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Abstract

Despite more than a hundred years since the inception of quantum mechanics,
there is still much to be said about the exact nature of its transition to classical
physics. The problem has perhaps never been as relevant as today, with more
and more experimental setups comprised of few-to-many body systems, which lie
precisely in the intersection between classical and quantum. Along with these
practical developments came new theoretical tools for their description, most no-
tably, mesoscopic frameworks – self-contained formalisms streamlining the full
quantum description to be simple, yet useful in the relevant regime of particle
numbers.

Recently, one such mesoscopic framework came in the form of the reduced state
of the field (RSF), originally devised by Robert Alicki as a way to describe quantum
features of macroscopic bosonic fields, e.g. light waves. In this dissertation, we
show that RSF also serves as a viable tool for probing classicality within quantum
mechanics, and subsequently use it to investigate the classicality of symplectic time
evolution, responsible for modeling the vast majority of dynamics in contemporary
quantum-optical experiments. We fulfill our goals through a series of three papers.

First, we prepare symplectic evolution for its future study of classicality by
addressing a conceptual gap within. As we observe based on RSF, viewed from
the perspective of its usefulness in modern quantum optics, symplectic evolution
is incomplete, failing to describe certain operations available in experiment. In our
First Paper, we derive the missing component and provide its in-depth physical
interpretation, most notably as a description of random scattering and a tool for
entanglement creation in dissipative engineering.

We then advance on our main goal in our Second Paper. After analyzing vari-
ous aspects of RSF to prove its semiclassicality, most significantly demonstrating
its very limited use as a description of entanglement, we employ it to derive the
exact conditions for classicality of symplectic evolution. As we find, such evolution
is semiclassical only if it consists of passive transformations, like beam-splitters,
which have a natural interpretation within classical physics.

Finally, in our Third Paper, we supply our previous results by revisiting the
classicality of symplectic evolution from the point of view of Bogoliubov transfor-
mations: linear transformations of the field’s creation and annihilation operators
used in nearly all branches of many-body quantum physics. In particular, we
study the dynamical Casimir effect, finding that from the perspective of an open
quantum system, the effect reduces to semiclassical dissipation.
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Abstrakt

Pomimo ponad stulecia od narodzin mechaniki kwantowej, wciąż wiele pozostaje
do powiedzenia w kwestii jej przejścia do fizyki klasycznej. Temat ten nie był
być może nigdy tak ważny jak dziś, gdy coraz więcej doświadczeń wykonuje się
z udziałem kilku-do-wielociałowych układów kwantowych, leżących na granicy
między fizyką klasyczną i kwantową. Wraz z tym postępem pojawiły się też nowe
narzędzia teoretyczne do jego opisu, w szczególności teorie mezoskopowe – formal-
izmy upraszczające mechanikę kwantową bez straty dokładności na omawianych
skalach liczby cząstek.

Jedną z najnowszych takich teorii jest zredukowany stan pola (RSF), skon-
struowany oryginalnie przez Roberta Alickiego z myślą o opisie kwantowych cech
makroskopowych pól, takich jak fale świetlne. W niniejszej pracy doktorskiej
pokazujemy, że RSF służy także jako skuteczne narzędzie do badania klasyczności
w mechanice kwantowej, a następnie stosujemy je do ewolucji symplektycznej,
modelu ewolucji czasowej dominującego we współczesnej optyce kwantowej. Nasz
cel osiągamy w serii trzech artykułów.

Zaczynamy od przygotowania ewolucji symplektycznej do przyszłych badań jej
klasyczności. Jak zauważamy dzięki RSF, patrząc na ewolucję symplektyczną z
perspektywy jej użyteczności w optyce kwantowej, należy uznać ją za niepełną,
nie jest bowiem w stanie uchwycić wszystkich operacji dostępnych doświadczal-
nie. W Artykule Pierwszym wyprowadzamy dokładną postać brakującego ele-
mentu ewolucji i przedstawiamy jego szczegółową intepretację, z naciskiem na
jego użyteczność w opisie zjawiska losowego rozpraszania i tworzeniu splątania
w inżynierii dysypatywnej.

Następnie, w Artykule Drugim, wracamy do naszego celu głównego. Udowod-
niwszy półklasyczny charakter RSF, m. in. poprzez pokazanie znacznych ograniczeń
w opisie splątania w formalizmie, używamy go do wyprowadzenia ścisłych warunków
na klasyczność ewolucji symplektycznej. Jak pokazujemy, ewolucja taka jest półk-
lasyczna tylko gdy składa się z tak zwanych pasywnych operacji, takich jak dziel-
niki wiązek, które posiadają naturalną interpretację w fizyce klasycznej.

Na koniec, w Artykule Trzecim, uzupełniamy otrzymane do tej pory wyniki
drugim spojrzeniem na klasyczność ewolucji symplektycznej, tym razem z punktu
widzenia transformacji Bogoliubowa: liniowych funkcji operatorów kreacji i anihi-
lacji pola używanych w niemal wszystkich gałęziach fizyki kwantowej wielu ciał.
Za główny przykład takich transformacji obieramy dynamiczny efekt Casimira,
pokazując, że z perspektywy kwantowych układów otwartych, efekt ten redukuje
się do półklasycznego procesu dysypacji.
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Chapter 1
Introduction

Between the physics of a single particle, given by the wave function, and the
high particle number regime, successfully described by (often classical) statistical
methods, is the world of few-to-many-body systems. Today, the technological
advancements allow for experiments with trapped ions [1, 2], cold atoms [3, 4,
5] and photons [6, 7] that lie precisely in this intersection between micro- and
macroscopic ensembles (or in its vicinity). In such situations, on the one hand,
the standard description in terms of the wave function or its second-quantized
counterpart may prove too complex, often superseded by numerical simulations
relying on, e.g. the Hartree-Fock method or the density functional theory [8].
On the other hand, statistical description breaks down for such, relatively small,
particle numbers.

A proper treatment requires a mesoscopic theory [9]: an intermediate formal-
ism between quantum and classical, which takes into account only features of the
system relevant for the considered problem. Besides its value in simplifying the
theory without damaging its practical accuracy, mesoscopic treatment has at least
one more, conceptual advantage. Because it is neither quantum nor classical, com-
paring the mesoscopic description of a given phenomenon with its full quantum
or classical treatment can lead to valuable insights into the phenomenon’s degree
of classicality, and in turn, help solve the decades old problem of the quantum-
to-classical transition [10, 11]. Such conceptual considerations can even lead to
further practical gain, as classical description is typically much simpler than quan-
tum theory [12, 13, 14].

One area of physics where the problem of classicality is particularly vivid is
optics. Classicality of light has been debated for a long time, beginning as early
as in 1905 with Einstein’s explanation of the photoelectric effect [15] and the
discovery of wave-particle duality [16]. Despite progress, e.g. today it is generally
accepted that Glauber’s coherent states [17] with large amplitudes are essentially
classical [18], the issue remains largely unresolved, even when considering a single
photon [19, 20]. Similar considerations concern time evolution: both classical
and quantum electromagnetic fields evolve under the same set of four Maxwell’s
equations [21, 22].

In modern quantum optical experiments, the majority of generated states are
Gaussian, i.e. given by Gaussian characteristic functions and quasiprobability dis-
tributions [23, 24, 22]. The corresponding operations consist primarily of Gaus-
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4 CHAPTER 1. INTRODUCTION

sian transformations and measurements [25, 26] and give rise to time evolution
described by the Gorini–Kossakowski–Lindblad-Sudarshan (GKLS) equation gen-
erated by a polynomial of at most second degree in the quadrature operators.
Over the years, such a setting has featured prominently in, e.g. quantum infor-
mation processing [27, 28, 29], as well as works on entanglement [30, 31], discord
[32], purity [33, 34], fidelity [35], steering [36], decoherence [37], and even quantum
thermodynamics [38, 39], among others. Such Gaussian setup is most naturally
described in the so-called symplectic picture – a formalism built completely upon
the mean values of polynomials of up to second degree in the field’s creation and
annihilation operators. Crucially, while the symplectic picture is most closely asso-
ciated with Gaussian states of light, for which it is fully equivalent to the standard
quantum formalism [40], it can be also applied to non-Gaussian phenomena, in
which case the framework becomes mesoscopic. If so, it can be employed to probe
their classicality.

To this day, classicality of symplectic evolution, i.e. time evolution in the
symplectic picture, and, more broadly, quantum evolution of light and Gaussian
wavepackets, was investigated using a number of methods: relying on phase-space
and the Winger distribution, hybridization of quantum and classical theories, and
path integrals [41, 42, 43, 44]. The main goal of our dissertation is to approach
the problem of classicality of light in the symplectic picture using another, more
recent mesoscopic formalism of the reduced state of the field (RSF) [45]. Originally,
RSF was designed to capture the quantum features of macroscopic, and therefore
typically semiclassical, fields of a single particle type, including light fields. In
particular, the formalism was successfully applied to polarization optics, bridging
the Mueller and Jones calculi. The leading idea behind our thesis is to turn the
original interpretation behind RSF on its head and show that, complementarily to
its original goal, RSF also captures the semiclassical aspects of quantum fields. If
so, it can be used to derive the exact conditions under which symplectic evolution,
and thus all the phenomena described by it, should be considered classical.

Our ambitions are achieved over the course of three papers.
Our First Paper does not address our central problems directly, but serves as

an important building block towards it: it fills in a blank in symplectic evolu-
tion itself, in this way making its subsequent study of classicality more complete.
As discussed above, the symplectic picture, including its evolution, is designed
to describe Gaussian states, due to the latter’s relative accessibility in contempo-
rary experimental setups. However, according to recent developments in quantum
resource theories of non-Gaussianity [25, 26], Gaussian states and their convex
combinations, which together form the set of so-called quantum Gaussian states,
are equally easy to generate and manipulate. From this perspective, symplectic
evolution should be restricted not to Gaussian states, but to the more general
quantum Gaussian states. This is exactly what our First Paper addresses: fol-
lowing the time evolution in RSF [45], we choose the Lindblad operators defining
the GKLS equation to be unitary, and show that the resulting evolution fits in
with the symplectic picture. In addition, we investigate its physical interpretation,
most notably regarding random scattering, as well as in dissipator engineering.

With this missing piece found, our Second Paper advances on our main goal
of identifying the symplectic evolution’s classicality. We do it in two steps. First,
we investigate the RSF formalism itself to show that it indeed forms a semiclassi-
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cal framework: we prove that it contains at most very limited information about
quantum entanglement, and that its entropy behaves semiclassically. Then, we
compare quantum Gaussian evolution with the time evolution model associated
with RSF, deriving in this way the semiclassical subset of quantum Gaussian evo-
lution. The classicality of the obtained evolution is intuitive: it allows exclusively
passive transformations, which correspond solely to experimental operations that
are energy-preserving and can be understood by treating light as a classical wave,
such as beam-splitters and phase-shifters. This, in particular, applies to the miss-
ing scattering component found in the First Paper, which can be semiclassical
only if the scattering matrices constituting it are passive.

Finally, for our Third Paper, we again look at classicality of symplectic evo-
lution, but this time from the perspective of Bogoliubov transformations – linear
transformations of the field’s creation and annihilation operators preserving the
canonical commutation relations [46]. Although they originated in studies on
superconductivity [47, 48], today Bogoliubov transformations are considered an
indispensable tool in a much wider area of physics, including optics, magnetism
and even quantum field theory (including Unruh effect and Hawking radiation)
[49, 50, 51]. Importantly, just like quantum Gaussian evolution, they are described
by symplectic operations. In our Third Paper, we derive the exact conditions for
classicality of Bogoliubov transformations, and apply them to the particular case
of the dynamical Casimir effect – spontaneous production of particles in a medium
following from non-trivial time dependence of either its boundary or its material
coefficients [52, 53, 54, 55]. Curiously, we find that although the phenomenon is
typically considered to be exclusive to quantum field theory, it can also be seen as
a semiclassical dissipative effect.

This dissertation is organized as follows. In Chapter 2, we describe the nec-
essary preliminaries: symplectic picture, Bogoliubov transformations (including
the dynamical Casimir effect), as well as RSF. In Chapter 3, we summarize the
main results of the papers included in the dissertation. Finally, in Chapter 4, we
conclude and provide outlooks. Our papers are provided as attachments at the
end of the dissertation.

Notational remark. In this work, we employ three different formalisms for
quantum mechanics. For clarity, we use different notation for operators in each
of them. Operators associated with the standard, density operators picture are
denoted by “hats”, e.g., ρ̂. Operators associated with the symplectic picture are
denoted by capital letters with no “hats”, e.g., V . Operators associated with the
RSF framework are denoted by small letters, also with no “hats”, e.g., r.
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Chapter 2
Preliminaries

2.1 Symplectic picture

Let us consider an N -mode, continuous variable Hilbert space H =
⊗N

k=1 Hk

equipped with N pairs of hermitian quadrature operators x̂k, p̂k obeying the canon-
ical commutation relations (we set ℏ=1)

[x̂k, x̂k′ ] = [p̂k, p̂k′ ] = 0, [x̂k, p̂k′ ] = iδkk′ . (2.1)

Here and below, [·, ·] and {·, ·} denote the ordinary commutator and anticommu-
tator, respectively. As the quadrature operators form a basis of operators acting
on H, every density operator ρ̂ describing the system can be fully characterized
[56] by the complete (n = 1, . . . ,∞) set of n-th order correlation functions, or n-th
moments, of the form

⟨ξ̂l1 . . . ξ̂ln⟩ρ̂ := Tr
[
ρ̂ ξ̂l1 . . . ξ̂ln

]
, (2.2)

where we conveniently collected the quadratures operators in a single vector

ˆ⃗
ξ :=

(
x̂1, p̂1, . . . , x̂N , p̂N

)T
. (2.3)

In many scenarios, especially those involving Gaussian states, i.e. states with
Gaussian characteristic functions [23, 24, 22], sufficient information about the
system is contained within the first and second moments only. In contrast to
the infinitely-dimensional density operator, the first two moments are completely
described by a moderate number of degrees of freedom, making their analysis
much easier in comparison. In the arising symplectic picture, instead of by the
density operator, the state of the system is described by the pair (V, ξ⃗). The
2N -dimensional vector of means

ξk := ⟨ξ̂k⟩ρ̂ (2.4)

contains all the first moments, characterizing local information about the modes.
The 2N × 2N covariance matrix

Vkk′ :=
1

2
⟨
{
ξ̂k, ξ̂k′

}
⟩
ρ̂
− ξkξk′ (2.5)

7



8 CHAPTER 2. PRELIMINARIES

contains all the second moments, including non-local correlations between the
modes, such as quantum entanglement. Taking into account the fact that some
of the second moments are co-dependent [due to the canonical commutation rela-
tions (2.1)], it is easy to see that an N -mode symplectic state (V, ξ⃗) is described
by N(2N + 3) independent parameters, much fewer than the potentially infinite
number of parameters defining a generic density operator.

Crucially, all the standard notions known from the density operator picture
translate in a natural way to the symplectic picture. The canonical commutation
relations (2.1) are encoded in the symplectic form

Jkk′ := −i
[
ξ̂k, ξ̂k′

]
, (2.6)

explicitly equal to

J =
N⊕
k=1

J2, J2 :=

[
0 1
−1 0

]
. (2.7)

The Heisenberg uncertainty relations√
⟨x̂2

k⟩ρ̂ − ⟨x̂k⟩2ρ̂
√

⟨p̂2k⟩ρ̂ − ⟨p̂k⟩2ρ̂ ⩾
1

2
, (2.8)

are equivalent to [23]

V +
i

2
J ⩾ 0. (2.9)

Unitary operations ρ̂ → Û ρ̂Û † on the density operator give rise to symplectic
operations (V, ξ⃗) → (KVKT , Kξ⃗), defined as matrices preserving the symplectic
form:1

KJKT = J. (2.10)

Finally, just like any density operator can be diagonalized by a unitary operation
and is therefore described by its eigenvalues, any covariance matrix can be brought
to a diagonal form by a symplectic operation and is described by its symplectic
eigenvalues :

1/2 ⩽ ν1 ⩽ . . . ⩽ νN . (2.11)

The symplectic eigenvalues come in pairs, i.e. the diagonalized covariance matrix
reads Vdiag = diag(ν1, ν1, . . . , νN , νN).

The symplectic picture is even sufficient to certify the presence of entangle-
ment in the system, or more precisely, distillable entanglement, which is the only
form of entanglement that can be used for practical tasks, such as quantum code
encryption or teleportation [57]. According to the positive partial transpose (PPT)
criterion for continuous variable systems [58, 59], if the partial transposition of the

1Some define symplectic matrices by an alternative relation KTJK = J . However, both
definitions are completely equivalent, since when K is symplectic, so is KT . Indeed, without
loss of generality, consider KJKT = J . Then KT = JK−1J−1, which substituted into KTJK
yields J . Proof in the other direction is analogous.
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state with respect to a given bipartition is not positive semidefinite, then the state
contains distillable entanglement with respect to this bipartition. Explicitly, the
partially transposed state is not positive-semidefinite if the partially transposed
covariance matrix V PT breaks the Heisenberg uncertainty principle [23]:

V PT +
i

2
J < 0. (2.12)

which is equivalent to

ν̃− < 1/2, (2.13)

where ν̃− denotes the smallest symplectic eigenvalue of V PT . Note that the PPT
criterion is only sufficient, meaning that even if it is not fulfilled, the state may
still be entangled. However, in such a case the entanglement can only be of the
so-called bound -type, which has little practical relevance [57].

Most importantly for our purposes, the symplectic picture is also equipped with
its own, physically justified model of time evolution. In the theory of quantum
dynamical semigroups, the state of the system at time t ⩾ 0 is governed by the
Gorini–Kossakowski–Lindblad-Sudarshan (GKLS) equation [60, 61, 62]:

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+D(ρ̂) (2.14)

The system Hamiltonian, given by a hermitian non-negative operator Ĥ, is re-
sponsible for the isolated-system-like unitary evolution. The dissipator, commonly
given in its diagonalized form by the non-negative operator

D(ρ̂) =
∑
j

(
L̂j ρ̂L̂

†
j −

1

2

{
L̂†
jL̂j, ρ̂

})
(2.15)

where L̂j are the Lindblad operators, is responsible for the non-unitary part of
the dynamics caused by the coupling of the system to some external environment.
The GKLS equation is the most general trace- and complete-positivity-preserving
Markovian evolution equation for an open quantum system.

One of the main sources of motivation for studying the symplectic picture is
that, due to technical limitations, in practice we are often restricted to Hamilto-
nians that are polynomials of at most second degree in quadrature operators:

Ĥ =
1

2
ˆ⃗
ξTG

ˆ⃗
ξ, (2.16)

where G is a 2N×2N , real, symmetric matrix. Similarly, in practice, the Lindblad
operators are typically linear in the quadrature operators [63]:

L̂k = c⃗k ·
ˆ⃗
ξ, c⃗k ∈ C2N . (2.17)

The resulting evolution preserves the symplectic description: computing the time
derivative of the covariance matrix and the vector of means and assuming that
the system evolves according to the GKLS equation specified by Eqs. (2.16, 2.17),



10 CHAPTER 2. PRELIMINARIES

the corresponding differential equations for the covariance matrix and the vector
of means are [30, 33, 37]

d

dt
V = FG(V ) + FL(V ),

d

dt
ξ⃗ = fG(ξ⃗) + fL(ξ⃗).

(2.18)

Here,

FG(V ) := JGV − V GJ,

fG(ξ⃗) := JGξ⃗,
(2.19)

are the Hamiltonian terms, while2

FL(V ) := JICV + V ICJ + JRCJ
T ,

fL(ξ⃗) := JIC ξ⃗,
(2.20)

with RC ≡ reC†C, IC ≡ imC†C and Ckl := (c⃗k)l, originate from linear Lindblad
operators (2.17). We stress that for a generic GKLS equation, the time differentials
of V and ξ⃗ would depend not only on V and ξ⃗ themselves (and the parameters
defining the dissipator), but also third and higher moments, typically leading to
an infinite, unsolvable hierarchy of equations. It is only due to the specific choice
of the Hamiltonian and Lindblad operators that the equations close with respect
to the first two moments.

Because the evolution (2.18) preserves the set of degrees of freedom associated
with the symplectic picture, and the symplectic picture contains the full infor-
mation about Gaussian states, it follows that the evolution preserves the set of
Gaussian states. For this reason, Eq. (2.18) is often called Gaussian evolution.
Nonetheless, the symplectic picture and its evolution can be useful also for non-
Gaussian input states, accounting for a variety of phenomena, including quantum
squeezing and creation of (distillable) entanglement. The only downside is that for
non-Gaussian input, the description is incomplete in comparison to the standard
quantum formalism. We remark that symplectic time evolution is known to have
exact solutions [64, 65, 66] and is well-studied using, e.g. Green functions [67, 68].
Symplectic evolution was also studied by us in the context of stabilizing states
against decoherence in two of our papers not included in this dissertation [OP3,
OP5].

Due to the ability of the symplectic picture to describe a wide range of phe-
nomena (local and non-local correlations, Heisenberg uncertainty principle, time
evolution, etc.) despite being built upon only a limited number of the system’s
degrees of freedom, it defines a mesoscopic formalism, i.e. an intermediate formal-
ism between the full quantum mechanics, and the, in comparison radically simple,
classical mechanics. In this thesis, we make heavy use of another mesoscopic for-
malism, the reduced state of the field. However, before we define it, let us have
one more look at symplectic evolution, this time from a different perspective.

2We note the Hamiltonian term and the “linear” dissipative term are typically combined in a
single term given by A = J(G+ IC), so that the evolution reads dV/dt = AV +V AT + JRCJ

T .
In this work, however, we study the Hamiltonian and the dissipative dynamics separately.
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2.2 Bogoliubov transformations

A special class of symplectic evolution is given by Bogoliubov transformations,
that is, linear transformations ˆ⃗

ξ → ˆ⃗
ξ′ of the quadrature operators preserving the

canonical commutation relations (2.1) [47, 48, 46]. Let us assume a closed system
undergoing a unitary transformation:

ρ̂′ = Û ρ̂Û †. (2.21)

Note that Û may depend smoothly on time – in such case, it gives rise to Bogoliubov
evolution. For the transformation/evolution to be of the Bogoliubov-type, Û must
be such that, for a real matrix K,

ξ̂′n =
2N∑
m=1

Knmξ̂m. (2.22)

The notation K for the matrix is not a coincidence – in order for the canonical
commutation to be satisfied, K must by symplectic, i.e. fulfill Eq. (2.10).

A slightly different equation arises if instead of the quadrature operators, we
consider the annihilation and creation operators

âk :=
1√
2
(x̂k + ip̂k) , â†k =

1√
2
(x̂k − ip̂k) , (2.23)

with the canonical commutation relations (2.1) now reading[
âk, â

†
k′

]
= δkk′ ,

[
âk, âk′

]
=
[
â†k, â

†
k′

]
= 0. (2.24)

Since this is the language most often used in the context of Bogoliubov transforma-
tions, we adopt it here as well. Collecting the creation and annihilation operators
in the vector ˆ⃗

A as

Ân :=

{
ân, n ∈ {1, . . . , N}
â†n, n ∈ {N + 1, . . . , 2N}

. (2.25)

we find that the transformation is of the Bogoliubov-type if and only if

Â′
n := Û †ÂnÛ =

2N∑
m=1

XnmÂm, (2.26)

with X a complex matrix fulfilling the complex symplectic property [69, 70]:

XSX † = S, (2.27)

where S = diag
[
1N ,−1N

]
and 1N denotes the N × N identity matrix. Due to

the symplectic property,

X =

[
X↑ X↓
X ∗

↓ X ∗
↑

]
, (2.28)
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where X↕ are arbitrary complex matrices of size N × N . Note that the sym-
plectic condition (2.27) is nothing more but a complexification of Eq. (2.10), a
consequence of replacing the real-valued quadrature operators by the creation and
annihilation operators. The two conditions are formally equivalent.

In the more general case of an open system, the total density operator of the
system and environment is as well transformed according to Eq. (2.21). However,
we are only interested in the state of the system, given by a partial trace over the
degrees of freedom of the environment:

ρ̂S = TrE ρ̂. (2.29)

The Bogoliubov transformation itself (2.26) remains the same. Still, assuming the
system and the environment span NS and NE modes respectively, it is convenient
to additionally split the matrices entering the block decomposition (2.28) into

X↑ =

[
X↑S X↑C
X↑C′ X↑E

]
, X↓ =

[
X↓S X↓C
X↓C′ X↓E

]
, (2.30)

where X↕S is an NS ×NS matrix associated with the system, X↕E is an NE ×NE

matrix associated with the environment, and X↕C , X↕C′ are appropriately-sized
matrices associated with both. Note that the case of the closed system can be
retrieved easily by setting NE = 0 (which, in particular, implies X↕ = X↕S) and
dropping the then-redundant lower indices S.

2.2.1 Dynamical Casimir effect

From a formal point of view, Bogoliubov transformations essentially define a
change of basis of the Hilbert space. For this reason, their applicability is near
universal, including solid-state physics, quantum optics and quantum field theory
[47, 48, 49, 50, 51]. Bogoliubov transformations were also used by us in the con-
text of optical metrology in [OP1, OP2]. One of the most celebrated phenomenons
originating from a Bogoliubov transformation is the dynamical Casimir effect, a
generalization of the Casimir effect [71, 72, 73, 74] defined by a spontaneous pro-
duction of particles in a medium following from non-trivial time dependence of
either its boundary or its material coefficients [52, 53, 54, 55].

A particularly interesting case of the dynamical Casimir effect takes place in
an accelerating medium, a case unique due to the absence of medium boundaries
[75, 76]. Consider the Maxwell equations in vacuum [21, 22]:

∂tD⃗(r⃗, t) = ∇⃗ × H⃗(r⃗, t), ∇⃗ · D⃗(r⃗, t) = 0,

−∂tB⃗(r⃗, t) = ∇⃗ × E⃗(r⃗, t), ∇⃗ · B⃗(r⃗, t) = 0.
(2.31)

where D⃗ and E⃗ describe the electric field and B⃗ and H⃗ describe the magnetic field.
Solving these equations in the Heisenberg picture for the case of a medium, which
is accelerating for some set period t ∈ [0, T ], eventually leads to a Bogoliubov
transformation of the form [75]

âR,out(k⃗) = e−iϕ
[
fR+âR,in(k⃗) + fR−â

†
L,in(−k⃗)

]
,

â†L,out(−k⃗) = e−iϕ
[
fL+âR,in(k⃗) + fL−â

†
L,in(−k⃗)

]
,

(2.32)
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where (âR,in, âR,out)(k⃗) and (âL,in, âL,out)(−k⃗) are the initial and final annihilation
operators for right- and left-helicity photons with wave vectors ±k⃗, while ϕ, fL±,
fR± are certain functions of time originating from solving the Maxwell equations.3

By considering system initially in the vacuum and computing the photon num-
ber densities after the motion, we obtain

⟨n̂R(T )⟩ = ⟨0|â†R,out(k⃗)âR,out(k⃗)|0⟩ = |fR−|2δ(0),

⟨n̂L(T )⟩ = ⟨0|â†L,out(k⃗)âL,out(k⃗)|0⟩ = |fL+|2δ(0),
(2.33)

where δ(0) is the Dirac delta singularity. As was verified in [75, 76], at least
for some wave vectors these numbers are monotonically growing functions of T .
Therefore, the motion of the medium results in a potentially unbounded particle
production in the vacuum and, hence, the prediction of the dynamical Casimir
effect.

2.3 Reduced state of the field
A different mesoscopic formalism was recently introduced in [45] in the form of
the reduced state of the field (RSF). The main idea was to describe macroscopic
bosonic fields, such as electromagnetic fields or gravitational waves, which are
usually considered to be semiclassical, from the quantum point of view.

Let us go back to the GKLS equation (2.14) and consider the dissipator in its
most general, non-diagonal form:

d

dt
ρ̂ =− i

[
Ĥ, ρ̂

]
+
∑
k,k′

Bkk′

(
Ĵkρ̂Ĵ

†
k′ −

1

2

{
Ĵ†
k′ Ĵk, ρ̂

})
. (2.34)

Here, Ĵk are the jump operators and B is a non-negative matrix. [The original
equation (2.14) is obtained by diagonalizing the non-Hamiltonian part.] In the
formalism of RSF, it is assumed that macroscopic fields can be approximately
treated as a set of individual particles subject to spontaneous decay and produc-
tion, as well as interaction with coherent classical sources and random scattering
by the environment.

In such a setting, the arising Hamiltonian is [45]:

Ĥ =
N∑
k=1

(
ωkâ

†
kâk + iζkâ

†
k − iζ∗k âk

)
. (2.35)

Here, the first term is nothing but the base Hamiltonian for bosonic fields, with
the positive frequencies ωk defining the energy levels of the system. The remaining
two terms correspond to an interaction of the input state with an N -mode coherent
state |ζ⃗⟩ (which can be considered classical for large amplitudus) in an asymmetric
beam-splitter [77].

For the dissipator, three families of jump operators were considered [45]:

• spontaneous decay of particles in the field, given by

Ĵk = âk, Bkk′ = Γk′k
↓ (2.36)

3For the (lengthy) details we refer the Reader to our Third Paper.
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• spontaneous creation of particles in the field, given by

Ĵk = â†k, Bkk′ = Γk′k
↑ (2.37)

• random scattering [78, 79, 80], given by

Ĵk = Ûk, Bkk′ = ηkδkk′ (2.38)

with ηk ⩾ 0,
∑

k ηk = 1 and Ûk unitary operations producing simplified
Bogoliubov transformations (2.26) of the form

Û †
k âmÛk =

N∑
l=1

(uk)mlâl, (2.39)

where uk are unitary matrices themselves (of size N ×N).

Similarly to how the dynamics assumed in the previous section preserve the
symplectic description (V, ξ⃗), the dynamics assumed here for the macroscopic fields
preserve RSF (r, |α⟩), consisting of two objects: the single-particle density matrix

r :=
N∑

k,k′=1

Tr
[
ρ̂ â†k′ âk

]
|k⟩⟨k′| (2.40)

and the averaged field

|α⟩ :=
N∑
k=1

Tr
[
ρ̂ âk

]
|k⟩. (2.41)

Just like the symplectic picture, RSF forms a self-contained, mesoscopic formal-
ism. Like the covariance matrix V , the single-particle density matrix r contains
the simplest non-local information about the system, with the averaged field |α⟩
containing local information akin to vector of means ξ⃗. Note that the RSF com-
ponents are of dimension N only.

Other properties of quantum systems also translate naturally to RSF. For
example, RSF is equipped with a dedicated measure of entropy. Derived from the
von Neumann entropy (we set kB = 1)

SV (ρ̂) := −Tr ρ̂ ln ρ̂ (2.42)

through the maximum entropy principle [81, 82], the reduced (von Neumann) en-
tropy equals [45]

sv(ρ̂) = tr[(rα + 1N) ln(rα + 1N)− rα ln rα], (2.43)

where rα defines the non-negative correlation matrix :

rα := r − |α⟩⟨α| ⩾ 0. (2.44)

The reduced entropy satisfies the natural condition sv(ρ̂) ⩾ 0, with equality if
and only if the correlation matrix is equal to zero, which happens only when the
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density operator of the field is given by a coherent state. In contrast, the von
Neumann entropy vanishes for any pure state.

Importantly, due to the fact that RSF is preserved by the dynamics given by
(2.35) and the three families of jump operators (2.36-2.37), substituting these into
the GKLS equation (2.34) leads to closed evolution equations for RSF, dubbed
the reduced kinetic equations [45]

d

dt
r =− i

[
h, r
]
+ |ζ⟩⟨α|+ |α⟩⟨ζ|

+
1

2

{
γ↑ − γ↓, r

}
+ γ↑

+
∑
k

ηk
(
ukru

†
k − r

)
,

d

dt
|α⟩ =− ih|α⟩+ 1

2

(
γ↑ − γ↓

)
|α⟩+ |ζ⟩

+
∑
k

ηk
(
uk − 1N

)
|α⟩.

(2.45)

Here,

h :=
N∑
k=1

ωk|k⟩⟨k|, (2.46)

|ζ⟩ :=
N∑
k=1

ζk|k⟩, (2.47)

γ↕ :=
N∑

k,k′=1

Γkk′

↕ |k⟩⟨k′| (2.48)

are the single-particle counterparts to Ĥ, ζ⃗ and Γ↕, respectively, while uk are fixed
by Eq. (2.39). Let us stress that, in an analogy to symplectic evolution (2.18), the
reduced kinetic equations are closed with respect to RSF: the time differentials of
r and |α⟩ depend only on r and |α⟩ themselves and not other correlation functions.
This is true only because of the specific choice of dynamics assumed for the system.

Looking at the definitions of the single particle density matrix (2.40) and the
averaged field (2.41), and remembering that the creation and annihilation opera-
tors are related to the quadrature operators by a linear transformation (2.23), it
is clear that RSF is built solely upon first and second moments, and therefore has
to be strictly contained within the symplectic picture (which encompasses all such
moments). Counting the (real) degrees of freedom for an N -mode RSF, we get
only N2 + 2N , compared to the previously obtained 2N2 + 3N for the symplectic
picture. A natural question arises: what information is missing in RSF compared
to the symplectic description? Specifically, what physical processes described by
symplectic evolution (2.18) cannot be described by the reduced kinetic equations
(2.35)? Furthermore, how to interpret the reduced von Neumann entropy (2.43)?
Is the Heisenberg uncertainty principle (2.8) contained within RSF? As we will
see, answering these questions will be a key step in our identification of symplectic
evolution’s classicality.
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Summary of dissertation

3.1 Dissipative evolution of quantum Gaussian
states [First Paper]

As said above, due to its full reliance on first and second moments only, the RSF
formalism has to be contained within the symplectic picture. However, a close
inspection of the two frameworks’ evolution equations leads to a discrepancy with
this view. The dissipator in the symplectic evolution equation (2.18) is derived
from the Lindblad operators (2.17), which are linear in the quadrature operators.
And although the RSF’s first two families of jump operators (2.36-2.37) are also
linear, and therefore necessarily compatible with the symplectic picture, the last
family consists of jump operators which are unitary (2.38), and are thus beyond
the assumed model of symplectic evolution. This means that symplectic evolution,
as given by Eq. (2.18), is incomplete, in the sense that there must exist unitary
Lindblad operators compatible with it. Before we can analyze the classicality
of symplectic evolution, we therefore have to first find and give meaning to this
missing component. This is exactly the goal of our First Paper, whose main results
are summarized by us in this section.

3.1.1 Dissipative evolution stemming from unitary Lind-
blad operators

Let us go back to the GKLS equation (2.14). Being interested in the dissipative
part of the equation only, we disregard the Hamiltonian term. As for the dissipator,
we follow the seminal papers within the field of quantum dynamical semigroups
[78, 79, 80], as well as some more recent works [45, 83], and consider the particular
case of M Lindblad operators, all proportional to unitary operators:

L̂j =
√
γjÛj, (3.1)

where we introduce γj ⩾ 0 to account for different dissipation strengths from
different Lindblad operators. The corresponding GKLS equation reads as

d

dt
ρ̂ =

M∑
j=1

γj

(
Ûj ρ̂Û

†
j − ρ̂

)
. (3.2)

16
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For convenience, we assume that γj are normalized as
∑M

j=1 γj = 1.
As we show in our First Paper, if

Ûj = e−iĥj , (3.3)

for some hermitian operators ĥj being polynomials of at most second degree in
quadrature operators, the resulting evolution (3.2) is indeed compatible with the
symplectic picture. As is well known, every unitary operator of the form produces
a Bogoliubov transformations according to Eq. (2.22). Based on this, our First
Paper proves that Eq. (3.2) implies

d

dt
V =

M∑
j=1

γj

[
KjV KT

j − V + Fj(ξ⃗)
]
,

d

dt
ξ⃗ =

M∑
j=1

γjKj ξ⃗,

(3.4)

where

Fj(ξ⃗) = (Kj − 12N)ξ⃗ξ⃗
T (KT

j − 12N). (3.5)

As seen, the equations are closed with respect to (V, ξ⃗).
To simplify our considerations, we note that in typical applications of symplec-

tic evolution, concerning e.g. quantum entanglement, the vector of mean values is
irrelevant. For this reason, later on we assume ξ⃗(0) = 0, in which case Fj(ξ⃗) = 01

and the evolution simplifies to

d

dt
V =

M∑
j=1

γj
[
KjV KT

j − V
]
. (3.6)

The striking similarity between the above equation and the last term in Eq. (2.45)
tells us that the former is exactly the component of symplectic evolution that
was missing in comparison to the reduced kinetic equations. It remains to see
what this new component means from the physical point of view, so that we can
successfully assess its classicality later. Following our First Paper, below we will
demonstrate that depending on the number and nature of the unitary Lindblad
operators, Eq. (3.2) and its symplectic representation (3.6) can have radically
different applications, ranging from random scattering to engineered dissipation.

Before we do that, however, let us briefly discuss the issue of Gaussianity of the
above evolution. As said previously, one of the main motivations for the study of
Gaussian states is that this is exactly the group of states preserved by symplectic
evolution, as given by Eq. (2.18). However, as observed recently within the
context of resource theories of non-Gaussianity [25, 26], the same experimental
tools that allow for working with Gaussian states are viable for working with
quantum Gaussian states, a generalization of the set of Gaussian states consisting

1To see this, consider the bottom line of Eq. (3.6). Solving for the vector of means, we
immediately obtain ξ⃗(t) = exp[ΣM

j=1γjKjt]ξ⃗(0), which vanishes for ξ⃗(0) = 0. Obviously, this
implies Fj(ξ⃗) = 0.
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of Gaussian states and their convex combinations [84, 85, 86]. As we show in our
First Paper, this is exactly the set of states preserved by the dissipative evolution
stemming from the unitary operators (3.3). Therefore, such evolution is just as
natural to consider in experiment as the standard symplectic dynamics. In fact,
both forms of dynamics can be freely combined, promoting the usual Gaussian
evolution to a quantum Gaussian one. For example, one may introduce generic
quantum Gaussian noise into an otherwise Gaussian system, as considered by us
in the context of counteracting decoherence in one of our other papers [OP3].

3.1.2 Random scattering

The original articles [79, 80] that inspired our choice of unitary Lindblad operators
associate such choice with random scattering. In our First Paper, we argue further
behind this interpretation by employing the collision model [87, 88, 89]. In this
model, the initial system is coupled to an infinite number of identical copies of
ancilla η̂. The total initial state is separable:

ρ̂T (0) = ρ̂(0)⊗ η̂ ⊗ η̂ ⊗ . . . (3.7)

During each time step ∆t, a unitary operation Ŵ1 acts on the system and the first
ancilla, after which the latter is traced out. Since the corresponding total state
has the same form as initially (3.7):

ρ̂T (∆t) = ρ̂(∆t)⊗ η̂ ⊗ η̂ ⊗ . . . (3.8)

the second and further steps are fully analogous. This results in a recurrence
relation

ρ̂(n∆t) = Trη{Ŵn[ρ̂[(n− 1)∆t]⊗ η̂]Ŵ †
n}. (3.9)

For our purposes, we adopt the most general general version of the collision model
[88], in which the unitary operators Ŵn are unrestricted:

Ŵn = T exp

(
−i

∫ n∆t

(n−1)∆t

dτ ŵn(τ)

)
(3.10)

where T is the time-ordering operator and the time-dependent Hamiltonian ŵn can
act on both the system and the n-th ancilla in an arbitrary way. Through a proper
choice of the ancilla and the unitaries, the collision model can emulate a wide range
of dynamics, making it a popular tool in studies of optics, thermodynamics, non-
Markovianity, and many others [88, 89].

As we show in our First Paper, the collision model reproduces the evolution
equation (3.2) if the ancillas are chosen to be qudits of dimension d = M + 1 in
the ground state,

η̂ = |0⟩⟨0|, (3.11)

and Ŵn are generated by the following Hamiltonian:

ŵn(τ) = ôn(τ) +
∞∑

m=−∞

M∑
j=1

δ(τ −m∆T )ĥj ⊗ |j⟩⟨j|. (3.12)
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Here, ôn is defined to be a generator of an orthogonal transformation

Ô(∆t) = T exp

(
−i

∫ n∆t

(n−1)∆t

dτ ôn(τ)

)
(3.13)

such that its action on the ancilla is

Ô(∆t)|0⟩ =
√
1−∆t|0⟩+

√
∆t

M∑
j=1

√
γj|j⟩. (3.14)

Furthermore, δ(τ − m∆T ) is the Dirac delta distribution centered at the point
τ = m∆T , while ĥj are the generators of the unitary transformations entering the
evolution equation (3.2), i.e. they are given by Eq. (3.3).

Notably, the Hamiltonian (3.12) has a well-known structure of the kicked top
[90, 91, 92], a model generally characterized by Hamiltonians consisting of stan-
dard, smooth hermitian generators (in our case given by ôn) periodically disturbed
(in our case with period length ∆T ) by a Dirac-delta potential, leading to chaotic
behaviour. Due to its relative simplicity and ease of implementation in terms of
qubits, the kicked top is the theoretical [92] and experimental [93] go-to model for
testing the implications of dynamical chaos on quantum phenomena (such as, e.g.
entanglement).

Let us now examine how these results connect to random scattering. Each
collision can be seen as a single scattering event in the medium described by
ancillas in the state (3.14). Crucially, the probability that the system will be kicked
by the j-th Hamiltonian ĥj depends on γj through eqs. (3.12, 3.14). For a large
number of mutually non-commuting unitaries, the uncertainty in the outcome state
is large. In particular, in the limit of infinite unitaries the outcome probabilities
γj may be replaced by a probability measure µ(dU) on the unitary group, yielding
a scattering integral [78]

d

dt
ρ̂ =

∫
dµ(U)

(
Û ρ̂Û † − ρ̂

)
. (3.15)

Meanwhile, because the ancillas are traced out after each collision, the state of the
bath is constant throughout the whole interaction, fulfilling the expectation that
scattering should not affect the bath. These results are consistent with previous
findings [80, 94] that unitary Lindblad operators can be interpreted as the S-
matrices of a system interacting with a dilute gas.

As a final remark, we observe that, as shown explicitly in our First paper,
for an initial Gaussian state the time-evolved state in the discussed equation is
quantum Gaussian. Combining this with the above analysis, we can see that the
latter family can be obtained from the former by simply subjecting it to random
scattering, which may be regarded as pure noise. This further strengthens the
practical connection between Gaussian and quantum Gaussian states, in particular
supporting the developments made over the last decade to construct measures of
quantum non-Gaussianity [95, 96, 97], which, contrary to the more traditional
measures of non-Gaussianity [98, 99, 100, 101, 102] do not assign positive values
of the resource to convex combination of Gaussian states.
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3.1.3 Entanglement creation in two-mode states

As a final major result of our First Paper, we consider an engineered dissipation
scenario, in which we use the discussed evolution equation for creation of two-mode
entanglement from a system initially in the vacuum state

ρ̂(0) = |00⟩⟨00|, (3.16)

which is separable and Gaussian. For the evolution, we choose a single Lindblad
operator from the one-parameter family of unitary two-mode squeezing operators

L̂ = Ûr := eiĥr , ĥr = −ir(â†1â
†
2 − â1â2), (3.17)

where r > 0 is the squeezing strength. Let us stress that, from the physical point
of view, the evolution given by such a Lindblad operator is not at all equivalent to
a “smooth” unitary evolution given by a squeezing Hamiltonian Ĥ = ĥr. Instead,
here, the squeezing should be understood as a series of regular, infinitely strong
but infinitesimally short squeezing kicks, as discussed in the previous section.

To fulfill our goal, our First Paper first derives explicit solutions to both Eqs.
(3.2, 3.6) for the general case of a single Lindblad operator. Then, these results are
applied to the specific case at hand, yielding the following time-evolved covariance
matrix of the system:

V (t) =

[
A(t) C(t)
C(t) A(t)

]
, (3.18)

where

A(t) =
1

2
e2t sinh

2 r cosh (t sinh 2r)

[
1 0
0 1

]
,

C(t) =
1

2
e2t sinh

2 r sinh (t sinh 2r)

[
1 0
0 −1

]
.

(3.19)

We then proceed in two steps. In the first step, we use the PPT criterion (2.12)
to certify that the state is entangled. To this end, we first calculate the smallest
symplectic eigenvalue ν of the partially transposed covariance matrix, finding

ν̃−(t) =
1

2
exp

[
−
(
1− e−2r

)
t
]
. (3.20)

It is easy to see that this always satisfies (2.13), meaning that the state is entangled
at all times t > 0.

In the second step, we assess how much entanglement is contained in the time-
evolved state. Note that even though the initial state is Gaussian, the time-evolved
state is only quantum Gaussian (i.e. it is a convex combination of Gaussian states),
meaning that we cannot use one of the (relatively easy to calculate) Gaussian
measures of entanglement. Instead, we consider squashed entanglement, which for
a generic bipartite state σ̂ABis defined as [57, 103, 104]

Esq(σ̂AB) :=
1

2
inf

σ̂ABE

I(A : B|E), (3.21)
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where I(A : B|E) := SV (σ̂AE) +SV (σ̂BE)−SV (σ̂E)−SV (σ̂ABE) is the conditional
mutual information, σ̂X are the (reduced) density operators of (sub)systems X
and the minimization is over all pure states σ̂ABE such that σ̂AB = TrE σ̂ABE.
Like other entanglement measures defined in terms of optimization over a set of
states, squashed entanglement is notoriously difficult to calculate [105]. Therefore,
we instead compute a lower bound for it and show that it is an asymptotically
unbounded function of time (corresponding to maximal possible amount of entan-
glement).

We begin by observing that, due to the extremality of Gaussian states with
respect to continuous, superadditive entanglement measures [106], the squashed
entanglement of any state σ̂ is lower-bounded by the squashed entanglement of
a Gaussian state σ̂G with the same covariance matrix. Furthermore, squashed
entanglement of any state is lower-bounded by so-called distillable entanglement
Edist [103], which, in turn, is lower-bounded by the coherent information [107, 108]

IC(σ̂) := SV (σ̂A)− SV (σ̂), (3.22)

where σ̂A = TrB σ̂. This means that we have the following chain of inequalities

Esq[ρ̂(t)] ⩾ Esq[ρ̂G(t)] ⩾ Edist[ρ̂G(t)] ⩾ IC[ρ̂G(t)] = SV [ρ̂G,A(t)]− SV [ρ̂G(t)], (3.23)

where ρ̂G(t) is a Gaussian state with the same covariance matrix (3.18) as our state
and ρ̂G,A(t) = TrB ρ̂G(t). Crucially, both von Neumann entropies on the r.h.s. are
relatively simple functions of the symplectic eigenvalues of the respective state
[109]. Calculating them explicitly for asymptotically large times, our First Paper
finally leads to the following bound:

Esq[ρ̂(t)] ⩾ −2 + 4t sinh2(r)[coth(r)− 1], (3.24)

Clearly, the r.h.s. is a linear function in t with positive slope, since coth(r) > 1
for all r > 0. Therefore, the r.h.s. is asymptotically infinite, and thus the same is
also true for squashed entanglement itself. This is what we wanted to show.
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3.2 Reduced state of the field and classicality
of quantum Gaussian evolution [Second Pa-
per]

Having found the missing component of symplectic evolution, we are ready to
compare the associated formalism with RSF. This will eventually lead us to an
interpretation of RSF as a semiclassical framework, and in turn let us identify
precisely the semiclassical subset of symplectic evolution. The obtained results
form the basis of our Second Paper, which we briefly summarize in this section.

3.2.1 Reduced state of the field as a classical description of
bosonic fields

To see what physical information is associated with the degrees of freedom con-
tained within RSF, our Second Paper first shows that RSF is related to the sym-
plectic picture via

r = R(V + ξ⃗ξ⃗†)R† − 1

2
1N , |α⟩ = Rξ⃗, (3.25)

where we define

R :=
1√
2

N∑
k=1

|k⟩
[
⟨2k − 1|+ i⟨2k|

]
(3.26)

as the reduction matrix.2 Furthermore, we show that the Heisenberg uncertainty
principle (2.9) translates to non-negativity of the correlation matrix (2.44). Note
that it follows immediately from Eq. (3.25) that

rα = RVR† − 1

2
1N . (3.27)

As we demonstrated previously by simply counting the associated degrees of free-
dom, RSF must contain restricted information with respect to the symplectic
picture. The relation (3.27), together with the PPT criterion (2.12), let us find
out exactly what the nature of this missing information is:

Proposition 1. The RSF framework contains no information about bipartite dis-
tillable entanglement.

The proof of the above statement relies on one key observation: as we show in
our Second Paper, among all the covariance matrices corresponding to a fixed
correlation matrix through Eq. (3.27), there is always one whose all partial trans-
positions fulfill the Heisenberg uncertainty principle (2.12). This means that every
distillably entangled state’s RSF is identical to the RSF of some fully separable

2Note that for the purposes of our Second Paper, it was more convenient to denote the
covariance matrix by Vcov, with V defined as V := Vcov − ξ⃗ξ⃗†, i.e. shifted in comparison to
Eq. (2.5), so that it was not dependent on the first moments. Here, for clarity, we follow the
standard convention (2.5) throughout the whole thesis, which however means that a few formulas
presented in this section differ slightly from their analogs in our Second Paper.
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state. This makes the PPT criterion, and therefore the question of whether the
state contains bipartite distillable entanglement in the system, undecidable based
on the information contained in the RSF framework alone.

Proposition 1 takes an even stronger form for two-mode Gaussian states, for
which the PPT criterion is equivalent to the presence of any form of entanglement,
not only distillable entanglement [57]:

Corollary 2. In the case of two-mode Gaussian states, the RSF framework con-
tains no information about any form of entanglement.

Based on these results, our Second Paper conjectures that, more generally, RSF
contains no information about any type of quantum entanglement in any quan-
tum state. Irrespectively, Proposition 1 and Corollary 2 show that the ability
to describe entanglement within the RSF formalism is severely limited, strongly
suggesting the framework to be semiclassical.

The semiclassicality of RSF becomes even more apparent after taking a closer
look at the reduced entropy (2.43). To see this, let us compare it with a “competi-
tor” of the von Neumann entropy (2.42), the Wehrl entropy

SW (ρ̂) := −
∫

d2N β⃗

πN
Q(β⃗) lnQ(β⃗). (3.28)

Here, Q(β⃗) = ⟨β⃗|ρ̂|β⃗⟩ is the Husimi Q representation [110] of the state, |β⃗⟩ is an
N -mode coherent state and the integration is over the whole complex plane CN .
The Wehrl entropy is typically considered to be a semiclassical approximation to
the von Neumann entropy, since it is constructed from the latter by replacing
the density operator by its representation Q(β⃗) in the phase-space [111, 112].
This results in significant differences: unlike the von Neumann entropy, the Wehrl
entropy attains its minimum value, N , only for coherent states [113], and it is
invariant only under some unitary transformations of the state.

Looking at the reduced entropy (2.43), we can see that it possesses the same
qualities. The fact that it is minimized by coherent states was already discussed.
Furthermore, as we check in our Second Paper, it is also not invariant under all
unitary operations. Finally, we note that by construction, the reduced entropy
provides an upper bound to the von Neumann entropy, another quality shared
with the Wehrl entropy. To make this point even stronger, in our Second Paper,
we use the same maximum entropy principle that was originally employed [45] in
derivation of the reduced entropy to produce a new entropy of RSF based on the
Wehrl entropy, which we call the reduced Wehrl entropy :

sw(ρ̂) := tr ln(rα + 1N) +N. (3.29)

We observe that the reduced Wehrl entropy has similar qualitative properties
to the original reduced (von Neumann) entropy, e.g. it is invariant under the
same unitary transformations and is minimized by coherent states. Importantly,
as proved in our Second Paper, the two reduced entropies can also be linked
quantitatively:

Proposition 3. The following relation between the RSF entropies holds:

0 < sw(ρ̂)− sv(ρ̂) ⩽ N. (3.30)



24 CHAPTER 3. SUMMARY OF DISSERTATION

For states with mean particle number much bigger than the effective number of
modes tr r = ⟨n̂⟩ ≫ N , the term N is vanishing in comparison to sw, sv. Therefore,
it follows from Eq. (3.30) that for most many-particle states, the two reduced
entropies are approximately equal. In conclusion, the RSF entropies based on the
“quantum” von Neumann and on the “classical” Wehrl entropy are nearly identical
to each other and akin to the Wehrl entropy.3 This cements the classicality of the
RSF formalism.

3.2.2 Classicality of quantum Gaussian evolution

Having established the classicality of RSF, we can conclude that, since they pre-
serve the formalism’s semiclassical degrees of freedom, the reduced kinetic equa-
tions (2.45) are semiclassical themselves. In turn, this means that symplectic evo-
lution can be considered classical if, when subjected to the reduction map (3.25),
it takes the form of the reduced reduced kinetic equations. Based on this princi-
ple, our Second Paper derives the exact conditions for classicality of symplectic
evolution, specifically quantum Gaussian evolution, as defined by Eqs. (2.18, 3.6).
For clarity, we consider each of the three terms entering the quantum Gaussian
evolution equations separately.

Proposition 4. Let (V, ξ⃗) denote the symplectic description of a system undergo-
ing the quantum Gaussian evolution

d

dt
V =


FG(V ),

FL(V ),

FU(V ),

d

dt
ξ⃗ =


fG(ξ⃗),

fL(ξ⃗),

fU(ξ⃗),

(3.31)

where (FG, fG) [defined in Eq. (2.19)] correspond to Hamiltonian symplectic evolu-
tion, (FL, fL) [defined in Eq. (2.20)] correspond to dissipative symplectic evolution
originating from linear Lindblad operators (2.17), and, finally,

FU(V ) :=
∑
j

γj
(
KjV KT

j − V
)
,

fU(ξ⃗) :=
∑
j

γj

(
Kj ξ⃗ − ξ⃗

)
,

(3.32)

correspond to dissipative symplectic evolution (3.4) originating from unitary Lind-
blad operators (2.39).

The evolution can be written as reduced kinetic equations (2.45) and is thus
classical with respect to the RSF formalism if and only if4

0 =
[
J,G

]
for (FG, fG),

0 =
[
J, IC

]
for (FL, fL),

0 =
[
J,Kj

]
for (FU , fU).

(3.33)

3Note that a similar result does not hold for the original entropies, as while the difference
SW − SV is always positive, there is no known upper bound for it.

4In our Second Paper, the last condition was given as “0 = RKjRT and RKjR† is unitary”.
However, we have since realized that this simplifies to “0 = [J,K]”, which can be proven in the
same way as the other conditions.
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The corresponding reduced kinetic equations are governed by
h = iRJGR† for (FG, fG),

γ↕ = ±R
(
ICJ ∓ JRCJ

)
R† ⩾ 0 for (FL, fL),

uj = RKjR†, ηj = γj for (FU , fU).

(3.34)

with the remaining terms vanishing.

In our Second Paper, we examine the conditions (3.33) in detail. Based on our
analysis, we conclude that symplectic evolution is semiclassical (with respect to
the RSF toolbox) if and only if it consists of passive transformations, i.e. trans-
formations which are orthogonal in addition to being symplectic. In quantum-
optical experiments, passive transformations correspond to operations which are
energy-preserving and with known classical analogs, such as beam-splitters and
phase-shifters [39]. According to standard notions of non-classicality, such as
non-positivity of the Glauber P representation or the presence of quantum en-
tanglement, the output of passive transformations can be non-classical only if
given non-classical input [114, 115]. The remaining active transformations, such
as squeezing, which can be a source of quantum advantage [116, 117], have no
classical interpretation. Such transformations are forbidden by Eq. (3.33). These
findings apply in particular to the evolution stemming from unitary Lindblad op-
erators investigated in our First Paper: such evolution is semiclassical only if the
scattering events it describes are energy-preserving.

To illustrate these results, our Second Paper provides a number of examples.
Here, let us consider just one of them: stabilizability in two-mode entangled Gaus-
sian systems. In quantum open systems, it is sometimes desirable to counteract
the effects of dissipation by using an appropriate Hamiltonian. In the framework
of stabilizability, one can check whether this is possible by solving a finite set of
conditions rather than checking every Hamiltonian separately [118, 37]. Recently,
one of our other papers [OP5] employed stabilizability to investigate the robust-
ness of two-mode Gaussian states against three classes of dissipation based on
linear Lindblad operators:

1. Local damping: L̂1 := â1, L̂2 := â2;

2. Global damping: L̂ := (â1 + â2);

3. Dissipators engineered to preserve two-mode squeezed states:

L̂1 := coshχ â1 − sinhχ â†2,

L̂2 := coshχ â2 − sinhχ â†1,
(3.35)

where χ ⩾ 0 denotes the amount of squeezing.

It is straightforward to check that while all the dissipators fulfill the relevant clas-
sicality condition (3.33), only the first two result in non-negative particle creation
rates as required in Eq. (3.34). This, of course, makes sense from the point of
classicality, since squeezing is a purely quantum resource, while the Lindblad oper-
ators appearing in the first two models merely describe particle loss in the system.
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In addition, we remark that in the first and third models, the maximum amount
of entanglement was stabilized in the system when using the Hamiltonian

Ĥsq := −iω
(
â1â2 − â†1â

†
2

)
, (3.36)

while in the second model the entanglement-maximizing Hamiltonian read as

Ĥ = Ĥcas := −iω

2

[(
â1 + â2

)2 − (â†1 + â†2
)2]

. (3.37)

As expected, neither Hamiltonian fulfills the classicality condition (3.33).
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3.3 Classicality of the Bogoliubov transforma-
tions and the dynamical Casimir effect through
the reduced state of the field [Third Paper]

Our results so far determine that symplectic evolution, as given by the quantum
Gaussianity-preserving equations (2.18, 3.6), is classical if and only if it is built
solely from passive operations. However, as discussed in Section 2.2, symplectic
evolution can also arise from Bogoliubov transformations. How do the classicality
conditions (3.33) translate to such a setting? Moreover, what can they tell us
about the dynamical Casimir effect? Advancing on these question is the main
goal of our Third Paper, summarized in this section.

3.3.1 Classicality of Bogoliubov transformations

To derive the classicality conditions for Bogoliubov transformations, our Third
Paper follows the same methodology as our Second Paper: if the transformations
preserve the set of the degrees of freedom contained within RSF, we regard them
as semiclassical, and if not, we regard them as inherently quantum. Proceeding in
this way, we obtain the following results (below we follow the notation established
in Section 2.2):

Proposition 5. Isolated system Bogoliubov transformations are compatible with
the RSF formalism and are thus classical with respect to it if and only if

0 = X↓. (3.38)

Additionally, if the transformation depends smoothly on time, the corresponding
reduced kinetic equations (2.45) exist and are governed by

h =
i

2

(
dX↑

dt
X−1

↑ −X−†
↑

dX †
↑

dt

)
. (3.39)

with the remaining terms vanishing.

Proposition 6. A necessary condition for open system Bogoliubov transforma-
tions to be compatible with the RSF formalism and thus be classical with respect
to it is

0 = X↓S. (3.40)

Let us briefly discuss these findings. The obtained classicality condition for
the closed system is easy to interpret: substituting (3.38) into the symplectic con-
dition (2.27), we immediately find that X is also unitary in additional to being
symplectic, which for complex symplectic transformations corresponds to their
passiveness. Thus, in a complete analogy to quantum Gaussian evolution studied
in our Second Paper, Bogoliubov transformations in isolated systems are semiclas-
sical only if they correspond to passive transformations.

The case of the open system is more subtle. When we compare Eq. (3.40)
with its closed system counterpart, we can observe that the latter is considerably
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more restrictive. It requires the entire matrix X↓ to vanish, while the former only
requires this from the system component X↓S. Consequently, depending on how
we define the degrees of freedom of the system, we might perceive the same overall
dynamics as either classical or quantum from the system’s perspective. Still, it
is crucial to emphasize that the condition (3.40) is not equivalent to classicality:
it is only necessary for it. Our Third Paper demonstrates that, in stark contrast
to the closed system, the classicality of an open system Bogoliubov transforma-
tion depends not only on the transformation matrix X , but also the entire initial
system-environment ensemble. For highly correlated initial ensembles, the only
semiclassical Bogoliubov transformations may happen to be only those that result
in completely separate dynamics for the system and the environment, effectively
defining a closed system.

To make stronger statements, we are therefore forced to make some restric-
tions. Firstly, we assume that the initial ensemble is separable with respect to the
bipartition between the system and the environment, which is typical in the the-
ory of quantum open systems [119]. Secondly, we assume that the bath is initially
in the vacuum state. Note that, while this assumption is admittedly strong, it is
fulfilled by many useful models, such as quantum limited amplification, quantum
limited attenuation and phase conjugation channels, utilized, e.g. in studies of
Gaussianity, entropy and entanglement [120, 121, 122]. Indeed, the example of
quantum limited amplification is discussed in our Third Paper in detail. More
importantly, as we will show in the next section, the vacuum state assumption is
also satisfied by the dynamical Casimir effect.

Under the above assumptions, our Third Paper proves our final main result
for Bogoliubov transformations:

Proposition 7. The classicality condition (3.40) is both necessary and sufficient
for open system Bogoliubov transformations with the environment initially in the
vaccum state. Additionally, if such transformations depend smoothly on time, the
corresponding reduced kinetic equations exist provided

W ⩾ 0, W −Yr ⩾ 0 (3.41)

and are governed by

h = −Yi/2, γ↓ = W , γ↑ = W −Yr, (3.42)

with the remaining terms vanishing. Here,

Yi := −i
(
Y − Y†) , Y :=

dX↑S

dt
X−1

↑S ,

Yr := Y + Y†, D := X↓CX †
↓C ,

W :=
dD
dt

− YD −DY†.

(3.43)

3.3.2 Classicality of the dynamical Casimir effect

Armed with Propositions 5-7, we are ready to come back to the dynamical Casimir
effect. We begin by observing that, while the phenomenon spans an infinite num-
ber of modes of photons with both helicities, its defining Bogoliubov transforma-
tion (2.32) couples them in pairs only. Any mode k⃗ of the right helicity photons
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is coupled only to itself and the mode −k⃗ of the left helicity photons. For this
reason, we can restrict our analysis to two modes, with no loss in generality.

As is easy to observe, written in terms of the matrix X , the Bogoliubov trans-
formation (2.32) reads

X =


e−iϕfR+ 0 0 e−iϕfR−

0 eiϕf ∗
L− eiϕf ∗

L+ 0
0 eiϕf ∗

R− eiϕf ∗
R+ 0

e−iϕfL+ 0 0 e−iϕfL−

 . (3.44)

The classicality interpretation depends on what we consider to be the system. In
the most natural view, the system spans photons with both left and right helicity.
Hence, we have a closed, two-mode system. Comparing Eq. (3.44) with (2.28),
we easily find the classicality criterion (3.38) to read explicitly

fR− = 0 = fL+. (3.45)

Looking at Eq. (2.33), we can immediately see that this implies no Casimir effect,
i.e. the photon production in the vacuum is zero. This is fully expected when we
realise that, as we prove in our Third Paper, the restriction (3.45) implies constant
velocity of the medium, for which, as is well-known, the Casimir effect cannot take
place.

However, there is another perspective. Nothing stops us from interpreting
exclusively the left helicity photons as the system, and the right helicity photons
as the environment, so that the system is open. By comparing (3.44) with Eqs.
(2.28, 2.30), we immediately find that now, the classicality condition (3.40) always
holds, regardless of the form of the functions fR±, fL±. Importantly, because the
mode associated with the right helicity photons, i.e. the environment, is initially
in the vacuum state, then, due to Proposition 7, this classicality condition is both
necessary and sufficient. From this point of view, contrary to its reputation as a
radically quantum effect, the Casimir effect appears to be semiclassical.

To explain this, let us briefly investigate the maximally entangled two-qubit
Bell state [123, 124]:

|Φ+⟩ :=
1√
2
(|00⟩+ |11⟩) . (3.46)

If we consider only the first qubit as the system, we will find it to be in the
maximally mixed state

ρ̂S = Tr2nd qubit |Φ+⟩⟨Φ+| =
1

2
1̂2, (3.47)

which can certainly be considered classical. Of course, this does not mean that
the Bell state that we started with was classical. Instead, its “quantumness” was
contained in the correlations between the two qubits, rather than any of the two
qubits themselves.

In complete analogy, the Casimir effect itself is not classical – only its ap-
pearance from the point of view of the system is. Consider the matrix element
X↓12 = X↓C = fR−, which in our case encodes the correlations between photons
with left and right helicities. For a generic initial state, these correlations are
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potentially quantum. Thus, if a closed system is to be considered classical, they
must necessarily vanish: X↓12 = X↓C = 0, as they constitute an integral part of
the system. However, from the point of view of an open system, the discussed
correlations enter it only at the level of the environmental effects, through Eq.
(3.43). Therefore, even if they have a strictly quantum origin, the system experi-
ences them only as dissipation, which in this case happens to have a semiclassical
interpretation in terms of particle annihilation and creation rates.

As the penultimate result, our Third Paper considers Eq. (2.32) as defining
a smooth Bogoliubov evolution in the parameter T . Using our recipe (3.42), we
provide the explicit formulas for the corresponding components in the reduced
kinetic equations (2.45). Notably, we find that the Hamiltonian for the photons is
proportional to their frequency, while the particle annihilation rate is zero, which
intuitively corresponds to the fact that the dynamical Casimir effect results only
in the spontaneous creation of particles, not their disappearance.

Finally, we calculate that the time derivative of the photon densities (2.33)
equals

d

dT
⟨n̂L/R⟩ = γ↑

(
⟨n̂L/R⟩+ 1

)
. (3.48)

As seen, the non-negativity of γ↑, which is required for the result to be physical,
is equivalent to the non-negativity of photon number growth. Furthermore, be-
cause of the ⟨n̂L/R⟩-independent term on the r.h.s., the equation proves that the
dynamical Casimir effect occurs for any non-zero γ↑, which can be traced to any
non-zero acceleration of the medium.



Chapter 4
Outlooks

The quantum-to-classical transition, being of both practical and conceptual sig-
nificance, remains one of the key issues in contemporary theoretical physics. In
our dissertation, we approached the problem for the specific case of so-called sym-
plectic evolution, which governs the dynamics of most forms of light accessible in
modern quantum optical experiments. Most notably, we found that such evolution
can be considered semiclassical if and only if it is built upon passive transforma-
tions, which possess well-established classical interpretation. Our findings are
based on the recent mesoscopic formalism of the reduced state of the field (RSF),
originally a framework for macroscopic bosonic fields, which we redeveloped as a
tool for probing classicality.

Although we achieved the planned goals, there is still much to discover when
it comes to classicality within quantum mechanics. To start with, some of our
results could be generalized. For example, can our conjecture that RSF contains
no information about any form of quantum entanglement be proven? Similarly,
is there a way to strengthen our conditions for classicality of Bogoliubov trans-
formations, so that they are sufficient for a broad class of environments, such as,
e.g. arbitrary thermal baths? Could they account for any well-known phenomena
based on Bogoliubov transformations beyond the dynamical Casimir effect, e.g.
the Unruh effect? Going further, both of the mesoscopic formalisms studied by
us (symplectic picture and RSF) are built upon one- and two-point correlation
functions. Can a self-consistent mesoscopic framework based on higher-order cor-
relations be designed? If so, what new insights could it offer, in particular with
respect to classicality?

Last but not least, potentially novel considerations may follow from our pro-
posed addition to symplectic evolution based on unitary Lindblad operators. Most
obviously, as shown by us, the dynamics could be employed to account for the in-
fluence of noise in the form of random scattering in standard Gaussian dynamics,
or to drive a system towards a desired resourceful state. Moreover, symplectic
evolution itself could still be extended: although operations preserving the set
of Gaussian states are fully characterized [125], an analogous problem was not
solved for quantum Gaussian states. It would be interesting to see what other
evolution models preserve the set of quantum Gaussian states and the symplectic
description, as well as what physical phenomena they relate to.

31
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Recent works on quantum resource theories of non-Gaussianity, which are based upon the type of tools
available in contemporary experimental settings, put Gaussian states and their convex combinations on equal
footing. Motivated by this, in this paper, we derive a model of dissipative time evolution based on unitary
Lindblad operators which, while it does not preserve the set of Gaussian states, preserves the set of their convex
combinations, i.e., so-called quantum Gaussian states. As we demonstrate, the considered evolution proves useful
both as a description for random scattering and as a tool in dissipator engineering.

DOI: 10.1103/PhysRevA.106.052206

I. INTRODUCTION

One of the most prominent families of states in continuous
variable quantum mechanics consists of Gaussian states, i.e.,
states with Gaussian (normal) characteristic functions. Due
to their relative simplicity in both analytical description and
practical implementation, they found extensive use in fields as
varied as quantum optics, information and thermodynamics,
among others [1–4].

Consequently, much interest was devoted to time evolution
which preserves the set of Gaussian states. Such evolution
is described by the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) equation generated by a polynomial of at most second
degree in the quadrature operators. Over the years, it proved
to be successful in studies of quantum thermodynamics [5],
optics [6], entanglement [7,8], discord [9], purity [10,11],
fidelity [12], steering [13], stabilizability [14,15] and classical
limits of quantum mechanics [16,17], among others.

Despite the popularity of Gaussian states and dynamics,
in comparison, little interest was devoted to the so-called
quantum Gaussian states, which are a generalization of Gaus-
sian states that also includes their convex combinations
[18–23]. However, according to recent developments in quan-
tum resource theories of non-Gaussianity [24,25], which are
motivated by the type of operations available in modern ex-
periments employing continuous variables, Gaussian states
and their convex combinations are equally resourceful. From
this perspective, the aforementioned restriction to evolution
preserving the set of Gaussian states is too severe and should
be relaxed to allow the more general quantum Gaussian states.

In this paper, we develop an explicit model of time evolu-
tion compatible only with this weaker restriction: it preserves
the convex hull of Gaussian states and not the Gaussian family
of states itself. Despite that, it is fully compatible with the

*t.linowski95@gmail.com

symplectic (covariance matrix) picture used extensively in
studies of Gaussian phenomena. The model is derived from
the central assumption of unitary Lindblad operators, a class
studied first in 1972 within the then-rapidly developing field
of quantum dynamical semigroups [26–28].

The considered evolution has two very different applica-
tions depending on the nature of unitary Lindblad operators
entering it. For a large number of noncommuting oper-
ators, we use a combination of the collision model and
kicked top dynamics to show that the evolution describes
random scattering, a view consistent with the first find-
ings regarding unitary Lindblad operators [26]. On the other
hand, for a single Lindblad operator, time evolution may
be employed in dissipator engineering, which we demon-
strate with an example of entanglement creation in two-mode
states.

The paper is organized as follows. Section II is devoted to
preliminaries: a symplectic picture of quantum states and evo-
lution that preserves the set of Gaussian states. In Sec. III, we
develop the discussed evolution equation and study its basic
technical properties: Gaussianity and symplectic representa-
tion. In Sec. IV, we consider the evolution as a description
of random scattering. In Sec. V, we investigate the stationary
solutions of the derived evolution equation, which we then use
in Sec. VI in an engineered dissipation scenario for entangle-
ment harvest. We conclude in Sec. VII.

II. SYMPLECTIC PICTURE

Studies of Gaussian states and their evolution often make
use of the symplectic picture, which reduces the N-mode
infinitely dimensional Hilbert space associated with the den-
sity operator to a space of dimension 2N , which is typically
easier to work with. Here, we briefly summarize the rel-
evant information about the symplectic picture, including
the so-called covariance matrix and Gaussianity-preserving
evolution.

2469-9926/2022/106(5)/052206(11) 052206-1 ©2022 American Physical Society
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A. Covariance matrix and vector of means

Let us consider an N-mode Hilbert space H = ⊗N
k=1 Hk

equipped with N pairs of quadrature operators x̂k, p̂k , conve-
niently collected in a single vector:

�̂ξ := (x̂1, p̂1, . . . , x̂N , p̂N )T . (1)

As the quadrature operators form a basis of operators acting
on H, every state describing the system can be fully charac-
terized [29] by the complete (n = 1, . . . ,∞) set of nth-order
correlation functions (correlations) of the form〈

ξ̂l1 . . . ξ̂ln

〉
:= Tr

[
ρ̂ ξ̂l1 . . . ξ̂ln

]
, (2)

which we also call nth moments for short. In many studies,
especially those involving Gaussian states, i.e., states with
Gaussian characteristic functions [1,30,31], it is enough to
consider only the first and second moments. The advantage is
that, in contrast to the infinitely dimensional density operator,
the first two moments are completely described by a moderate
number of degrees of freedom [32].

Information about the first moments is contained in a 2N-
dimensional vector of means

ξk := 〈ξ̂k〉, (3)

while the second moments are encoded in the 2N × 2N co-
variance matrix

Vkk′ := 1
2 〈{ξ̂k, ξ̂k′ }〉 − ξkξk′ . (4)

Both {·, ·} and [·, ·] as usual denote commutators and anticom-
mutators, respectively. Any valid covariance matrix has to be
positive and fulfill the Heisenberg uncertainty relations (we
assume natural units):√〈

x̂2
k

〉− 〈x̂k〉2
√〈

p̂2
k

〉− 〈p̂k〉2 � 1

2
, (5)

where k ∈ {1, . . . , N}, equivalent to [30]

V + i

2
J � 0. (6)

Here, J is the symplectic form, defined in terms of the canoni-
cal commutation relations as

Jkk′ := −i[ξ̂k, ξ̂k′ ], (7)

and explicitly equal to

J =
N⊕

k=1

J2, J2 :=
[

0 1
−1 0

]
. (8)

The symplectic form defines the symplectic group
Sp(2N,R) consisting of matrices K of size 2N × 2N , such
that [33]

KJKT = J. (9)

In this paper, special emphasis is put on a subset of symplectic
matrices which possess the following exponential represen-
tations (both of which are useful depending on the context)
[34,35]:

K = eJS ≡ eS′J , (10)

for some symmetric matrices S and S′ = JSJT . We stress that
while all matrices of the form (10) are symplectic [36], not all

symplectic matrices are of this form due to the fact that the
symplectic group is not compact [37,38].

The pair (V, �ξ ) defines the symplectic picture (also known
as the covariance matrix picture) of quantum states. All stan-
dard notions known from the density operator picture translate
in a natural way to the symplectic picture. In particular, just
like any density operator can be diagonalized by a unitary
operation and is therefore described by its eigenvalues, any
covariance matrix can be brought to a diagonal form by a
symplectic operation and is described by its symplectic eigen-
values:

1/2 � ν1 � · · · � νN . (11)

The symplectic eigenvalues come in pairs, i.e., the diagonal-
ized covariance matrix reads Vdiag = diag(ν1, ν1, . . . , νN , νN ).
Furthermore, they are related to the eigenvalues μ j of the
matrix JV via

iμ2k = −iμ∗
2k−1 = νk, k ∈ {1, . . . , N}. (12)

In the case of Gaussian states, the symplectic picture is
complete, i.e., it is equivalent to the density operator descrip-
tion. Otherwise, it describes a subset of the system’s degrees
of freedom.

B. Gaussianity-preserving evolution

In the theory of quantum dynamical semigroups, the state
of the system at time t � 0 is given by

ρ̂(t ) = etL·ρ̂(0). (13)

Here, L is the generator of evolution, which has the general
form

L· = −i[Ĥ, ·] +
∑

j

(
L̂ j · L̂†

j − 1
2 {L̂†

j L̂ j, ·}
)
. (14)

The system Hamiltonian Ĥ is responsible for unitary evolu-
tion, while the Lindblad operators (Lindbladians) L̂ j govern
the dissipative part of the dynamics.

Here and below we use the dot to denote the argument
of the generator, e.g., the action Lρ̂ of the generator on a
generic state is given by the right-hand side of Eq. (14) with
the dot replaced by ρ̂. On the other hand, the exponential
of the generator is to be understood in terms of its repeated
application on the state via

etL·ρ̂ =
∞∑

n=0

t n

n!
LL . . .L︸ ︷︷ ︸

n times

ρ̂. (15)

This convention is followed by us throughout the paper.
By differentiating both sides of Eq. (13) with respect to

time, we obtain the GKLS (Lindblad) equation [39–41]:

d

dt
ρ̂ = −i[Ĥ , ρ̂] +

∑
j

(
L̂ j ρ̂L̂†

j − 1
2 {L̂†

j L̂ j, ρ̂}). (16)

If the generator is a polynomial of at most second degree in
the quadrature operators, the evolution preserves the set of
Gaussian states. In such cases, the Hamiltonian equals

Ĥ = 1
2
�̂ξT G�̂ξ, (17)
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where G is a 2N × 2N real, symmetric matrix. The Lindblad
operators, on the other hand, equal

L̂ j =
2N∑

k=1

(�c j )k ξ̂k, �c j ∈ C2N , (18)

necessarily being just linear in the quadratures.
Computing the time derivative of the covariance matrix

and assuming that the system evolves according to the GKLS
equation specified by Eqs. (17) and (18), we obtain the corre-
sponding equations for the covariance matrix and the vector
of means [7,10,14,15]:

d

dt
V = AV + VAT + JreC†CJT ,

d

dt
�ξ = A�ξ,

(19)

where A := J[G + imC†C] and Cjk := (�c j )k .

III. DISSIPATIVE EVOLUTION STEMMING
FROM UNITARY LINDBLAD OPERATORS

Quantum resource theories classify quantum operations
and states according to a given physical property, typically
corresponding to usefulness with respect to some practical
tasks [42]. For example, in resource theories of entanglement,
entangled states are considered resourceful, while separable
states are classified as free [43,44]. Accordingly, operations
incapable of creating entangled states from separable ones
are also deemed free. Such classification is natural from the
experimental point of view, since, like any valuable resource,
entanglement is useful yet difficult to obtain, while operations
preserving the set of separable states are relatively easy to
implement. By calling entanglement a resource, one can better
pose and answer practical questions; e.g., assuming no limits
on free operations, how much entanglement is needed to real-
ize a given teleportation protocol?

In the resource theories of Gaussianity [24,25], the set
of free operations consists of operations routinely available
in current experiments employing continuous variable quan-
tum systems. These include Gaussianity-preserving unitary
operations, compositions with Gaussian states, and homo-
dyne measurements. In such a setting, the emergent free
states (which are preserved by the free operations) are quan-
tum Gaussian, that is, they consist of Gaussian states and
their convex combinations [20,21,23] (we stress that quan-
tum Gaussian states and Gaussian states are not the same, as
the former generalize the latter). From this resource-theoretic
point of view, it is natural to look for physically meaningful
evolution preserving the set of quantum Gaussian states. By
definition, such evolution requires no input resources and can
be thus used to manipulate a given system at no cost.

Observe that the usually assumed Gaussian dynamics (19)
already preserve the set of quantum Gaussian states: since
they map Gaussian states to Gaussian states, then, by linearity,
they also map their convex combinations to other such combi-
nations. Thus, the generator of Gaussian dynamics, given by
Eq. (14) with Eqs. (17) and (18) at the input, preserves the set
of quantum Gaussian states. However, in principle, there may
exist other generators that preserve the set of quantum Gaus-

sian states without necessarily preserving the set of Gaussian
states. This is exactly what we investigate here.

A. The model of time evolution

Let us go back to the GKLS equation (16). Being interested
in the dissipative part of the equation only, we can disre-
gard the Hamiltonian term. As for the dissipator, we follow
[26–28,45,46] and consider a particular case of M Lindblad
operators, all being proportional to unitary operators:

L̂ j = √
γ jÛ j, (20)

where γ j � 0, ÛjÛ
†
j = Û †

j Û j = 1̂, and Ûj is moreover as-
sumed to be Gaussianity preserving. All our results are based
on this central assumption. The corresponding GKLS equa-
tion is generated by

L· =
M∑

j=1

γ j (Ûj · Û †
j − 1̂) (21)

and thus reads

d

dt
ρ̂ =

M∑
j=1

γ j (Ûj ρ̂Û †
j − ρ̂). (22)

For convenience, we assume that γ j fulfill
∑M

j=1 γ j = 1.
We stress that the choice (20) of Lindblad operators consti-

tutes a certain loss of generality with respect to the general
GKLS equation (16). For example, in the considered case,
operators L̂†

j L̂ j and L̂ j L̂
†
j are proportional to the identity, and

consequently both commute with any state ρ̂. Such property
is not fulfilled by generic Lindblad operators.

To see that Eq. (22) preserves the set of quantum Gaussian
states, we start with a single unitary operation. Since Eq. (22)
is a subclass of the GKLS evolution, its formal solution is
given by Eq. (13) with generator (21). For a single Lind-
bladian, the latter reduces to L· = Û · Û † − 1̂. The identity
commutes with any operator, so

ρ̂(t ) = etÛ ·Û †
e−t 1̂ρ̂(0) =

∞∑
k=0

pk (t )Û k ρ̂(0)(Û †)k, (23)

where

pk (t ) := e−t t k/k! (24)

is the Poisson distribution.
Similarly, for an arbitrary number of Lindbladians, we have

ρ̂(t ) =
∞∑

k=0

M∑
l1...lk=1

pl1...lk (t )Ûlk . . . Ûl1 ρ̂(0)Û †
l1

. . . Û †
lk
, (25)

where for k = 0 the summand is e−t ρ̂(0) and for k >

0 pl1...lk (t ) := γl1 . . . γlk e−t t k/k!.
Any unitary operator has an exponential representation of

the form

Ûj = e−iĥ j , (26)

for some Hermitian operator ĥ j , called the operator’s gen-
erator [not to be confused with the generator of the GKLS
evolution (14)]. As is well known [24,25,31], unitary opera-
tions with generators that are polynomials of at most second
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degree in quadrature operators preserve the set of Gaussian
states. Furthermore, if each Ûl j preserves Gaussian states, then
so does Ûlk . . . Ûl1 , and therefore each of the terms in the sum
(25) maps Gaussian states to other Gaussian states.

Since the sum of Gaussian states is in general not Gaussian,
then even for an initial Gaussian state the time-evolved state
(23) is also not Gaussian in general. On the other hand, if the
initial state is a convex combination of Gaussian states, then,
by linearity, the time-evolved state is also a convex combina-
tion of Gaussian states. Therefore, under the assumption that
each Lindblad operator (20) is generated by a polynomial of
at most second degree in quadrature operators, Eq. (32) pre-
serves the set of quantum Gaussian states without preserving
the set of Gaussian states, as we wanted to show.

B. Representation in the symplectic picture

One of the advantages of working with Gaussian states
is that Gaussianity-preserving evolution corresponds to self-
contained Eqs. (19) in the symplectic picture, by which we
mean that the evolution of the covariance matrix and the
vector of means can be traced without having to consider
third- and higher-order correlation functions. As we show
here, this property extends to Eq. (22), allowing one to study
the evolution of quantum Gaussian states in the same fashion
as in the case of Gaussian states.

Multiplying Eq. (22) by appropriate polynomials in the
quadrature operators and taking the trace, we obtain the cor-
responding evolution of the first and second moments:

d

dt
〈ξ̂nξ̂n′ 〉 =

M∑
j=1

γ j〈ξ̂n, j ξ̂n′, j − ξ̂nξ̂n′ 〉,

d

dt
〈ξ̂n〉 =

M∑
j=1

γ j〈ξ̂n, j − ξ̂n〉,
(27)

where

ξ̂n, j := Û †
j ξ̂nÛj (28)

denotes transformed quadrature operators.
Clearly, if the transformed quadrature operators are lin-

ear in the initial quadratures, then Eqs. (27) are closed with
respect to the first two moments. In order for the new quadra-
tures to have a physical meaning, they should also fulfill the
canonical commutation relations. A generic transformation
fulfilling these conditions is called a Bogoliubov transfor-
mation [47–49]. In the case at hand, a generic Bogoliubov
transformation reads explicitly

ξ̂n, j =
2N∑

m=1

(Kj )nmξ̂m, (29)

where Kj is a real symplectic matrix of size 2N × 2N . Under
the assumption that the Lindbladians (26) are generated by
polynomials of at most second degree in quadrature operators,
the matrices Kj possess the convenient exponential represen-
tation (10).

Taking the time derivative of the covariance matrix and the
vector of means with Eqs. (27)–(29) at the input yields the

symplectic picture equivalent to Eq. (22):

d

dt
V =

M∑
j=1

γ j
[
KjV KT

j − V + Fj (�ξ )
]
,

d

dt
�ξ =

M∑
j=1

γ jKj �ξ,

(30)

where

Fj (�ξ ) = (Kj − 1)�ξ �ξT (KT
j − 1). (31)

Note that in typical applications of the covariance matrix
evolution, concerning, e.g., quantum entanglement, the vector
of mean values is irrelevant. For this reason, later on we
will assume �ξ (0) = 0, in which case Fj (�ξ ) = 0 [50] and the
evolution simplifies to

d

dt
V =

M∑
j=1

γ j
[
KjV KT

j − V
]
. (32)

The corresponding explicit solutions are

V (t ) =
∞∑
j=0

p j (t )K jV (0)(KT ) j (33)

for a single Lindbladian and

V (t ) =
∞∑

k=0

M∑
l1...l j=1

pl1...l j (t )Klj . . . Kl1V (0)KT
l1 . . . KT

lj
(34)

for an arbitrary number of Lindbladians.
As we investigate below, depending on the number and

nature of the unitary Lindblad operators, Eq. (22) and its
symplectic representation (32) can have radically different
applications, ranging from random scattering to engineered
dissipation.

IV. RANDOM SCATTERING

We now employ the collision model and kicked top dy-
namics to show that for a large number M of noncommuting
Lindblad operators, the discussed evolution constitutes a nat-
ural description of random scattering.

A. Derivation from the collision model

In the collision model [51–53], the initial system is coupled
to an infinite number of identical copies of ancilla η̂. The total
initial state is separable:

ρ̂T (0) = ρ̂(0) ⊗ η̂ ⊗ η̂ ⊗ . . . . (35)

During the first time step �t , a unitary operation Ŵ1 acts on
the system and the first ancilla, after which the latter is traced
out. The resulting state of the system is thus

ρ̂(�t ) = Trη{Ŵ1[ρ̂(0) ⊗ η̂]Ŵ †
1 }, (36)

where Trη denotes the partial trace over the ancilla. Since the
corresponding total state has the same form as initially (35),

ρ̂T (�t ) = ρ̂(�t ) ⊗ η̂ ⊗ η̂ ⊗ . . . , (37)
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the second and further steps lead to analogous results as the
first one. After n steps

ρ̂(n�t ) = Trη{Ŵn[ρ̂[(n − 1)�t] ⊗ η̂]Ŵ †
n }. (38)

The unitaries Ŵn are typically assumed to have the elementary
form [53]

Ŵn = exp [−i(ŵS + ŵη + ŵint,n)�t], (39)

where the Hamiltonian ŵS acts on the system, ŵη acts on
the bath, while ŵint,n is responsible for interaction between
the two. The last Hamiltonian may be step dependent, while
the others are assumed to be the same in each step. All three
operators are time independent.

Here, we employ a more general model [52], in which the
unitary operators are unrestricted. This gives the following
general form:

Ŵn = T exp

(
−i
∫ n�t

(n−1)�t
dτ ŵn(τ )

)
(40)

where T is the time-ordering operator and the time-dependent
Hamiltonian ŵn can act on both the system and the nth ancilla
in an arbitrary way.

Clearly, by choosing the ancilla and the unitaries accord-
ingly, we can use the collision model to emulate a wide range
of dynamics. This fact, coupled with the relative concep-
tual simplicity, makes the collision model a popular tool in
dealing with topics as varied as optics, thermodynamics, and
non-Markovianity, among others [52,53]. Here, we use the
collision model framework to derive the GKLS equation with
M unitary Lindblad operators.

For the ancillas, we choose qudits of dimension d = M + 1
in the ground state:

η̂ = |0〉〈0|. (41)

Furthermore, we choose unitary operations of the form

Ŵn =
(
1̂ ⊗ |0〉〈0| +

M∑
j=1

Ûj ⊗ | j〉〈 j|
)

[1̂ ⊗ Ô(�t )], (42)

where Ûj are arbitrary unitary operators with generators ĥ j

[which, in the case of evolution preserving the convex hull
of Gaussian states, are polynomials of at most second degree
in quadrature operators] and Ô is a time-dependent unitary
matrix defined by its action on the ancilla:

Ô(�t )|0〉 = √
1 − �t |0〉 +

√
�t

M∑
j=1

√
γ j | j〉. (43)

As before, γ j � 0 and
∑M

j=1 γ j = 1. With these inputs,
Eq. (36) becomes

ρ̂(�t ) =
[
1̂ + �t

M∑
j=1

γ j (Ûj · Û †
j − 1̂)

]
ρ̂(0). (44)

Since in this setting we can easily recognize that Ŵn does not
depend on the step number, each step corresponds to the same

transformation. For t = n�t we therefore obtain

ρ̂(t ) =
[
1̂ + t

n

M∑
j=1

γ j (Ûj · Û †
j − 1̂)

]n

ρ̂(0). (45)

In the continuous time limit �t → 0 taken simultaneously
with n → ∞, so that we approach a fixed value of time pa-
rameter n�t = t = const, we obtain the formal solution (13)
to the GKLS equation with generator (21). In other words,
we recover the solution to the GKLS equation with M unitary
Lindbladians, as intended.

B. Kicked top and scattering

We demonstrated that the GKLS evolution with unitary
Lindbladians can be cast into the framework of collision
models. To better understand implications of this fact, we
now more deeply investigate the operator Ŵn. As seen from
Eq. (42), it is an unusual product of two subunitaries: a stan-
dard unitary operator and a time-independent “kick.”

Such structure is a staple in the kicked top model [54–56],
defined by Hamiltonians of the form

ĤKT(t ) = Ĥ0(t ) +
∑

m

δ(t − mT )V̂ . (46)

Here, the standard unitary dynamics generated by the base
Hamiltonian Ĥ0 are periodically disturbed (with period length
T ) by the delta potential V̂ , leading to chaotic behavior. Note
that typically, the base Hamiltonian is assumed to be time
independent. However, the results remain qualitatively the
same as long as the time dependence of the Hamiltonian is
well behaved (i.e., not unbounded and discontinuous like the
Dirac delta distribution). Due to its relative simplicity and ease
of implementation in terms of qubits, the kicked top is the
theoretical [56] and experimental [57] go-to model for testing
the implications of dynamical chaos on quantum phenomena
(such as, e.g., entanglement).

In the Appendix, we show that the unitary operator (42)
can be obtained from the general Eq. (40) by the kicked top
Hamiltonian ŵn = ĤKT with

T = �t, Ĥ0(t ) = ôn(t ), V̂ =
M∑

j=1

ĥ j ⊗ | j〉〈 j|, (47)

where ôn is the generator of Ô in the nth step [see Eq. (A4) in
the Appendix for definition]. Note that, because ŵn acts only
during the time interval ((n − 1)�t, n�t], effectively only the
nth term in the sum (46) contributes.

Due to its close association with Poisson distribution
[27,28], which describes random scattering through the Pois-
son scatter theorem [58], the GKLS equation with unitary
Lindbladians constitutes a valid model of random scattering.
Our results make this interpretation explicit.

Each collision can be seen as a single scattering event in the
medium described by ancillas in the state (43). Crucially, the
probability that the system will be kicked by the jth Hamilto-
nian ĥ j depends on γ j through Eqs. (43) and (47). For a single
Lindbladian, the system experiences identical scattering at
every instant, quickly driving it towards a well-controlled sta-
tionary state (we investigate this in detail in the next section).
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However, as the number of mutually noncommuting unitaries
entering the equation grows, so does the uncertainty in the
outcome state. In particular, in the limit M → ∞ the outcome
probabilities γ j may be replaced by a probability measure
μ(dU ) on the unitary group, yielding a scattering integral [26]

d

dt
ρ̂ =

∫
dμ(U )(Û ρ̂Û † − ρ̂ ). (48)

These results are consistent with previous findings [28,59] that
unitary Lindbladians can be interpreted as the S matrices of
the system interacting with a dilute gas.

The use of the collision model is particularly appealing
also when it comes to interpreting the role of the environment.
Because the ancillas are traced out after each collision, during
each step the system interacts with the same bath, fulfilling
the expectation that the bath should not be influenced by the
scattering (in particular, future scattering should not depend
on previous events).

As a final remark, we note the the notion of quantum
Gaussianity was born largely to address the fact that even
though convex combinations of Gaussian states are techni-
cally not Gaussian, i.e., they have non-Gaussian characteristic
functions, they can be experimentally created and manipu-
lated using the same methods as Gaussian states [24,25].
This makes Gaussian states and their convex combinations
similar in practical applications. Our findings put the two
families even closer, showing that states from the latter can
be obtained from the former by simply subjecting them to
random scattering, which may be regarded as pure noise. This
result supports the developments made over the last decade to
construct measures of quantum non-Gaussianity [18,19,22],
which, contrary to measures of non-Gaussianity [60–64], do
not assign positive values of the resource to convex combina-
tions of Gaussian states.

V. EXPLICIT SOLUTIONS AND STATIONARY STATES

As seen, for a large number of unitary Lindblad oper-
ators, the considered evolution equation describes random
scattering. However, the same equation equipped with a single
Lindblad operator has well-controlled stationary states, as we
proceed to show.

We start by deriving explicit solutions to the considered
equation. Looking at Eq. (22), we can easily see that the
stationary solutions ρ̂∞ must commute with all the generators:

0 = [ĥ j, ρ̂∞] for all j. (49)

As the number of noncommuting Lindbladians, and thus gen-
erators, approaches infinity, the evolution begins to describe
pure decoherence, driving any initial state towards the max-
imally mixed state in the asymptotic time limit. This view
was explored by us in the previous section. However, from
the point of view of engineered dissipation, we expect only a
few or even a single Lindbladian to appear, in which case it
is possible to drive the system towards more useful stationary
solutions.

Let us thus assume a single unitary Lindbladian generated
by a Hermitian operator ĥ with eigendecomposition

ĥ|hk〉 = hk|hk〉, (50)

where hk ∈ R are assumed to be nondegenerate for simplicity.
Since ĥ is Hermitian, its eigenvectors form a basis of the
Hilbert space. In particular, one can write the initial density
operator in this basis:

ρ̂ =
∑
k,k′

ρh
kk′ |hk〉〈hk′ |. (51)

Upon substituting into Eq. (22), we obtain

d

dt
ρh

kk′ = (e−i(hk−hk′ ) − 1)ρh
kk′ . (52)

This differential equation is easy to solve, yielding, after sim-
plification, the general solution:

ρh
kk′ (t ) = e[cos(hk−hk′ )−1]t e−i[sin(hk−hk′ )]tρh

kk′ (0), (53)

where ρh
kk′ (0) are the matrix elements of the initial state.

The stationary states follow by taking the limit t → ∞. All
but the diagonal terms decay exponentially, leaving

ρ̂∞ = lim
t→∞ ρ̂(t ) =

∑
k

λk|hk〉〈hk| (54)

with the final state’s eigenvalues equal to

λk = ρh
kk (0) = 〈hk|ρ̂(0)|hk〉. (55)

A similar results holds in the symplectic picture. It is easy
to show by using Eqs. (9) and (10) that, since JKj = JeSj J =
eJSj J , Eq. (32) is equivalent to

d

dt
(JV ) =

∑
j

[eJSj (JV )e−JS j − JV ]. (56)

Clearly, the stationary solutions V∞ are given by

0 = [JS j, JV∞] for all j. (57)

Therefore, just like in the standard picture the stationary so-
lutions commute with the Hermitian generators of evolution,
in the symplectic picture the stationary solutions “commute”
(commute after multiplication by J) with the symmetric gen-
erators of evolution.

Like before, let us consider a single unitary Lindbladian,
which corresponds to a single symplectic operator. We denote
the eigendecomposition of JS by

JS �sk = sk�sk. (58)

Contrary to the Hermitian generator ĥ from the density oper-
ator picture, JS does not have to be a normal matrix, meaning
that its eigenvectors may not form a basis of the corresponding
vector space. To solve the evolution equation explicitly, we
consider the special case in which JS is normal. This allows
us to follow the reasoning from the density operator picture.

We start by writing the initial covariance matrix as

JV =
∑
k,k′

(JV )s
kk′ �sk �s†

k′ . (59)

Upon substituting into Eq. (56), we have

d

dt
(JV )s

kk′ = (esk−sk′ − 1)(JV )s
kk′ , (60)
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which is solved by

(JV )s
kk′ (t ) = exp [(esk−sk′ − 1)t](JV )s

kk′ (0). (61)

The asymptotic time limit depends on sk . Denoting

xkk′ := re(sk − sk′ ),

ykk′ := im(sk − sk′ ),

ζkk′ := exp(xkk′ ) cos(ykk′ ),

(62)

we obtain, as t → ∞,

(JV )s
kk′ (t ) →

⎧⎪⎨
⎪⎩

∞ ζkk′ > 1,

exp[i tan(ykk′ )t](JV )s
kk′ (0) ζkk′ = 1,

0 ζkk′ < 1.

(63)

In the particular case of nondegenerate and purely imag-
inary sk (the latter happens whenever K is passive, i.e., it
is orthogonal in addition to being symplectic), the diagonal
matrix elements approach the middle line (with ykk = 0),
while the remaining elements approach zero. Consequently,
the covariance matrix approaches the stationary solution

JV∞ = lim
t→∞ JV (t ) =

∑
k

μk�sk �s†
k (64)

with eigenvalues

μk = (JV )s
kk (0) = �s†

kJV (0)�sk. (65)

The corresponding symplectic eigenvalues can be then easily
inferred from Eq. (12).

On the other hand, for a generic choice of K , some matrix
elements (61) diverge and some vanish exponentially with
time. Thus, in this case, formally speaking there is no sta-
tionary solution to the equation considered. However, from
a physical perspective, we focus on large rather than infinite
times. From the point of view of the previous section, this may
be interpreted as turning on the interaction with the environ-
ment for a given time, during which the system is subjected to
a large but finite number of infinitesimal kicks. Note that, in
general, such kicks are not energy preserving, since they may
describe, e.g., squeezing transformations. In this regime, the
covariance matrix becomes exponentially dominated by terms
characterized in the first row of Eq. (63). An example of such
dynamics is investigated by us in the next section.

VI. ENTANGLEMENT CREATION IN TWO-MODE STATES

To illustrate the results derived in the previous section, we
consider an engineered dissipation scenario, in which we use
the discussed evolution equation for creation of two-mode
entanglement from a system initially in the vacuum state:

ρ̂(0) = |00〉〈00|, (66)

which is separable and Gaussian. For the evolution, we choose
a single Lindblad operator from the one-parameter family of
unitary two-mode squeezing operators:

L̂ = Ûr := eiĥr , ĥr = −ir(â†
1â†

2 − â1â2), (67)

where r > 0 is the squeezing strength and âk := 1
2 (x̂k + i p̂k )

is the annihilation operator for mode k.

Let us stress that, from the physical point of view, the
evolution given by such a Lindblad operator is not at all equiv-
alent to a “smooth” unitary evolution given by a squeezing
Hamiltonian Ĥ = ĥr . Instead, here, the squeezing should be
understood as a series of regular, infinitely strong but infinites-
imally short squeezing kicks, driving the system towards a
high-energy state. In our case, the Hamiltonian behind the
evolution is the kicked top Hamiltonian (46), with ĥr enter-
ing at the level of the Dirac delta potential, as discussed in
Sec. IV B.

We will proceed in two steps. First, we will certify that the
evolved state is entangled. Then, we will quantify the amount
of entanglement, showing that it is asymptotically unlimited.

A. Certifying entanglement

In the symplectic picture, the two-mode vacuum state is
described by the covariance matrix

V (0) = 1
214, (68)

with �ξ (0) = 0. As for the squeezing operator, it is well known
[65] that

Û †
r â1Ûr = cosh r â1 + sinh r â†

2,

Û †
r â2Ûr = sinh r â†

1 + cosh r â2. (69)

Through Eqs. (28) and (29), we can see that the above trans-
formation corresponds to the symplectic matrix

Kr =

⎡
⎢⎢⎣

cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r

⎤
⎥⎥⎦. (70)

One can easily check that Kr = exp(JSr ) with

Sr =

⎡
⎢⎢⎣

0 0 0 r
0 0 r 0
0 r 0 0
r 0 0 0

⎤
⎥⎥⎦. (71)

The matrix JSr is normal and has the following eigendecom-
position [the notation is the same as in Eq. (58)]:

s1 = −r, �s1 = 1√
2

(0, 1, 0, 1)T ,

s2 = −r, �s2 = 1√
2

(−1, 0, 1, 0)T ,

s3 = r, �s3 = 1√
2

(0,−1, 0, 1)T ,

s4 = r, �s4 = 1√
2

(1, 0, 1, 0)T . (72)

Using the methodology developed in the previous section, we
can easily calculate the matrix JV at any point in time. From
the fact that J2 = −1, we then have −J (JV ) = V , which
explicitly reads

V (t ) =
[

A(t ) C(t )
C(t ) A(t )

]
(73)
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where

A(t ) = 1

2
e2t sinh2 r cosh (t sinh 2r)

[
1 0
0 1

]
,

C(t ) = 1

2
e2t sinh2 r sinh (t sinh 2r)

[
1 0
0 −1

]
.

(74)

Having obtained the time-evolved covariance matrix, we
can use it to certify that the corresponding state is entangled.
In the symplectic picture, a sufficient condition for the pres-
ence of entanglement in the system is given by the positive
partial transpose criterion for continuous variable systems
[66,67]. The criterion states that, if the partial transposition
of the state with respect to a given bipartition is not positive
semidefinite, then the state is entangled with respect to this
bipartition. In the case of two modes, the partially transposed
state is not positive semidefinite, and thus the state is entan-
gled, if [30]

ν̃− < 1/2, (75)

where ν̃− denotes the smallest symplectic eigenvalue of the
covariance matrix of the partially transposed state:

V PT = QV Q, Q = diag(1, 1, 1,−1). (76)

Calculating the symplectic eigenvalues of V PT via the eigen-
values of JV PT as in Eq. (12), we find that, in the case at hand,

ν̃−(t ) = 1
2 exp[−(1 − e−2r )t]. (77)

Evidently, the PPT criterion (75) for entanglement is fulfilled
for all

t > 0. (78)

In other words, despite being initially separable, the state of
the system is entangled throughout the whole evolution.

B. Quantifying entanglement

We certified that the considered dissipative evolution drives
the, initially separable, system into an entangled state. We will
now proceed to assess how much entanglement is contained in
the time-evolved state. To this end, we consider a measure of
entanglement called squashed entanglement, one of the most
prominent measures of entanglement [44,68,69]. For a generic
bipartite state σ̂AB, squashed entanglement is defined as

Esq(σ̂AB) := 1
2 inf

σ̂ABE

I (A : B|E ), (79)

where I (A : B|E ) := SV (σ̂AE ) + SV (σ̂BE ) − SV (σ̂E ) −
SV (σ̂ABE ) is the conditional mutual information, σ̂X are
the (reduced) density operators of (sub)systems X , and the
minimization is over all purifications σ̂ABE of σ̂AB. Finally,

SV (σ̂ ) := −Trσ̂ ln σ̂ (80)

is the von Neumann entropy.
Like other entanglement measures defined in terms of min-

imization over some set of states, squashed entanglement is
notoriously difficult to calculate, being an NP-hard computa-
tion problem [70]. Here, we will not compute the squashed
entanglement itself, but instead compute a lower bound for

it and show that it is an asymptotically unbounded function
of time.

We begin by observing that, due to the extremality of
Gaussian states with respect to continuous, superadditive en-
tanglement measures [71], the squashed entanglement of any
state σ̂ is lower bounded by the squashed entanglement of a
Gaussian state σ̂G with the same covariance matrix. Further-
more, squashed entanglement of any state is lower bounded
by so-called distillable entanglement Edist [68], which, in turn,
is lower bounded by the coherent information [72,73]

IC (σ̂ ) := SV (σ̂A) − SV (σ̂ ), (81)

where σ̂A = TrBσ̂ .
In our case, this means that we have the following chain of

inequalities:

Esq[ρ̂(t )] � Esq[ρ̂G(t )] � Edist[ρ̂G(t )]

� IC[ρ̂G(t )] = SV [ρ̂G,A(t )] − SV [ρ̂G(t )], (82)

where ρ̂G(t ) is a Gaussian state with the same covariance
matrix (73) as our state and ρ̂G,A(t ) = TrBρ̂G(t ). Crucially,
both von Neumann entropies on the right-hand side are simple
functions of the symplectic eigenvalues of the respective state.
Let us define the auxiliary function:

f (x) := (x + 1/2) ln(x + 1/2) − (x − 1/2) ln(x − 1/2).
(83)

Then, for a one- or two-mode Gaussian state σ̂G with covari-
ance matrix Vσ̂ [74]

SV (σ̂G) =
N∑

j=1

f [ν j (Vσ̂ )], (84)

where N is the number of modes. In the case at hand, it is easy
to calculate that the symplectic eigenvalues of the covariance
matrix (73) equal

ν1(t ) = ν2(t ) = 1
2 e2t sinh2 r ≡ ν(t ). (85)

On the other hand, one can easily see from the definition (4)
that the reduced covariance matrix VA corresponding to the
first mode is given by the upper-left block of (73), i.e., VA =
A(t ). The only symplectic eigenvalue of VA equals

νA(t ) = 1
2 cosh(t sinh 2r)e2t sinh2 r . (86)

Using the last four equations in Eq. (82), we finally obtain

Esq[ρ̂(t )] � IC[ρ̂G(t )] = f [νA(t )] − 2 f [ν(t )]. (87)

The above lower bound for squashed entanglement, and there-
fore also squashed entanglement itself, grows indefinitely. To
show this, we first calculate that

IC[ρ̂G(t )] = e2z ln tanh z + ln
2{e2z cosh[2 coth(r)z] + 1}

e4z − 1
,

(88)

where we denoted z := t sinh2 r for shortness. For very large
t , corresponding to very large z, the first term on the right-
hand side approaches the constant value of −2. In the second
term, cosh[2 coth(r)z] approaches e2 coth(r)z/2, which means
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that the logarithm behaves like ln e4z[coth(r)−1] = 4z[coth(r) −
1]. It follows that

IC[ρ̂G(t )] −−−→
t→∞ − 2 + 4z[coth(r) − 1]

= − 2 + 4t sinh2(r)[coth(r) − 1], (89)

where, to be explicit, in the bottom line we went back to
the parametrization in terms of t . Clearly, this is a linear
function in t with positive slope, since coth(r) > 1 for all
r > 0. Therefore, IC[ρ̂G(t )] is asymptotically infinite, and thus
the same is also true for squashed entanglement itself. This is
what we wanted to show.

VII. CONCLUDING REMARKS

Motivated by recent findings in resource theories of non-
Gaussianity, we developed a model of dissipative evolution
which preserves the set of quantum Gaussian states without
preserving the set of Gaussian states itself. We showed that,
while such a model constitutes a natural description of random
scattering, it can also be applied to engineered dissipation, as
showcased through an example of entanglement creation in
two-mode states. Finally, the model is fully compatible with
the symplectic (covariance matrix) picture of quantum states,
allowing one to study it with the same tools that are typically
used for Gaussian states.

Besides applications to phenomena that include random
scattering, as well as engineered dissipation, our findings sug-
gest the following directions for future research. To start with,
let us briefly denote the generator of Gaussian evolution (19)
by LG and the generator of the evolution (22) based on unitary
Lindbladians by LcG. Because both LG and LcG preserve the
set of quantum Gaussian states, then, by Trotter’s formula [75]

e(LG+LcG )t = lim
n→∞(eLGt/neLcGt/n)n

(90)

the combined generator LG + LcG also does. Therefore, from
the point of view of dynamics of quantum Gaussian states, the
discussed generator can be seen not only as an alternative to
the Gaussian model, but also as its extension. For example, it
could be used to introduce generic quantum Gaussian noise,
especially in the form of the scattering integral (48), into an
otherwise Gaussian system.

Furthermore, while operations preserving the set of Gaus-
sian states are fully characterized [76], an analogous problem
was not resolved for quantum Gaussian states, partially due to
the lack of one-to-one correspondence with the set of states
with positive Wigner distribution [77]. This leads to the fol-
lowing question: what other evolution models preserve the
set of quantum Gaussian states but not the set of Gaussian
states? What physical scenarios can they describe? An imme-
diate generalization of our results would be to replace LcG by
L· = ∑

k (θk · −1̂), with θk being arbitrary Gaussian channels.
One can easily check that such generator preserves the set of
quantum Gaussian states. It would be interesting to see if this
is the most general generator with this property, and if not,
how it could be generalized further.
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APPENDIX: REWRITING THE OPERATOR (42)
IN TERMS OF A KICKED TOP HAMILTONIAN

In this Appendix, we show that the unitary operator (42)
can be obtained by substituting the kicked top Hamiltonian
ŵn = ĤKT with inputs (47) into Eq. (40). In other words, we
show that the operators

X̂n =
(
1̂ ⊗ |0〉〈0| +

M∑
j=1

Ûj ⊗ | j〉〈 j|
)

Ô(�t ), (A1)

Ŷn = T exp

(
−i
∫ n�t

(n−1)�t
dτ ŵn(τ )

)
(A2)

are identical for

ŵn(τ ) = ôn(τ ) + δ(τ − n�t )
M∑

j=1

ĥ j ⊗ | j〉〈 j|, (A3)

with Ûj = e−iĥ j and

Ô(�t ) = T exp

(
−i
∫ n�t

(n−1)�t
dτ ôn(τ )

)
. (A4)

We begin by observing that Ŷn can be recast into

Ŷn = lim
ε→0

T exp

(
−i
∫ n�t+ε/2

n�t−ε/2
dτ ŵn(τ )

)

× T exp

(
−i
∫ n�t−ε/2

(n−1)�t
dτ ŵn(τ )

)
. (A5)

Provided ôn is a well-behaved function of time [which can be
inferred from the well-behaved nature of its exponential (43)],
its contribution to the first integral vanishes in the limit. At the
same time, the delta distribution integrates to one. See, e.g.,
[78] for rigorous treatment. In conclusion,

T exp

(
−i
∫ n�t+ε/2

n�t−ε/2
dτ ŵn(τ )

)
→ e−i

∑M
j=1 ĥ j⊗| j〉〈 j|. (A6)

In the second integral, the situation is reversed. Because the
integral does not contain the point τ = n�t , the delta distri-
bution does not contribute and we can simply put ŵn = ôn.
Thus, based on Eq. (A4),

T exp

(
−i
∫ n�t−ε/2

(n−1)�t
dτ ŵn(τ )

)
→ Ô(�t ). (A7)
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Combining the last three expressions, we obtain

Ŷn = e−i
∑M

j=1 ĥ j⊗| j〉〈 j|Ô(�t ). (A8)

Because the generator of the exponential on the right-hand
side is diagonal in the second subsystem’s number basis, the

exponentiation can be explicitly performed, quickly yielding

e−i
∑M

j=1 ĥ j⊗| j〉〈 j| = 1̂ ⊗ |0〉〈0| +
M∑

j=1

Ûj ⊗ | j〉〈 j|. (A9)

Clearly, this makes Eq. (A8) identical to (A1), which is what
we wanted to prove.
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The notion of classicality of quantum evolution of light is an object of both conceptual and practical
importance. The main goal of this work is to derive the exact conditions for the classicality of quantum Gaussian
evolution, i.e., the evolution of Gaussian states of light and their convex combinations, a model which is of great
significance in quantum optics and information. According to our findings, quantum Gaussian evolution should
be considered classical if the Hamiltonian and Lindblad operators generating it correspond to passive optical
transformations. This is illustrated with several explicit examples, ranging from Gaussian thermal operations
to entanglement-maximizing dissipative engineering. Our results are obtained using the recently introduced
mesoscopic formalism of the reduced state of the field, which was originally devised as as a description of
macroscopic quantum fields. Here, to make the framework suitable for our goal, we redevelop it as a tool for
probing classicality, which constitutes our second main contribution.

DOI: 10.1103/PhysRevA.106.062204

I. INTRODUCTION

Classicality of light has been a subject of an ongoing
debate at least since Einstein’s work on photoelectric effect
[1] and the discovery of wave-particle duality [2]. While it
is generally believed that, e.g., Glauber’s coherent states [3]
are more classical than pure Fock states with the same mean
particle number [4], there exists no widely accepted criterion
for classicality of multiphoton states of light. Even classicality
of a single photon continues to be vividly discussed [5,6].

Similar considerations concern the time evolution of the
electromagnetic field. Quantum particles evolve under the
von Neumann equation, while classical particles evolve under
Liouville’s equation. The degree to which the latter ap-
proximates the former is quantified by the relation between
the energy scales in the system and the Planck’s constant.
However, the evolution of both the classical and quantum elec-
tromagnetic fields is given by the same set of four Maxwell’s
equations [7,8].

In modern quantum optics, the electromagnetic field is typ-
ically described by second quantization, with the occupation
numbers of photons of a given frequency described by the
density operator in an infinitely-dimensional Hilbert space
[8,9]. Currently available experimental operations, which de-
scribe the time evolution of this density operator, consist
primarily of Gaussian operations and measurements [10,11],
prominent in, e.g., quantum key distribution and other infor-
mation processing tasks [12–14].

To this day, the classicality of Gaussian evolution and,
more broadly, quantum evolution of light and Gaussian wave
packets, was investigated using a number of methods: Relying
on phase-space and the Winger distribution, hybridization of

*t.linowski95@gmail.com

quantum and classical theories, and path integrals [15–18].
Besides its conceptual significance, identifying classicality
of evolution of light is important in practice, since classical
description is typically much simpler than quantum theory
[19–21].

In this article, we approach the problem from the point of
view of the reduced state of the field (RSF) [22], a recent
mesoscopic theory [23] of many-particle bosonic systems.
Relying solely on the first two moments of the mode cre-
ation and annihilation operators, the description reduces the
infinitely-dimensional density operator of the N mode field to
an N-dimensional matrix defining the aforementioned RSF.
Originally, RSF was designed to describe the quantum fea-
tures of macroscopic fields of a single particle type, including
light fields. In particular, the formalism was successfully ap-
plied to polarization optics, bridging the Mueller and Jones
calculi, as well as to shock wave generation [22].

Here, we employ RSF to isolate the classical subclass of
quantum Gaussian evolution, defined as evolution preserving
the set of Gaussian states and their convex combinations. We
do this in two steps. First, we investigate the formalism itself
to show that, complementarily to its original goal, RSF also
captures the classical aspects of quantum fields. In particular,
we prove that RSF contains limited information about bipar-
tite entanglement, if any, and that the entropic description in
terms of RSF closely resembles that given by the semiclassical
Wehrl entropy [24,25]. In this way, we establish RSF as a tool
for studies of classicality within quantum mechanics.

Second, we compare quantum Gaussian evolution with
the time evolution model built into the RSF framework,
deriving in this fashion the explicit subset of Gaussian evo-
lution which is classical with respect to the RSF toolbox. The
classicality of the obtained evolution is intuitive, as it consists
exclusively of passive transformations, which correspond to
experimental operations that can be successfully understood
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by treating light as a classical wave, such as beam-splitters and
phase-shifters. On the contrary, evolution employing quantum
squeezing does not fit in the RSF framework.

This work is organized as follows. In Sec. II, we briefly
summarize the main subject of our work–quantum Gaussian
evolution. Over the course of the next three sections, we
introduce the formalism of RSF and investigate its various as-
pects with respect to their classicality: Correlations in Sec. III,
entropy in Sec. IV, and time evolution in Sec. V. Finally, in
Sec. VI, we use the RSF formalism to derive the classical sub-
set of the quantum Gaussian evolution family. We conclude in
Sec. VII.

Notational remark

In this work, we employ three different formalisms: The
standard, density operator picture, the symplectic picture and
the RSF framework. For clarity, we use different notation for
operators in each of these pictures. Operators associated with
the the standard picture are denoted by hats, e.g., ρ̂. Operators
associated with the symplectic picture are denoted by capital
letters with no hats, e.g., V . Operators associated with the RSF
framework are denoted by small letters, also with no hats, e.g.,
r.

II. QUANTUM GAUSSIAN EVOLUTION OF LIGHT

We begin by introducing the main subject of our consid-
erations: Quantum Gaussian evolution. To this end, we also
briefly summarize the notions of Gaussian states and sym-
plectic picture, which will serve as important tools in the
derivation of our findings.

A. Gaussian states and symplectic picture

We consider an N-mode Hilbert space spanned by the set
of N pairs of mode quadratures collected in the vector

�̂ξ := (x̂1, p̂1, . . . , x̂N , p̂N )T , (1)

where x̂k and p̂k fulfill the canonical commutation relations:

[x̂k, p̂k′ ] = iδkk′ , [x̂k, x̂k′ ] = [ p̂k, p̂k′ ] = 0, (2)

where we set h̄ = 1. Since the mode quadratures form a basis
of operators acting on the N-mode Hilbert space, the state of
the system is fully described by the complete collection of
correlation functions of the form

〈ξ̂l1 . . . ξ̂ln〉 := Tr[ρ̂ ξ̂l1 . . . ξ̂ln ]. (3)

In the case of Gaussian states, defined as states with nor-
mal (Gaussian) characteristic functions and quasiprobability
distributions [8,26,27], the complete information about the
system is contained within only the one- and two-point cor-
relation functions, i.e., with n = 1, 2 in the equation above.
The former are contained in the vector of means

|ξ 〉 :=
2N∑

k=1

〈ξ̂k〉 |k〉, (4)

while the latter are encoded in the matrix of second moments

V := 1

2

2N∑
k,k′=1

〈{ξ̂k, ξ̂k′ }〉 |k〉〈k′|. (5)

Often, instead of V , one uses the covariance matrix, defined
as Vcov = V − |ξ 〉〈ξ |.

Any valid covariance matrix has to fulfill the Heisenberg
uncertainty principle:√〈

x̂2
k

〉 − 〈x̂k〉2
√〈

p̂2
k

〉 − 〈p̂k〉2 � 1

2
, (6)

where k ∈ {1, . . . , N}, equivalent to [26]

Vcov − i

2
J � 0. (7)

Here, J is the symplectic form, defined as

J := −i
2N∑

k,k′=1

[ξ̂k, ξ̂k′ ]|k〉〈k′|, (8)

and explicitly equal to

J =
N⊕

k=1

J2, J2 :=
[

0 1
−1 0

]
. (9)

The symplectic form defines the symplectic group Sp(2N,R)
consisting of matrices S of size 2N×2N , such that SJST = J .

As a matter of fact, the pair (V, |ξ 〉) contains the same
information as (Vcov, |ξ 〉), and both in the same way define the
symplectic picture of quantum states (sometimes referred to as
covariance matrix picture), which is a convenient description
of the first two moments of the system, particularly in the
case of Gaussian states and dynamics. Here, we employ the
pair (V, |ξ 〉), since, as we will see in the next section, it is
by construction closer to the reduced state of the field than
(Vcov, |ξ 〉).

B. Quantum Gaussian time evolution

The time evolution of quantum open systems is typically
modeled by the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) equation (also known as the Lindblad equation)
[28–30], which in the diagonalized form reads:

d

dt
ρ̂ = − i[Ĥ, ρ̂] +

∑
k

(
L̂k ρ̂L̂†

k − 1

2
{L̂†

k L̂k, ρ̂}
)

, (10)

where Ĥ denotes the system Hamiltonian and L̂k are the Lind-
blad operators.

One of the main sources of motivation for studying Gaus-
sian states is that, due to technical limitations, in practice we
are often restricted to Hamiltonians that are polynomials of at
most second degree in mode quadratures:

Ĥ = 1
2
�̂ξT G�̂ξ, (11)

where G is a 2N×2N , real, symmetric matrix. The structure-
preserving evolution of Gaussian states is driven by precisely
such Hamiltonians.

Similarly, to preserve Gaussianity of an initial state along
the course of time evolution, the Lindblad operators need to
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be linear in mode quadratures [31]:

L̂k = �ck · �̂ξ, �ck ∈ C2N , (12)

so that the resulting dissipator is a polynomial of second
degree in mode quadratures, like the Hamiltonian.

However, the same experimental tools that let one create
and manipulate Gaussian states can be used to create and
manipulate convex combinations of Gaussian states. In fact,
according to recent theories of non-Gaussianity [10,11], from
the point of view of useful non-Gaussianity, there is no differ-
ence between Gaussian states and their convex combinations.
Only states that cannot be written as a convex combination
of Gaussian states are genuinely non-Gaussian, or quantum
non-Gaussian [32–34]. Consequently, states that are either
Gaussian or can be written as a convex combination of Gaus-
sian states are called quantum Gaussian.

For this reason, in addition to linear Lindblad operators,
which preserve the set of Gaussian states, we also consider
unitary Lindblad operators

L̂k = √
γkÛk, (13)

where γk � 0,
∑

k γk = 1 and Ûk are unitary operators such
that Ûk = exp(iĝk ) with ĝk being polynomials of at most sec-
ond degree in the mode quadratures. The dynamics induced by
such Lindblad operators does not preserve the set of Gaussian
states, but preserves the set of quantum Gaussian states [35].
Dissipators of this form are most well-known for describing
random scattering, see Refs. [36–38].

Written in the symplectic picture, the evolution given by
the Hamiltonian (11) and Lindblad operators (12), (13) reads
[39–41]

d

dt
V = FG(V ) + FL(V ) + FU (V ),

d

dt
|ξ 〉 = fG(|ξ 〉) + fL(|ξ 〉) + fU (|ξ 〉). (14)

Here,

FG(V ) := JGV − V GJ,

fG(|ξ 〉) := JG|ξ 〉, (15)

are the Hamiltonian terms, while [42]

FL(V ) := JICV + V ICJ + JRCJT ,

fL(|ξ 〉) := JIC |ξ 〉, (16)

with RC ≡ reC†C, IC ≡ imC†C and Ckl := (�ck )l stem from
linear Lindblad operators (12). We remark that the
Gaussianity-preserving time evolution given by these func-
tions is known to have exact solutions [43–45] and is
well-studied using Green functions [46,47] and, in particular,
the symplectic picture [39–41].

The final terms

FU (V ) :=
∑

j

γ j
(
KjV KT

j − V
)
,

fU (|ξ 〉) :=
∑

j

γ j (Kj |ξ 〉 − |ξ 〉), (17)

where Kj are symplectic, stem from the unitary Lindblad op-
erators (13) and represent a relatively novel type of dynamics
that preserves only the set of quantum Gaussian states [35].

Equation (14) defines the quantum Gaussian evolution. The
ultimate goal of our article is to identify the subclass of semi-
classical evolution consistent with this equation. Before we
can do that, however, we need to develop the necessary tools
to achieve this goal, namely, the framework of the reduced
state of the field (RSF).

III. REDUCED STATE OF THE FIELD AS A CLASSICAL
DESCRIPTION OF BOSONIC FIELDS

In this section, we summarize the relevant information
about RSF and simultaneously investigate it to show that it
provides a semiclassical description for bosonic many-particle
fields, thus constituting a viable tool for our main goal.

A. Reduced state of the field (RSF)

The main idea behind RSF was to describe many-particle,
or macroscopic, quantum fields. In such a case, instead of
using the mode quadratures, it is often more convenient to use
the annihilation and creation operators

âk := 1√
2

(x̂k + i p̂k ), â†
k = 1√

2
(x̂k − i p̂k ), (18)

with the canonical commutation relations (2) now reading

[âk, â†
k′ ] = δkk′ , [âk, âk′ ] = [â†

k, â†
k′ ] = 0. (19)

An arbitrary n-particle state in the many-body Hilbert space
can be then constructed by acting on the vacuum state with n
appropriate creation operators.

In the case of macroscopic fields, typically modeled
as noninteracting fields with dynamics governed by field
equations linear in creation and annihilation operators with
possible external coherent sources, the fundamental observ-
ables are either additive, like energy [22],

Ô =
N∑

k,k′=1

okk′ â†
k âk′ , (20)

or linear, like momentum,

σ̂ =
N∑

k=1

(σ ∗
k âk + σkâ†

k ). (21)

One can easily check that the expectation values of such
observables can be equivalently rewritten as

Trρ̂ Ô = trro, Trρ̂ σ̂ = 〈σ |α〉 + 〈α|σ 〉 , (22)

where

r :=
N∑

k,k′=1

Tr[ρ̂ â†
k′ âk]|k〉〈k′| (23)

defines the single-particle density matrix,

|α〉 :=
N∑

k=1

Tr[ρ̂ âk]|k〉 (24)
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defines the averaged field, while

o =
N∑

k,k′=1

okk′ |k〉〈k′|, |σ 〉 =
N∑

k=1

σk|k〉 (25)

are the reduced observables corresponding to Ô and σ̂ .
The single-particle density matrix contains information

about mode occupation and coherence in the state. In partic-
ular, its diagonal elements equal the mean particle numbers:
rkk = 〈â†

k âk〉 = 〈n̂k〉 and, consequently, the matrix is normal-
ized to the mean total particle number: trr = ∑N

k=1 〈n̂k〉 ≡
〈n̂〉. Note that, by construction, the single-particle density
matrix is nonnegative.

The averaged field contains information about local phases
of the field. For example, in the case of a pure Fock state,
the phase is undefined, yielding no such information, with the
opposite situation in the case of a pure coherent state.

Together, the single particle density matrix and the av-
eraged field constitute the reduced state of the field (RSF)
associated with the density operator ρ̂ [22]. A major advan-
tage of the RSF formalism is that it is, to a large degree,
self-contained, in the sense that it allows for study of a variety
of phenomena without having to refer to other frameworks.
In particular, it comes equipped with its own definition of
entropy and a time evolution model, both of which are inves-
tigated by us in the subsequent sections.

In the case of additive and linear observables (20), (21),
the RSF description is complete. In the case where the ob-
servables of interest are more general, RSF describes a subset
of degrees of freedom of the system. We now proceed to give
a physical interpretation for the degrees of freedom contained
within RSF.

B. Physical meaning of correlations within the RSF framework

To see what physical information is associated with the
degrees of freedom contained within RSF, we begin by ob-
serving that RSF is related to the symplectic picture of
quantum states via

r = RVR† − 1
2 1N , |α〉 = R|ξ 〉, (26)

where we use 1N to denote the identity matrix of size N×N ,
and

R := 1√
2

N∑
k=1

|k〉[〈2k − 1| + i〈2k|] (27)

defines the reduction matrix. The Heisenberg uncertainty prin-
ciple (7) translates to nonnegativity of the correlation matrix:

rα := r − |α〉〈α| � 0, (28)

which was defined already in Ref. [22]. Note that it follows
immediately from Eq. (26) that

rα = R(V − |ξ 〉〈ξ |)R† − 1

2
1N = RVcovR† − 1

2
1N . (29)

The relations (26) and (28) are derived by us in Appendix A.
The input of the reduction matrix belongs to a 2N-

dimensional space, while the output is only N-dimensional.
Clearly, then, the reduction matrix cuts some of the infor-
mation from the symplectic picture. As we will now show,

this missing information is relevant for practical scenarios
requiring bipartite quantum entanglement. For a given entan-
gled state to be useful for any such task, e.g., quantum code
encryption or teleportation, it first needs to be distilled [48].

Crucially, not every entangled state is distillable. A neces-
sary condition for bipartite entanglement distillation is given
by the positive partial transpose (PPT) criterion [49,50], orig-
inally stated as a necessary condition for separability. Adopted
to the language of distillable entanglement, the PPT criterion
states that if the partial transposition of the state with respect
to a given bipartition is positive semidefinite, then the state
does not contain distillable entanglement with respect to this
bipartition [48].

In the symplectic picture, partial transposition of arbi-
trary chosen modes is performed by replacing the covariance
matrix by

Vcov,�q = Q�qVcovQ�q, (30)

with

Q�q = diag(1, q1, . . . , 1, qN ), (31)

where qk = −1 for modes that are being transposed and qk =
1 otherwise.

From the perspective of distillable entanglement, the
PPT criterion for continuous variable systems states that if
[cf. Eq. (7)]

Vcov,�q − i

2
J � 0, (32)

then the state does not contain distillable entanglement with
respect to the bipartion given by �q [48,50]. Therefore, vi-
olation of Eq. (32) indicates its presence. Note that if this
inequality holds, then the state may still contain so-called
bound entanglement. This type of entanglement is, however,
much less useful in practice.

We will now show that in the RSF picture, the PPT criterion
is undecidable. In turn, the formalism contains no information
about distillable entanglement. To this end, it is enough to
limit our considerations to the correlation matrix (28), since
the averaged field contains only local information and is there-
fore irrelevant for entanglement.

The key observation is that among all the covariance ma-
trices corresponding to a given correlation matrix rα through
Eq. (29), there is one that equals

V̄cov = rα ⊗ 12 + 1
2 12N . (33)

This can be seen as follows. First, as is easy to compute,
R(rα ⊗ 12)R† = rα , from which it immediately follows that
the correlation matrix corresponding to V̄cov is indeed equal to
rα . Second, V̄cov fulfills the Heisenberg uncertainty principle
(7), since

V̄cov − i

2
J = rα ⊗ 12 + 1

2
(12N − iJ ). (34)

By construction, rα is nonnegative, and thus so is the first
term on the right-hand side (r.h.s.). The second term, however,
can be decomposed into N blocks of size 2×2 as 12N − iJ =⊕N

j=1(12 − iJ2). It is straightforward to calculate that each
of these blocks is nonnegative, making the whole matrix
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nonnegative. Therefore, Eq. (34) is nonnegative and V̄cov is
a valid covariance matrix.

Crucially, all variants of partial transposition of V̄cov satisfy
the condition (32). Indeed, for any �q we have

V̄cov,�q − i

2
J = Q�q(rα ⊗ 12)Q�q + 1

2
(12N − iJ ), (35)

where we used the fact that Q2
�q = 12N . As before, the second

term is nonnegative. However, the same is also true for the
first term since, due to unitarity and Hermiticity of Q�q, the
eigenvalues of Q�q(rα ⊗ 12)Q�q are the same as the eigenvalues
of rα ⊗ 12.

Consequently, every RSF description corresponds to at
least one symplectic description of a system that fulfills the
PPT criterion, making this criterion trivial from the point
of view of the RSF framework. This leads to the following
proposition.

Proposition 1. The RSF framework contains no informa-
tion about bipartite distillable entanglement.

This proposition has special consequences for two-mode
Gaussian states, for which the PPT criterion is equivalent to
the presence of any form of entanglement, not only distillable
entanglement [48]:

Corollary 2. In the case of two-mode Gaussian states, the
RSF framework contains no information about any form of
entanglement.

We conjecture that these findings hold in general, i.e., RSF
contains no information about any type of quantum entangle-
ment in any quantum state. Irrespectively, Proposition 1 and
Corollary 2 show that the ability to describe entanglement
within the RSF formalism is severely limited, strongly sug-
gesting the framework to be semiclassical.

IV. CLASSICALITY OF RSF ENTROPY

The fact that RSF contains limited information about en-
tanglement strongly suggests it is a semiclassical formalism.
To further reinforce this interpretation, in this section, we
analyze the entropic description in terms of RSF, showing
that it is similar to the one given by the semiclassical Wehrl
entropy.

A. Reduced entropy

The standard choice for quantum (information) entropy is
given by the von Neumann entropy [51]

SV (ρ̂) := −Trρ̂ ln ρ̂, (36)

where we set kB = 1. Because of its information-theoretic
origin as a generalization of the Shannon entropy, the von
Neumann entropy is most easily interpreted as a measure of
uncertainty about the state of the system. The von Neumann
entropy is invariant under all unitary transformations and it
attains its minimum value—zero—for all pure states.

To describe entropy within the RSF formalism, one needs
to find a way to derive a valid entropy measure that de-
pends only on the components of RSF. In Ref. [22], this was
done with the use of the maximum entropy principle [52,53].
According to this principle, given only a partial knowledge
about a physical system, one should assume the highest

possible value of entropy consistent with this knowledge.
Interpreting entropy as the amount of uncertainty about the
state of the system, the maximum entropy principle means
simply that one should not presume to be more certain about
the system’s state than their knowledge lets them.

For example, if one has absolutely no knowledge about
which quantum state the system is in, one should assume it
to be maximally mixed, i.e., ρ̂ = 1̂�/�, where � denotes the
number of possible orthogonal system states, or equivalently
the dimension of the Hilbert space. This is because such
density operator is the only one for which all system states
are equally probable.

In this case, it is easy to calculate that the von Neumann
entropy coincides with the classical Boltzmann entropy

SB = SV (1̂�/�) = ln�. (37)

Viewed from the perspective of the maximum entropy princi-
ple, the Boltzmann entropy is simply the maximum value of
the von Neumann entropy consistent with having no knowl-
edge about the quantum state of the system.

In the RSF formalism, the only information we have about
the system is its RSF. Thus, according to the maximum
entropy principle, we should assume that the system’s von
Neumann entropy has the highest value possible for a system
with that specific RSF. As was calculated in Ref. [22], among
all the quantum states with the same RSF (r, |α〉), the von
Neumann entropy is maximal for the thermal-like state

ρ̂r,|α〉 = 1

z
D(�α) exp

(
−

N∑
k,k′=1

rkk′ â†
k′ âk

)
D†(�α), (38)

where

z = Tr exp

(
−

N∑
k,k′=1

rkk′ â†
k′ âk

)
(39)

and

D(�α) = exp

[
N∑

k=1

(α∗
k âk − αkâ†

k )

]
(40)

is the (unitary) N-mode displacement operator.
Thus, the RSF entropy can be defined as [22]

sv (ρ̂ ) := SV (ρ̂r,|α〉)

= tr[(rα + 1N ) ln(rα + 1N ) − rα ln rα], (41)

with the correlation matrix rα as in Eq. (28). In accordance
with the maximum entropy principle, such entropy, dubbed
reduced entropy [22], is simply the maximum value of the von
Neumann entropy consistent with having no knowledge about
the quantum state of the system except for its RSF.

The reduced entropy satisfies the natural condition
sv (ρ̂) � 0, with equality if and only if the correlation matrix is
equal to zero, which happens only when the density operator
of the field is given by a coherent state. In contrast, the von
Neumann entropy vanishes for any pure state.

While based on sound principles, the reduced entropy lacks
a clear physical interpretation. We now proceed to investi-
gate the qualitative and quantitative features of this entropy,
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showing that is has a semiclassical character akin to the Wehrl
entropy.

B. Reduced Wehrl entropy and its classical features

The Wehrl entropy [24] is defined as the continuous Shan-
non entropy of the Husimi Q representation of the quantum
state:

SW (ρ̂ ) := −
∫

d2N �β
πN

Q(�β ) ln Q(�β ). (42)

Here, Q(�β ) = 〈�β|ρ̂|�β〉 is the Husimi Q representation [54] of
the state ρ̂, |�β〉 is an N-mode coherent state and the integration
is over the real and imaginary parts of every component of the
complex vector �β.

The Wehrl entropy is typically considered to be a semiclas-
sical approximation to the von Neumann entropy, since it is
constructed by replacing the quantum density operator in the
definition of the von Neumann entropy by its representation
Q(�β ) in the phase-space [25,55]. The two entropies differ
significantly. Unlike the von Neumann entropy, the Wehrl
entropy attains its minimum value, N , only for coherent states
[56]. Furthermore, it is not invariant under all unitary trans-
formations of the state.

Looking at the reduced entropy (41), we can see that it
possesses the same qualities. The fact that it is minimized
by coherent states was already discussed. As for invariance
under unitary operations, consider, e.g., the transformation
Û †âkÛ = cosh μ âk + sinh μ â†

k with μ �= 0. From the defini-
tions (23), (24), we can calculate that r transforms to r′ =
cosh2 μ r + f (μ) �= r, where f (μ) depends solely on correla-
tions not included in the RSF formalism. Notably, the reduced
entropy of r′ differs from that of r. Finally, we note that by
construction, the reduced entropy provides an upper bound
to the von Neumann entropy, another quality shared with the
Wehrl entropy.

As seen, the reduced entropy resembles the Wehrl entropy
more than the von Neumann entropy. To make this point
even stronger, we will now construct a new entropy of RSF
based on the Wehrl entropy and show that for the majority
of states it has approximately the same value as the reduced
entropy. In other words, despite being based on the quantum
von Neumann entropy, the reduced entropy gives the same
quantitative results as RSF entropy based on the semiclassical
Wehrl entropy.

Making use of the maximum entropy principle, analo-
gously to the case of the original reduced entropy, we derive
the reduced Wehrl entropy,

sw(ρ̂) := tr ln(rα + 1N ) + N. (43)

See Appendix B for details.
Just like the reduced entropy (41) maximizes the von Neu-

mann entropy for a fixed RSF, the reduced Wehrl entropy
maximizes the Wehrl entropy for a fixed RSF. We note that
it has similar qualitative properties to the original reduced
entropy, e.g., it is invariant under the same unitary transfor-
mations and is minimized by coherent states.

More importantly, the two entropies can also be linked
quantitatively.

Proposition 3. The following relation between the RSF
entropies holds:

0 < sw(ρ̂) − sv (ρ̂) � N. (44)

Proof. We begin with the left-hand side (l.h.s.) inequality.
Rearranging Eq. (41) we obtain

sv (ρ̂ ) = tr{rα[ln(rα + 1N ) − ln rα]}
+ tr ln(rα + 1N ). (45)

By definition of the reduced Wehrl entropy, the second term is
equal to −N + sw(ρ̂). In the first term, we apply the eigende-
composition rα = ∑N

k=1 λk|k〉〈k|, where λk � 0. Using basic
properties of the logarithm, we arrive at

sv (ρ̂) =
N∑

k=1

ln (1 + 1/λk )λk − N + sw(ρ̂). (46)

Clearly, the first term is maximized in the limit λk → ∞,
in which, by definition of the Euler’s number, it approaches
N . Then, the first and second terms cancel, leaving sv (ρ̂) <

sw(ρ̂), as in the l.h.s. inequality.
To prove the r.h.s. inequality, we observe that, since rα � 0:

sv (ρ̂ ) � tr[(rα + 1N ) ln(rα + 1N )

− rα ln(rα + 1N )] = sw(ρ̂) − N, (47)

which is equivalent to the r.h.s. inequality. �
Crucially, for states with mean particle number much big-

ger than the effective number of modes trr = 〈n̂〉 � N , the
term N is vanishing in comparison to sw, sv . Therefore, it
follows from Eq. (44) that for most many-particle states, the
two reduced entropies are effectively equal. Combining this
with our previous analysis of the qualitative aspects of the
two entropies, we see that in the RSF formalism, entropic
descriptions based on the “quantum” von Neumann and on
the “classical” Wehrl entropy are nearly identical to each
other and akin to the Wehrl entropy [57]. This cements the
classicality of the RSF description.

V. REDUCED KINETIC EQUATIONS

Having established the classicality of RSF, we can use the
framework to derive and characterize the classical subset of
Gaussian evolution. To do this, we will employ the final com-
ponent of the formalism—reduced kinetic equations—which
we summarize in this section.

Let us go back to the GKLS equation (10) and consider its
general, nondiagonal form:

d

dt
ρ̂ = −i[Ĥ, ρ̂] +

∑
k,k′

Bkk′

(
Ĵk ρ̂Ĵ†

k′ − 1

2
{Ĵ†

k′ Ĵk, ρ̂}
)

. (48)

Here, Ĵk are the jump operators and B is a nonnegative ma-
trix. By diagonalizing the non-Hamiltonian part, the original
equation (10) is obtained.

In the formalism of RSF, it is assumed that to correctly
describe the dynamics of a macroscopic field, it is enough to
treat it as a set of individual particles subject to spontaneous
decay and production, as well as interaction with coherent
classical sources and random scattering by the environment.
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In such a setting, the following Hamiltonian arises [22]:

Ĥ =
N∑

k=1

(ωkâ†
k âk + iζkâ†

k − iζ ∗
k âk ). (49)

Here, the first term is the base Hamiltonian for bosonic fields,
with the positive frequencies ωk defining the energy levels
of the system. The remaining two terms coincide with the
Hermitian generator of the displacement operator (40) with
argument �ζ , which is experimentally realized by combining
the input state with an N-mode coherent state |�ζ 〉 in an asym-
metric beam-splitter [58]. Hence, this part of the Hamiltonian
can be interpreted as an interaction with a coherent classical
source with complex amplitudes ζk .

As for the dissipator, three families of jump operators were
considered:

(1) Ĵk = âk , that describe spontaneous decay of particles
in the field at rates given by matrix Bkk′ = �k′k

↓ ,

(2) Ĵk = â†
k , that describe spontaneous production of par-

ticles in the field at rates given by matrix Bkk′ = �kk′
↑ ,

(3) Ĵk = Ûk , with Ûk being a unitary operator. For a large
number of unitary operators, this family describes random
scattering [35–38] with rates given by Bkk′ = ηkδkk′ , ηk � 0,∑

k ηk = 1 [59].
Note that, while it is not explicitly stated in the original

work [22], the results stated there imply that the unitaries Ûk

must each transform the annihilation operators as

Û †
k âmÛk =

N∑
l=1

(uk )ml âl , (50)

where uk have to be unitary to preserve the canonical commu-
tation relations (19).

Under the collective influence of all these phenomena, the
evolution of the density operator reads [22]

d

dt
ρ̂ = −i

N∑
k=1

ωk[â†
k âk, ρ̂] +

N∑
k=1

[ζkâ†
k − ζ ∗

k âk, ρ̂]

+
N∑

k,k′=1

�k′k
↓

(
âk ρ̂ â†

k′ − 1

2
{â†

k′ âk, ρ̂}
)

+
N∑

k,k′=1

�kk′
↑

(
â†

k ρ̂ âk′ − 1

2
{âk′ â†

k, ρ̂}
)

+
∑

k

ηk
(
Ûk ρ̂ Û †

k − ρ̂
)
. (51)

Note that the number of unitaries Ûk is arbitrary.
Tracing both sides of Eq. (51) with â†

l ′ âl and âl yields
the reduced kinetic equations for RSF. As the resulting
equations slightly differ from the ones derived originally in
Ref. [22], where minor errors appear [60], we provide them in
full in the following proposition, with proof in Appendix C.

Proposition 4. The time evolution of RSF is governed by
the reduced kinetic equations:

d

dt
r = −i[h, r] + |ζ 〉〈α| + |α〉〈ζ |

+ 1

2
{γ↑ − γ↓, r} + γ↑

+
∑

k

ηk (ukru†
k − r),

d

dt
|α〉 = −ih|α〉 + 1

2
(γ↑ − γ↓)|α〉 + |ζ 〉

+
∑

k

ηk (uk − 1)|α〉. (52)

Here,

h :=
N∑

k=1

ωk|k〉〈k|, (53)

|ζ 〉 :=
N∑

k=1

ζk|k〉, (54)

γ� :=
N∑

k,k′=1

�kk′
� |k〉〈k′| (55)

are the single-particle counterparts to Ĥ , �ζ , and ��, respec-
tively, while uk are fixed by Eq. (50).

The assumptions behind the model are best justified by its
applicability. In the original work [22], the reduced kinetic
equations were successfully used to describe macroscopic
fields in thermal environments, as well as polarization optics,
notably making an explicit connection between the Mueller
and Jones calculi.

VI. CLASSICALITY OF QUANTUM
GAUSSIAN EVOLUTION

Due to their full compatibility with RSF, the reduced ki-
netic equations necessarily constitute a semiclassical model
of evolution. In this section, we use them as a tool for identi-
fying the semiclassical subset of quantum Gaussian evolution,
fulfilling the main goal of our work. For clarity, we consider
each of the three terms entering the quantum Gaussian evo-
lution equations (14) separately. All proofs are contained in
Appendix D.

We begin with the Hamiltonian term.
Proposition 5. Let (V, |ξ 〉) denote the symplectic descrip-

tion of a system undergoing Gaussian Hamiltonian evolution

d

dt
V = FG(V ),

d

dt
|ξ 〉 = fG(|ξ 〉) (56)

as given by Eq. (15). The evolution can be written as reduced
kinetic equations (52) and is thus classical with respect to the
RSF formalism if and only if

0 = [J, G]. (57)

The corresponding reduced kinetic equations are governed by

h = iRJGR†, (58)

with the remaining terms vanishing.
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Proof. See Appendix D. �
To see what the condition (57) means, we make use of the

matrix representation of the symplectic form (9). Substituting
it into Eq. (57), we compute that the allowed Hamiltonians
consist of 2 × 2 block matrices of the form

Gkk′ = GT
k′k = akk′12 + (1 − δkk′ )bkk′J2, (59)

where k, k′ enumerate the blocks and akk′ , bkk′ ∈ R. Making
use of Eq. (11) we check that Eq. (59) allows only for particle
number-preserving or passive interactions.

In standard optical implementations, passive transforma-
tions correspond to experimental operations with classical
analogues, such as beam splitters and phase shifters. Ac-
cording to standard notions of nonclassicality, such as
nonpositivity of the Glauber P representation or the presence
of entanglement, the output of passive transformations can
be nonclassical only if given nonclassical input [61,62]. The
remaining active transformations, such as squeezing, have
no classical analogues. Moreover, they can be a source of
quantum advantage, e.g., in metrology [63,64]. Such transfor-
mations are forbidden by Eq. (59).

In short, Gaussian Hamiltonians are classical with respect
to the reduced kinetic equations if they correspond to passive
transformations.

Let us illustrate this with an example. Among the key
ingredients in the resource-based approach to quantum
thermodynamics are thermal operations, defined as energy-
preserving operations on continuous variable systems coupled
to a thermal environment. Due to the prevalence of quadratic
Hamiltonians in experimental setups, special emphasis is put
on Gaussian thermal operations (GTOs), which are thermal
operations that preserve the set of Gaussian states.

Recently, a complete characterization of GTOs has been
provided in Ref. [65]. Here, we focus on a natural subclass of
GTOs generated by time-independent, nondegenerate Hamil-
tonians. Such GTOs are effectively reduced to single-mode
transformations [65] of the form

V (t ) = S[Q(t )S−1V (0)(S−1)T QT (t ) + P]ST , (60)

where S is a 2×2 symplectic matrix, P := (1 − p)ν1, and

Q(t ) := √
p

[
cos φ(t ) sin φ(t )

− sin φ(t ) cos φ(t )

]
. (61)

Here, ν := coth βω/2, ω is the Hamiltonian eigenvalue asso-
ciated with the considered mode, β is the inverse temperature,
while p ∈ [0, 1].

Taking the time derivative of Eq. (60) we get

G = dφ

dt
JSST JT , (62)

which, according to Proposition 6, governs classical evolu-
tion if

0 = [J, SST ]. (63)

One can easily solve this condition explicitly, from which we
find that S must be orthogonal in addition to being symplectic,
meaning that it is passive [65].

Similar considerations concern Gaussian dissipative evolu-
tion based on Lindblad operators linear in mode quadratures.

Proposition 6. Let (V, |ξ 〉) denote the symplectic descrip-
tion of a system undergoing Gaussian dissipative evolution
stemming from Lindblad operators linear in mode quadratures
(12):

d

dt
V = FL(V ),

d

dt
|ξ 〉 = fL(|ξ 〉) (64)

as given by Eq. (16). The evolution can be written as reduced
kinetic equations (52) and is thus classical with respect to the
RSF formalism if and only if

0 = [J, IC] (65)

and

γ↑ = R(ICJ − JRCJ )R† � 0, (66)

γ↓ = −R(ICJ + JRCJ )R† � 0. (67)

The corresponding reduced kinetic equations are governed by
γ� as above with the remaining terms vanishing.

Proof. See Appendix D. �
Through Eq. (66) we can see that the matrix IC describes

the difference between particle creation and annihilation rates,
i.e., particle flow: RICJR† = γ↑ − γ↓. Thus, the first condi-
tion (65), by full analogy to the one for the Hamiltonian (57)
means that the particle flow operator has to be passive. The
second condition (66) simply requires nonnegative particle
creation and annihilation rates.

As an example, let us consider stabilizability in two-mode
entangled Gaussian systems. In quantum open systems, it is
sometimes desirable to counteract the effects of dissipation by
using an appropriate Hamiltonian. In the framework of stabi-
lizability, one can check whether this is possible by solving a
finite set of conditions rather than checking every Hamiltonian
separately [41,66].

Recently, stabilizability was used to investigate the robust-
ness of two-mode Gaussian states against three classes of
dissipation [67]:

(1) local damping: L̂k := âk ,
(2) global damping: L̂ := (â1 + â2),
(3) dissipators engineered to preserve two-mode squeezed

states:

L̂1 := cosh χ â1 − sinh χ â†
2,

L̂2 := cosh χ â2 − sinh χ â†
1, (68)

where χ � 0 denotes the amount of squeezing.
It is straightforward to check that while all the dissipators

fulfill Eq. (65), only the first two fulfill the positivity condition
(66), unless no squeezing is considered in the third model
(α = 0). This, of course, makes sense from the point of classi-
cality, since squeezing is a purely quantum resource, while the
Lindblad operators appearing in the first two models merely
describe particle loss in the system.

In addition, we remark that in the first and third models,
the maximum amount of entanglement was stabilized in the
system when using the Hamiltonian

Ĥsq := −iω(â1â2 − â†
1â†

2), (69)
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while in the second model the entanglement-maximizing
Hamiltonian read

Ĥ = Ĥcas := − iω

2
[(â1 + â2)2 − (â†

1 + â†
2)2]. (70)

As expected, neither Hamiltonian fulfills the classicality con-
dition (57).

Finally, we consider Gaussian dissipative evolution based
on unitary Lindblad operators.

Proposition 7. Let (V, |ξ 〉) denote the symplectic descrip-
tion of a system undergoing quantum Gaussian dissipative
evolution stemming from unitary Lindblad operators (13):

d

dt
V = FU (V ),

d

dt
|ξ 〉 = fU (|ξ 〉) (71)

as given by Eq. (17). The evolution can be written as reduced
kinetic equations (52) and is thus classical with respect to the
RSF formalism if and only if each Kj fulfills

0 = RKjRT and RKjR† is unitary. (72)

The corresponding reduced kinetic equations are governed by

u j = RKjR†, η j = γ j (73)

with the remaining terms vanishing.
Proof. See Appendix D. �
Similar to previous results, the condition (72) is fulfilled

only when the summation is over operations Kj , which are
orthogonal in addition to being symplectic. From the physical
point of view, they also correspond to passive transformations
only [65].

Once again, we illustrate our result with an example. Let us
consider the family of two-mode symplectic transformations
Kj = exp[JS j] generated by

S j = w j

[
0 Oj

Oj 0

]
, Oj =

[
cos φ j sin φ j

sin φ j − cos φ j

]
, (74)

where w j � 0, φ j ∈ [0, 2π ). For φ = π/2, Kj coincide with a
transformation used for creation of highly entangled mixtures
of Gaussian states in the asymptotic time limit in Ref. [35].
We can easily calculate that for all j, RKjR† = cosh(w j )12,
which is unitary only in the trivial case w j = 0. Thus, accord-
ing to Proposition 7, the evolution is not classical, as expected
given its entangling properties.

VII. CONCLUDING REMARKS

We studied the classicality of quantum Gaussian evo-
lution, a model of time evolution relevant especially in
modern quantum optics and continuous variables-based infor-
mation processing. We derived an explicit set of conditions
under which the evolution is classical, as summarized in
Propositions 5–7 in Sec. VI. The derived conditions for-
bid Hamiltonians and Lindblad operators corresponding to
so-called active optical transformations, such as squeezing,
instead allowing only passive transformations, which have an
intuitive experimental interpretation in terms of operations
treating macroscopic light as a classical wave. Our results
were obtained using the recent mesoscopic formalism of the
reduced state of the field (RSF), which we redeveloped as a
tool for classical description of many-particle bosonic fields.

Based on our findings, we suggest the following directions
for further research. To start with, our investigations into the
RSF framework could be generalized. For example, it would
be interesting to see if our conjecture regarding lack of en-
tanglement description via RSF can be proved (or disproved).
Furthermore, the RSF formalism is based on one- and two-
point correlation functions. Can a self-consistent mesoscopic
framework based on higher-order correlations be designed?
If so, then what new insights does it offer, in particular, with
respect to classicality?
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APPENDIX A: DERIVATION OF REDUCTION MAP (26)

In this Appendix, we derive the relation (26) between the
RSF and covariance matrix pictures (52).

Beginning with the definition of the single-particle density
matrix (23) and the annihilation and creation operators (18)
we quickly obtain

rkk′ = 1
2 Tr[ρ̂(x̂k′ x̂k + ix̂k′ p̂k − i p̂k′ x̂k + p̂k′ p̂k )]. (A1)

Looking at Eqs. (1) and (5), we can see that

V2k′−1,2k−1 = V2k−1,2k′−1 = Tr[ρ̂ x̂k′ x̂k],

V2k′−1,2k = V2k,2k′−1 = 1

2
Tr[ρ̂(x̂k′ p̂k + p̂k x̂k′ )],

= Tr[ρ̂ x̂k′ p̂k] − i

2
δkk′ ,

V2k′,2k−1 = V2k−1,2k′ = 1

2
Tr[ρ̂( p̂k′ x̂k + x̂k p̂k′ )],

= Tr[ρ̂ p̂k′ x̂k] + i

2
δkk′ ,

(A2)
V2k′,2k = V2k,2k′ = Tr[ρ̂ p̂k′ p̂k],

where we made use of the canonical commutation relations
(2). Substituting this into Eq. (A1), we quickly find that it
is equivalent to the relation between r and V in Eq. (26).
The relation between |α〉 and |ξ 〉 is derived in an analogous
fashion.

The Heisenberg uncertainty principle (28) is derived by
acting on the original Eq. (7) from the left with R and from the
right with R†, and using the easy-to-derive identity RJR† =
−i1N , along with the previously derived Eq. (26).

APPENDIX B: DERIVATION OF REDUCED
WEHRL ENTROPY

In this Appendix, we derive the reduced Wehrl entropy
(43), defined as the maximum Wehrl entropy among all the
states with a fixed RSF.
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First, let us observe that RSF has the following representa-
tion in terms of the Husimi Q function:

rkk′ =
∫

d2N �β
πN

(βkβ
∗
k′ − δkk′ )Q(�β ),

αk =
∫

d2N �β
πN

βkQ(�β ). (B1)

The maximum Wehrl entropy among all the states with fixed
RSF can then be found by finding the extremum of the follow-
ing functional with respect to Q:

SW [Q] − λ f [Q] −
N∑

k,k′=1

μk′kgkk′ [Q]

+
N∑

k=1

t∗
k hk[Q] +

N∑
k=1

skh∗
k [Q], (B2)

where SW is the Wehrl entropy (42) and the three constraints

f [Q] :=
∫

d2N �β
πN

Q(�β ) − 1 = 0,

gkk′ [Q] :=
∫

d2N �β
πN

(βkβ
∗
k′ − δkk′ )Q(�β ) − rkk′ = 0,

hk[Q] :=
∫

d2N �β
πN

βkQ(�β ) − αk = 0 (B3)

fix the normalization and the RSF of the state to (r, |α〉)
[cf. Eq. (B1)]. Finally, λ, μk′k , tk , and sk are the Lagrange
multipliers. Note that the signs, as well as the notation (e.g.,
t∗
k instead of tk) in Eq. (B2) are arbitrary. Therefore, we made

a choice that anticipates the final result best.
The solution to the variational problem is given by

Q̃(�β ) := Ae−�β†μ�β+�t† �β+�β†�s, (B4)

where A is a normalization constant. Substituting the solution
into the three constraints (B3) and making use of the integra-
tion formula [68]∫

d2N �β
πN

e−�β†μ�β+�t† �β+�β†�s = 1

det μ
e�t†μ−1�s (B5)

yields

A = det μ e−�t†μ−1�s, μ−1 = rα + 1N , �t = �s = μ�α, (B6)

and in turn

Q̃(�β ) = 1

det(rα + 1N )
e−(�β−�α)†(rα+1N )−1(�β−�α). (B7)

Plugging this into the definition of Wehrl entropy (42) leads
to Eq. (43).

APPENDIX C: DERIVATION OF REDUCED
KINETIC EQUATIONS

In this Appendix, we derive the reduced kinetic equations
(52) from the GKLS equation for macroscopic fields (51).

By definition, the single-particle density matrix evolves as

d

dt
rll ′ = Tr

(
d

dt
ρ̂ â†

l ′ âl

)
=

5∑
n=1

(�n)ll ′ , (C1)

where [cf. Eq. (51)]

(�1)ll ′ := −i
N∑

k=1

ωkTr([â†
k âk, ρ̂]â†

l ′ âl ), (C2)

(�2)ll ′ :=
N∑

k=1

Tr([ζkâ†
k − ζ ∗

k âk, ρ̂]â†
l ′ âl ), (C3)

(�3)ll ′ :=
N∑

k,k′=1

�k′k
↓ Tr

[(
âk ρ̂ â†

k′ − 1

2
{â†

k′ âk, ρ̂}
)

â†
l ′ âl

]
,

(C4)

(�4)ll ′ :=
N∑

k,k′=1

�kk′
↑ Tr

[(
â†

k ρ̂ âk′ − 1

2
{âk′ â†

k, ρ̂}
)

â†
l ′ âl

]
,

(C5)

(�5)ll ′ :=
∑

k

ηkTr[(Ûk ρ̂ Û †
k − ρ̂ )â†

l ′ âl ]. (C6)

Let us focus on the first term, �1. From the cyclic property
of the trace

(�1)ll ′ = −i
N∑

k=1

ωkTr(ρ̂[â†
l ′ âl , â†

k âk]). (C7)

The commutator can be easily calculated with the use of
the canonical commutation relations (19) and the well-known
property

[Ô1Ô2, Ô3Ô4] = Ô1[Ô2, Ô3]Ô4 + [Ô1, Ô3]Ô2Ô4

+ Ô3Ô1[Ô2, Ô4] + Ô3[Ô1, Ô4]Ô2, (C8)

valid for arbitrary Ô j .
We obtain

(�1)ll ′ = −i(ωl − ωl ′ )Tr(ρ̂ â†
l ′ âl ). (C9)

Using the definitions (23) and (53), it is easy to show that the
above is equivalent to

(�1)ll ′ = −i
N∑

j=1

(hl jr jl ′ − rl jh jl ′ ), (C10)

or simply

�1 = −i[h, r]. (C11)

This shows that the first term on the r.h.s. of Eq. (51) trans-
forms into the first term on the r.h.s. of Eq. (52).

In an analogous way, we can show that

�2 = |ζ 〉〈α| + |α〉〈ζ |, (C12)

�3 = − 1
2 {γ↓, r}, (C13)

�4 = 1
2 {γ↑, r} + γ↑. (C14)

As for �5, due to normalization of ηk to one, the second term
under the trace in Eq. (C6) gives rise to simply rll ′ . The first
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term can be rewritten using the cyclic property of the trace and
the fact that ÛkÛ

†
k = 1̂:

(�5)ll ′ =
∑

k

ηkTr[ρ̂ (Û †
k â†

l ′Ûk )(Û †
k âlÛk )] − rll ′ . (C15)

Making use of the assumption (50), we quickly find that

�5 =
∑

k

ηk (ukru†
k − r). (C16)

This finishes the derivation of the reduced kinetic equa-
tion (52) for r. The corresponding equation for |α〉 is derived
in the same way.

APPENDIX D: DERIVATION OF CLASSICAL
GAUSSIAN EVOLUTION

In this Appendix, we prove Propositions 5, 6, and 7, i.e.,
we derive the conditions under which Gaussian evolution is
equivalent to the reduced kinetic equations.

To this end, it will be useful to define an auxiliary field,
which we call conjugate RSF:

c :=
N∑

k,k′=1

Tr[ρ̂ âk′ âk]|k〉〈k′|,

|α∗〉 :=
N∑

k=1

Tr[ρ̂ â†
k]|k〉. (D1)

Mirroring the derivation of the relation (26) between RSF and
the symplectic picture, one can show that

c = RVRT , |α∗〉 = R∗|ξ 〉. (D2)

We will also make heavy use of the following property of the
reduction matrix:

R†R = 1
2 (1 + iJ ). (D3)

Notably,

R†R + RTR∗ = 1. (D4)

1. Proof of Proposition 5

We begin with the Hamiltonian evolution (56). Making
extensive use of the identity (D4), along with relations (26)
and (D2), we obtain the corresponding evolution equations for
RSF:

d

dt
r = yGr − ry†

G + zGc† + cz†
G + 1

2
(yG − y†

G),

d

dt
|α〉 = yG|α〉 + zG|α∗〉, (D5)

where

yG := RJGR†, zG := RJGRT . (D6)

Unlike the reduced kinetic equations, this evolution equa-
tion for RSF couples it to the conjugate field. Therefore, if
the two equations are to coincide for arbitrary input states, the
c-dependent terms must vanish. This implies zG = 0 and in
turn 0 = R†zGR∗, which is equivalent to the condition (57),
as we intended to show.

Under this condition yG is Hermitian, and hence the final
equations read

d

dt
r = [yG, r]

d

dt
|α〉 = yG|α〉. (D7)

Clearly, they have the form of the reduced kinetic equa-
tions (52) with Eq. (58) at the input.

2. Proof of Proposition 6

In the case of the dissipative evolution stemming from
linear Lindblad operators (64), using Eqs. (26), (D2), and (D4)
as previously yields

d

dt
r = yLr + ry†

L + zLc† + cz†
L + 1

2
(yL + y†

L ),

d

dt
|α〉T = yL|α〉 + zL|α∗〉, (D8)

where

yL := RJICR†, zL := RJICRT , w := RJRCJTR†.

(D9)

Once again, we must require the equation to be c-independent.
This implies zL = 0 and in turn 0 = R†zLR∗, which is the
same as the condition (65) that we wanted to derive.

Under this condition yL is Hermitian, and hence the final
equations read

d

dt
r = {yL, r} + yL + w,

d

dt
|α〉 = yL|α〉. (D10)

It is not difficult to show that these equations have the form of
the reduced kinetic equations (52) with Eq. (66) at the input.
Note that for this identification to have a physical meaning, the
particle creation and annihilation rates have to be nonnegative.

3. Proof of Proposition 7

Finally, we consider the dissipative evolution stemming
from unitary Lindblad operators (71). Once again making use
of Eqs. (26), (D2), and (D4) we obtain

d

dt
r =

∑
j

γ j

[
q jrq†

j + s jr
T s†

j − r + q jcs†
j + s jc

∗q†
j ,

+ 1

2
(q jq

†
j + s js

†
j − 1)

]
,

d

dt
|α〉 =

∑
j

γ j[(q j − 1)|α〉 + s j |α∗〉], (D11)

where

q j = RKjR†, s j = RKjRT . (D12)
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Calculating analogously as in the previous cases, we find that
the equation is c-independent if for all j

0 = RKjRT . (D13)

To get a correspondence with the reduced kinetic equations,
we must additionally require all q j to be unitary. The two
conditions are collectively captured by Eq. (72), finishing the
proof.

The final equations read

d

dt
r =

∑
j

γ j (q jrq†
j − r),

d

dt
|α〉 =

∑
j

γ j (q j |α〉 − |α〉), (D14)

which have the form of the reduced kinetic equations (52) with
Eq. (73) at the input.
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1. Introduction

Arguably one of the most surprising predictions
of quantum field theory is the Casimir effect, a phys-
ical force arising solely from the presence of quan-
tum fluctuations in the vacuum [1–3]. Since its
original formulation in 1948 [4], the phenomenon
has garnered a lot of interest, in particular giv-
ing rise to many alternative formulations and gen-
eralizations. One such generalization, dubbed the
dynamical Casimir effect, predicts the spontaneous
production of particles in a medium following from
non-trivial time dependence of either its boundary
or its material coefficients [5–8].

In 2008, Professor Iwo Białynicki-Birula work-
ing together with Professor Zofia Białynicka-Birula†
established a third mechanism generating the dy-
namical Casimir effect — oscillatory motion of

†This is a good opportunity to acknowledge the fact that
59 papers out of a total of 206 so far published by Profes-
sor Białynicki-Birula, as well as the comprehensive textbook
on quantum electrodynamics [9], have been written in this
admirable collaboration which started as early as 1957 [10].

a medium [9–11]. In fact, this mechanism is more
general and applies to all kinds of motion, as long
as its speed varies in time, and one carefully picks
the “incoming” and “outgoing” annihilation and cre-
ation operators (see an example of a uniformly
accelerated medium [12]). A loosely related phe-
nomenon occurs around large rotating and/or grav-
itating bodies [13].

The dynamical Casimir effect is obtained by per-
forming a Bogoliubov transformation, i.e., a linear
transformation of the creation and annihilation op-
erators of the quantum field preserving canonical
commutation relations [14]. If the Casimir effects
are among the most interesting phenomena in quan-
tum theory, Bogoliubov transformations are among
its most reliable tools. Originally used to describe
superconductivity [15, 16], today they are widely
used in many branches of quantum physics, from
optics and theories of magnetism to field theory in
a curved spacetime (Unruh effect, Hawking radia-
tion) [14, 17–19].

While the most prominent applications of the Bo-
goliubov transformations suggest the latter to be
inherently quantum, we observe that from the for-
mal point of view, Bogoliubov transformations are
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essentially equivalent to a change of basis of the
Hilbert space. For this reason, one may expect that
at least some Bogoliubov transformations could
have classical analogs, similar to local unitary ro-
tations of the Hilbert space, which do not entangle
the system. If so, this could shed new conceptual
light on the phenomena described by them.

In this paper, we derive an exact set of condi-
tions under which Bogoliubov transformations can
be considered semi-classical. By semi-classical (fur-
ther also referred to as just “classical”), we under-
stand models which can be described by certain
kinetic equations for reduced single-particle states
and their displacements — so-called reduced state
of the field formalism [20]. This framework has
recently been proven to be an effective tool in
probing the classicality of quantum Gaussian evo-
lution [21].

In the case of isolated systems, the transforma-
tions allowed by our conditions turn out to have
a simple interpretation in terms of passive oper-
ations, which correspond to classical devices such
as beam splitters. In the case of open systems, the
conditions are less restrictive, which we interpret as
some of the total dynamics’ “quantumness” being
encoded into the environment. Our findings allow us
to conduct an in-depth discussion of the classicality
of the dynamical Casimir effect derived in [11]. We
find that, while the overall phenomenon is quan-
tum in nature, the individual photons experience
each other as semi-classical dissipative effects.

This paper is organized as follows. In Sect. 2, we
introduce the dynamical Casimir effect in moving
media. In Sect. 3, we briefly summarize the most
important properties of our main tool — the re-
duced state of the field (RSF). In Sect. 4, we de-
rive our main results, namely classicality conditions
for Bogoliubov transformations. In Sect. 5, we build
upon these findings to assess the classicality of the
dynamical Casimir effect. We conclude in Sect. 6.

2. Dynamical Casimir effect
in a moving medium

The electromagnetic field is fully described by the
set of four three-component vectors, D and E, de-
scribing the electric field, along with B and H, de-
scribing the magnetic field, which altogether fulfill
the Maxwell equations in vacuum [22, 23]
∂tD(r, t) = ∇×H(r, t),

∇ ·D(r, t) = 0,

− ∂tB(r, t) = ∇×E(r, t),

∇ ·B(r, t) = 0.
(1)

In the Heisenberg picture, the operators associated
with these fields fulfill exactly the same set of equa-
tions.

Assuming the field propagates through a homo-
geneous, isotropic medium moving with a velocity v
and characterized by constant material coefficients
µ, ε, the field vectors are related by the Minkowski
constitutive relations [24]

D +
v

c2
×H = ε (E + v ×B) ,

B − v

c2
×E = µ (H − v ×D) ,

(2)
where c is the speed of light.

In the convenient Riemann–Silberstein approach
(see a review [25]), the electromagnetic field is com-
bined into two vectors

F :=
1√
2 ε
D +

i√
2µ
B,

G :=
1√
2µ
E +

i√
2 ε
H.

(3)
The advantage of this approach can already be seen
in the considered problem, as the constitutive rela-
tions (2) can always be solved for G, yielding

G =
c

n

[
F +

n2−1

c2n2−v2
v ×

(
v × F + icnF

)]
,

(4)
where n := c

√
εµ > 1 is the refractive index of

the medium. Then, assuming position-independent
velocity, v(r, t)=cβ(t), the vacuum Maxwell equa-
tions (1) reduce to just one equation

∂tF = − ic δ(t)
(
β(t) ·∇

)
F +

c

n
α(t)∇× F

− c
n
δ(t)β(t)×∇

(
β(t) · F

)
, (5)

where

δ(t) :=
n2−1

n2−β2(t)
, α(t) := 1− δ(t)β2(t).

(6)

Under a further assumption that the velocity has
a constant direction m, and with the help of the
Fourier decomposition

F (r, t) =

∫
d3k√
(2π)3

e ik·r− iφ(k,t)

×
[
e(k)f+(k, t) + e∗(k)f−(k, t)

]
, (7)

where e are elliptic polarization vectors [11], the
Maxwell equations lead to a pair of ordinary differ-
ential equations for the functions f±

∂tf̂±(k, t) =

∓ iω(k)
[
η+(k, t)f̂±(k, t)− η−(k, t)f̂∓(k, t)

]
,

(8)
with

η±(k, t) :=
1

2

[
α(t)

σ2(k)
± σ2(k)∆(k, t)

]
,

∆(k, t) := 1− δ(t)β2(t) cos2
(
θ(k)

)
.

(9)
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The parameter θ denotes the angle between the
wave vector k and the velocity direction m, while
σ is a free real parameter defining the polarization
geometry. Last but not least, the phase

φ(k, t) := ω(k) cos
(
θ(k)

) t∫
0

dτ δ(τ)β(τ) (10)

has been extracted to achieve a simplification of the
resulting equations (β = |β|).

To obtain the dynamical Casimir effect, it is as-
sumed that the medium is moving with a time-
dependent velocity from time t = 0 up to t =
T [11, 12]. If the medium just before and after was
“still” (characterized by β(t) = const), the corre-
sponding operators f̂±, after a suitable choice of
σ [11], can be interpreted in terms of the creation
and annihilation operators of photons with right he-
licity

f̂+(k, t)=


√

~ω(k) âR,in(k)e− iω(k)t, t < 0√
~ω(k) âR,out(k)e− iω(k)(t−T ), t > T

,

(11)
and left helicity

f̂−(k, t)=


√
~ω(k) â†L,in(−k)e iω(k)t, t < 0√
~ω(k) â†L,out(−k)e iω(k)(t−T ), t > T

.

(12)
Here, âL/R,in/out and their Hermitian conjugates
fulfill all the expected properties of the standard
annihilation and creation operators. Note that such
interpretation is not possible during the accelera-
tion period t ∈ [0, T ] itself, due to the impossibility
of separation into positive and negative frequency
parts.

The final operators are given by the initial ones
via the relation [11]

âR,out(k)=e− iφ
[
fR+âR,in(k)+fR−â

†
L,in(−k)

]
,

â†L,out(−k)=e− iφ
[
fL+âR,in(k)+fL−â

†
L,in(−k)

]
,

(13)

where φ ≡ φ(k, T ), while fL± ≡ fL±(k, T ), fR± ≡
fR±(k, T ) are solutions to the differential equations
(8) subject to initial conditions

fR+(k, 0) = fL−(k, 0) = 1,

fR−(k, 0) = fL+(k, 0) = 0.
(14)

It is worth adding that, due to the canonical com-
mutation relations for the outgoing photons (13)[

âR,out(k), â†R,out(k)
]

= 1,[
âR,out(k), âR,out(k)

]
= 0,

(15)
we have
|fR+|2 = |fR−|2 + 1, (16)

with an analogous relation for fL+ and fL−.

Let us remark that in the original work [11],
the functions f were denoted as f1± ≡ fR± and
f2± ≡ fL±. Here, we change the notation to make
the connection to photon helicity more immediate,
as well as to avoid confusing the indices with expo-
nentiation. We stress, however, that despite corre-
sponding to different photon helicities, the two pairs
of functions are interrelated via the initial condi-
tions and have to be considered together.

The Casimir effect is finally obtained by consider-
ing the system initially in the vacuum and comput-
ing the photon number densities after the motion
〈n̂R(T )〉 = 〈0| â†R,out(k)âR,out(k) |0〉 =∣∣fR−(k, T )

∣∣2δ(0),

〈n̂L(T )〉 = 〈0| â†L,out(k)âL,out(k) |0〉 =∣∣fL+(k, T )
∣∣2δ(0),

(17)

where δ(0) is the Dirac delta singularity. Note that,
due to the symmetry of the evolution equations gov-
erning the left and right helicity functions, the two
densities are, in fact, equal
〈n̂R(T )〉 =

〈
n̂L(T )

〉
≡
〈
n̂(T )

〉
. (18)

As was verified in [11, 12], at least for some k, this
number is a growing function of T . Therefore, the
motion of the medium results in potentially un-
bounded particle production in the vacuum and,
hence, the prediction of the dynamical Casimir ef-
fect.

Transformation (13) at the heart of the discussed
phenomenon is an example of a Bogoliubov trans-
formation [15, 16], namely a linear transformation{
ân, â

†
n

}
→
{
â′n, â

′†
n

}
of the creation and annihi-

lation operators preserving the canonical commu-
tation relations [14]. As the main result of this
paper, we will derive the precise conditions under
which such transformations can be considered semi-
classical, with special emphasis put on the classi-
cality of the dynamical Casimir effect in a moving
medium.

3. Reduced state of the field

To assess the (semi)classicality of Bogoliubov
transformations, we first need to define a sensible
criterion for what is classical. To this end, we will
employ the mesoscopic formalism of the reduced
state of the field (RSF) [20], which was already used
for similar purposes before [21]. Since the framework
itself is not the main focus of our study, here we
provide only basic information about it. For more
details, see the introduction of the formalism by
Robert Alicki in [20], its semi-classical interpreta-
tion in [21], and its application to thermodynamics
in [26].

We consider an N -mode, continuous variable
Hilbert space described by a set of N annihila-
tion and creation operators âk, â

†
k′ fulfilling the
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canonical commutation relations[
âk, â

†
k′

]
= δkk′ ,

[
âk, âk′

]
=
[
â†k, â

†
k′

]
= 0.

(19)
As always, an arbitrary n-particle state in the
many-body Hilbert space can be constructed by act-
ing on the vacuum state with n appropriate creation
operators. Since, in principle, the number of parti-
cles in a given mode can be arbitrary, the N -mode
Hilbert space is infinitely dimensional, and so is the
density operator ρ̂ constituting the full quantum de-
scription of the system.

In some cases, however, the full quantum formal-
ism is not necessary and can be replaced by a sim-
pler, mesoscopic framework. For example, Gaussian
states and dynamics can be efficiently studied in
the symplectic picture [27–29]. Similarly, to describe
macroscopic fields and associated evolution, a for-
malism called reduced state of the field (RSF) has
been recently developed [20].

In the RSF framework, instead of by the density
operator, the system is described by the pair (r, |α〉).
Here,

r :=

N∑
k,k′=1

Tr
[
ρ̂ â†k′ âk

]
|k〉 〈k′| (20)

is the single-particle density matrix, while the aver-
aged field equals

|α〉 :=

N∑
k=1

Tr
[
ρ̂ âk

]
|k〉 . (21)

The single-particle density matrix contains the
simplest non-local information about the system.
Additionally, its diagonal elements equal the mean
particle numbers rkk = 〈â†kâk〉. Consequently, the
matrix is normalized to the mean total particle
number. Note that, by construction, the single-
particle density matrix is non-negative. The aver-
aged field, on the other hand, contains additional
local information.

Much like the previously mentioned symplectic
picture requires observables and transformations
that are Gaussian, the RSF formalism employs ob-
servables that are either additive [20]

Ô =
∑N

k,k′=1
okk′ â

†
kâk′ , (22)

or linear

σ̂ =
∑N

k=1

(
σ∗kâk + σkâ

†
k

)
. (23)

In the case of macroscopic fields, which are usually
modeled as non-interacting fields with dynamics
governed by equations linear in creation and annihi-
lation operators, the most relevant observables are
of this form. For example, the Hamiltonian is ad-
ditive, while the position and momentum operators
are linear.

Defining the reduced observables corresponding to
(22) and (23) as

o =
∑N

k,k′=1
okk′ |k〉 〈k′| , |σ〉 =

∑N

k=1
σk |k〉 ,

(24)

we can indeed see that the associated expectation
values can be rewritten in the RSF formalism as [21]

Tr
[
ρ̂ Ô
]

= tr
(
r o
)
, Tr

[
ρ̂ σ̂
]

= 〈σ|α〉+ 〈α|σ〉 .
(25)

The RSF framework comes equipped with ded-
icated entropy measures and evolution equations,
both derived from the standard quantum descrip-
tion. In the case of entropy, we have the reduced
von Neumann and Wehrl entropies [20, 21]
sv
(
r, |α〉

)
:= tr

[
(rα+1N ) ln

(
rα+1N

)
−rα ln

(
rα
)]
,

sw
(
r, |α〉

)
:= tr

[
ln
(
rα + 1N

)]
+N,

(26)
where rα := r− |α〉 〈α| and 1N denotes the iden-
tity matrix in dimension N . The reduced entropies
arise from applying the maximum entropy principle
to the standard von Neumann and Wehrl entropies,
respectively [30, 31].

Finally, RSF evolves according to the reduced ki-
netic equations [20, 21]

dr

dt
= − i

~
[
h, r
]

+ |ζ〉 〈α|+ |α〉 〈ζ|

+
1

2

{
γ↑ − γ↓, r

}
+ γ↑ +

∑
j

ηj
(
ujru

†
j − r

)
,

d |α〉
dt

= − i

~
h |α〉+

1

2

(
γ↑ − γ↓

)
|α〉+ |ζ〉

+
∑
j

ηj
(
uj − 1

)
|α〉 ,

(27)
which are derived from the Gorini–Kossakowski–
Lindblad–Sudarshan (GKLS) equation [32, 33] un-
der the assumption that the considered quantum
field can be treated as a set of individual particles
subject to spontaneous decay and production, as
well as interaction with coherent classical sources
and random scattering by the environment. The op-
erators entering (27) represent

• The Hamiltonian

h := ~
N∑
k=1

ωk |k〉 〈k| , ωk > 0; (28)

• Coherent sources

|ζ〉 :=

N∑
k=1

ζk |k〉 ; (29)

• Particle creation rates

γ↑ =

N∑
k,k′=1

γkk
′

↑ |k〉 〈k′| , γ↑ > 0, (30)

and analogously particle annihilation rates γ↓;

• Unitary interactions with rates ηj > 0
(
∑
j ηj = 1)

uj =

N∑
k,k′=1

ukk
′

j |k〉 〈k′| , u†juj=uju
†
j=1N .

(31)
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For a large number of non-commuting uni-
taries, the last term in either of the reduced
kinetic equations represents random scatter-
ing.

Note that, while not explicitly stated in the orig-
inal work [20], it is clear from the derivation of the
reduced kinetic equations that all the quantities en-
tering it may be time-dependent, provided they ful-
fill the respective constraints (imposed by complete
positivity) during every instant of the evolution.

Although RSF was originally designed to cap-
ture the quantum features of macroscopic fields, it
has been recently shown to have a convincing inter-
pretation as a semi-classical description of bosonic
many-body systems [21]. For example, it was proved
that the RSF formalism contains no information
about distillable entanglement in the system, and
that both of the reduced entropies are akin to
Wehrl’s semi-classical entropy [31], typically con-
sidered as such due to its close association with the
phase-space.

Because, by construction, the reduced kinetic
equations (27) preserve the RSF formalism’s semi-
classical set of degrees of freedom, any time evo-
lution model of the density operator, which can be
rewritten as reduced kinetic equations, must be nec-
essarily semi-classical itself. Based on this princi-
ple, in [21], quantum Gaussian evolution of light
was found to be classical if and only if it consisted
strictly of so-called passive optical transformations,
e.g., beam splitting and phase shifting. Contrary to
their remaining active counterparts, such as quan-
tum squeezing, passive transformations can be un-
derstood operationally by treating light as a classi-
cal wave. In this paper, we adopt a similar method-
ology for Bogoliubov transformations — if they pre-
serve the set of the degrees of freedom contained
within RSF, we will regard them as semi-classical,
and if not, we will regard them as inherently quan-
tum.

4. Classicality of Bogoliubov
transformations

We are now equipped with the tools necessary
to assess the classicality of Bogoliubov transforma-
tions. We will consider two distinct cases, i.e., Bo-
goliubov transformations in isolated (closed) sys-
tems and in open systems. The main results of
this section are presented in Propositions 1–3, with
proofs in Appendix A.

4.1. Isolated system

In the case of an isolated system, the most general
transformation of the density operator is unitary

ρ̂′ = Û ρ̂Û†. (32)
For the transformation to be of the Bogoliubov-
type, Û must be such that, for some complex
matrix X ,

Â′n := Û†ÂnÛ =

2N∑
m=1

XnmÂm, (33)

with

Ân :=

{
ân, n ∈ {1, . . . , N},

â†n, n ∈ {N + 1, . . . , 2N}.
(34)

To preserve the canonical commutation relations,
the matrix X has to fulfill the so-called symplectic
property [34, 35]
XSX † = S, (35)

where S = diag
[
1N ,−1N

]
. As a consequence of the

symplectic property,

X =

[
X↑ X↓
X ∗↓ X ∗↑

]
, (36)

where Xl are of size N ×N .
Calculating the change in RSF implied by

a generic Bogoliubov transformation and forcing
the result to be fully contained within the for-
malism, we obtain the classicality conditions for
the closed system Bogoliubov transformations. Fur-
thermore, if the unitary transformation in (32) de-
pends smoothly on time, then so does the matrix X ,
turning the discrete Bogoliubov transformation into
a continuous Bogoliubov evolution. In such a case,
the density operator can be differentiated with re-
spect to time, and the resulting evolution equation
can be compared with the reduced kinetic equa-
tions.

Proceeding in this way, we obtain our first major
result.

Proposition 1. Isolated system Bogoliubov transfor-
mations (as described above) are compatible with the
RSF formalism and are thus classical with respect to
it if and only if

0 = X↓. (37)
Additionally, if the transformation depends smoothly
on time, the corresponding reduced kinetic equations
(27) exist and are governed by

h =
i~
2

(
dX↑
dt
X−1↑ −X

−†
↑

dX †↑
dt

)
, (38)

with the remaining terms vanishing.

Proof. See Appendix A.

The obtained classicality condition is easy to in-
terpret. Substituting (37) into the symplectic condi-
tion (35), we immediately find that X is also unitary
in addition to being symplectic, which means that
it is passive. Thus, in a complete analogy to quan-
tum Gaussian evolution [21], Bogoliubov transfor-
mations in isolated systems are semi-classical only
if they correspond to passive transformations.

Let us also remark that while the absence of
the dissipative terms in the obtained reduced ki-
netic equations was to be expected in an isolated
system, the lack of coherent classical sources was
not. Indeed, it is easy to see that this lack is not
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a fundamental property of the Bogoliubov evolu-
tion, but rather a consequence of the Bogoliubov
transformations (33) being defined, for simplicity,
without constant terms (independent of the creation
and annihilation operators).

4.2. Open system

In the more general case of an open system, the
total density operator of the system and environ-
ment (also called bath) is as well transformed ac-
cording to (32). However, we are only interested in
the state of the system, given by a partial trace over
the degrees of freedom of the environment:

ρ̂S = TrE [ ρ̂ ] . (39)

The Bogoliubov transformation itself (33) remains
the same. Still, assuming the system and the envi-
ronment span NS and NE modes respectively, it is
convenient to additionally split the matrices enter-
ing the block decomposition (36) into

X↑ =

[
X↑S X↑C
X↑C′ X↑E

]
, X↓ =

[
X↓S X↓C
X↓C′ X↓E

]
,

(40)
where XlS is an NS×NS matrix associated with the
system, XlE is an NE ×NE matrix associated with
the environment, and XlC , XlC′ are appropriately-
sized matrices associated with both. Note that the
case of the closed system can be retrieved easily
by setting NE = 0 (which, in particular, implies
Xl = XlS) and dropping the then-redundant lower
indices S.

For a generic initial state of the bath-system en-
semble, the dynamics of the latter cannot be sepa-
rated from the dynamics of the former, making it
impossible to even compare with the RSF formal-
ism. Nonetheless, even in this completely general
setting, we were able to derive necessary conditions
for classicality of Bogoliubov transformations.

Proposition 2. Open system Bogoliubov transforma-
tions (as described above) can be compatible with the
RSF formalism and thus be classical with respect to it
only if

0 = X↓S . (41)

Proof. See Appendix A.

Unlike the condition (37) for the closed system,
the classicality condition for the open system is dif-
ficult to interpret. However, comparing it with its
closed system counterpart, we can at least see that
the latter is much more restrictive: it requires the
whole matrix X↓ to vanish, while the former requires
only its system part X↓S to vanish. Therefore, de-
pending on how we define the degrees of freedom of
the system, we may find the same total dynamics
to be either classical or quantum from the point of
view of the system. This will indeed be the case in

the next section, where we will find that the dynam-
ical Casimir effect falls exactly into this category.

Still, any such interpretation has to be made with
care, since it must be stressed that the condition
(41) is not equivalent to classicality, but only nec-
essary for it. In stark contrast to the closed sys-
tem, in the case of an open system, whether or
not a given Bogoliubov transformation is classical
from the point of view of RSF depends not only on
the matrix X defining it, but also on the total ini-
tial state of the system-environment ensemble. It is
possible that, for particularly strongly correlated to-
tal initial states, the only semi-classical Bogoliubov
transformations are those that induce completely
separate dynamics for the system and environment,
essentially defying the notion of an open system.

To make stronger statements, we are therefore
forced to make some restrictions. Firstly, we as-
sume that the initial total state is separable with
respect to the bipartition between the system and
the bath. This is a typical assumption in the theory
of quantum open systems. In particular, the GKLS
equation cannot be derived without it [36]. Since,
in particular, the reduced kinetic equations govern-
ing the time evolution in the RSF formalism are
derived from a GKLS equation, it is only natural to
also make this assumption in the present case.

Secondly, we assume that the bath is initially in
the vacuum state. Note that while this assumption
is a very strong one, it is fulfilled by many well-
studied and useful models, such as quantum-limited
amplification, quantum-limited attenuation, and
phase conjugation channels, utilized, e.g., in studies
of Gaussianity, entropy, and entanglement [37–39].
More importantly for us, as we will discuss in the
next section, it is also satisfied by the dynamical
Casimir effect.

Under the above assumptions, we obtain our final
main result for Bogoliubov transformations.

Proposition 3. The classicality condition (41) is both
necessary and sufficient for open system Bogoliubov
transformations with the environment initially in the
vacuum state. Additionally, if such transformations de-
pend smoothly on time, the corresponding reduced ki-
netic equations exist provided
W > 0, W −Yr > 0 (42)

and are governed by

h = −~Y i

2
, γ↓ =W, γ↑ =W −Yr, (43)

with the remaining terms vanishing. Here,

Yi := − i
(
Y − Y†

)
,

Y :=
dX↑S
dt X

−1
↑S ,

Yr := Y + Y†,
D := X↓CX †↓C ,
W := dD

dt − YD −DY
†.

(44)

Proof. See Appendix A.
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Interestingly, the obtained Bogoliubov reduced
kinetic equations do not depend on any compo-
nents of the matrix X labeled by the subscripts
C ′, despite depending on the components labeled
by C. At first, this may appear surprising, since
a priori both are equally responsible for describing
the correlations between the system and the envi-
ronment. The asymmetry is resolved by interpret-
ing the C components as encoding the influence of
the environment on the system, and the C ′ com-
ponents as encoding the influence of the system on
the environment. The lack of the C ′ components
in the description of the system then becomes ex-
pected. As an additional argument for this view, we
observe that if we exchanged the roles of the sys-
tem and the environment, the equations would de-
pend on the C ′ components, with the C components
missing.

Proposition 3 will be our main tool in the study
of the classicality of the dynamical Casimir effect.
Before we do it, however, let us illustrate our results
so far with a short but instructive example — the
Gaussian amplification process.

Example (Gaussian amplification process). In the
Gaussian amplification process, an arbitrary initial
state of the N -mode system

ρ̂(t0) =

∫
d2Nz0
πN

P0(z0) |z0〉 〈z0| (45)

is driven by a heat bath into the state [40]

ρ̂(t) =

∫
d2Nz0
πN

P0(z0)

N⊗
j=1

∫
d2zj
π

ρj(t) |zj〉 〈zj | ,

ρj(t) :=
1

nj(t)
exp

(
−|zj − z0j eκjt|2

nj(t)

)
.

(46)

Here, the integration is over the real and imaginary
parts of the complex vectors z0, z; P0(z0) denotes
the Glauber–Sudarshan P representation [41, 42] of
the initial state; |zj〉 are coherent states; κj is the
amplification rate of the j-th mode; and

nj(t) := (1 +mj)
(

e2κjt − 1
)
, (47)

wheremj is the mean number of photons in the j-th
mode of the bath, assumed to be effectively constant
throughout the whole process (this is true as long
as the bath is much bigger than the system).

The corresponding RSF can be easily calculated

rkk′(t) =

∫
d2Nz0
πN

P0(z0)

N∏
j=1

∫
d2zj
π

ρj(t)zkz
∗
k′ ,

αk(t) =

∫
d2Nz0
πN

P0(z0)

N∏
j=1

∫
d2zj
π

ρj(t)zk.

(48)
The integrals over zj can be performed using the
standard result [43]∫

d2Nz

πN
e−z

†µz+s†z+z†s =
es
†µ−1s

det[ µ ]
, (49)

where µ denotes an invertible matrix and s is a vec-
tor of size N . In our case,

µ−1 = n(t) :=
∑N

j=1
nj(t) |j〉 〈j| ,

s = n−1(t)
∣∣z0(t)

〉
,

|z0(t)〉 :=
∑N

j=1
z0j eκjt |j〉 .

(50)
This yields
r(t) = n(t) +

〈 ∣∣z0(t)
〉〈
z0(t)

∣∣ 〉
0
,∣∣α(t)

〉
=
〈 ∣∣z0(t)

〉 〉
0
,

(51)

where 〈·〉0 := (π−N )
∫

d2Nz0 P0(z0)(·). The formu-
lae (51) induce the following differential evolution
equations

dr

dt
=

1

2

{
2κ (1+m)− 2κm, r

}
+ 2κ (1+m) ,

d |α〉
dt

=
1

2

(
2κ (1 +m)− 2κm

)
|α〉 ,

(52)

wherem:=
∑N
j=1mj |j〉 〈j| and κ :=

∑N
j=1 κj |j〉 〈j|.

Clearly, the equations have the form of reduced
kinetic equations (27) with γ↑ = 2κ (1+m),
γ↓ = 2κm and h = |ζ〉 = µ(du) = 0.

According to Proposition 2, any open system Bo-
goliubov evolution that can be represented by re-
duced kinetic equations has to necessarily fulfill the
classicality condition (41). To see that this is indeed
the case in the Gaussian amplification process, we
observe that it is generated by a Bogoliubov trans-
formation of the form [37]

X↑ = cosh
(
κt
) [1N 0

0 1N

]
,

X↓ = sinh
(
κt
) [ 0 1N

1N 0

]
.

(53)

Clearly, X↓S , being the upper left-hand side block
component of X↓, vanishes, as required by the afore-
mentioned condition.

The fact that we found the Gaussian amplifica-
tion process to be semi-classical is not surprising
— intuitively, Gaussian amplification can be inter-
preted as pumping particles into the system until
it reaches essentially macroscopic size. The process
is well known for turning quantum phenomena into
more classical ones. For example, it was previously
shown that the Glauber-Sudarshan P distribution
of an infinitely amplified state approaches the semi-
classical Husimi Q distribution [44, 45]. Similarly,
the von Neumann entropy of the maximally ampli-
fied state approaches the semi-classical Wehrl en-
tropy [30, 38]. More recently, it has been shown
that the amplified Pegg-Barnett phase formalism
approaches the Paul phase formalism [46].
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5. Classicality of the dynamical
Casimir effect

Armed with the classicality conditions (37)
and (41), we are now ready to come back to the dy-
namical Casimir effect. We begin by observing that
while the phenomenon spans an infinite number of
modes of photons with both helicities, its defin-
ing Bogoliubov transformation (13) couples them in
pairs only. Any mode k of the right helicity photons
is coupled only to itself and the mode −k of the left
helicity photons. For this reason, we can restrict our
analysis to two modes with no loss in generality.

Written in terms of the matrix X , the Bogoliubov
transformation (13) reads

X =


e− iφfR+ 0 0 e− iφfR−

0 e iφf∗L− e iφf∗L+ 0

0 e iφf∗R− e iφf∗R+ 0

e− iφfL+ 0 0 e− iφfL−

 .
(54)

The interpretation of classicality depends on what
we consider to be the system.

In the most natural view, the system spans pho-
tons with both left and right helicity. Hence, we
have a closed, two-mode system. Comparing (54)
with (36), we easily find the classicality criterion
(37) to read explicitly

fR−(k, T ) = 0 = fL+(k, T ). (55)

Looking at (17), we can immediately see that this
implies no Casimir effect, i.e., the photon produc-
tion in the vacuum is zero. Thus, according to the
RSF formalism, any dynamical Casimir effect is nec-
essarily non-classical, as expected.

To see the physical reason for this, we go back
to the differential equations (8), along with the ini-
tial conditions (14). It is easy to see that (8) can be
fulfilled if and only if η−(k, t) = 0. This is equiv-
alent to σ(k) = [α/∆(k)]1/4, where, due to the
time-independence of σ, α and ∆ have to be time-
independent too, implying constant velocity. The
equations for the remaining functions can then be
easily solved, yielding [11]

fR+(k, t) = f∗L−(k, t) = e− i ω̃(k)t, (56)

where ω̃ = ω
√
α∆. Substituting this into (13), we

find that the final creation and annihilation opera-
tors simplify to just

âR,out(k) = e− i [φ(k,T )+ω̃(k)T ] âR,in(k),

â†L,out(−k) = e− i [φ(k,T )−ω̃(k)T ] â†L,in(−k),
(57)

i.e., they are multiplied by a phase. Obviously, this
phase is irrelevant to the expectation values of the
corresponding number operators on the vacuum,
which is why the dynamical Casimir effect cannot
take place for constant velocities.

However, there is another point of view. Nothing
stops us from interpreting exclusively the left he-
licity photons as the system, and the right helicity
photons as the environment. Then, we are dealing
with an open one-mode system subject to influence
from a one-mode environment. By comparing (54)
with (36), (40), we immediately find that now, the
classicality condition (41) always holds, regardless
of the form of the functions fR±, fL±. Crucially,
because the mode associated with the right helicity
photons is initially in the vacuum state, then, due
to Proposition 3, this classicality condition is both
necessary and sufficient. Does this mean that the
Casimir effect is, in the end, classical? Or maybe it
means that the RSF formalism is not a valid tool
for probing classicality after all?

In our opinion, neither. Consider, for ex-
ample, the maximally entangled two-qubit Bell
state [47, 48]
|Φ+〉 := 1√

2

(
|00〉+ |11〉

)
. (58)

If, in an analogy to the Casimir effect, we consider
only the first qubit as the system, we will find it to
be in the maximally mixed state

ρ̂S = Tr2nd qubit |Φ+〉 〈Φ+| = 1
2 1̂2, (59)

which can certainly be considered classical. Of
course, this does not mean that the Bell state that
we started with was classical. Instead, its “quan-
tumness” was contained in the correlations between
the two qubits, rather than any of the two qubits
themselves.

In the case of the Casimir effect and the Bogoli-
ubov transformations in general, it is even more ap-
parent what happens with the quantumness. Con-
sider the matrix element X↓12 = X↓C = fR−(k, T ),
which in our case, encodes the correlations be-
tween photons with left and right helicities. For
a generic initial state, these correlations are poten-
tially quantum. Thus, if a closed system is to be
considered classical, they must necessarily vanish
X↓12=X↓C=0, as they constitute an integral part of
the system. However, in the case of an open sys-
tem, the discussed correlations are no longer part
of the system, and instead enter it only at the
level of the environmental effects, most easily seen
through the evolution (44). Therefore, even if they
have a strictly quantum origin, the system experi-
ences them only as dissipation, which in this case
happens to have a semi-classical interpretation in
terms of particle annihilation and creation rates.

Alternatively, we can think of the Casimir process
as consisting of two parts. The first, captured by the
matrix X↑, describes the morphing of photons with
left helicity into those with right helicity and vice
versa. The second, captured by the matrix X↓, de-
scribes the creation of photons with both helicities.
The former, being semi-classical, is unconstrained
by the RSF formalism. The latter, however, being
more quantum in nature, is forbidden by RSF, un-
less the quantumness can be encoded into the envi-
ronment, as discussed previously.
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Finally, let us observe that even though the Bo-
goliubov transformation (13) is technically of the
discrete type, as the creation and annihilation op-
erators are formally ill-defined during the accelera-
tion period t ∈ [0, T ], the functions fR± and fL±
defining the transformation are well defined at all
times. Adding that to the fact that the final mo-
ment of acceleration T is completely arbitrary, we
can consider (13) as defining a smooth Bogoliubov
evolution in the parameter T .

Since, as explained previously, the initial total
state fulfills the requirements of Proposition 3, the
Bogoliubov evolution at hand must have a repre-
sentation in terms of the reduced kinetic equations
(27) with (43) at the input. Indeed, making use of
the latter equation, we find

h = ~ω
(
η+ + η−Re

[
fR−
fR+

]
+ δβ cos(θ)

)
,

γ↑ = 2ωη−
|fR−|2

|fR+|2
Im

[
fR+

fR−

]
,

γ↓ = 0.
(60)

For more details regarding the derivation of these
identities, see Appendix B. Here, we focus on their
physical significance.

To start with, we note that, as expected, the
Hamiltonian for the photons is proportional to their
frequency. Furthermore, the particle annihilation
rate is zero, which intuitively corresponds to the
fact that the dynamical Casimir effect results only
in the spontaneous creation of particles, not their
disappearance. Finally, once again abusing the dif-
ferential equations (8), we can easily calculate that
the time derivative of the total photon density (18)
equals

d 〈n̂〉
dT

= 2ωη−|fR−|2 Im

[
fR+

fR−

]
, (61)

which, using (16) and (60), can be rewritten as sim-
ply

d 〈n̂〉
dT

= γ↑ (〈n̂〉+ 1) . (62)

This result has three worthwhile implications.
Firstly, it has a sound physical interpretation: the

time derivative of the total photon density in the dy-
namical Casimir effect turns out to be simply pro-
portional to the current photon density times the
current particle creation rate. Secondly, it tells us
that the non-negativity of γ↑, which is required for
the result to be physical, is equivalent to the non-
negativity of photon number growth. In particular,
because of the initial condition (14), a valid matrix
γ↑ by its very construction prevents negative photon
numbers. Finally, because of the 〈n̂〉-independent
term on the r.h.s., our final result (62) proves that
the dynamical Casimir effect occurs for any non-
zero γ↑, which can be traced to any non-constant ve-
locity of the medium (γ↑ = 0 holds only for η− = 0,
which holds only for β = const).

6. Conclusions

In this paper, we employed the recent mesoscopic
formalism of the reduced state of the field to de-
rive the exact conditions under which Bogoliubov
transformations in either isolated or open systems
should be considered semi-classical. Applying our
result to the case of the dynamical Casimir effect
in the medium moving with a varying speed, we
found that, while the photons with left and right
helicity see each other as semi-classical objects, the
Casimir effect itself is genuinely quantum, as ex-
pected. Let us stress that the analysis is made pos-
sible because for each wave vector, we can consider
two polarization degrees of freedom. Therefore, it is
essential that the described phenomenon is “based
on full Maxwell equations in three dimensions” as
pointed out at the end of the Conclusions section
in [11].
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Appendix A

In this appendix, we prove our main results re-
garding the classicality of Bogoliubov transforma-
tions, i.e., Propositions 1–3.

To this end, in addition to RSF, we will employ
two auxiliary mesoscopic fields. The first, defined
originally in [21], is the conjugate RSF

c :=
∑N

k,k′=1
Tr
[
ρ̂ âk′ âk

]
|k〉 〈k′| ,

|α∗〉 :=
∑N

k=1
Tr
[
ρ̂ â†k

]
|k〉 .

(63)
The second is the generalized RSF

g :=
∑2N

k,k′=1
Tr
[
ρ̂ Â†k′Âk

]
|k〉 〈k′| ,

|A〉 :=
∑2N

k=1
Tr
[
ρ̂ Âk

]
|k〉 .

(64)
It is easy to see that the three reduced fields are
related to each other as follows

g =

[
r c

c∗ rT + 1N

]
,

|A〉 = |α〉 ⊕ |α∗〉 .
(65)

We add that, by definition, r = r†, c = cT , and
|α〉∗ = |α∗〉.
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Proof of Proposition 1

We start with Proposition 1. It is easy to see that
due to (64), (32), (33), under a generic Bogoliubov
transformation, the generalized RSF (g, |A〉) trans-
forms as

g′ = X gX †, |A′〉 = X |A〉 . (66)

Then, (65) and (36) imply

r′ := X↑rX †↑+X↑cX †↓+X↓c†X †↑+X↓
(
rTS+1N

)
X †↓ ,

|α′〉 = X↑ |α〉+ X↓ |α∗〉 . (67)

Clearly, this couples RSF to the conjugate field,
meaning that it does not preserve the set of the as-
sociated degrees of freedom. For an arbitrary initial
state, the coupling vanishes only if (37) is fulfilled,
which is what we wanted to show.

Assuming the time-dependent case with the clas-
sicality condition (37) fulfilled, (67) reduces to

r(t) = X↑(t)r(t0)X †↑ (t),

|α(t)〉 = X↑(t) |α(t0)〉 .
(68)

These equations are reversible, i.e.,
r(t0) = X−1↑ (t)r(t)X−†↑ (t),

|α(t0)〉 = X−1↑ (t) |α(t)〉 .
(69)

Taking the time derivative of (68) and making use
of (69), we obtain the reduced kinetic equations (27)
with (38) at the input. This concludes the proof.

Proof of Proposition 2

To prove Proposition 2, we observe that the re-
duced fields of the total state of the system and the
environment have the structure

r =

[
rS rC

r†C rE

]
, c =

[
cS cC

cTC cE

]
,

|α〉 = |α∗〉∗ = |αS〉 ⊕ |αE〉 , (70)
where (rS , |αS〉), (cS , |α∗S〉) are the reduced fields of
the system; (rE , |αE〉), (cE , |α∗E〉) are the reduced
fields of the environment; and rC , cC contain the
system-bath correlations. This fact follows directly
from the definitions of the fields. For example,

(rS)kk′ := Tr
[
TrE(ρ̂)â†k′ âk

]
=Tr

[
ρ̂ â†k′ âk

]
:=rkk′ .

(71)

The remaining relations are proved in a similar fash-
ion.

For a generic initial total state, the dynamics are
quite complex. Making use of the block-form decom-
positions (70) and (40) in (68), we obtain a rather
lengthy expression for the transformed RSF of the
system, which can be written as

r′S=F↑↑(r)+F↓↑(c
∗)+F↑↓(c)+F↓↓

(
rT + 1

)
,

|α′S〉=X↑S |αS〉+X↑C |αE〉+X↓S |α∗S〉+X↓C |α∗E〉 ,

(72)
where

Fab(x) := XaSxSX †bS+XaSxCX †bC + XaCx†CX
†
bS

+XaCxEX †bC . (73)

Similarly to the case with the closed system trans-
formation, (72) may preserve the set of the degrees
of freedom associated with the RSF formalism in
the system only if it does not depend on the conju-
gate field of the system, (cS , |α∗S〉). Close inspection
of (72) reveals that this is possible only if (41) is
fulfilled, which is what we wanted to prove.

Let us stress, however, that this condition is
merely necessary for the RSF degrees of freedom to
be preserved. Depending on the state of the bath,
the remaining fields rc, cC , rE , and cE will, in gen-
eral, cause the system to go beyond the RSF frame-
work. In the most radical case, the equations may
preserve the formalism’s set of degrees of freedom
only if all terms dependent on these additional fields
vanish, reducing the system-environment ensemble
to two separate closed systems.

Proof of Proposition 3

Finally, to prove Proposition 3, we note that, as
is easy to calculate from their definitions, the initial
reduced fields with the environment initially in the
vacuum state fulfill

rC = rE = cC = cE = 0, |αE〉 = |α∗E〉 = 0.

(74)
Plugging this into (72), we find that it simplifies to

r′S = X↑SrSX †↑S + X↓CX †↓C ,

|α′S〉 = X↑S |αS〉 , (75)
where we assumed the classicality condition (41).
Clearly, the final field depends only on the initial
RSF, preserving the associated degrees of freedom.
Therefore, in this case, the condition (43) is not only
necessary, but also sufficient for classicality.

It remains to show that if the transformation de-
pends smoothly on time, the corresponding reduced
kinetic equations are given by (43). In the time-
dependent case, (75) becomes

rS(t) = X↑S(t) rS(0)X †↑S(t) + X↓C(t)X †↓C(t),

|αS(t)〉 = X↑S(t) |αS(0)〉 .
(76)

These relations are reversible
rS(0) = X−1↑S (t)

[
rS(t)−X↓C(t)X †↓C(t)

]
X−†↑S (t),

|αS(0)〉 = X−1↑S (t) |αS(t)〉 .
(77)
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Differentiating (76) with respect to time, making
use of (77), and rearranging the terms, we arrive at
the differential evolution equations

dr

dt
=

1

2

[
Yi, r

]
+

1

2

{
Yr, r

}
+W,

d |α〉
dt

=
1

2
Yi |α〉+

1

2
Yr |α〉 ,

(78)
where the matrices Yr, Yi,W are as defined in (44).
Clearly, the derived equations have the form of
the reduced kinetic equations characterized by (43).
Thus, they describe valid dynamics provided the γl
matrices are non-negative, as required by (42). This
concludes the proof.

Appendix B: Proof of (60)

In this appendix, we derive the explicit forms of
the operators (60) governing the reduced kinetic
equations for the dynamical Casimir effect.

By comparing (54) with (36) and (40), we imme-
diately identify
X↑S = e− iφfR+, X↓C = e− iφfR−. (79)

Plugging this into (44) and then (43), on the way
utilizing the differential equations (8), we obtain,
after a lengthy but straightforward calculation,

h = ~ω
(
η+ + η−Re

[fR−
fR+

])
+ ~

dφ

dt
,

γ↑=2ωη−|fR−|2
(

Im
[fR+

fR−

]
+ Im

[fR−
fR+

])
,

γ↓=2ωη−

[
|fR−|2 Im

[fR+

fR−

]
+
(
|fR−|2+1

)
Im
[fR−
fR+

]]
.

(80)
It remains to show that these formulas reduce
to (60).

In the case of the Hamiltonian, all we need to do
is to differentiate (10) with respect to time. Due to
the Leibniz integral rule,

dφ(k, t)

dt
= ω(k)δ(t)β(t) cos θ(k), (81)

from which we immediately see that the first lines
of (80) and (60) coincide.

As for γ↑, we observe that for any complex num-
ber w

Im
[
w−1

]
= − Im[w]

|w|2
. (82)

Taking w = fR+/fR−, we get

γ↑ = 2ωη−|fR−|2
(

1− |fR−|
2

|fR+|2

)
Im
[fR+

fR−

]
.

(83)

Using (16) and simplifying, we quickly find that the
second lines of (80) and (60) also coincide.

Finally, we have to show that γ↓ = 0. Once again
utilizing the relation (16), we obtain

γ↓=2ωη−|fR−|2
(

Im
[fR+

fR−

]
+
|fR+|2

|fR−|2
Im
[fR−
fR+

])
.

(84)

It is easy to see that the bracketed term vanishes
upon the use of (82).
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