schmidt form
for the chosen partition of modes:

|BGHZ〉=
∞∑
k=0

k∑
m=0

Ck−m (Γ)Cm (Γ)
(
â†1 â

†
2 b̂

†
1

)k−m(
â†3 â

†
4 b̂

†
2

)m
|Ω〉

=
∞∑
k=0

k∑
m=0

Ck−m (Γ)Cm (Γ) |k−m,k−m,m,m;k−m,m〉,

(44)

where Cq(Γ) are coefficients dependent on amplification gain Γ. Now we can choose the relevant terms in
the Schmidt decomposition for the construction of the CH inequality as follows:

|BGHZ〉= α12

[
1√
2
(|1,1,0,0;1,0〉+ |0,0,1,1;0,1〉)

]
+αR|R〉. (45)

The first term is simply a polarization or path entangled GHZ state with two of typical three subsystems
{a1,a3}, {a2,a4}, {b1,b2}merged into one. However, the projectors necessary for the violation of the CH
inequality (33) do not have a known experimental realization as it requires performing Bell-state
measurement within passive linear optics. However, if one considers the BGHZ state after single-photon
subtraction among modes a2,a4 one gets:

|BGHZ〉s = α ′
12

[
1√
2
(|1,0,0,0;1,0〉+ |0,0,1,0;0,1〉)

]
+α ′

R|R〉. (46)

Due to this modification the suitable measurements for CH inequality violation have their experimental
realization again as Stokes operators restricted to the single-photon subspace.

One can see that while the construction of the CH inequality (33) is purely abstract, in some
circumstances its violation could be, in principle, measured using current technology.

7. Sufficient condition for the necessity of applying non-projective POVMs or other
tricks

As noted in the previous section, there are many entangled states of quantum fields for which projective
measurements are not sufficient to reveal their non-classical behavior. The reason for that is the impossibility
of experimental realization of projections onto the states which are superpositions of states with different
numbers of particles in the same mode like (|0〉+ |1〉)/

√
2. Therefore, some non-projective measurements

are necessary in such circumstances. In particular in quantum optics those are realized through addition of
ancillary modes with coherent states to perform homodyne measurements. One can also, at least in some
cases, engineer the ancillary state for the examined state in such a way that the violation can converge to the
ideal case [40] (however, it is not known if the preparation of such ancillas is experimentally feasible). The
Schmidt decomposition allows us to determine if such measurements are necessary. We formulate the
following theorem:

Theorem 1. The sufficient condition for the necessity of using ancillary resources (such as coherent states in
ancillary modes or postselection) for experimental revealing of non-classicality of entangled state |ψ〉 can be
formulated as follows: all projections of the state |ψ〉 into the subspace given by

∑
i ni = n,

∑
i ′ mi ′ =m have

Schmidt rank 1 i.e.

∀n,m
1

N
Πnm|ψ〉= F n

(
a†i ,1

)
Gm
(
b†l ,1

)
|Ω〉, (47)

where N is a normalization factor,Πnm is a projector onto the subspace considered, and F n(a†i ,1), G
m(b†l ,1) are

polynomials of creation operators of the order n,m respectively.

Note that one can write projector Π̂n,m as follows:

Π̂n,m =
∑

j|
∑

nji=n

∑
j ′|

∑
mj ′

i =m

|⃗nj,m⃗j ′〉〈⃗nj,m⃗j ′ |. (48)

This Theorem is followed by the corollary:
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Corollary 1. The necessary condition for revealing non-classicality of an entangled state |ψ〉 with
experimentally realizable projective measurements can be formulated as follows: There exists a projection of the
state |ψ〉 into the subspace given by

∑
i ni = n ,

∑
i ′ mi ′ =m which have Schmidt rank higher than 1 i.e.

∃n,m∃αi,αj ̸=0
1

N
Πnm|ψ〉=

∑
t

αtF
n
(
a†i , t
)
Gm
(
b†l , t
)
|Ω〉. (49)

The intuitive meaning of the above two statements is the following: whenever an entangled state of the
optical field contains (mode) entanglement between terms with the same total photon number within the
two subspaces corresponding to the two families of modes {ai} and {bl}, then one can detect the
non-classicality of the state with projectors realizable with passive linear optics. However, if there is no
entanglement of this kind present in the state, one needs to utilize additional resources like ancillary modes
or postselection in order to detect non-classicality of the state.

Let us give the proof of the theorem; the proof for the corollary follows immediately. Any projective
measurement M̂ that does not project into the superposition of states with different photon numbers always
acts separately on the subspaces determined by the projectorsΠnm. Therefore, one can write:

〈M̂〉ψ =
∑
n,m

〈ψ|Πnm|ψ〉〈ψnm|M̂|ψnm〉, (50)

where :

|ψnm〉=
Πnm|ψ〉√
〈ψ|Πnm|ψ〉

. (51)

Let M̂ be the Bell operator, and let the state |ψ〉 fulfill the condition (47). This indicates that all |ψnm〉 are
separable. Then the expectation value of the Bell operator is effectively taken over a separable state:

ρ̂sep =
∑
nm

〈ψ|Πnm|ψ〉|ψnm〉〈ψnm|. (52)

Therefore, the expectation value of the Bell operator cannot violate the Bell inequality. Similarly, any
entanglement or steering criterion based on projective measurement considered will not reveal non-classical
behavior. This ends the proof.

The corollary 1 provides only necessary condition because while the class of observables which does not
mix different photon number states is clearly at least partially realized in experiments, one does not know if
all such operators can be experimentally implemented. Therefore, even if this condition is fulfilled, using
ancillary modes might be necessary due to experimental but not fundamental reasons.

7.1. Introducing ancillary modes
When introducing ancillary modes (the state of which is separable with respect to the original one), the
Schmidt form is modified only by multiplication of all terms by a single polynomial of creation operators per
party. Let us denote by A(c†k), B(d

†
h) the polynomials that describe the state of the ancillary modes ck, dh for

the party A and B respectively. Because states of ancillary modes are separable with respect to the state of
modes ai,bl we can write the total state as follows:

|Ψ〉= A
(
c†k

)
|0〉B

(
d†h

)
|0〉|ψ〉

=
∑
t

λtA
(
c†k

)
F
(
a†i , t
)
G
(
b†l , t
)
B
(
d†h

)
|Ω〉

=
∑
t

λtF
′
(
a†i , c

†
k , t
)
G ′
(
b†l ,d

†
h, t
)
|Ω〉. (53)

Clearly the states generated by polynomials F ′(a†i , c
†
k , t), G

′(b†l ,d
†
h, t) for all t are locally orthogonal.

Therefore, equation (53) gives Schmidt form for total state with ancillary modes.
As an example, let us consider the state of a single-photon beamsplitted by a symmetric beamsplitter with

output modes a1,b1 which is maximally entangled in the photon number basis:

|ϕ〉= 1√
2

(
â†1 + b̂†1

)
|Ω〉= 1√

2
(|0;1〉+ |1;0〉) . (54)

Clearly, this state fulfills the condition (47) and therefore the entanglement of this state cannot be reached
with straightforward photon number non-mixing projective measurements. Let us introduce two ancillary
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modes a2,b2 (one per party) occupied by coherent states with the same amplitude z resulting in the state in
its Schmidt form:

|z〉a2 |ϕ〉|z〉b2 =
1√
2
|z〉a2 â

†
1|0;0〉|z〉b2 +

1√
2
|z〉a2 b̂

†
1|0;0〉|z〉b2 . (55)

Now consider the projection of this state into the subspace given by Π11:

Π11|z〉a2 |ϕ〉|z〉b2 =
e−|z|2α√

2

(
â†1 b̂

†
2 + â†2b

†
1

)
|Ω〉, (56)

where

Π11 = |10;10〉〈10;10|+ |01;10〉〈01;10|+ |01;01〉〈01;01|+ |10;01〉〈10;01|. (57)

This projection has Schmidt rank 2 as, in fact, it is (after the normalization) a double-rail-encoded
path-entangled Bell state. Therefore, after adding ancillary modes, condition (47) is no longer fulfilled and
there is a possibility that one can reveal Bell non-classicality of this state using photon number non-mixing
projective measurements. This is in fact the case, e.g. see [35, 41–43], where a CH inequality violation is
observed for observables totally unrelated to Schmidt decomposition of the state (55). Let us, however,
consider another strategy based on measuring the projected state (56). One can build upon its Schmidt
decomposition the CH inequality of the form (33), which will be maximally ‘violated’ if one performs
post-selection of results to events with a single photon per side resulting in the CH expression value
(
√
2− 1)/2 for any z. Note that if the projected state after normalization would be the full state, then one gets

a real violation, as one does not have to use post-selection. Measurement which leads to such result could be
realized using as observables combinations of Stokes operators projected to single-photon subspace as
discussed in the example (43). However, applying the corresponding CH operator to the full state (55)
without using post-selection will result in a lack of violation. This depicts that while one can reveal
non-classicality (entanglement) of the state by post-selection to a specific number of particles shared between
parties, the same criterion does not have to lead to a proper direct violation of local realism by the actual
physical state (post-selection loophole). This additionally shows that generalizations of Gisin’s theorem for
fixed particle numbers were not sufficient to show that any entangled pure state does not admit LHV model.

7.2. Violation from projections into specific particle number
One could also ask for which states the CH inequality constructed for some projected state into a specific
number of particles will be always violated by the total state. To answer this question let us note that the lack
of violation of the CH inequality for the total state described above comes from modification of local
probabilities of measuring an outcome specified in the CH inequality. More precisely, one can partition the
CH operator constructed on the projected state into non-local (bipartite) and two local terms:

ĈH= ĈHnl − ˆCHa
loc −

ˆCHb
loc (see equations (33) and (34)). Then the expectation value of the CH operator

evaluated on the full state is the following:

〈ĈH〉ψ = 〈Π̂nm〉ψ〈ĈH〉ψn,m −〈Π̂n,m ′ ̸=m〉ψ〈 ˆCHa
loc〉ψn,m −〈Π̂n ′ ̸=n,m〉ψ〈 ˆCHb

loc〉ψn,m , (58)

where Π̂q,k ′ ̸=k stands for a projector with number of particles different than k in the set of modes {bl} and q

particles in the set of modes {ai} and analogously Π̂k ′ ̸=k,q for the set of modes reversed. Here, we used the

fact that 〈CHa(b)
loc 〉ψn,m = 〈CHa(b)

loc 〉ψn,m ̸=m ′ (ψn ̸=n ′,m)
. Note that the last two terms are always negative whenever

〈Π̂n ′ ̸=n,m〉ψ and 〈Π̂n,m ′ ̸=m〉ψ are non-zero resulting in lowering the violation of the inequality and can even
lead to not observing it. Therefore, the necessary and sufficient condition for violation of the considered type
of CH inequality by the full state is:

∃Πnm : rψn,m > 1 ∧ 〈Π̂n,m ′ ̸=m〉ψ〈 ˆCHa
loc〉ψn,m + 〈Π̂n ′ ̸=n,m〉ψ〈 ˆCHb

loc〉ψn,m < 〈Π̂nm〉ψ〈ĈH〉ψn,m , (59)

where rψn,m stands for Schmidt rank of state |ψnm〉. One can also find a simpler sufficient condition:

∃Πnm : rψn,m > 1 ∧ 〈Π̂n ′ ̸=n,m〉ψ = 〈Π̂n,m ′ ̸=m〉ψ = 0, (60)

which implies that the state |ψ〉 has the following easy to identify Schmidt form:

|ψ〉=
∑
t

αtF
n
(
a†i , t
)
Gm
(
b†l , t
)
|Ω〉+

∑
t ′

α ′
t ′F

′
(
a†i , t

′
)
G ′
(
b†l , t

′
)
|Ω〉, (61)
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where F ′(a†i , t
′), G ′(b†l , t

′) are polynomials of the corresponding creation operators such that:

〈Ω|F ′
(
a†i , t

′
)†

G ′
(
b†l , t

′
)†

Π̂nmF
′
(
a†i , t

′
)
G ′
(
b†l , t

′
)
|Ω〉= 0. (62)

Such a form, in fact, occurred in the examples of BGHZ (44) and BSV (42) states (for those states ∀t ′ α ′
t ′ = 0).

8. Concluding remarks

In summary, in this work, we have proved that any pure mode-entangled state of quantum fields leads to a
violation of some Bell inequality and, therefore, we provide a generalization of Gisin’s theorem to quantum
fields. This result also generalizes to non-separable Hilbert spaces used in the thermodynamic limits of
quantum field theory. What is more, we provided a sufficient condition for the experimental need of
introduction of ancillary resources out of a passive linear optics paradigm in order to measure Bell inequality
violation. Finally, we have discussed several examples among which of particular importance are two-mode
squeezed vacuum and beamsplitted single photon as entanglement of those states is distributed over states
with different particle numbers (any of the cuts for specific particle number is not entangled); thus those are
not covered by previous iterations of generalizations of Gisin’s theorem.

Let us make a remark about the fundamental consequences of these results. This generalization of Gisin’s
theorem shows that quantum field theory predicts that any quantum measurement understood in the sense
of standard quantum measurement theory [44–46] cannot be associated with the appearance of some LHV
(local definite record of the outcome). This is because unitary evolution of the full system will lead to
entanglement of the measured subsystem with the environment (measurement apparatus) trading for it
inside coherences of the subsystem. However, as long as the entanglement is present, the LHV cannot appear.

Still, while the presented result provides the most general form of Gisin’s theorem in the currently
established theoretical quantum model of nature (quantum field theory), this does not give the final answer
to the question if any entanglement remains in contradiction with local realism and thus also if mentioned
predictions about measurement are generally valid. This is because we still do not have a unified quantum
theory involving gravity, and the consequences of such construction do not have to lead to exactly the same
predictions in general. One reason for that is the need to include in the description of the system degrees of
freedom associated with the gravity which could have a different character than the quantum one [47]
potentially making the global pure state description invalid.

In recent years, one observes an increasing interest in the analysis of entanglement of quantum fields in
curved spacetimes [48–50] in pursuit of finding the nature of gravity, and also in multiple relativistic
scenarios [51–53] that pose related mathematical problems. One of the main difficulties in such cases is the
appearance of inequivalent representations of Fock spaces for different observers, which results in a lack of
unambiguous description of particles, making the problem of entanglement much more subtle. Therefore,
the problem of fully describing entanglement and its fundamental properties in such scenarios still poses an
interesting and important problem. Our approach presented in this article can be applied in curved
spacetimes as long as one has a unique Fock space in which all field modes under consideration can be
described. This is the case of globally hyperbolic static space-times [54]. In the case of appearance of
inequivalent Fock spaces for different observers the question of whether Gisin’s theorem still holds does not
have an answer, and even construction of a general scenario in order to meaningfully ask the question on
relation between entanglement and Bell non-classicality is a challenging issue in itself and needs further
investigation.

The another interesting problem to consider is whether in a similar manner one could generalize the
results on multiparty Gisin’s theorem, using for example techniques from [15].
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Appendix. Schmidt decomposition in non-separable Hilbert space

One can build the Schmidt decomposition of a state in a non-separable Hilbert spaceH ′ directly from the
non-countable extended occupation number basis |⃗nj;m⃗j ′〉 without restrictions∑{ai}

i=1 n
j
i <∞,

∑{bl}
l=1 m

j ′

l <∞. Let us recall that any state to which one can properly assign probabilities of
outcomes has a non-zero distribution of probability only in the separable subspace Kψ ofH ′ and is
equivalent to a state |ψ〉 from this subspace. One can build a countable basis |k,k ′〉 in the subspace Kψ using
the basis vectors |⃗nj;m⃗j ′〉 ofH ′ as:

|k,k ′〉=
ˆ

djβk ( j)

ˆ
dj ′γk ′

(
j ′
)
|⃗nj;m⃗j ′〉, (A1)

where now j, j ′ are continuous indices, and βk( j),γk ′( j ′) are amplitudes given by generalized functions. Note
that these integrals could be, in some circumstances, reduced to sums over countable indices when
amplitudes are given by countable sums of Dirac deltas. Then again one builds two abstract separable Hilbert
spacesHA(B) with one basis vector β̃k (γ̃ ′

k ) for each generalized function βk( j),γk ′( j ′). Upon this, one builds

the isomorphismKψ →HA ⊗HB as |k,k ′〉 → β̃k ⊗ γ̃ ′
k . Then one can again perform decomposition of |ψ〉 in

HA ⊗HB and transform it back to Kψ reaching the decomposition of the form:

|ψ〉=
∑
t

αt

∑
k

ξtk
∑
k ′

ζ tk ′ |k,k ′〉=
∑
t

αt

[ˆ
dj

(∑
k

ξtkβk

)ˆ
dj ′
(∑

k ′

ζ tk ′γk ′
(
j ′
))

|⃗nj;m⃗j ′〉

]
. (A2)
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[39] Schlichtholz K, Woloncewicz B and Żukowski M 2021 Nonclassicality of bright Greenberger–Horne–Zeilinger-like radiation of an

optical parametric source Phys. Rev. A 103 042226
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Abstract
A key issue in quantum information is finding an adequate description of mesoscopic systems that
is simpler than full quantum formalism yet retains crucial information about non-classical
phenomena like entanglement. In particular, the study of fully bosonic systems undergoing open
evolution is of great importance for the advancement of photonic quantum computing and
communication. In this paper, we propose a mesoscopic description of such systems based on
boson number correlations. This description allows for tracking Markovian open evolution of
entanglement of both non-Gaussian and Gaussian states and their sub-Poissonian statistics. It can
be viewed as a generalization of the reduced state of the field formalism (Alicki 2019 Entropy 21
705), which by itself does not contain information about entanglement. As our approach adopts
the structure of the description of two particles in terms of first quantization, it allows for broad
intuitive usage of known tools. Using the proposed formalism, we show the robustness of
entanglement against low-temperature damping for four-mode bright squeezed vacuum state and
beam-splitted single photon. We also present a generalization of the Mandel Q parameter. Building
upon this, we show that the entanglement of the state obtained by beam splitting of a single
occupied mode is inherited from sub-Poissonian statistics of the input state.

1. Introduction

One of the important problems that is still developing in physics is the description of systems on the
mesoscopic scale. This problem arises because full quantum treatment of large systems is not feasible.
Classical description allows for an accurate depiction of the macroscopic systems; however, one can be
interested in systems on the scale on which a full quantum description is not feasible, but with physical
phenomena based on quantum features. In such a case, the classical paradigm becomes insufficient, and
some intermediate methods are needed for this mesoscopic scale. The need to develop such theoretical tools
emerges even more as experiments on this scale become nowadays feasible [1, 2]. This need is also
fundamental from the perspective of quantum information, since its protocols require complicated quantum
systems, and in their principles, they are based on quantum phenomena, such as superposition and
entanglement [3].

Different semi-classical methods were introduced for the simplification of the problems, for example, the
widely used parametric approximation [4, 5]. However, such techniques still require the full quantum
description of some parts of the system. A different approach is to track observables that describe collective
behavior of the system, e.g. total spin. Such a mean-field approach captures well macroscopic behavior of the
system; however, information about quantum features is suppressed quickly with the number of particles.
One can consider another collective observable, namely fluctuations instead of average values, as it is the case
for the fluctuation algebra approach to mesoscopic systems [6, 7]. This technique is adopted in particular to
describe entanglement in mesoscopic systems [8–10], and also different phenomena [11, 12]. Other methods
were also used to describe the entanglement in mesoscopic systems [13–15].
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One of the specific classes of systems for which mesoscopic descriptions are of great use is fully bosonic
systems. The reason for this is that information encoded in bosonic modes is one of the promising avenues
for implementing quantum information protocols. This is because, for example, information encoded in
photons can be quickly transferred over long distances [16]. However, such systems are also affected by the
decoherence effects coming from the environment, and their strict theoretical considerations require dealing
with the whole infinite-dimensional Fock space, which can be unfeasible in multi-mode systems. The widely
used method that simplifies the description is to track the evolution of the covariance matrix of position and
momenta. This reduces the problem to finite-dimensional when a finite number of modes are considered
[17–19]. In fact, this approach provides a full description of Gaussian states, and for non-Gaussian states, it
can serve as a mesoscopic description. However, non-Gaussian features can be lost in this description, which
can result in loss of useful information about quantum features of the state such as entanglement [20].
Another mesoscopic approach for bosonic systems that was recently proposed is the reduced state of the field
(RSF) [21]. This formalism extends the mean-field approach with additional structure by the reduction of
the state on the Fock space into the operator on the first quantization single-particle-like Hilbert space. This
description was already applied for the analysis of the coronal heating phenomenon [22] and the dynamical
Casimir effect [23]. However, it was shown that the RSF approach has some highly classical features and lacks
information on quantum features interesting from the standpoint of quantum information. In particular,
RSF does not store any information about distillable entanglement [24]. Moreover, for two mode Gaussian
states, it was shown that it does not contain any information about entanglement.

In this paper, we identify degrees of freedom of bosonic systems that can be used in a mesoscopic
description containing information about entanglement of both Gaussian and non-Gaussian states. Upon
this, we propose an extended version of the RSF approach, which allows tracking the Markovian evolution of
entanglement of bosonic fields. This is achieved by construction of a two-particle-like Hilbert space on which
multi-mode bosonic state is mapped into the two-qudit state. Entanglement of this state is sufficient for the
entanglement of the full state. In this approach, structures of typical finite-dimensional quantum systems
emerge, and therefore one is left with a toolbox which is intuitive and based on well-known tools from
quantum mechanics. This approach allowed us to show that the entanglement of the 2× 2 bright squeezed
vacuum state and the entangled two-mode single-photon state is robust against low-temperature damping
by the environment. Our approach also allows for tracking particle number variance (fluctuations) and thus
for tracking the non-classical phenomenon of sub-Poissonian statistics. In this context, we propose a
generalization of the Mandel Q parameter, which can be calculated using the extended RSF. Upon this, we
show that the entanglement of the state obtained by beam splitting of one occupied mode is fully inherited
from sub-Poissonian statistics of the input state.

2. Mesoscopic description of bosonic modes

One of the crucial quantum phenomena is entanglement, which is one of the core resources in many
quantum information tasks. This is even more so since in the quantum field theory the entanglement of pure
states is fundamentally associated with Bell non-classicality [25], which is necessary for device-independent
quantum key distribution. For such tasks, particularly compelling is the encoding of information in light
modes, as light can be quickly distributed over long distances [16]. What is more, fully photonic quantum
devices are one of the promising avenues also in different subfields of quantum information, e.g. quantum
computing [26]. However, as all quantum systems, light modes are also affected by the environment and
undergo non-unitary open evolution. This results in decoherence of the system and thus decay of quantum
phenomena such as superposition (including entanglement).

In general, the full description of a non-unitary evolution of the state in terms of infinite-dimensional
Fock space can be cumbersome or even infeasible. This is especially true for complicated mesoscopic systems
that involve multiple bosonic modes occupied by an undefined number of particles. A custom in the
treatment of mesoscopic systems is to consider only some degrees of freedom instead of the full quantum
state of the field ρ̂F. This allows for reducing the complexity of the problem. One of such methods for
bosonic systems is to track the evolution of the covariance matrix of position and momenta [19]:

Vi,j =
1

2
⟨
{
Ξ̂i, Ξ̂j

}
⟩− ⟨Ξ̂i⟩⟨Ξ̂j⟩, (1)

where Ξ⃗ = (x̂1, p̂1, . . . ., x̂N, p̂N), and operators x̂j, p̂j are dimensionless position and momentum operators in
jth mode, respectively. This method is particularly important, as it allows tracking of the full Gaussian
evolution of Gaussian states. The reason for this is that one can reconstruct the full Gaussian state ρ̂F from
the covariance matrix. Therefore, the covariance matrix also contains full information about the
entanglement of Gaussian states, which in the case of distillable bipartite entanglement can be accessed
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simply by using the PPT criterion [3, 27, 28]. However, this is not always the case for non-Gaussian states,
e.g. cat-like states. For such states, one has to employ different methods of entanglement detection for which
information contained in the covariance matrix is not sufficient [20]. Furthermore, the covariance matrix
approach, while well suited for continuous variable analysis, can be non-intuitive with its symplectic
structures. This may particularly concern researchers for researchers working solely with discrete variables,
for whom finite-dimensional Hilbert spaces of the first quantization equipped with the Dirac notation can be
more familiar. Additionally, regaining information from the covariance matrix about discrete variables also
requires extra effort, and it is not always possible for non-Gaussian states.

In fact, multiple fundamental experiments and protocols, e.g. teleportation [29], entanglement swapping
[30], and quantum cryptography [31] are based on entanglement of qubits realized using light modes
restricted to a single photon per party. Emblematic examples of the states used in such protocols are
polarization and path-entangled singlet states. Denoting by â†j the creation operator in jthe mode and
vacuum state by |Ω⟩, such states can be written as:

|ψ⟩= 1√
2

(
â†1 â

†
4 − â†2 â

†
3

)
|Ω⟩= 1√

2
(|1,0;0,1⟩− |0,1;1,0⟩) . (2)

Here, one chooses partition into two parties (subsystems), such that polarization or path modes a1,a2 are
associated with one party and modes a3,a4 with the second one. Here we have also used the following
notation for Fock states:

|n1,n2;n3,n4⟩=

(
â†1

)n1 (
â†2

)n2 (
â†3

)n3 (
â†4

)n4
√
n1!n2!n3!n4!

|Ω⟩, (3)

with semicolon marking the bipartition. Then, the measurements that correspond to Pauli matrices typically
considered for qubits are realized as Stokes operators Θ̂i [32] restricted to the single-photon subspace:

σi → Π̂1Θ̂iΠ̂1 = Π̂1

(
â†i âi − â†i⊥ âi⊥

)
Π̂1, (4)

where i = 1,2,3 denotes one of the three mutually unbiased basis described by two orthogonal modes ai,ai⊥,
and Π̂1 stands for the projector into the subspace of single photon across these modes. Additionally, after
projecting with Π̂1, the total photon number operatorΘ0 = â†i âi + â†i⊥ âi⊥ corresponds to the identity on the
qubit space denoted by σ0. Note that any local operation on the two-qubit system can be described as a
combination of tensor products of Pauli matrices (including σ0) acting on subsystems A and B. In the Fock
space, this translates to σA

i ⊗σB
j → Π̂A

1 Π̂
B
1 Θ̂

A
i Θ̂

B
j Π̂

B
1 Π̂

A
1 , where upper indices denote the party on which the

given operators act. Therefore, as Stokes operators are, in fact, differences of number operators in two
orthogonal modes, all non-classical correlations in such systems are described as photon number
correlations ⟨(âAi(⊥))

†âAi(⊥)(â
B
j(⊥))

†âBj(⊥)⟩. This suggests that boson number entanglement is at the core of the
discrete variable bipartite entanglement of bosonic systems. What is more, such correlations also become
experimentally accessible in regimes with higher photon numbers due to developments in the field of photon
number resolving detectors [33, 34]. Let us note that the considered photonic implementation of qubits is, in
fact, approximate. This is because nothing prevents the given modes from being occupied by a higher or
lower number of photons. It is an issue even with event-ready preparation of the system in which a photon is
confirmed to enter the input of the apparatus, as the environment can add multi-photon noise (with an
undefined number of photons) or cause loss of the photon which encodes the information. Such a problem
arises especially during propagation through long transmission lines. Thus, even in these highly simplified
scenarios, in principle, one should consider the full Fock space, or at least consider some mesoscopic
description of the system. All of this motivates us to build a mesoscopic scale description of bosonic systems
with the following matrix as the main structure that contains relevant degrees of freedom of the state ρ̂F for
considerations of bipartite entanglement:

ρ̂4 :=
N∑

i,j,n,m

tr ρ̂Fâ
†
nâiâ

†
mâj|i, j⟩⟨n,m|. (5)

In the following, we show that ρ̂4, which we call extended reduced state, contains information about
entanglement of both Gaussian states with high average numbers of particles, and more importantly,
non-Gaussian states (for which the PPT criterion cannot reveal entanglement based on the covariance
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matrix). At the same time, we equip the proposed mesoscopic description with multiple intuitive and
familiar tools from finite-dimensional Hilbert spaces.

Furthermore, in many circumstances, the open evolution imposed on the system is approximately
Markovian. Thus, further on we show the set of evolution equations for the matrix ρ̂4 for such scenarios.
This type of evolution of the full state of the bosonic modes ρ̂F is described by the GKLS equation [35, 36]. In
particular, this equation can be written for N orthogonal bosonic modes aj using the independent particles
approximation in such a way that it includes relevant processes of particle decay and production, random
elastic scattering, and classical coherent pumping [21, 24]. We base our considerations upon this equation,
which reads:

d

dt
ρ̂F =− i

h̄

[
Ĥ,ρF

]
+

N∑
k

[(
ξkâ

†
k − ξ∗k âk

)
, ρ̂F

]
+
∑
j

κj

(
Ûjρ̂FÛ

†
j − ρ̂F

)

+
N∑

k,k ′=1

Γk ′,k
↓

(
âkρ̂Fâ

†
k ′ −

1

2

{
â†k ′ âk, ρ̂F

})
+

N∑
k,k ′=1

Γk ′,k
↑

(
â†k ′ ρ̂Fâk −

1

2

{
âkâ

†
k ′ , ρ̂F

})
,

(6)

with Hamiltonian Ĥ=
∑

k,k ′ ωk,k ′ â†k âk ′ , where â†k(âk) are creation (annihilation) operators associated with

corresponding modes, complex parameters ξk describe classical pumping field, Ûj are unitary

transformations of annihilation operators (Û†
j âkÛj =

∑
k ′ u

j
k ′,kâk ′ with uj being unitary matrix)

corresponding to scattering processes with their probability distribution κj, and Γk ′,k
↑ (Γk ′,k

↓ ) describe
creation (annihilation) rate.

3. Separability in terms of extended reduced state

The key question for entanglement considerations in our mesoscopic description is how separability in the
Fock space translates into the extended reduced state. The following considerations are inspired by the
mappings of the entanglement indicators for Stokes-like operators [37, 38]. Let us choose two sets of indices
IA,IB ∈ {1,N} in such a way that IA ∩IB =∅, which determines our bipartition of the system. We assume
that the modes with indices from IA constitute one subsystem and the modes with indices from IB the
second one. In addition, each set contains at least two elements, and we denote the number of these elements
by dX = IX. Based on this choice, we project the operator ρ̂4 in the following way:

ρ̂4 → ρ̂Π = Π̂IA,IB ρ̂4Π̂IA,IB =
∑

i,n∈IA

∑
j,m∈IB

ρijnm|i, j⟩⟨n,m|, (7)

where:

ΠIA,IB =
∑
i∈IA

∑
j∈IB

|i, j⟩⟨i, j|, (8)

and ρijnm = ⟨â†nâiâ†mâj⟩ are corresponding matrix elements of ρ̂4. Let us here for clarity rename the operators

corresponding to modes IB as b̂†m and b̂j , i.e. ⟨â†nâiâ†mâj⟩ → ⟨â†nâib̂†mb̂j⟩. Note that the modes that are not used
are effectively traced out and modes from IA (IB) are associated only with the first (second) index of the kets
and bras.

Let us assume that the state of the system ρ̂F after tracing out modes not contained in IA,IB is some pure
state ρ̂F = |ψ⟩⟨ψ|. In such a case, we can see that ρijnm has the form:

ρijnm = ⟨ψnm|ψij⟩, (9)

where |ψij⟩= âiâj|ψ⟩. From this it follows that ρijnm forms a Gramian matrix and thus is positive definite.
Thus ρ̂Πψ (where the subscript denotes the original state on the Fock space) is also positive definite, and after

normalization it is a well-defined density matrix ρ̂Nψ for the system of two qudits with respective dimensions
dX. However, there are exceptions for which the matrix cannot be normalized, as it is traceless. The trace of
this matrix is equal to ⟨N̂IAN̂IB⟩ where N̂IX is the total boson number operator in modes corresponding to
IX. This can be zero only when the state is the vacuum ρ̂F = |Ω⟩⟨Ω| or when in the superposition it consists
only of states with bosons only in one subsystem. We address this problem later on. For now, assume that the
matrix can be normalized. Because any mixed state can be written as a convex combination of pure states
ρ̂F =

∑
i pi|ϕi⟩⟨ϕi|, it maps to a convex combination of ρ̂Πϕi

:

ρ̂ΠρF =
∑
i

pi ρ̂
Π
ϕi
. (10)
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After normalization, we get:

ρ̂NρF =
∑
i

pi ρ̂
Π
ϕi
/
∑
i

pi tr ρ̂
Π
ϕi
=
∑
i

pi tr ρ̂
Π
ϕi
ρ̂Nϕi

/
∑
i

pi tr ρ̂
Π
ϕi
=
∑
i

p ′
i ρ̂

N
ϕi
. (11)

Note that 1⩽ p ′
i ⩽ 0 and

∑
i p

′
i = 1. Thus, this again forms a proper density matrix on the two-qudit space.

In the next step, we assume that ρ̂F is separable in the partition into modes IA and IB. We start with the
case where ρ̂F is in some pure state |ψ⟩⟨ψ|. Due to separability, the state can be written as |ψ⟩= F†IA

F†IB
|Ω⟩,

where |Ω⟩ stands for vacuum state, and F†Ii
is a polynomial of creation operators of modes corresponding to

IX. From this follows that each ρijnm from ρ̂Π factorizes as follows:

ρijnm = ⟨Ω|FIAFIB â
†
nâib̂

†
mb̂jF

†
IA
F†IB

|Ω⟩

= ⟨Ω|FIA â
†
nâiF

†
IA
|Ω⟩⟨Ω|FIB b̂

†
mb̂jF

†
IB
|Ω⟩= ⟨ψA

n |ψA
i ⟩⟨ψB

m|ψB
j ⟩, (12)

where |ψA
i ⟩= âi F

†
IA
|Ω⟩ and |ψB

j ⟩= b̂jF
†
IB
|Ω⟩. To see this, consider a rearrangement of the creation and

annihilation operators in ρijnm such that the operators corresponding to IB are shifted to the right. Let us
then put the resolution of identity 1=

∑
n⃗1 ,⃗n2

|⃗n1; n⃗2⟩⟨⃗n1; n⃗2| between the operators acting on the modes IA
and IB. This results in:

ρijnm = ⟨Ω|FIA â
†
nâiF

†
IA
1FIB b̂

†
mb̂jF

†
IB
|Ω⟩= ⟨Ω|FIA â

†
nâiF

†
IA
|Ω⟩⟨Ω|FIB b̂

†
mb̂jF

†
IB
|Ω⟩

+
∑
n⃗1 ̸=0⃗

⟨Ω|FIA â
†
nâiF

†
IA
|⃗n1; 0⃗⟩⟨⃗n1; 0⃗|FIB b̂

†
mb̂jF

†
IB
|Ω⟩

+
∑
n⃗2 ̸=0⃗

⟨Ω|FIA â
†
nâiF

†
IA
|⃗0; n⃗2⟩⟨⃗0; n⃗2|FIB b̂

†
mb̂jF

†
IB
|Ω⟩

+
∑

n⃗1 ,⃗n2 ̸=0⃗

⟨Ω|FIA â
†
nâiF

†
IA
|⃗n1; n⃗2⟩⟨⃗n1; n⃗2|FIB b̂

†
mb̂jF

†
IB
|Ω⟩, (13)

where |⃗n1; n⃗2⟩ stands for the Fock basis state with occupancy of the modes IA and IB described by vectors
n⃗1, n⃗2, and 0⃗ stands for 0 photons in given modes. This rearrangement is possible as operators acting on
orthogonal modes IA and IB commute. One can notice that terms of the first sum appearing in (13) contain
factor ⟨⃗n1; 0⃗|FIB â

†
mâjF

†
IB
|Ω⟩ which is equal to 0. This is because all operators inside the expectation value act

only on modes IB leaving part of the bra and ket corresponding to modes IA orthogonal. Analogously, all
other sums that appear in (13) are equal to 0, and the relation is proven. Now, based on the same arguments
as above, ρXψ,l,k := ⟨ψX

k |ψX
l ⟩ forms a proper density matrix after normalization on the one-qudit space. Thus,

ρ̂Nψ = ρ̂1ψ ⊗ ρ̂2ψ/N is a separable state on the two-qudit space. For the mixed separable state, we see from (11)

that ρ̂NρF is a convex combination of pure separable states and therefore a proper separable mixed state on the
two-qudit space. Therefore, if ρ̂NρF is entangled, then ρ̂F is entangled.

Let us now address the scenario in which the matrix for the pure state is not normalizable. This was not
important for mapping of entanglement indicators [37, 38]. However, it is important if one wants to use ρ̂NρF
in a more general context as a density operator. All pure states that result in the not normalizable ρ̂Πψ have the
following form:

|ψ⟩= ζ0|Ω⟩+ F†IA
|Ω⟩+ F†IB

|Ω⟩, (14)

where ζ0 stands for amplitude of vacuum state. These states can be either separable or entangled. One can
easily find that for all such states ρ̂Πψ = 0. This tells us that for states of the form (14) this state reduction does
not allow one to access the information about their entanglement without some additional considerations.
What is more, all of them are equivalent to vacuum (which is separable) at the level of reduction to ρ̂Πψ .
Despite that, there is a way to gain access to the entanglement of such states in our description. We discuss
this further in examples. Note that such states are effectively highly unlikely to be present in experiments due
to the presence of noise, for example, thermal noise. Therefore, the important question is the impact of such
states if they are part of the mixed state ρ̂F. Without loss of generality, assume that only |ϕ0⟩ is of the
form (14):

ρ̂ΠρF = p00̂+
∑
i⩾1

pi ρ̂
Π
ϕi
→ ρ̂NρF =

∑
i⩾1

pi tr ρ̂
Π
ϕi
ρ̂Nϕi

/
∑
i⩾1

pi tr ρ̂
Π
ϕi
=
∑
i⩾1

p ′ ′
i ρ̂

N
ϕi
, (15)

where p ′ ′
i fulfill relations for probability. Therefore, even in this case ρ̂NρF is a well-defined density matrix, and

clearly the previous discussion on separability holds. In fact, the presence of the states (14) in the density
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matrix results only in renormalization of probabilities and thus neither helps to detect entanglement nor
prevents it. One can observe that all states of the form:

ρ̂F = p1
∑
j

qj|ψj⟩⟨ψj|+ p2ρ̂
′, (16)

with |ψj⟩ having the form (14) and qj,pi being independent probability distributions, are equivalent to the
state ρ̂ ′ in terms of ρ̂NρF .

Note that separability of ρ̂Πψ does not imply that ρ̂F is separable, since we use only part of the correlations.

In other words, the entanglement of the state ρ̂Πψ on the reduced two-qudit Hilbert space is a sufficient
condition for the entanglement of ρ̂F. Importantly, one has to consider at least 4 modes to reveal such a kind
of entanglement, as one has to have both reduced subsystems at least two-dimensional.

3.1. Impact of mode transformations
Note that the choice of the basis in the subsystem defined by Ii has no impact on the detection of
entanglement. This is because the local unitary transformation of the annihilation operators that constitutes
a basis transformation translates into the local change of basis in the reduced matrix ρΠ. Let us consider a
general form of such a transformation âi =

∑
kUikĉk, where ĉk are annihilation operators in some new basis,

and U ik determines the transformation between bases. Let us consider a transformation in the first
subsystem:

ρ
(a)
ijnm = ⟨ψ|â†nb̂†mâib̂j|ψ⟩=

∑
k,l

Ui,k⟨ψ|̂c†l b̂
†
mĉkb̂j|ψ⟩U∗

l,n =
∑
k,l

Ui,kρ
(c)
kjlmU

∗
l,n, (17)

where the superscript in ρ(a)ijnm denotes the basis used. This transformation is simply a basis transformation on
the subsystem. Such transformations do not affect the separability of the state.

From this we see that by choice of partition of modes our reduction procedure maps boson number
entanglement into the entanglement of two distinguishable particles with finite number of levels. The
extended reduced state ρ̂4 contains information about all partitions IA,IB. Thus, the separability of ρ̂NρF for
one partition does not necessarily mean that ρ̂4 does not contain any information on the entanglement. In
fact, ρ̂4 contains information about the boson number entanglement in any partition IA,IB after an
arbitrary unitary basis transformation of all modes, which can be seen analogously to (17). Still, sensible
partitions easily emerge in the experimental setups, where specific modes correspond to different beams
clearly determining local operations.

4. Open evolution and reduced state of the field approach

In the previous section, we effectively mapped the relevant in the context of entanglement degrees of
freedom of a state ρ̂F from the infinite-dimensional Fock space into the mixed state ρ̂NρF on two-particle-like
finite-dimensional Hilbert space. It is important to note that while ρ̂NρF possesses all mathematical features of
the density matrix, it does not inherit a probabilistic interpretation of the entries on the diagonal of the
matrix. Here, they describe the strength of linear correlations of boson numbers between given modes. This
situation is similar to the case of the RSF approach to the mesoscopic description of bosonic modes [21]. In
fact, our reduction can be seen as a higher-order extension of the RSF.

Let us briefly recall the RSF approach. The RSF formalism attempts to reduce the infinite-dimensional
description of the second quantization into a single-particle-like finite-dimensional Hilbert space of the first
quantization. This reduction is carried out as follows. Consider a density operator ρ̂F on the Fock space that
describes the state of N orthogonal modes {ak}Nk=1. This operator is reduced to two structures on the
N-dimensional Hilbert space equipped with orthonormal basis {|k⟩}Nk=1, single-particle density matrix and
averaged field:

ρ̂=
N∑

k,k ′=1

tr ρ̂Fâ
†
k ′ âk|k⟩⟨k ′|, |α⟩=

N∑
k=1

tr ρ̂Fâk|k⟩. (18)

The operator ρ̂ contains information on the occupation of modes and coherences, while |α⟩ about the local
phases of the field. Note that ρ̂ and |α⟩ after normalization have the properties of a density matrix and a pure
state, respectively; however, they do not inherit the probabilistic interpretation normally associated with
quantum states. One can see that the diagonal elements of ρ̂ represent the average occupation of modes
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instead of probabilities. The reduction of the state is also accompanied by a reduction of observables. One
can reduce a class of additive observables on the Fock space in the following way:

Ô=
N∑

k,k ′=1

ok,k ′a†k âk ′ → ô=
N∑

k,k ′=1

ok,k ′ |k⟩⟨k ′|. (19)

This construction preserves the expectation values:

tr ρ̂FÔ= tr ρ̂ô. (20)

What is important, one can find the time evolution equations for ρ̂, |α⟩ corresponding to the evolution
equation (6):

d

dt
ρ̂=− i

h̄

[
ĥ, ρ̂
]
+(|ξ⟩⟨α|+ |α⟩⟨ξ|)+

∑
j

κj

(
ûjρ̂û

†
j − ρ̂

)
+

1

2
{γ̂↑ − γ̂T↓ , ρ̂}+ γ̂↑, (21)

d

dt
|α⟩=− i

h̄
ĥ|α⟩+ |ξ⟩+

∑
j

κj
(
ûj − 1

)
|α⟩+ 1

2

(
γ̂↑ − γ̂T↓

)
|α⟩, (22)

where ĥ stands for reduced Hamiltonian (using (19)), and:

γ̂↕ =
∑
k,k ′

Γkk ′

↕ |k⟩⟨k ′|, |ξ⟩=
∑
k

ξk|k⟩, ûj =
∑
k,k ′

ujk,k ′ |k⟩⟨k ′|. (23)

This formalism is also equipped with notion of entropy:

S [ρ̂; |α⟩] = kB tr(ρ̂
α+ 1) log(ρ̂α+ 1)− ρ̂α log(ρ̂α), (24)

where kB stands for Boltzmann constant, and ρ̂α = ρ̂− |α⟩⟨α|.

4.1. Extended reduced state of the field description
The RSF formalism, while simple, has drawbacks limiting its applications. Although it is fully based on
quantum considerations, it is a highly classical description [24]. This is in the sense that RSF does not contain
information about non-classical phenomena like distillable entanglement. Therefore, it was conjectured that
RSF does not contain any information on entanglement, which was strictly shown for two-mode Gaussian
states. What is more, the entropy of this formalism has properties similar to the semi-classical Wehrl entropy
rather than the quantum von Neumann entropy. However, it turns out that the information contained in RSF
is needed to track the evolution of our reduced two-particle-like state ρ̂NρF . Moreover, this evolution can be put
into a framework that extends RSF in a natural way. This extension can be seen as the simplest extension of
RSF that adds quantum features to the formalism and is not equivalent to the covariance matrix formalism.

Let us show how our extended reduced state ρ̂4 can be incorporated into an RSF-like formalism. States
from the single-particle space of RSF contain information about particle numbers in modes. Thus, a natural
concept is to introduce a tensor product of two single-particle spaces to track correlations of particle
numbers. The extended reduced state ρ̂4 is then an operator on the two-particle Hilbert space constructed
based on two copies of the single-particle space. Note that reduction of state ρ̂F does not always have to result
in the operator ρ̂4 being Hermitian. Thus, it does not have to constitute a proper state on this Hilbert space,
but still ρ̂NρF does. We keep the whole structure ρ̂4 as it provides additional useful information on quantum
features of the state. We will exploit this information later. Moreover, ρ̂4 is necessary for deriving a closed set
of evolution equations that corresponds to (6). We build an extended reduced state ρ̂4 (5) to resemble a
single-particle density matrix ρ̂ (18), i.e. with indices of annihilation operators responsible for labeling rows
and indices of creation operators labeling columns. Analogously to (19), one can reduce the observables:

Ô4 =
∑

k1,k2,k3,k4

ok1,k2,k3,k4 â
†
k1
âk2 â

†
k3
âk4 → ô4 =

∑
k1,k2,k3,k4

ok1,k2,k3,k4 |k1,k3⟩⟨k2,k4|, (25)

with tr ρ̂FÔ4 = tr ρ̂4ô4. We also complement the reduction of the state with two additional structures, a rank
3 tensor:

β̂ :=
∑

k1,k2,k3,k4

tr ρ̂Fâ
†
k1
âk2 âk3 |k2,k3⟩⟨k1|, (26)
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and an additional operator on single-particle space:

r̂=
∑
k,k ′

Tr ρ̂Fâk ′ âk|k⟩⟨k ′|. (27)

These two structures are introduced solely in order to include coherent pumping in the evolution, which will
become apparent from the evolution equations. The evolution of operators on two-particle space also
requires tracking the evolution in a single-particle space. Thus, this two-particle reduction has to be used
together with the single-particle reduction, and the total reduced state consists of ρ̂4, β̂, r̂, ρ̂, |α⟩. The
Markovian evolution equations for operators ρ̂4, β̂, r̂ can be obtained analogously to equations (21)
and (22). This is achieved by multiplying both sides of (6) with a suitable combination of creation and
annihilation operators for a given matrix element and then tracing the resulting expressions. Then, after
some simplifications done with the commutation relation [âi, â

†
j ] = δij, the set of evolution equations can be

put in the following form:

d

dt
ρ̂4 =− i

h̄

[
ĥ⊗ 1+ 1⊗ ĥ, ρ̂4

]
+
(
|ξ⟩β̂† +

(
|ξ⟩β̂†

)τL
+(|ξ⟩⟨α| ⊗ 1)τL + β̂⟨ξ|+

(
β̂⟨ξ|

)τR
+(1⊗ |α⟩⟨ξ|)τR

)
+
∑
j

κj

(
ûj ⊗ ûjρ̂4û

†
j ⊗ u†j − ρ̂4

)
+

1

2
{(1⊗ γ̂↑ + γ̂↑ ⊗ 1)−

(
1⊗ γ̂T↓ + γ̂T↓ ⊗ 1

)
, ρ̂4}

+
(
ρ̂⊗ γT↓

)τL
+(γ↑ ⊗ ρ̂)

τL + γ↑ ⊗ ρ̂+ ρ̂⊗ γ↑ +(γ↑ ⊗ 1)τL ,
(28)

d

dt
β̂ =− i

h̄

[
ĥ⊗ 1, β̂

]
− i

h̄
1⊗ ĥβ̂+

(
ρ̂⊗ |ξ⟩+(ρ̂⊗ |ξ⟩)τL + [(̂r⊗⟨ξ|)τR ]T2

)
+
∑
j

κj

(
ûj ⊗ ûjβ̂û

†
j − β̂

)
+

1

2

(
{γ̂↑ ⊗ 1− γ̂T↓ ⊗ 1, β̂}+

(
1⊗ γ̂↑ − 1⊗ γ̂T↓

)
β̂
)
+ γ̂↑ ⊗ |α⟩+(γ̂↑ ⊗ |α⟩)τL

(29)

d

dt
r̂=− i

h̄
ĥr̂+ |ξ⟩⟨α∗|+ 1

2

(
γ̂↑ − γ̂T↓

)
r̂+T.+

∑
j

κj

(
ûjr̂û

T
j − r̂

)
. (30)

Here, we introduced the following notation: Ti stands for transposition on ith space, τ L acts on kets as
follows |n,m⟩ → |m,n⟩ and τR acts analogously on bras, and ‘T.’ stands for the transposed expression. Also,
for some operator on single-particle space ô, we denote |k2,k3⟩⟨k1|ô⊗ 1 := |k2,k3⟩⟨k1|ô, and
|k2⟩⟨k3| ⊗ |k1⟩ := |k2,k1⟩⟨k3|, and |k2,k3⟩⟨k1|⟨k4| := |k2,k3⟩⟨k1,k4|. One can observe that if there is no
coherent pumping (i.e. ∀i ξi = 0), evolution of the operators ρ̂4 and ρ̂ decouples from evolution of the rest of
the operators. Therefore, in such circumstances, ρ̂4 and ρ̂ can be considered by themselves without
considering β̂ and r̂, for which there is a lack of a quantum state-like interpretation. Note that the first term
of the evolution equation (28) for ρ̂4 resembles the Heisenberg equation, and it is responsible for the unitary
evolution generated by the Hamiltonian. The remaining terms come from decoherence and pumping terms,
as in the case of ρ̂. Let us also comment that r̂ together with ρ̂ and |α⟩ allow for reconstruction of the
covariance matrix. Therefore, the extension of RSF by r̂ is the simplest extension of RSF that gives quantum
features to this formalism. However, it is trivial in the sense that it reproduces the covariance matrix
approach, and it is also not a natural extension of this formalism. At the same time, the extension of RSF by
ρ4 follows the (multi)particle-like state interpretation of the original RSF. Thus, when coherent pumping is
omitted, it provides the simplest extension of RSF that is natural to this formalism and adds the quantum
features to the description. Still, one could make analogously further extensions of RSF using three copies of
single-particle space, and so on, to track higher-order correlations in photon numbers.

The important feature of the set of equations (21), (22) and (28)–(30) is that in fact they represent a
finite set of first order in time differential equations. Therefore, if the time dependence of ĥ, |ξ⟩, γ̂↕ is given by
simple functions, one can easily find analytic solutions. Additionally, one can solve this set order by order, as
solutions of tensors of lower order are independent of solutions for tensors of higher order. Simply, one
solves from the lowest order, i.e. |α⟩ and use the solution as non-homogeneous part for the rest of equations.

The introduction of implicit linear coupling of different modes in the system Hamiltonian
Ĥ=

∑
k,k ′ ωk,k ′a†k âk ′ is equivalent to taking a local approach in deriving the master equation where this

coupling is considered to be a perturbation. Although it allows one to work explicitly with modes in desired
basis, it is not always valid, and then a global approach should be considered (see [39] for a brief review). In
the global approach, one first diagonalizes the system Hamiltonian and then considers the evolution of
transformed modes. In the end, one transforms the obtained results by reverse unitary transformation of
modes to the original basis. As described further in the text, this can be easily done on the reduced state.
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Therefore, one can easily apply also global approach. In fact, the unitary transformation that diagonalizes the
reduced Hamiltonian ĥ is the same as the unitary transformation of modes that diagonalizes the original
Hamiltonian. This allows for consideration of the system solely from the reduced perspective.

4.2. Local evolution
If one is interested in entanglement in a given bipartition, the structure of interest is the reduced
two-particle-like state ρ̂NρF . However, based on (28), the evolution of this matrix is, in general, not
self-contained, and so the full ρ̂4 is required. Still, if the evolution is local in terms of a given bipartition, then
the evolution of ρ̂NρF is closed. In this case, ‘local’ intuitively means that the evolution does not transfer
particles between modes corresponding to two parties determined by the given bipartition or does not damp
or pump them in a correlated manner. This translates to ĥ, γ̂↕ and all ûj being block diagonal in this
bipartition, i.e. they can be written as a direct sum of matrices that act only on degrees of freedom of the given
party. This allows the projector ΠIA,IB to commute with tensor products of such block diagonal matrices as

ĥ⊗ 1 in equation (28). From this, after projecting (28) into the subspace corresponding to ΠIA,IB , we get:

d

dt
ρ̂Πρ =− i

h̄

[
ĥ⊗ 1+ 1⊗ ĥ, ρ̂Πρ

]
+ΠIA,IB

(
|ξ⟩β̂† +

(
|ξ⟩β̂†

)τL
+(|ξ⟩⟨α| ⊗ 1)τL + β̂⟨ξ|+

(
β̂⟨ξ|

)τR
+(1⊗ |α⟩⟨ξ|)τR

)
ΠIA,IB

+
∑
j

κj

(
ûj ⊗ ûjρ̂

Π
ρ û

†
j ⊗ u†j − ρ̂Πρ

)
+

1

2
{(1⊗ γ̂↑ + γ̂↑ ⊗ 1)−

(
1⊗ γ̂T↓ + γ̂T↓ ⊗ 1

)
, ρ̂Πρ }

+ΠIA,IB

[(
ρ̂⊗ γT↓

)τL
+(γ↑ ⊗ ρ̂)

τL + γ↑ ⊗ ρ̂+ ρ̂⊗ γ↑ +(γ↑ ⊗ 1)τL
]
ΠIA,IB ,

(31)

where one simply replaces ρ̂4 → ρ̂Πρ in equation (28) and projects the non-homogeneous part using ΠIA,IB .
This allows restricting the considerations of entanglement in the extended RSF to ρ̂NρF instead of tracking the
whole ρ̂4.

5. Examples: PPT criterion for multi-mode bosonic fields

We have shown that the sufficient condition for the entanglement of the full state ρ̂F is that the reduced
two-particle-like state ρ̂NρF is entangled. However, this does not mean that there exists a state ρ̂F such that ρ̂NρF
is entangled. Therefore, in the following, we show the existence of such states by presenting two examples.
What is more, we show that ρ̂NρF contains information about the entanglement for Gaussian states and for
non-Gaussian states for which the PPT criterion for the covariance matrix cannot reveal entanglement.

Because one can apply any entanglement detection method for bipartitie finite-dimensional systems to
the ρ̂NρF , let us consider one of the most widely known entanglement criteria, i.e. the PPT criterion [3]. This
criterion states that it is sufficient if partial transposition of the state results in:(

ρ̂NρF
)T2

< 0 (32)

for state ρ̂NρF to be entangled. In the simplest case of a two-qubit density matrix, the PPT criterion is a
sufficient and necessary condition for entanglement. Therefore, when ρ̂NρF is a two-qubit density matrix and
the PPT criterion does not reveal the entanglement of ρ̂NρF , then our reduced two-particle-like state is not able
to reveal any entanglement of ρ̂F. This does not imply that the state ρ̂F is necessarily a separable state. This is
because the entanglement of ρ̂NρF is only a sufficient condition for the entanglement of ρ̂F. In the case of a
larger number of modes, if the PPT criterion does not reveal the entanglement of ρ̂NρF , the reduced state
might still keep information about the entanglement of ρ̂F. However, in such a case, it has to be accessed
using a different criterion. While one needs at least four modes for considerations of entanglement using ρ̂NρF ,
in the following, we show a method of how one can also apply this methodology to reveal the entanglement
of two-mode states.

5.1. Bright squeezed vacuum
As our first example, we will use the 2× 2 bright squeezed vacuum (BSV). The non-classicality of this state
was considered in stationary scenarios, including the high photon number limit [40–42], and in the context
of correlation in Bose–Einstein condensates [43]. Let us consider four orthogonal modes and the bipartition
given by IA = {1,2}, IB = {3,4}. The BSV state is obtained by unitary evolution of the vacuum generated by
the interaction Hamiltonian [4]:

Ĥint = γ
(
â†1 â

†
4 − â†2 â

†
3

)
+ h.c., (33)
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and therefore it is a Gaussian state. Now, the BSV state can be written in the form:

|ψ−⟩=
1

cosh2 (Γ)

∞∑
n=0

tanhn (Γ)

n!

(
â†1 â

†
4 − â†2 â

†
3

)n
|Ω⟩= 1

cosh2 (Γ)

∞∑
n=0

√
n+ 1tanhn (Γ) |ψn⟩, (34)

where the parameter Γ = γt denotes the amplification gain, which is related to the power of the coherent
source impinged on the nonlinear crystal in the parametric down conversion process, and

|ψn
−⟩=

1√
n+ 1

n∑
m=0

(−1)m |(n−m) ,m;m,(n−m)⟩. (35)

Calculation of ρ̂Πψ yields:

ρ̂Πψ =


ρ1313 0 0 0
0 ρ1414 ρ1423 0
0 ρ2314 ρ2323 0
0 0 0 ρ2424

 , (36)

where we have restricted this matrix only to the subspace determined by ΠIA,IB , and

ρ1313 = ρ2424 = sinh4 (Γ) ,

ρ1414 = ρ2323 = sinh2 (Γ)cosh(2Γ) ,

ρ2314 = ρ1423 =− sinh2 (Γ)cosh2 (Γ) .

(37)

After normalization and applying the partial transpose, we find that (ρ̂Nψ )T2 has two eigenvalues:

λ1 =
1

1− 3cosh(2Γ)
,

λ2 = λ3 = λ4 =
1

3− sech(2Γ)
.

(38)

The eigenvalue λ1 is negative for all Γ> 0. Therefore, we applied the PPT criterion to show that the BSV
state is entangled for any Γ> 0 and thus for an arbitrarily high average number of bosons. As a consequence,
the two-particle space can keep information about entanglement in mesoscopic scenarios.

5.2. Single photon
A s the second example, let us also consider the state of a single photon symmetrically beam splitted into
modes a1,a3:

|Ψ⟩= 1√
2
(|1;0⟩+ |0;1⟩) = 1√

2

(
â†1 + â†3

)
|Ω⟩. (39)

This state is of particular interest as it is non-Gaussian and one cannot reveal its entanglement through the
PPT criterion for the covariance matrix (see appendix A). Clearly, this is a two-mode state, and as we argued
to apply the above entanglement criterion, one needs four modes. However, one can trivially extend the state
to four modes by including modes a2,a4 with zero photons occupying these modes:

|Ψ⟩= 1√
2
(|10;00⟩+ |00;10⟩) . (40)

Still, this state has the form (14), for which the RSF results in ρ̂ΠΨ = 0̂, and thus does not give access to
information about entanglement. One can see that such a trivial extension of the two mode state will always
result in ρ̂ΠρF not revealing entanglement. This is because for such an extension there can be at most one

nonzero matrix element ⟨â†1 â1â
†
3 â3⟩ that is necessarily positive, and so ρ̂ΠρF in such a case is always a PPT state.

Note that this can be seen as a manifestation of the fact that one is not able to observe entanglement of
two-mode entangled state with simple photon counting without ancillary states acting as a reference frame.

To avoid reaching the form (14), instead of (40), one can perform a different extension of the state to four
modes by, for example, introducing coherent states with real amplitude α in the additional modes:

|Ψ⟩= 1√
2
(|1α;0α⟩+ |0α;1α⟩) = e−α

2

√
2

(
â†1 + â†3

)( ∞∑
n=0

αnâ†2√
n!

)( ∞∑
m=0

αmâ†4√
m!

)
|Ω⟩. (41)

10
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This extension resembles performing a homodyne measurement on the single-photon state. However, for
example, the assumption of matching energy was not done at this step, which would be required to perform
the necessary interferometry for homodyne measurement. This is also not fully equivalent to performing
homodyne measurement as one is interested in measuring the number of photons instead of quadratures.
Such schemes are sometimes referred to as weak homodyne measurement [44–46]. Now, using the same
partition IA = {1,2}, IB = {3,4}, we get the following normalized reduced state ρ̂NΨ :

ρ̂NΨ =
1

α2 +α4


0 0 0 0

0 α2

2
α2

2 0

0 α2

2
α2

2 0
0 0 0 α4

 . (42)

After partial transposition, there are three eigenvalues of the resulting matrix:

λ1 =
α2 −

√
α4 + 1

2(α2 + 1)
,

λ2 =
α2 +

√
α4 + 1

2(α2 + 1)
,

λ3 = λ4 =
1

2(α2 + 1)
,

(43)

where the first eigenvalue is negative for any finite α> 0. Therefore, even for two-mode entangled states, one
can retrieve information about entanglement from the extended RSF. Note that the lowest value of λ1 is
obtained for α= 0. This is because one needs α ̸= 0 to allow normalization of the matrix, yet coherent states
do not add entanglement to the system but rather some form of noise. Thus, optimally, one should have
α≪ 1 in this scenario.

5.3. Time evolution of entanglement
Let us apply the rest of the extended RSF toolbox to consider how entanglement behaves under non-unitary
evolution resulting from decoherence coming from the environment. We first consider that one distributes a
single-photon state |Ψ⟩ between two distant parties that want to perform a weak homodyne measurement
locally to reveal the entanglement of the state. This is an interesting example because a device-independent
quantum key distribution protocol can be constructed based on such a setup [47], and maintaining
entanglement during transmission is necessary for its success. However, the state during transmission of the
photon necessarily undergoes decoherence. Let us assume that during the distribution of the state, the
transmission line is affected by the thermal environment with temperature T, while the local oscillators
(coherent states) are approximately not affected. In this scenario, the operators γ̂↕ are diagonal and fulfill the
relation: γ̂↑ = e−h̄ω/kbTγ̂↓, where ω stands for the angular frequency of the modes, and kb is Boltzmann
constant. The creation rates are given by:

Γkk
↑ = γωN(ω)(δk1 + δk3) , (44)

where δnm stands for Kronecker delta, and coefficient γω determines the coupling of the bath to modes with
frequency ω, and N(ω) = 1/(eh̄ω/kbT − 1) is Planck distribution of the average number of photons in the
bath [48]. Furthermore, as all modes are separated up to the moment of the measurement, there is also no
coupling between modes. Consequently, the Hamiltonian is simply a free Hamiltonian for four modes with
the same frequency. Based on our discussion in section 4.2, for this scenario, we can consider only the
evolution of reduced single- and two-particle states: ρ̂, ρ̂ΠρΨ . Due to the trivial free evolution Hamiltonian,
the master equation simplifies to:

d

dt
ρ̂=

1

2
{γ̂↑ − γ̂T↓ , ρ̂}+ γ̂↑, (45)

d

dt
ρ̂ΠΨ =

1

2
{(1⊗ γ̂↑ + γ̂↑ ⊗ 1)−

(
1⊗ γ̂T↓ + γ̂T↓ ⊗ 1

)
, ρ̂ΠΨ}

+ΠIA,IB ,
((
ρ̂⊗ γT↓

)τL
+(γ↑ ⊗ ρ̂)

τL + γ↑ ⊗ ρ̂+ ρ̂⊗ γ↑ +(γ↑ ⊗ 1)τL
)
ΠIA,IB .

(46)

Using initial condition for the reduced state ρ̂:

ρ̂(0) =


1
2 0 1

2 0
0 α2 0 α2

1
2 0 1

2 0
0 α2 0 α2

 , (47)
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we obtain the following time evolution of the ρ̂ΠΨ:

ρ̂ΠΨ (t) =


e−2γω tλ(λ+ 1) 0 0 0

0 1
2α

2e−γω t (2λ+ 1) 1
2α

2e−γω t 0
0 1

2α
2e−γω t 1

2α
2e−γω t (2λ+ 1) 0

0 0 0 α4

 , (48)

where λ= N(ω)(eγω t − 1). Now, in order to access information about entanglement, we apply the PPT
criterion after normalization. In the result, we find that there is again one eigenvalue that can be negative:

λ−(t) =
1

2N

[
α4 +λe−2tγω (λ+ 1)− e−5tγω

√
e6tγω (α8e4tγω −α4e2tγω (2λ(λ+ 1)− 1)+λ2 (λ+ 1) 2)

]
,

(49)

whereN stands for the normalization factor of ρ̂ΠΨ(t).
Let us first consider λ−(t) in the limit t→∞. In this case, there are two options:

lim
t→∞

λ− (t) = N(ω)
2
/
(
α2 +N(ω)

)2
for α2 ⩾ N(ω) , (50)

lim
t→∞

λ− (t) = α4/
(
α2 +N(ω)

)2
for α2 < N(ω) . (51)

Remarkably, if α ̸= 0 and the bath temperature is T= 0 (N(ω) = 0) in this limit, one has λ−(t) = 0, which
suggests that the extended RSF formalism finds the state entangled for any finite time t. To see that this is the
case, first note that:

lim
N(ω)→0

λ− (t) =
α4 −

√
α8 +α4e−2tγω

2N
. (52)

Clearly, the second term of the nominator has a higher absolute value, as it is a decreasing function of time
with the limit t→∞ equal to α4. Therefore, the second term determines the sign of the nominator to be
negative. Because the denominator is always positive (as it is the sum of expectation values containing only
photon number operators that are non-negative), we find that λ−(t) is also negative in this case for any finite
t. This certifies the entanglement of the state in the whole time range. Still, for any T> 0, the limit of λ−(t)
as t→∞ is positive, and therefore at some finite time the entanglement will no longer be seen within the
RSF formalism. Let us stress that this does not have to imply that the state is no longer entangled, as RSF
provides only a sufficient criterion. This indicates that there is no detectable entanglement of the particular
kind considered by RSF, i.e. photon number entanglement based on linear correlations. Solving λ−(t) = 0
for t, one finds that this criterion does not detect entanglement after the critical time tc:

tcγω = log

(
1+

√
2− 1

2N(ω)

)
, (53)

which clearly goes to infinity for N(ω)→ 0 and to 0 for N(ω)→∞. Interestingly, tc is independent of α and
therefore α only affects the magnitude of λ−(t) and not its qualitative behavior in terms of its sign.

Let us comment that, in general, extensions of the state do not have to be equivalent. For example, one
can try to engineer an optimal ancilla to maximally violate some Bell inequality [49]. Here, we also see this
kind of inequivalence, since the different extensions (by different coherent states) give different magnitudes
of λ−(t). In addition, one can have a completely different behavior, as found, for example, with the trivial
extension considered before. Therefore, it is interesting to see that different non-trivial extensions result in
the same tc. However, it is not a general property of all non-trivial extensions. Assuming only that the
extended part of the state is separable from the original state, one can find for the considered single-photon
state that:

ρ̂ΠΨ =


0 0 0 0

0 ⟨â†4 â4⟩
2

⟨â†2 â4⟩
2 0

0 ⟨â†4 â2⟩
2

⟨â†2 â2⟩
2 0

0 0 0 ⟨â†2 â2â
†
4 â4⟩

 . (54)

From this, one can see that any extension for which ⟨â†2 â4⟩= 0 will not find entanglement. Thus, in this
scenario, one excludes any Fock states as meaningful extensions. Performing calculations analogous to (53),
one finds:

12
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Figure 1. (a) Time evolution of λ−(t) for α= 0.5 and different values of N(ω). The solid red line presents the value of λ−(t) in
the case of unitary evolution without a thermal environment. For N(ω) = 0 value of λ−(t) converges to zero but is always
negative, showing the entanglement of the state. With increasing N(ω) the photon number entanglement starts to decay faster,
eventually disappearing. (b) Time evolution of λ−(t) for N(ω) = 0.1 and different values of α. For all values of α axis is reached
at the same time tc. The value of λ−(0) increases with α. However, the rate of growth of α greatly decreases for higher values of
α. This can be seen as the curve for α= 0.1 quickly crosses other curves while still being negative, and therefore extremely small
values of α are no longer optimal as in the unitary case.

tcγω = log

1+

√
1+ |⟨â†2 â4⟩|2/⟨â

†
2 â2â

†
4 â4⟩− 1

2N(ω)

 , (55)

which clearly depends on the form of the extension. Then, for the single-photon state (39), the optimal
extensions are the ones that maximize |⟨â†2 â4⟩|2/⟨â

†
2 â2â

†
4 â4⟩. If the ancillary state is a separable state, then by

the Cauchy-Schwarz inequality, one can find that this quantity is bounded by 1 [50]. Thus, since the
extension by coherent states saturates this bound, it gives an optimal value of tc. Figure 1 presents examples
of the evolution of the eigenvalue λ−(t) in different regimes. Clearly, entanglement becomes weaker with
time evolution, and its decay becomes faster with increasing N(ω). In general, this shows that the
single-photon entangled state is a resource that is quite robust against thermal damping when the thermal
bath has a low temperature.

Let us note that one can propose one extension which is not built from a separable state. In particular, a
second copy of the original state can be taken as such an extension. This still indicates that the observed
entanglement is due to the entanglement of the original state. However, in such a case, it is rather sensible
that the ancillary modes undergo the same evolution as the modes of the original state. This is because the
state of the ancillary modes cannot be prepared locally. Thus, for the considered scenario, one should take
the following creation rates:

Γkk
↑ = γωN(ω)δkk. (56)

For this case, tc is exactly the same as for the case of the extension by coherent states. Thus, this simple
extension by the second copy of the state is also optimal in this case.

Now, let us consider an analogous scenario for the BSV state where all modes are coupled to the thermal
environment with the same temperature during the distribution of the state between parties. Therefore, for
this case, we consider the creation rates (56). Then, using as initial conditions reduced states (36) and

ρ= diag
(
sinh2 (Γ) , sinh2 (Γ) , sinh2 (Γ) , sinh2 (Γ)

)
, (57)

we get the following solution for ρ̂Πψ :

ρ̂Πψ (t) =


ρ1313 (t) 0 0 0

0 ρ1414 (t) ρ1423 (t) 0
0 ρ2314 (t) ρ2323 (t) 0
0 0 0 ρ2424 (t)

 , (58)
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Figure 2. Comparison of tc for the single-photon state and the BSV state for different Γ as a function of N(ω). The critical time tc
for the BSV state quickly converges to the limiting case Γ→∞ and reaches a significant advantage in robustness over the
single-photon state. Still, for small values of Γ, entanglement of the single-photon state is more robust against non-unitary
evolution resulting from thermal bath.

where

ρ1313 = ρ2424 =
1

4
e−2γω t (cosh(2Γ)+ 2λ− 1)2 ,

ρ1414 = ρ2323 = e−2γω t
(
cosh(2Γ)

(
sinh2 (Γ)+λ

)
+(λ− 1)λ

)
,

ρ2314 = ρ1423 =−e−2γω t sinh2 (Γ)cosh2 (Γ) .

(59)

Applying the PPT criterion, we find that the negative eigenvalue evolves as follows:

λ1 (t) =
1

4
− 3sinh2 (2Γ)

2(8(2λ− 1)cosh(2Γ)+ 3cosh(4Γ)+ 16(λ− 1)λ+ 5)
. (60)

With the realization that the only time dependence is in λ, which for the special case of T= 0 is equal to 0,
one can see that the entanglement of the BSV state is, in fact, completely stationary under the considered
non-unitary evolution, i.e.

λ1 (t) = λ1 (0) . (61)

This shows the exceptional robustness of the BSV state to low-temperature damping. For any non-zero
temperature (T ̸= 0), there is a point in time at which the entanglement is not detected any more:

tcγω = log

(
1+

e−Γ sinh(Γ)

N(ω)

)
, (62)

and for t→∞ the eigenvalue λ1(t) converges to 1/4. Note that tc is an increasing function of the pumping
parameter with the limit

lim
Γ→∞

tcγω = log

(
1+

1

2N(ω)

)
. (63)

Compering this expression to critical time for the single-photon state (53), one can see that the critical time
for the highly pumped BSV state is more robust against this type of decoherence. Still, for small values of Γ
where the BSV state is dominated by the vacuum component, tc can be smaller than for the single-photon
state. This happens for Γ<− log(2−

√
2)/2≈ 0.27. Figure 2 shows comparison of tc for BSV state with

different values of Γ and single-photon state.

5.4. Relation with covariance matrix for Gaussian states
Let us stress that detection of entanglement in a case of some Gaussian states does not imply that ρ̂NρF can
reveal entanglement for any entangled Gaussian state. The reason for this is that while the covariance matrix
keeps full information about the Gaussian state, our ρ̂NρF stores information only about a particular type of
correlations.

The general inequivalence of these criteria for Gaussian states can be seen based on the two-mode
squeezed vacuum state. As we discussed earlier, for the trivial extension of the two-mode state, one is unable
to find the entanglement in terms of ρ̂NρF , and the proper extension has to be chosen. At the same time, the
PPT criterion for the covariance matrix finds that the state is entangled. However, choosing a suitable
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extension will allow the entanglement of the considered state to be found using ρ̂NρF . As in the case of the
single-photon state, one can take a second copy of the state as an extension to find the entanglement. Then,
the extended state is, in fact, analogous to the BSV state (with the difference that the two ancillary modes are
phase-shifted in total by π), for which ρ̂NρF keeps information about entanglement. To see this, note that the

Hamiltonian that generates the BSV state (33) consists of two commuting parts Ĥ14 and Ĥ23 acting on
different sets of modes: {a1,a4} and {a2,a3}. Thus, the unitary evolution of the modes under this

Hamiltonian factorizes as e−iĤ14t/h̄e−iĤ23t/h̄ where each exponent corresponds to two-mode squeezing. From
this it is apparent that this evolution with the vacuum as the initial state creates a product of two two-mode
squeezed vacuum states. However, squeezing parameters for these pairs of modes have the opposite sign
based on (33).

Observe also that entanglement in Gaussian states is created only through squeezing. In particular,
two-mode squeezing creates correlated particle pairs. Therefore, since this type of correlation is in the core of
ρ̂NρF , it should be efficient in detecting the entanglement of Gaussian states. Moreover, entanglement from
single-mode squeezing appears by beam splitting or, more generally speaking, by linear couplings with other
modes. From our discussion, we saw that the entanglement created by the beam splitting can be captured by
ρ̂NρF , and thus is similar in nature. Consider, as an example, a specific class of entangled Gaussian states. In
particular, assume that one starts with the state resulting from some squeezing of different pairs of modes.
Then, allow the full state of these modes to evolve based on some Hamiltonian that admits the RSF reduction
and couples only modes local to a given party. Before time evolution, one should be able to find if such a state
is entangled using ρ̂NρF based on our disscusion (this may require taking a copy of the state as the extension).
Now, the evolution equation (31) in our scenario is simply a Heisenberg equation. It generates a unitary

evolution that factorizes with respect to subsystems: e−i ĥAt/h̄ ⊗ e−iĥBt/h̄, where ĥA(B) is a reduced
Hamiltonian restricted to the modes of subsystem A (B). Now, one can write ρ̂NρF in the product basis that

diagonalizes ĥA and ĥB. Importantly, the choice of the particular local basis does not affect whether the PPT
criterion finds entanglement. Then, one is left with local free evolution that does not destroy entanglement in
the given bipartition. Thus, ρ̂NρF detects entanglement for the considered class of Gaussian states.

5.5. Maximally mixed states
Let us consider the limit t→∞ of the reduced two-particle-like state ρ̂Πψ(t) in (58). In this limit, one gets:

lim
t→∞

ρ̂Πψ (t) = diag
(
N(ω)

2
,N(ω)

2
,N(ω)

2
,N(ω)

2
)
. (64)

After normalization, this matrix corresponds to the maximally mixed state on the subspace of the
two-particle space restricted to the given bipartition. As the bath in this example was thermal and the same
for all modes, this reduced two-particle-like state corresponds to the four-mode thermal state for a given
temperature T. Note that the temperature does not affect the normalized reduced state. Similarly, for this
state, we have ρ̂= diag(N(ω),N(ω),N(ω),N(ω)), which constitutes a maximally mixed state in a
single-particle space. As the inclusion of additional separable modes in the thermal state for a given T cannot
add any new type of correlations seen in the reduced states, one can see that the thermal states always
correspond to maximally mixed states on single and two particle spaces.

6. Passive optical elements

Most optical devices include passive optical elements, such as beam splitters and phase shifters. The RSF
formalism allows for easy introduction of such elements into the system. Therefore, this formalism allows for
a straightforward analysis of experimental setups. Let us start with the phase shifter. We assume that the
beam contains the mode ai at some point in time, starts the interaction with the phase shifter at t= τ0 and
ends it at t= τe, which adds the phase to this particular mode. This can be achieved by the following
modification of the Hamiltonian:

Ĥ→ Ĥ+ϕi I[τ0,τe] (t) â
†
i âi, (65)

where I[τ0,τe](t) stands for the indicator function on the time interval [τ0, τe], and ϕi determines the phase
gain rate of ith mode. The resulting final phase shift is given by:

∆ϕ = (τe − τ0)ϕi. (66)
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The beam splitting of two modes ai, aj into two modes a ′
i , a

′
j can be effectively realized as a unitary

transformation of the corresponding annihilation and creation operators given by:(
â ′
i

â ′
j

)
=

( √
T i

√
R

i
√
R

√
T

)(
âi
âj

)
= UT

(
âi
âj

)
, (67)

where R and T stand for reflectivity and transmissivity, respectively. Before beam splitting, modes a ′
i , a

′
j are

in the ground state, and after this transformation, modes ai, aj are left empty. Therefore, their roles
interchange, and tracking modes ai, aj is of no use after the operation. Therefore, just after the operation, one
can rename the modes a ′

i , a
′
j to ai, aj, keeping the structure of the reduced state. Based on equation (17), one

can find that any unitary transformation U of annihilation operators reduces to the operator:

U→ û=
∑
i,j

Uji|j⟩⟨i|, (68)

where U ji stand for matrix elements of U. Then, under beam splitting operation, the full reduced state
transforms as follows:

ρ̂4 → ûT ⊗ ûTρ̂4û
†
T ⊗ û†T,

β̂→ ûT ⊗ ûTβ̂û
†
T,

ρ̂→ ûTρ̂û
†
T,

r̂→ ûTr̂û
T
T,

|α⟩ → ûT|α⟩.

(69)

Note that one can analogously incorporate to the analysis phase shifting in an instantaneous manner as it
results in unitary mode transformation. This reduction of unitary transformations of modes also allows one
to consider the inefficiency of the detectors, which can be modeled as a two-port beamsplitter on the path of
the mode ai with transmissivity equal to efficiency T= η and second output mode traced out. Denoting the
efficiency of the detector at mode ai as ηi, inefficient detectors can be applied by operation:

η̂ =
∑
i

√
ηi|i⟩⟨i|. (70)

Then, the reduced state ρ̂ transforms as ρ̂→ η̂ρη̂, and other parts of the reduced state transform analogously.
Assuming equal efficiency η of all detectors, one can see that entanglement of the BSV state can be

revealed for arbitrary efficiency, as the matrix ρ̂Πψ (36) is varied only by constant coefficient η2, which is
removed after normalization. Thus, after partial transposition, the eigenvalues are not changed. In fact, this
applies to any state and any entanglement criterion by the same means.

Let us go back to the unitary transformation Ud of the modes that diagonalize the original Hamiltonian
Ĥ. Clearly, the diagonalized Hamiltonian Ĥd reduces to the diagonal Hamiltonian ĥd. As the unitary
transformation of modes reduces by (68), one gets:

ûdĥû
†
d = ĥd, (71)

where the equality stands for equality of the matrices representing operators in specific basis in which hd is
diagonal. Therefore, the reduced operators ûd perform the diagonalization of the reduced Hamiltonian. On
the other hand, if one finds a unitary operator ûd that fulfills (71) for some ĥd, because the reduction of the
Hamiltonian is a bijection, one knows that there is a corresponding diagonal Hamiltonian in the Fock space
Ĥd that must be obtained by mode transformation from the original Hamiltonian Ĥ. However, since the
reduction of unitary transformations of modes is also bijective, this transformation is obtained from ûd.

6.1. Homodyne measurement and squeezed states pumping
One of the tools used in quantum optics is homodyne measurements. In such measurements on state ρ̂F, one
interferes the coherent state through beamsplitter with state ρ̂F and performs intensity measurement or
photon counting. Such schemes can be analyzed in the RSF formalism as it requires only extending the
reduced state by modes in coherent states (see the appendix B) and performing a beam splitting operation on
the obtained reduced state. However, as presented above, in some circumstances one does not even have to
mathematically perform a beam splitting operation to get access to information about entanglement.

One of the drawbacks of the RSF formalism is the absence of the possibility of direct inclusion of the
squeezing in the evolution of the system. However, there is a partial solution to this problem. In many
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experimental setups, first some modes are impulsed pumped with squeezed states coming, for example, from
parametric down conversion and then combined with the rest of the system through beamsplitters. As one
can easily calculate the reduced state for the squeezed states, analogously to the case of homodyne
measurements, one can combine the modes in squeezed states with the reduced state of the system.
Therefore, one can effectively include some form of squeezing in the system. What is more, one can also
include in such a way higher-order squeezed states [5].

7. Mandel-Q parameter and twomode entanglement

Our extension of RSF is not limited only to revealing entanglement in terms of non-classical phenomena.
One of the non-classical phenomena in quantum optics is the sub-Poissonian photon statistics of light, which
has no classical counterpart. To quantify this phenomenon, one can use the Mandel Q parameter [51]:

Qi =
⟨â†i âiâ

†
i âi⟩− ⟨â†i âi⟩

2

⟨â†i âi⟩
− 1. (72)

If Qi < 0, the state of the mode ai has sub-Poissonian statistics. This non-classical behavior is still widely
studied and used, for example, for source verification [52–54], in particular, using the time-dependent
version of this parameter. Clearly, the extended RSF formalism keeps information on photon statistics and its
time dependence in the operators ρ̂(t), ρ̂4(t) and so the Mandel Q parameter can be found as:

Qi =
tr{|i, i⟩⟨i, i|(ρ̂4 − ρ̂⊗ ρ̂)}

tr{|i⟩⟨i|ρ̂}
− 1. (73)

This is one of the reasons why one would want to include ρ̂4 in the extension of RSF instead of only ρ̂Π. The
Mandel Q parameter, which is a shifted and rescaled variance, allows for detecting non-classical behavior
internal to the state of a single mode. Still, other parts of the covariance matrix (note that this is a different
covariance matrix from the previously mentioned covariance matrix associated with quadratures) that mixes
two modes ai, aj can also be used to reveal non-classicality, which is shared among multiple modes. Let us
build a generalization of the Mandel Q parameter using the criterion for the two-mode entanglement from
[50]:

⟨â†i âiâ
†
j âj⟩− ⟨â†i âj⟩⟨â

†
j âi⟩< 0 =⇒ Qij ≡

⟨â†i âjâ
†
j âi⟩− ⟨â†i âj⟩⟨â

†
j âi⟩

⟨â†i âi⟩
− 1< 0, (74)

where we have used commutation relation [âj, â
†
j ] = 1 and the fact that ⟨â†i âi⟩ is non negative. In fact, this

parameter contains the covariance of the operators â†j âi, â
†
i âj, and clearly it highly resembles the Mandel Q

parameter asQii = Qi. In terms of RSF, one can calculate the parameterQij as:

Qij =
tr{|j, i⟩⟨i, j|(ρ̂4 − ρ̂⊗ ρ̂)}

tr{|i⟩⟨i|ρ̂}
− 1. (75)

For the maximally entangled state of a single photon shared among two modes (39), one gets
Q13 =Q31 = 1/2. For this state, the time evolution analogous to the one considered in previous sections
leads to:

Q13 =Q31 =
(4λ(λ+ 1)− 1)e−2γω t

e−γω t
(
1
2 −N(ω)

)
+N(ω)

. (76)

One can find thatQ13 = 0 at exactly the same time tc as the scenario with ancillary coherent states (53). For
Q13, adding ancillary states to reveal the entanglement turned out to be unnecessary as this parameter uses
additional information contained in ρ̂.

Let us also remark some additional similarities ofQij with Qi. ConsiderQ12 for a two-mode coherent
state in modes a1,a2 with complex amplitudes α1,α2. In this scenario, one can find that:

Q12 =
|α1|2|α2|2 + |α1|2 − |α1|2|α2|2

|α1|2
− 1= 0. (77)

Let us recall that whenever Qi = 0, the photon counting in the mode i is a Poissonian process, which is
always the case for the coherent states. Now, consider a two-mode thermal state:

ρ̂th =
∞∑
i=0

N1 (ω)
i

(N1 (ω)+ 1)i+1

∞∑
j=0

N2 (ω)
j

(N2 (ω)+ 1)j+1 |i; j⟩⟨i; j|, (78)
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where Nq(ω) is the average number of photons in mode q. For this state, one gets:

Qij = Nj (ω) . (79)

Note that for the thermal state, the Mandel Q parameter has the same value Qj = Nj(ω) that exceeds
corresponding value in the Poissonian case. One can observe the high resemblance between the values ofQij

andQii, suggesting a deeper connection between these two.

7.1. Transformation of sub-Poissonian statistics into twomode entanglement
Consider two mode state ρ̂Φ with one of the modes in an arbitrarily state ρ̂φ and the second one in the zero
photon state:

ρ̂Φ = ρ̂φ⊗ |0⟩⟨0|. (80)

The relevant reduced states for parameterQij are the following:

ρ̂=

(
⟨n̂1⟩ 0
0 0

)
, ρ̂4 =


⟨n̂21⟩ 0 0 0
0 0 0 0
0 ⟨n̂1⟩ 0 0
0 0 0 0

 . (81)

Let us now consider a scenario in which one performs the beam splitting operation on this state. Applying
beam splitting transformation (69) to the reduced states (81), one can calculate parameterQout

ij for the
output modes:

Qout
12 =

⟨n̂21⟩RT+ ⟨n̂1⟩T2 −⟨n̂1⟩2RT
⟨n̂1⟩T

− 1, (82)

Qout
21 =

⟨n̂21⟩RT+ ⟨n̂1⟩R2 −⟨n̂1⟩2RT
⟨n̂1⟩R

− 1, (83)

Qout
11 =

⟨n̂21⟩T2 + ⟨n̂1⟩RT−⟨n̂1⟩2T2

⟨n̂1⟩T
− 1, (84)

Qout
22 =

⟨n̂21⟩R2 + ⟨n̂1⟩RT−⟨n̂1⟩2R2

⟨n̂1⟩R
− 1. (85)

Note thatQout
21 +Qout

12 =Qout
22 +Qout

11 , and so entangled state resulting from the beam splitting has at least
one of the modes necessarily sub-Poissonian locally. In fact, both of them have to be sub-Poissonian as:

Qout
11 = T

⟨n̂21⟩− ⟨n̂1⟩2

⟨n̂1⟩
+R− 1= T

⟨n̂21⟩− ⟨n̂1⟩2

⟨n̂1⟩
−T= TQin

11 < 0, (86)

Qout
22 = R

⟨n̂21⟩− ⟨n̂1⟩2

⟨n̂1⟩
+T− 1= R

⟨n̂21⟩− ⟨n̂1⟩2

⟨n̂1⟩
−R= RQin

11 < 0, (87)

where we have used the fact that R+T= 1 and that the input Mandel Q parameter is as follows:

Qin
11 =

⟨n̂21⟩− ⟨n̂1⟩2

⟨n̂1⟩
− 1. (88)

Clearly, the sub-Poissonian statistics were redistributed accordingly to transmissivity. Now, it is
straightforward to obtain the following particularly important relation:

Qout
12 +Qout

21 =Qin
11. (89)

This shows that, starting from the product input state (80), the two-mode entanglement after beam splitting
is exclusively inherited from the sub-Poissonian statistics of the input state. Therefore, beam splitting
redistributes the internal non-classical photon number correlation of the state to the photon number
entanglement of the output modes. Note that due to this equality,Qout

12 +Qout
21 is lower bounded by−1 and

minimized by the input states being Fock states ρ̂φ = |n⟩⟨n|.
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8. Concluding remarks

In summary, we have proposed an extension of the reduced state of the field formalism for mesoscopic
bosonic fields. Our extension allows for tracking the evolution of particle number entanglement for systems
undergoing non-unitary Markovian evolution, which is not possible in the original reduced state of the field
approach. The extended approach allows for studying entanglement of both Gaussian and non-Gaussian
states. This was achieved by reducing the problem of entanglement of multi-mode bosonic state into the
entanglement of the two-particle state on a finite-dimensional Hilbert space. Based on the proposed
approach, we showed that particle number entanglement of multi-mode bosonic field is independent of the
efficiency of the detectors if it is the same across all detectors. Moreover, we showed that the entanglement of
the states of the beam-splitted single photon and 2× 2 bright squeezed vacuum are robust against
interaction with a low-temperature thermal environment. Furthermore, we considered the generalization of
the Mandel Q parameter constructed within the proposed approach, which describes non-classical
correlations both in a single mode and shared among different modes. Using this parameter, we showed that
the entanglement of two-mode entangled states obtained by the beam splitting of one occupied mode is
solely inherited from the sub-Poissonian statistics of the input state.

The proposed reduced state of the field description can provide a versatile and intuitive tool for the
analysis of the impact of decoherence on non-classical phenomena in multiple optical experimental setups
and consequently their designing. This is because our approach inherits multiple tools from standard
quantum mechanics of finite-dimensional systems, with only a slight change in interpretation. As analysis of
a given setup requires only specifying mesoscopic properties of the sources instead of the whole initial state,
it could be done without even invoking the Fock space. Furthermore, one can easily incorporate passive
optical elements and inefficiencies in the description of the evolution. In addition, ancillary modes and
entanglement can also be added to the system through the use of beamsplitters.

One of the important limitations of proposed formalism is the class of accessible evolution equations.
This class is restricted to master equations with terms that are at most linear in the creation and annihilation
operators. Often, it is possible to transform the considered problem into the problem described by such
evolution through employing, e.g. Bogoliubov transformations of modes and through simplifying
interactions using the mean field. However, if one wants to transform back to the original modes, one has to
consider the evolution of additional structures. This is because the information contained in ρ4 is
insufficient. Alternatively to Bogoliubov transformations, one can directly calculate the evolution of ρ4 for
quadratic Hamiltonians by including the additional structures mentioned above (see appendix C). However,
for higher-order interactions, one needs to track higher-order correlations in order to propose a sensible
approximate set of closed evolution equations. Still, whenever one cannot use the convenient evolution
equations for the reduced state described in this work, one can use the extended reduced state in the analysis
of non-classical features of the state. Another limitation of the formalism is that it is restricted to two-party
entanglement and that entanglement of the reduced state is only a sufficient criterion for entanglement.
Nevertheless, one can build analogously reduced three- and more-particle-like states and upon it consider
more involved types of entanglement.

Let us also note that since the extended reduced state of the field preserves a state-like interpretation of
reduced states and maintains a Hilbert space structure for them, one can exploit scalar product of these
Hilbert spaces for geometric-like considerations of bosonic states as, e.g. in [55]. This allows for
considerations of proximity of states in terms of reduced states and therefore for their classification in terms
of mesoscopic properties.

As we found that for both single-photon entangled state and bright squeezed vacuum the entanglement
is robust against thermal damping in low temperatures, an interesting open question arises. Is this property
universal to photon number entanglement?

The proposed extension of the reduced state of the field approach could also be used to examine different
quantum optical phenomena. Let us recall that the original reduced state of the field contained information
about the expectation values of Stokes operators, providing a generalization to the description of polarization
in terms of Jones vectors. Our extension, when restricted to two modes, additionally keeps information
about second-order polarization tensors [32, 56]. As these tensors are associated with non-classical
phenomena of hidden polarization, our approach could give additional insight into this phenomenon.
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Appendix A. Lack of entanglement detection of beam-splitted single photon by PPT
criterion applied to covariance matrix

Let us show that the PPT criterion applied to the covariance matrix does not allow for the detection of
entanglement of the state of single photon beam splitted into two modes a1 and a2:

|Ψ⟩= 1√
2
(|1;0⟩+ |0;1⟩) = 1√

2

(
â†1 + â†2

)
|Ω⟩. (A.1)

Let us recall that covariance matrix is given by:

Vi,j =
1

2

⟨{
Ξ̂i, Ξ̂j

}⟩
−⟨Ξ̂i⟩⟨Ξ̂j⟩, (A.2)

where Ξ⃗ = (x̂1, p̂1, . . . ., x̂n, p̂n) and operators x̂j, p̂j are dimensionless position and momentum operators in
jth mode:

x̂j =
1√
2

(
âj + â†j

)
, p̂j =

i√
2

(
â†j − âj

)
. (A.3)

By noting that for state (A.1) we have ⟨â†j ⟩= ⟨âj⟩= ⟨â†j â
†
i ⟩= ⟨âjâi⟩= 0 and ⟨â†j âi⟩= 1/2, one can write

down the covariance matrix for this state as:

V=
1

2


⟨2â†1 â1⟩+ 1 0 ⟨â†1 â2 + â†2 â1⟩ 0

0 ⟨2â†1 â1⟩+ 1 0 ⟨â†1 â2 + â†2 â1⟩
⟨â†1 â2 + â†2 â1⟩ 0 ⟨2â†2 â2⟩+ 1 0

0 ⟨â†1 â2 + â†2 â1⟩ 0 ⟨2â†2 â2⟩+ 1

=
1

2


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 . (A.4)

The PPT criterion for entanglement in terms of the covariance matrix is given as follows:

Q ·V ·Q− i

2
J< 0, (A.5)

where Q= diag(1,q1, . . . ,1,qn) with qj =−1 for modes corresponding to transposed subsystem and qj = 1
otherwise, and:

J=
n⊕

k=1

J2, J2 =

(
0 1
−1 0

)
. (A.6)

This criterion is necessary and sufficient condition for detecting two mode entanglement of Gaussian states
and sufficient condition for non-Gaussian states (which is a the case for (A.1)). The eigenvalues of the matrix
on the r.h.s. of inequality (A.5) for the state (A.1) are positive and equal to (2±

√
2)/2. Therefore, one does

not find entanglement with PPT criterion applied to the covariance matrix of the state (A.1).

Appendix B. Extending reduce states by separable subsystems

Often when one wants to consider multiple modes with the states of different modes prepared by different
sources. In such a case, the total state is a product state of subsystems. Let us consider the case of two
subsystems A and B with total state ρtot = ρ̂A ⊗ ρ̂B. It is often easier to construct the reduced state of the total
state using the simpler reduced states of ρ̂A and ρ̂B. This is possible as for such states we have ⟨ÂB̂⟩= ⟨Â⟩⟨B̂⟩,
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where Â, B̂ are some observables on modes corresponding to subsystems A and B. The reduced state of the
whole system can then be obtained as follows:

|αt⟩= |αA⟩+ |αB⟩,
ρ̂t = ρ̂A + ρ̂B + |αA⟩⟨αB|+ |αB⟩⟨αA|,
r̂t = r̂A + r̂B + |αA⟩⟨α∗

B|+ |αB⟩⟨α∗
A|,

β̂t = β̂A +(|α∗
A⟩̂rB)T1 +(|αB⟩ρ̂A)τL +A↔ B,

ρ̂4t = ρ̂4A + β̂A⟨αB|+(β̂A⟨αB| − |αA⟩⟨αB| ⊗ 1+ |αB⟩β̂†
A)
τR

+(|αB⟩(̂β†
A)
τR − |αB⟩⟨αA| ⊗ 1)τL +A↔ B,

(B.1)

where subscript t stands for the total state and indices A and B for the corresponding parties. Note that swap
operations τL, τR can be performed using N2 ×N2-dimensionl matrix τ̂ , where N is total number of modes:

τi,j =

{
1 ∃m,n ∈ {1 . . . ,d} : i =m+ d(−1+ n) and j = d(−1+m)+ n

0 otherwise
. (B.2)

Then, for some operator Ô, one gets:

OτL = τ̂ Ô, (B.3)

OτR = Ôτ̂ . (B.4)

Appendix C. Full second-order evolution

In a manner similar to the presented extended RSF approach, one could consider the full second-order
evolution of the system. In such a scenario, one could consider reduction of the second-order observables to
three reduced operators on single particle space:

Ô :=
∑
k,k ′

ok,k ′ â†k âk ′ +
1

2

∑
k,k ′

(
qk,k ′ âkâk ′ + q∗k,k ′ â†k â

†
k ′

)

→

ô=
∑
k,k ′

ok,k ′ |k⟩⟨k ′|, q̂ := 1

2

∑
k,k ′

(qk,k ′) |k⟩⟨k ′|, q̂∗ := 1

2

∑
k,k ′

(
q∗k,k ′

)
|k⟩⟨k ′|

 . (C.1)

Note that reducing also first-order observables:

Ô ′ =
∑
k

(
pkâk + p∗k â

†
k

)
→

(
⟨p| :=

∑
k

pk⟨k|,⟨p∗| :=
∑
k

p∗k ⟨k|

)
, (C.2)

the expectation value of the combination of such observables is given by:

⟨Ô⟩+ ⟨Ô ′⟩= Tr Ôρ̂F = tr(ô, q̂, q̂∗) · (ρ̂, r̂, r̂∗)T +(⟨p|,⟨p∗|) · (|α⟩, |α∗⟩)T . (C.3)

We can now allow any Hamiltonian that can be reduced by the procedure (C.1). We denote the reduced
Hamiltonian by the following triple (ĥ, ĥs, ĥ∗s ). The operator ĥ governs the free evolution and exchange of
photons between modes, whereas the operators ĥs, ĥ∗s correspond to single-mode and two-mode squeezing.
Introducing such an interaction Hamiltonian can correspond, e.g. to using a parametric approximation to
some modes in the system. These modes are treated as classical coherent pumping fields which are subject to,
e.g. a parametric down-conversion process in which annihilation of a single photon from the pumping field
is accompanied by creation of two photons in modes which we treat in a full quantum manner. This addition
to the formalism is similar to the addition of coherent pumping in (6). However, such an extended evolution
requires an extension of the reduced states. If one is only interested in the evolution of the original reduced
state ρ̂ the addition of r̂ is sufficient. Then, one can analogously obtain equations of motion for RSF, which
are the following:

d

dt
ρ̂=− i

h̄

[
ĥ, ρ̂
]
− 2i

h̄

(
ĥ∗s r̂

∗ − r̂ĥs
)
+(|ξ⟩⟨α|+ |α⟩⟨ξ|)+ 1

2
{γ̂↑ − γ̂T↓ , ρ̂}+ γ̂↑, (C.4)

d

dt
r̂=− i

h̄
ĥr̂− 2i

h̄
ĥ∗s ρ̂

T − i

h̄
ĥ∗s + |ξ⟩⟨α∗|+ 1

2

(
γ̂↑ − γ̂T↓

)
r̂+T., (C.5)
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d

dt
|α⟩=− i

h̄
ĥ|α⟩− 2i

h̄
ĥ∗s |α⟩+ |ξ⟩+ 1

2

(
γ̂↑ − γ̂T↓

)
|α⟩, (C.6)

where ‘T.’ stands for the transposed expression. To consider the evolution of ρ̂4, one needs to extend the
reduction by the additional reduced states:

m̂ :=
∑

k1,k2,k3,k4

tr ρ̂Fâ
†
k1
âk2 âk3 âk4 |k2,k4⟩⟨k1,k3|, (C.7)

q̂ :=
∑

k1,k2,k3,k4

tr ρ̂Fâk1 âk2 âk3 âk4 |k2,k4⟩⟨k1,k3|, (C.8)

ζ̂ :=
∑

k1,k2,k3,k4

tr ρ̂Fâk1 âk2 âk3 |k2,k3⟩⟨k1|. (C.9)

Then, the set of evolution equations is extended by:

d

dt
ρ̂4 =− i

h̄

[
ĥ⊗ 1+ 1⊗ ĥ, ρ̂4

]
− 2i

h̄

(
1⊗ ĥ†s m̂

† +
(
1⊗ ĥ†s m̂

†
)τL

− m̂1⊗ ĥs −
(
m̂1⊗ ĥs

)τR)
− 2i

h̄

((
ĥ†s r̂

† ⊗ 1
)τL

+
[(

r̂† ⊗ ĥ†s

)τL]T2

−
(
r̂ĥs ⊗ 1

)τL
−
[(

ĥs ⊗ r̂
)τL]T2

)
+
(
|ξ⟩β̂† +

(
|ξ⟩β̂†

)τL
+(|ξ⟩⟨α| ⊗ 1)τL + β̂⟨ξ|+

(
β̂⟨ξ|

)τR
+(1⊗ |α⟩⟨ξ|)τR

)
+

1

2
{(1⊗ γ̂↑ + γ̂↑ ⊗ 1)−

(
1⊗ γ̂T↓ + γ̂T↓ ⊗ 1

)
, ρ̂}

+
(
ρ̂⊗ γT↓

)τL
+(γ↑ ⊗ ρ̂)

τL + γ↑ ⊗ ρ̂+ ρ̂⊗ γ↑ +(γ↑ ⊗ 1)τL ,

(C.10)

d

dt
m̂=− i

h̄

[
ĥ⊗ 1,m̂

]
− i

h̄

(
1⊗ ĥm̂+ m̂1⊗ ĥT

)
− 2i

h̄

(
ρ̂41⊗ ĥ†s + {1⊗ ĥ†s , ρ̂4}T2 − q̂ĥs ⊗ 1

)
− 2i

h̄

(
ρ̂⊗ h†s −

[(
ρ̂⊗ h†s

)τL]T2
)
+

(
β̂⟨ξ∗|+

(
β̂⟨ξ∗|

)T2

+

[(
β̂⟨ξ∗|

)T2
]τL

+
(
ζ̂⟨ξ|

)τR)
+

1

2
{(γ̂↑ ⊗ 1)−

(
γ̂T↓ ⊗ 1

)
,m̂}+ 1

2

(
1⊗ γ̂↑m̂+ m̂1⊗ γ̂T↑ − 1⊗ γ̂T↓ m̂− m̂1⊗ γ̂↓

)
+ γ̂↑ ⊗ r̂+(γ̂↑ ⊗ r̂)τL + [(γ̂↑ ⊗ r̂)τL ]

T2 ,

(C.11)

d

dt
q̂=− i

h̄

(
ĥ⊗ 1q̂+ q̂ĥT ⊗ 1+ 1⊗ ĥq̂+ q̂1⊗ ĥT

)
− 2i

h̄

((
ĥ†s ⊗ 1m̂T

)τL
+
(
m̂ĥ†s ⊗ 1

)τR
+ ĥ†s ⊗ 1m̂+ m̂Tĥ†s ⊗ 1

)
− 2i

h̄

(
r̂⊗ ĥ†s +

(
r̂⊗ ĥ†s

)τL
+
[(

r̂⊗ ĥ†s

)τL]T2
)
− 2i

h̄

(
ĥ†s ⊗ r̂+

(
ĥ†s ⊗ r̂

)τL
+
[(

ĥ†s ⊗ r̂
)τL]T2

)
+

(
ζ̂⟨ξ∗|+

(
ζ̂⟨ξ∗|

)T2

+
(
ζ̂⟨ξ∗|

)τR
+
[(
ζ̂⟨ξ∗|

)τR]T1
)

+
1

2

(
γ̂↑ ⊗ 1+ 1⊗ γ̂↑ − γ̂T↓ ⊗ 1− 1⊗ γ̂T↓

)
q̂+

1

2
q̂
(
γ̂T↑ ⊗ 1+ 1⊗ γ̂T↑ − γ̂↓ ⊗ 1− 1⊗ γ̂↓

)
,

(C.12)

d

dt
β̂ =− i

h̄

[
ĥ⊗ 1, β̂

]
− i

h̄
1⊗ ĥβ̂

− 2i

h̄

((
β̂†1⊗ ĥ†s

)T2

+

[(
β̂†1⊗ ĥ†s

)T2
]τL

+
[(

ĥ†s ⊗⟨α|
)τR]T2

− ζ̂ĥs ⊗ 1
)

+
(
ρ̂⊗ |ξ⟩+(ρ̂⊗ |ξ⟩)τL + [(̂r⊗⟨ξ|)τR ]T2

)
+

1

2

(
{γ̂↑ ⊗ 1− γ̂T↓ ⊗ 1, β̂}+

(
1⊗ γ̂↑ − 1⊗ γ̂T↓

)
β̂
)
+ γ̂↑ ⊗ |α⟩+(γ̂↑ ⊗ |α⟩)τL ,

(C.13)
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d

dt
ζ̂ =− i

h̄

[
ĥ⊗ 1ζ̂ + ζ̂ĥT ⊗ 1+ 1⊗ ĥζ̂

]
− 2i

h̄

(
β̂ĥ†s ⊗ 1+ ĥ†s ⊗ 1β̂T1 +

(
ĥ†s ⊗ 1β̂T1

)τL)
− 2i

h̄

(
ĥ†s ⊗ |α⟩+

(
ĥ†s ⊗ |α⟩

)τL
+
[(

ĥ†s ⊗ |α⟩
)τL]T1

)
+
(
r̂⊗ |ξ⟩+ (̂r⊗ |ξ⟩)τL + [(̂r⊗ |ξ⟩)τL ]T1

)
+

1

2

((
γ̂↑ ⊗ 1− γ̂T↓ ⊗ 1

)
ζ̂ + ζ̂

(
γ̂T↑ ⊗ 1− γ̂↓ ⊗ 1

)
+
(
1⊗ γ̂↑ − 1⊗ γ̂T↓

)
ζ̂
)
.

(C.14)

Note that such an extended RSF allows for calculation of any additive observable up to fourth the order in
creation and annihilation operators.
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[42] Schlichtholz K, Woloncewicz B and Żukowski M 2022 Simplified quantum optical Stokes observables and Bell’s theorem Sci. Rep.

12 1–9
[43] Kitzinger J, Meng X, Fadel M, Ivannikov V, Nemoto K, Munro W J and Byrnes T 2021 Bell correlations in a split

two-mode-squeezed Bose-Einstein condensate Phys. Rev. A 104 043323
[44] Das T, Karczewski M, Mandarino A, Markiewicz M, Woloncewicz B and Żukowski M 2021 Can single photon excitation of two
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[47] Schlichtholz K, Woloncewicz B, Das T, Markiewicz M and Żukowski M 2023 Single-photon based quantum key distribution and

random number generation schemes and their device-independent security analysis (arXiv:2311.07451)
[48] Breuer H-P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press)
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