
Expanding the proteome:
Advancing proteomics

methodologies to uncover new
insights into cancers

Kenneth Weke



Expanding the proteome: Advancing proteomics methodologies to

uncover new insights into cancers

Kenneth Weke

A thesis submitted to the Intercollegiate Faculty of Biotechnology of UG&MUG in full

conformity with the requirements for the degree of Doctor of Philosophy (chemical biology),

University of Gdańsk

The research work presented in this doctoral thesis was completed at the International

Centre for Cancer Vaccine Science, University of Gdańsk

Supervised by Prof. Theodore Hupp

Co-supervised by Dr. Sachin Kote

© Copyright by Kenneth Weke 2023



Dedication

To patients, in life or memory, whose tissue donations form the proteome story in this thesis

i



Acknowledgment

Finally, at the tail end! :)

This journey has been a rollercoaster of challenges, triumphs, and, most importantly,

incredible growth. My deepest appreciation in general to all who have played a part in my

academic journey, and specifically to individuals whose unwavering support and guidance

have been instrumental in the completion of this doctoral thesis. To my supervisor, Prof. Ted

Hupp, thanks for your support and guidance. You challenged my ideas and helped refine

them through constructive feedback, ultimately influencing my growth as a researcher. Dr

Sachin Kote, you are a dedicated co-supervisor. You stepped in just when things seemed to

go south, thanks a bunch. To past and current clinical peptidomics group members, you are

terrific. The collaboration and camaraderie were real. I am thankful. To Dr. Jakub Faktor, you

are selfless. Thank you so much. To Kasia, another selfless soul. Your resilience and

optimism were unmatched. The fights with that chamber were swamping. I am truly grateful.

To Dr. Javier Alfaro, what can I say, bro? You perfectly played the role of a big brother,

starting at the coast of the Great Lakes and now at the Baltic coast, where you did the most.

I am immensely thankful. To Dr. Irena Dapic, thank you for believing in me and agreeing to

be my guiding light at the commencement of this journey. To Prof. Dave Goodlett, thank you

for your support and mentorship. To the ICCVS fraternity, thank you. You are amazing.

Special thanks to my co-authors for their collaborative efforts. To Prof. Angela Amayo, Prof.

Christine Kigondu, Dr. Helen Dimaras, and Dr. Paul Boutros, thank you for shaping my

academic foundation. To Dr. Alexandre Rouette, thanks for the mentorship and support. To

Vern, thanks a lot, bro, for the encouragement and always informing me of available

opportunities. To Beatko, you are truly awesome. Thanks for the immense support and

encouragement. A big thanks to my family, whose unwavering support sustained me

throughout.

ii



Abstract

The dynamic interconnection between proteomics and cancer biology necessitates sensitive

and reproducible methodologies to decode intricate molecular mechanisms, especially in

clinically relevant scenarios. Mass spectrometry (MS)-based proteomics is a powerful

analytical instrument for profiling and quantifying proteins in biological samples. This thesis

focuses on developing and broadening the application of MS-based proteomics technologies

to advance the understanding of cancer biology in order to improve the diagnosis and

treatment of cancer. The first part of the thesis describes the application of a microscale

proteomics method, microdroplet processing in one pot for trace samples (microPOTS),

which can be used to identify and quantify proteins from small numbers of cells. microPOTS

was applied to identify proteomic changes in Barrett’s esophageal cells following physiologic

and radiation stress exposure. From a small population of cells, microPOTS demonstrated

relatively high proteome coverage with the identification of >1500 protein groups and

achieved high quantitative reproducibility.

The second part of the thesis focuses on developing and applying a data-independent

acquisition (DIA) MS proteomics workflow to identify and quantify proteins from

formalin-fixed paraffin-embedded (FFPE) tissues. This workflow was applied to glioblastoma

(GBM) FFPE tissue microdissections, and more than 1700 proteins were detected, and over

1400 proteins were quantified. GBM-relevant proteins (e.g., GFAP, FN1, VIM, and MBP)

were quantified with high precision (median coefficient of variation <12%). In addition,

immune-related proteins (e.g., ILF2, MIF, and CD38) were consistently detected and

quantified. The strategy holds great potential for routinizing protein quantification in FFPE

tissue samples.

The third part of the thesis focuses on investigating the impact of hypoxia on antigen

presentation in GBM using an integrated approach combining MS-based proteomics and

immunopeptidomics strategies. Hypoxic stress induces significant changes in the GBM

proteome. Key enzymes (ERAP1 and ERAP2) in the antigen processing and presentation
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machinery (APM) were downregulated in hypoxia. Moreover, the findings revealed that

HLA-I-associated antigen peptide repertoire was reduced under hypoxia. Overall, these

results open new horizons to further explore the interplay between hypoxia and antigen

presentation.

Collectively, this thesis presents a series of studies that have advanced the field of

proteomics and its application to cancer biology, especially GBM tumors. The development

of new proteomics technologies and their application to cancer research has the potential to

improve the understanding of cancer biology and to develop new diagnostic and

immunotherapeutic strategies.
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Streszczenie

Dynamiczność korelacji proteomiki i biologii nowotworów wymaga wrażliwych i

powtarzalnych metod dekodowania złożonych mechanizmów molekularnych, szczególnie w

scenariuszach klinicznie istotnych. Proteomika oparta na spektrometrii mas (MS) jest

potężnym narzędziem analitycznym do profilowania i kwantyfikacji białek w próbkach

biologicznych. Niniejsza praca doktorska skupia się na rozwijaniu i poszerzaniu

zastosowania technologii proteomiki opartej na MS w celu pogłębienia zrozumienia biologii

nowotworów i dalszego udoskonalenia diagnostyki i leczenia raka.

Pierwsza część pracy opisuje zastosowanie metody proteomiki mikroskalowej,

przetwarzania mikrokropelek w jednym naczyniu dla próbek śladowych (microPOTS), która

może być użyta do identyfikacji i kwantyfikacji białek z małej liczby komórek. Metoda

microPOTS została zastosowana do identyfikacji zmian proteomicznych w komórkach

przełyku Barretta po ekspozycji na stres fizjologiczny i radiacyjny. Metoda microPOTS

osiągnęła stosunkowo wysokie pokrycie proteomu dla niewielkiej populacji komórek,

identyfikując więcej niż 1500 grup białkowych i uzyskując wysoką powtarzalność

kwantyfikacji.

Druga część pracy koncentruje się na rozwijaniu i stosowaniu toku pracy w proteomice MS

opartym na pozyskiwaniu niezależnym od danych (DIA) do identyfikacji i określania

ilościowego białek z tkanek utrwalonych w formalinie i zatopionych w parafinie (FFPE).

Metodyka ta została zastosowana do mikrodysekcji tkanki glejaka wielopostaciowego (GBM)

FFPE, gdzie wykryto ponad 1700 białek, a ponad 1400 białek zostało skwantyfikowanych.

Białka istotne dla GBM (np. GFAP, FN1, VIM i MBP) zostały określone ilościowo z dużą

precyzją (średni współczynnik zmienności <12%). Ponadto, białka powiązane z odpornością

(np. ILF2, MIF i CD38) były konsekwentnie wykrywane i kwantyfikowane. Strategia ta kryje w

sobie wielki potencjał ustandaryzowania szacowania białek w próbkach tkanek FFPE.
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Trzecia część pracy przedstawia badanie wpływu niedotlenienia na prezentację antygenów

w GBM, wykorzystując zintegrowane podejście łączące proteomikę opartą na MS i strategie

pochodzące z immunopeptydomiki. Stres hipoksyczny wywołuje znaczące zmiany w

proteomie GBM. Kluczowe dla aparatu przetwarzania i prezentacji antygenów (APM)

enzymy (ERAP1 i ERAP2) miały zmniejszoną ekspresję podczas stanu niedotlenienia.

Ponadto, wyniki ujawniły, że zasób peptydów antygenowych związanych z HLA-I był

zredukowany w analogicznych warunkach. Wyniki te ukazują nowe perspektywy dla

dalszego badania współzależności między niedotlenieniem i prezentacją antygenu.

Podsumowując, niniejsza praca doktorska prezentuje serię badań, które posunęły naprzód

dziedzinę proteomiki i jej zastosowanie w biologii nowotworów, ze szczególnym

uwzględnieniem guzów GBM. Rozwój nowych technologii proteomiki i ich zastosowanie w

badaniach nad rakiem ma potencjał poszerzenia zrozumienia biologii nowotworów oraz

rozwoju nowych strategii diagnostycznych i terapeutycznych w immunologii.
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CHAPTER 1: Introduction

Normal cells have a complex genetic regulatory system that tightly controls cell proliferation.

Damage to this control apparatus renders the cells incapable of regulating their cell cycle1.

Stochastic processes or environmental stresses spark aberrant changes within this

regulatory system, leading to mutations such as deletions, insertions, and duplications.

These mutational events modify cellular activities, leading to the inactivation of tumor

suppressor genes, activation of oncogenes, deregulation of DNA (deoxyribonucleic acid)

repair genes, downregulation of apoptotic genes, and widespread epigenetic alterations1–4.

Consequently, the modified cellular programs form the hallmarks of cancer development and

progression5–8 (Figure 1a-b). While there have been remarkable steps to improve cancer

diagnosis and therapy, the disease remains the second leading cause of death globally, with

an incidence of 19.3 new cases and about 10 million deaths9. According to recent studies,

the number of new cancer cases is predicted to be 28.4 million by the year 2040, which

would reflect a 47% increase10,11. The overall burden of cancer on healthcare is burgeoning,

and more research is needed to improve patient clinical outcomes.

Clinical management for cancer patients is improving with research efforts aimed at early

detection, accurate triaging, and treatment efficacy. Most of the research works that have

yielded dramatic impact have mainly been conducted at the molecular level using a systems

biology approach to characterize tumors12–16. Genomic and transcriptomic approaches have

been the mainstays of tumor classification and bio-target discovery. Whereas these -omics

studies have enabled the comparison and differentiation of various cancers, most of the

results have not translated into clinics. Aberrant DNA changes and deregulated RNA

(ribonucleic acid) expression profiles do not always reflect protein expression levels17–22. As

a result, this limits our comprehensive understanding of this disease. Proteins are the

effector biomolecules responsible for driving cellular functions; hence, they present the level

where clinical diagnostic tests and targeted therapies work. Mass spectrometry (MS)-based

proteomics has emerged as a powerful tool that can overcome the limitations of genomics.
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MS-based proteomics can identify, quantify, and characterize almost all the proteins in a cell

or tissue sample, including post-translational modifications and protein complexes23. This

information can be used to gain a deeper understanding of cancer biology, and cancer

immunology and to identify new diagnostic and therapeutic targets.

Figure 1-1. Malignancy development. a, Tumor initiation and development. Blue circles

represent normal cells, and dark pink color display tumor cells. b, Cancer hallmarks

showing the distinct biological phenotypes driving tumor growth and progression.

Gradient colors, blue, green, and violet, show original hallmarks, enabling factors,

and emerging hallmarks, respectively. The figure was created with BioRender.com

and arranged in Adobe Illustrator.
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1.1. Background information on glioblastoma tumor

1.1.1. Evolution and classification of glioma tumors

Glioblastoma (GBM) is a type of brain tumor that belongs to a larger group of tumors called

gliomas. Gliomas are the most common type of malignant tumor of the brain and central

nervous system (CNS)24,25. They are characterized by high molecular and cellular

heterogeneity and display varying grades of malignancy12. Gliomas arise when normal glial

cells, such as astrocytes, oligodendrocytes, and ependymal cells, undergo a neoplastic

transformation and develop into astrocytomas, oligodendrogliomas, and ependymomas

tumors, respectively. There have been profound changes to glioma nomenclature, which has

seen a shift from histological-based classification to one anchored on the molecular

landscape of the tumor26–28. The current classification by the World Health Organization

(WHO) is an integrative approach involving histomorphologic features and molecular data to

distinguish between the tumor subtypes. To discriminate between tumors that affect

pediatrics and adult populations, the new approach groups diffuse gliomas into adult-type,

pediatric-type diffuse low-grade, and pediatric-type high-grade gliomas.

The adult-type diffuse gliomas are classified according to the mutational status of the

isocitrate dehydrogenase (IDH) gene, together with many other key molecular genetic

aberrations. Based on this classification, there are three distinct tumor types, including

IDH-mutant astrocytoma, IDH-mutant, and 1p/19q-codeleted oligodendroglioma, and finally,

IDH-wildtype glioblastoma. IDH-mutant astrocytoma forms as a result of heterozygous point

mutations of the IDH1 or IDH2 (less common) gene and mutations of alpha

thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein P5329,30. These

tumors usually exhibit a diffuse growth pattern ranging from low-grade to high-grade

malignancy. Within the IDH-mutant astrocytoma, three grades, namely WHO grades 2, 3,

and 4, have been recognized. Tumor grades that harbor a homozygous deletion of

cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) have been shown to have poor clinical

outcomes and are assigned grade 4, irrespective of the histological findings31. IDH-mutant
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and 1p/19q-codeleted oligodendroglioma is characterized by the presence of an IDH1 or

IDH2 mutation and the codeletion of chromosomes 1p and 19q32. Different subsets of

oligodendrogliomas exist and range from slow-growing to rapidly-growing malignant tumors.

According to the latest grading scheme, the existing grades include WHO grade 2 or 327.

IDH-wildtype glioblastoma is the most common malignant adult-type diffuse glioma. These

tumors have features that include high cellularity, diffuse infiltrating, and pleomorphic with

mitotic activity as well as either microvascular proliferation or necrosis. GBM is frequent

among older adults; however, the tumor can still develop at any age.

1.1.2. Pathogenesis of glioma tumors

The advancement in -omics technologies has significantly improved the understanding of the

key molecular drivers that initiate and support the progression of glioma tumors. These

pathogenic molecular alterations (Table 1-1) have become extremely useful in subtyping

glioma tumors. ATRX mutation—the protein encoded by the ATRX gene, situated on Xq21.1,

plays a crucial role in the chromatin-rearrangement pathway by facilitating the integration of

histone H3.3 into heterochromatin. ATRX loss is more common in IDH-mutant than

IDH-wildtype glioma and correlates to TP53 mutation29. In a large-scale study of glial tumors,

ATRX mutations were strongly linked to IDH1/2 and H3F3A mutations30. Telomerase reverse

transcriptase (TERT) promoter mutation—the TERT gene is critical for encoding the

telomerase enzyme, adding the missing 3’ end of the DNA strand during replication. TERT

mutation is a prognostic marker and has been demonstrated to occur often in IDH-wildtype

compared to IDH-mutant26.

TP53 mutation—the TP53 gene on chromosome 17p13.1 plays a critical role in the genome

regulatory network, modulating cell proliferation and survival, among other cellular functions.

Mutation in the TP53 gene is associated with GBM progression33. Chromosome 1p/19q

codeletion—the complete deletion of the short and long of chromosomes 1 and 19,

respectively, is a defining characteristic of oligodendroglial tumors. A phase III clinical study

and another report showed that 1p/19q codeletion is a powerful predictor of a favorable
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treatment outcome and survival for patients with diffuse gliomas32,34. BRAF (v-raf murine

sarcoma viral oncogene homolog B1) is a proto-oncogene on chromosome 7q34, encoding

the B-Raf protein, which is part of the Raf protein family. Raf proteins are key components of

the mitogen-activated protein kinase (MAPK) signaling pathway, which controls most cell

activities, such as motility, proliferation, differentiation, and apoptosis35. V600E is the most

common oncogenic driver mutation in the BRAF gene and is present in a variety of glioma

tumors.

The epidermal growth factor receptor (EGFR) gene on chromosome 7p12 is crucial in

promoting cell proliferation by activating MAPK and PI3-Akt pathways. EGFR amplification

occurs more frequently in IDH-wildtype than IDH-mutant and is associated with poor

prognosis26. In the recent CNS WHO classification, EGFR amplification, TERT promoter

mutation, and/ or the concurrent gain and loss of whole chromosomes 7 and 10 (+7/-10

genotypes), respectively, were shown to adequately define IDH-wildtype GBM36,37.

O6-methylguanine DNA methyltransferase (MGMT) gene encodes DNA repair enzyme that

reverses the genotoxic impacts of alkylating agents. MGMT promoter methylation is a useful

molecular prognosticator in glioma tumors38. Phosphatase and tensin homolog (PTEN) gene

on chromosome 10q23 plays a critical role in regulating cell growth and suppressing the

tumor. Loss of PTEN function as a result of mutation or loss of heterozygosity (LOH) impairs

control of cell proliferation, growth, and survival.

Table 1-1. Key molecular changes in high-grade gliomas

Type of molecular alteration

Methylation Chromosomal
aberrations

Mutations Amplifications Deletions

MGMT Gain: 1q, 19q,
20q

PTEN MET CDKN2A

PTEN Loss: 6q, 9p,
13q, 14q, 22q

ATRX EGFR CDKN2B

RB1 Concomitant:
+7/-10

TP53 PIK3CA CDKN2C
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TP53 RB1 PDGFRA PTEN

CDKN2A IDH1/2 CCND2 RB1

PDGFB NF1 MDM2/4 NFKB1A

EMP3 EGFR

SOCS1

PCDHGA11

OLIIG1/2

1.1.4. Epidemiology, clinical presentation, and diagnosis of GBM

As previously stated, GBM is the most prevalent primary malignancy of the brain. Its

incidence has not been clearly defined; however, various reports have estimated the

age-adjusted incidence rate at an annual average of between 3.19 to <5 cases per 100,000

persons24,25. In the pediatric population, the incidence rate is approximated at 0.85 per

100,000 person-years, and GBM accounts for 3-15% of all primary brain tumors24,39. The

median age of diagnosis is 64 years, and the prevalence rises with age and finally peaks at

75-84 years and then starts to drop at 85 years of age. It occurs more in men than women,

with an incidence rate of 1.57% in men compared to that in women40. Primary GBMs are

frequent in men, while secondary ones occur more in women. Ancestrally, the prevalence of

GBM is higher among those of Caucasian ancestry41.

The clinical presentation of GBM is often linked to the region where the tumor is located.

Patients harboring supratentorial tumors present with headaches as the tumor presses on

the surrounding normal tissues42. Nausea, vomiting, or seizures are other common

presentations that may occur. In some cases, the onset of symptoms may be insidious and

patients may only present with behavioral or cognitive changes43. Patients may complain of

gait disturbances, cranial deficits, and vertigo when they have infratentorial tumors. Besides,

patients can also present with non-specific symptoms including fatigue, malaise, and weight

loss.

6



1.1.5. Treatment and management of GBM

GBM tumor is extremely challenging to treat, and efforts to achieve improved treatment have

not dramatically changed the therapeutics landscape for patients. Surgery remains the

primary treatment for GBM patients. Surgical resection aims to remove as much of the tumor

as possible without causing damage to the surrounding healthy brain tissue. The extent of

resection has been demonstrated as an essential prognostic factor in GBM. For instance, a

meta-analysis of 37 studies, including 41,117 patients, reported that gross total resection

(GTR) was associated with improved overall survival (OS) compared to subtotal resection

(STR) or biopsy alone44. Following surgical resection, radiation therapy is typically

administered to the tumor bed and surrounding brain tissue to eliminate any remaining

cancer cells. Standard radiation therapy involves delivering a total dose of 60 Gy in 30

fractions over six weeks45.

In a landmark phase III trial, Stupp et al. demonstrated that the addition of temozolomide

(TMZ) to radiation therapy improved median OS from 12.1 months to 14.6 months and

increased the 2-year survival rate from 10.4% to 26.5% in patients with newly diagnosed

glioblastoma46. TMZ is an oral alkylating agent that is often used in the treatment of GBM. It

works by methylating the O6 position of guanine, which leads to DNA damage and apoptosis

in tumoral cells. The standard adult dosing regimen for TMZ is usually 75 mg/m2 per day for

five days during each cycle, which is repeated every 28 days. The optimal duration of TMZ

therapy is not well defined, but most clinicians continue TMZ for six cycles. Immunotherapy

is an emerging treatment modality for GBM. Immune checkpoint inhibitors (ICIs) target

inhibitory receptors on T cells, such as programmed cell death protein 1 (PD-1) and cytotoxic

T-lymphocyte-associated protein 4 (CTLA-4), which can enhance antitumor immunity47–49.

The efficacy of ICIs in GBM is limited, partly due to the immunosuppressive tumor

microenvironment (TME) and the lack of reliable biomarkers to predict response. Other

immunotherapy approaches being investigated in GBM include chimeric antigen receptor

(CAR) T cell therapy, tumor vaccines, and ICIs targeting other immune checkpoints50–52.
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Targeted therapy refers to the use of drugs that target specific molecular pathways or

mutations that are important for cancer cell growth and survival. Several targeted therapies

have been investigated in GBM, but they have not demonstrated significant clinical

benefit53–55. For example, inhibitors of vascular endothelial growth factor (VEGF), such as

bevacizumab, have been shown to improve progression-free survival (PFS) but not OS56,57.

Inhibitors of the EGFR, such as erlotinib and gefitinib, have also been investigated, but their

efficacy in GBM is limited58–60.

1.2. Immuno-oncological dynamics

The TME is cellularly and molecularly complex, which greatly influences the clinical outcome

of cancer patients61. Various cell types, including tumor parenchyma cells, stromal cells, and

tumor-infiltrating immune cells, contribute to the TME diversity. These constituents of TME

interact at different levels and scales and exhibit nonlinear dynamics. Two immune

components of TME exist—those involved in anti-tumor activity and the component that

promotes tumor progression. Several studies have documented the interaction between the

tumor and the immune system62,63. A significant hypothesis that has emerged to describe this

interaction at the cellular level is the concept of immunoediting64. Immunoediting describes

the dynamic relationship between the immune system and tumor cells, suggesting this

interplay can be divided into three phases: elimination, equilibrium, and escape. In the first

phase, elimination, the immune system recognizes and seeks to eradicate emerging tumor

cells. At this stage, both innate and adaptive immune responses are activated — cytotoxic

CD8+ T cells, natural killer (NK) cells, and macrophages target and eliminate nascent tumor

cells that display antigens deemed foreign or altered.

As some tumor cells manage to elude total eradication, they devise mechanisms to

withstand immune detection. These cells enter a state of dormancy, and equilibrium, where

the immune response prevents their proliferation but does not eliminate them completely.

This phase is characterized by the continuous sculpting of the tumor, where the immune

system unintentionally selects for tumor cells that are less immunogenic and, therefore, less
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recognizable. Thus, there is a balance between the rate of tumor cell proliferation and

elimination. Production of pro-tumor cytokines, e.g., TGF-β, and anti-tumor cytokines, such

as IL-12 and IFN-γ is at equal levels. Both CD4+T and CD8+T cells continue to mount

immune responses, with NK and Treg cells getting involved. The phase can last for several

years, with the emergence of non-immunogenic tumor cells. In the escape phase, tumor

cells that have adapted to evade immune detection or suppress immune responses become

dominant. These immune-resistant cells multiply, resulting in tumor growth and potential

metastasis. These cells implement different strategies that make them immune-resistant,

e.g., they downregulate antigen-presenting cells and proteins involved in antigen processing

and presentation machinery, upregulate the expression of co-inhibitory signals such as

CTLA-4 and PD-1 that bind to B7-1/B7-2 or PD-L1/PD-L2 and increase the production of

anti-apoptotic molecules65.

1.2.1. Antigen processing and presentation

For the adaptive arm of immunity to function effectively, antigens must be processed and

presented to immune cells. This process is complex and involves different cells and major

histocompatibility complex (MHC) molecules, which for humans is the human leukocyte

antigen (HLA). Cells that mediate this process are called antigen-presenting cells (APC), and

they include dendritic cells, macrophages, and B cells. HLA classes I and II are the two

molecules expressed on cell surfaces that mediate antigen presentation66,67. Both HLA-I and

HLA-II bind and display short antigenic peptides, which CD8+ and CD4+, respectively,

recognize. HLA-I typically binds to peptides that are 8-11 amino acids long, with a dominant

9 mer, whereas HLA-II binds peptides that are 13-25 amino acids long68. In terms of

antigenic peptide sources, HLA-I-bound peptides are mainly endogenous or intracellular,

while those associated with HLA-II originate exogenously or extracellularly. However, there

are instances, where endogenous peptides are presented by HLA-II and vice versa, in a

phenomenon referred to as cross-presentation.
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The endoplasmic reticulum (ER) is crucial for packaging and assembling HLA-I molecules.

HLA-I has two major components—the β2-microglobulin chain and a polymorphic heavy

chain, which form a complex. Initial steps in antigen presentations by HLA-I involve antigen

generation by a ubiquitin–proteasome system, which degrades proteins into peptides

specific for HLA-I binding. Peptide-loading complex comprising of transport associated with

antigen processing (TAP), tapasin, HLA-I, ERp57, and calreticulin is critical for translocating

the generated peptides into the ER. Aminopeptidases, ERAP (ER aminopeptidase 1) 1 and

2, further process the peptides by trimming them in the ER. The peptide-loading complex

enables the binding of the trimmed peptides by HLA-1. Next, the peptide-HLA-I complex is

transported to the cell surface for antigen presentation CD8+ T cells.

1.2.2. Tumor hypoxia

Tumor hypoxia, a condition in which tumor cells are deprived of oxygen, is a common feature

of solid tumors. It is caused by the rapid growth of tumor cells, which leads to dysfunctional

vasculature and a reduced oxygen supply. Physiological oxygen concentration in most

normal tissues is between 4% and 10% (40-60 mmHg oxygen tension), depending on the

tissue type or organ69,70. In tumors, oxygen levels are below physiological concentrations

(<10 mmHg oxygen tension), establishing a pathological state called hypoxia. Hypoxia is

linked to increased tumor aggression, progression, and resistance to therapeutic

interventions. There are two main types of tumor hypoxia: acute and chronic. Acute hypoxia

is caused by limited perfusion due to aberrant blood vessels shutting down. Chronic hypoxia

is caused by limited diffusion and occurs as a result of increased diffusion distances.

The cellular response to hypoxia is principally modulated via the hypoxia-inducible factor

(HIF) pathway71. HIF is a heterodimeric transcription factor encompassing an

oxygen-sensitive α-subunit (HIF-1α, HIF-2α, or HIF-3α) alongside a constitutively expressed

β-subunit, HIF-1β or the aryl hydrocarbon receptor nuclear translocator (ARNT). Under

conditions of normal oxygen levels (normoxia), the HIF-α subunit undergoes hydroxylation

mediated by prolyl hydroxylases (PHDs). This hydroxylation facilitates the binding of the von
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Hippel-Lindau (VHL) protein to HIF-α, which recruits E3-ubiquitin ligases, targeting HIF-α for

proteasomal degradation. Conversely, during hypoxia, the activity of PHDs is inhibited,

resulting in the preservation and stabilization of HIF-α. Once stabilized, HIF-α translocates to

the nucleus, where it associates with HIF-β and cofactors, including CBP/p300, thereby

driving the transcription of various target genes. These genes play pivotal roles in processes

such as angiogenesis, the reprogramming of cellular metabolism towards glycolysis, and the

survival and proliferation of tumor cells, among other crucial tumorigenic pathways.

1.2.3. Hypoxia-immune interface

The hypoxia-immune interface in tumors is characterized by profound changes in the

function and behavior of various immune cells. Cytotoxic CD8+ T cells and NK cells are

inhibited in their function and activity in hypoxic tumor regions. This suppression can arise

directly from low oxygen conditions or indirectly due to the altered secretome of the TME that

contains immune-suppressive molecules. Tumor-associated macrophages (TAMs)

accumulate in the hypoxic zones of tumors72. Within these regions, TAMs tend to adopt a

phenotype that is skewed toward supporting tumor growth, enhancing angiogenesis, and

further suppressing the immune attack against the tumor. Under hypoxic conditions, dendritic

cell differentiation and antigen presentation are impaired, weakening the subsequent

T-cell-mediated immune response against tumor cells. Additionally, hypoxia increases Treg

recruitment and function73.

1.3. Mass spectrometry-based proteomics

Proteins are the effector biomolecules whose functions alter the physiological states of cells

within a biological system. A comprehensive understanding of distinct features of proteins,

including their expression levels, distribution, post-translational modifications (PTMs), and

interactions, is imperative to gaining insights into cancer evolution, progression, and

therapeutic treatments. The term proteome was first coined by Wilkins in 199474. Different

approaches, including affinity-based such as immunofluorescence, Western blotting,

enzyme-linked immunosorbent assay, immunoprecipitation, immunohistochemistry, and flow
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cytometry have been employed in the identification and characterization of proteins75.

However, affinity-based methods suffer many limitations, e.g., expensive antibodies and lack

of multiplexing, and as a result, MS-based methods have evolved to overcome these

challenges and have become the analytical technique of choice for proteomics analysis76.

MS-based proteomics can be carried out in different approaches, including top-down,

bottom-up, and middle-down depending on the study77,78. In top-down proteomics analysis,

intact proteins are analyzed directly without breaking them down into peptides. It is useful in

detecting PTMs; hence, providing detailed information about a protein's modification state.

However, it is relatively less sensitive compared to the bottom-up strategy. In a bottom-up

approach, the proteins are digested enzymatically (trypsin in most cases) into peptides,

which are then analyzed by MS. It is highly sensitive with well-established workflows;

however, decomplexing the resulting data is sometimes a challenge. For the middle-down

approach, proteins are partially digested, leading to larger peptide fragments in comparison

to bottom-up peptides. It does offer a balance between preserving PTMs and sensitivity.

Bottom-up proteomics is the most popular approach, and work on this study is chiefly based

on it.

1.3.1. Sample preparation for bottom-up proteomics

Initial steps in sample preparation commence with the retrieval of proteins from biological

samples, e.g., cells, tissues, or biofluids. Depending on the type of the biological specimen,

samples can be first pretreated, including the use of protease inhibitors to inactivate

enzymes. Subsequent processes include homogenization, protein extraction, and

quantification. Extracted proteins are quantified to determine the extraction

yield/concentration, which informs the amount of enzyme necessary for efficient digestion.

The next step in the workflow after extracting proteins is converting them into peptides in a

series of steps, including reduction to break the disulfide bridges and alkylating to cap the

reduced cysteines, enzymatic digestion, peptide fractionation (optional), and desalting.
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Currently, there are several strategies for performing protein digestion including in-solution,

in-gel, and filter-aided sample preparation (FASP)79,80.

1.3.2. Emerging sample preparation techniques for low-input samples

The standard bottom-up proteomic workflows are inefficient for single-cell or microscale

proteomics analysis81. Usually, a classical bottom-up proteomics requires a large amount of

starting material, often ranging from several hundreds of thousands to slightly over one

million cells. Sample processing is invariably accompanied by adsorptive losses due to the

multiple steps that expose the samples to many surfaces. Losses attributed to the surface

adsorption; however, become negligible with large input material. In addition, bulk methods

involve the use of large volumes of liquid, sometimes up to 1.5 mL. Without downscaling

such huge liquid volumes for single-cell analysis, the consequence is inefficient enzymatic

digestion. These bottlenecks have been the impetus for emerging techniques that focus on

miniaturizing conventional sample preparation workflows and improving separation to fit the

need for single-cell analysis.

Some of these emerging techniques include the single POT systems (nano- and

microdroplet processing in one pot for trace samples—nanoPOTS and microPOTS)82,83. The

-POTS system has been enabled hugely by microfluidics technology. All sample processing

steps, including cell lysis, reduction, alkylation, and digestion, take place in one

pot/nanowell. Furthermore, the processing volume in each nanowell is minimized to <200 nL.

With each nanowell having a surface area of about 0.8 mm2, adsorptive sample losses due

to surface exposure are massively reduced. MS-compatible buffer components are used for

cell lysis as there is no further clean-up step. Initially, nanoPOTS processed as few as 10

HeLa cells using 0.1% RapiGest and applied a two-step protease reaction leading to the

identification of >1500 proteins82.

Single-tube sample processing formats aim to eliminate multiple reaction vessels that

inevitably result in adsorptive losses due to multi-surface exposures. For instance, a

13



single-tube sample processor eliminated the need for a clean-up step by using

MS-compatible organic solvents to extract and denature proteins84. Using a surfactant

(NP-40) to lyse the cells and subsequently precipitate proteins by acetone, Wang et al.85,

demonstrated the potential of a single tube to process 500 to 5000 cells. With this method,

the authors reported on average 167, 237, and 491 protein identifications from 500, 1000,

and 2500 MCF-7 breast cancer cells, respectively. Li et al.86 developed an integrated sample

processing platform with the capability of isolating a few hundred cells and subsequent

preparation in a mini-tube. The platform reported enhanced detection sensitivity with an

increased number of identified proteins, e.g., ~4000 proteins were identified with an injection

of the equivalent of only 100–200 cells per analysis of rare MCF-7 cells spiked into whole

blood.

A modified version of FASP—called micro-FASP—has emerged to detect and analyze

proteins in low-input samples87. Martin et al.88 reported SOPs-MS (surfactant-assisted

one-pot sample processing at the standard volume coupled with MS), which is an

easy-to-implement technique and resulted in a reliable label-free quantification of about 1200

to 2700 protein groups from 50 to 1000 MCF10A cells, respectively. Furthermore, using a

single low-binding polymerase chain reaction (PCR) tube with the right surfactant e.g.

n-Dodecyl-β-D-maltoside can accelerate single-cell analysis as reported recently89.

In on-line processing formats, samples can either be processed using the principle of strong

cation exchange or immobilized enzyme reactor systems. The strong cation exchange (SCX)

approach was demonstrated by Ethier et al.90 when they developed a sample processing

system termed a proteomic reactor. Other methods based on SCX to address proteomics

analysis of low sample input have emerged. For instance, a system called rare cell

proteomic reactor (RCPR) has since been developed to improve sensitivity91. An automated

SCX-based fractionation system was shown to achieve high digestion efficiency with over

7000 proteins identified from 20 µg protein extracts of HEK 293T cells. Simple and

integrated spin tip-based proteomics technology (SISPROT) consisting of SCX beads and
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C18 disk in a single pipette enabled the identification of 1270 proteins from about 2000 HEK

293 cells and achieved good reproducibility92.

1.3.3. Mass spectrometry principle and instrumentation

MS is an analytical technique that is used to determine the molecular weight, elemental

composition, and structural information of a molecule. MS has many areas applications in

several areas of research, including proteomics, metabolomics, drug discovery, and forensic

science.93–95 In proteomics, which is a large-scale study of proteins, MS has increasingly

become the preferred method for protein analysis. MS-based proteomics generates data that

is enough to provide detailed information about proteins, including amino acid sequence,

post-translational modifications (PTMs), protein-protein interactions, and spatial and

temporal distributions within cells96–98. MS detects and analyzes components of a sample

based on mass-to-charge ratio (m/z) values. Advancement in technology has seen the

emergence of different MS platforms. While many instrumentation configurations exist, all

mass spectrometers share three basic components—an ion source, a mass analyzer, and

an ion detector (Figure 1-2). The ion source generates ions, which the mass analyzer

separates and measures their m/z, and the detector detects and records the number of ions

at each m/z value.

Figure 1-2. Simple illustration of the three basic components of a mass spectrometer—ion

source, mass analyzer, and detector.

In the ionization process, the sample is transformed into charged ions in a gaseous phase.

Currently, different ion sources are available with the capability of generating either positively

or negatively charged ion species. During ionization, a sufficient amount of energy is

supplied to the peptide molecule, which resultantly removes one or more electrons to

generate charged ions that are singly- ([M]+·, [M + H]+) or multiply-charged ([M + nH]n+).
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Initially, ion generation occurred in a vacuum; however, with advancements in technology,

instruments with ion sources that operate at atmospheric pressure are now available, but

analysis and detection of ions still take place in a vacuum environment. Different ionization

techniques exist, including chemical ionization (CI), electron ionization (EI), matrix-assisted

laser desorption/ionization (MALDI), and electrospray ionization (ESI) (Figure 1-3)99–101. In

proteomics analysis, there is a huge preference for MALDI and ESI over other ionization

methods as they have varied separation modes, high analytical sensitivity and accuracy, and

ease of implementation. All data in this study rely entirely on ESI. In MALDI-facilitated

ionization, samples and organic matrix are co-crystallized on a metal plate, followed by a

pulsed laser that excites the matrix, thereby thermally heating the molecules, and finally

desorption of ions into the gaseous phase. Principally, ESI relies on spraying a fine mist of

ions into the MS at atmospheric pressure. ESI is invariably interfaced with liquid separation

systems as it applies a voltage charge to a solution to ionize molecules.

Figure 1-3. Illustrating the process of electrospray ionization. Created with BioRender.com.

Once the molecules are ionized, ions are channeled to the mass analyzer for separation on

the basis of their m/z ratios using a magnetic or electrical field. Depending on the need,

sample, and type of analysis, different mass analyzers can be used either as standalone or

in combination102–105. Mass analyzers fall into two broad classifications—beam analyzers, in

which ions move from the ion source in the form of a beam and travel through the analyzing
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field to the detector, and trapping analyzers, in which ions are first trapped within the

analyzing field prior to detecting them by a detector. Under beam analyzers, common ones

include Time-of-Flight (ToF), and quadrupole (Q) analyzers, while popular trap analyzers are

quadrupole ion trap (QTRAP), orbitrap, and Fourier-Transform Ion-Cyclotron Resonance

(FT-ICR). Mass analyzers can be combined together in tandem or hybrid fashion, which is

more beneficial in providing detailed information on the analyte. Tandem platforms basically

have similar kinds of analyzers, e.g., Time-of-Tlight/Time-of-Tlight (ToF/ToF) and Triple

Quadrupoles (QqQ). On the other hand, hybrid MS uses different kinds of analyzers to

analyze and detect peptide ions. Linear ion Trap/Fourier-Transform (LIT/FT) and

Quadrupole/Time-of-Flight (Q/ToF) are examples of hybrid instruments105. After the mass

analyzer separates the ions, they are channeled to the detector, which detects the signal in

the form of ion currents, consequently amplifying them and determining and registering their

abundance values. Most detectors are multipliers, e.g., electron multiplier, and basically

amplifies the signal by generating a cascade of electrons as ions hit its surface.

1.3.4. MS data acquisition schemes

In bottom-up or peptide-based experiments, MS data acquisition schemes fall into two broad

classes—untargeted/discovery and targeted. Untargeted/discovery approaches include

data-dependent acquisition (DDA) and data-independent acquisition (DIA), while targeted

strategies consist of selected/multiple-reaction monitoring (SRM/MRM) and parallel-reaction

monitoring (PRM)106,107.

In DDA, the instrument acquires a full/survey scan mass spectrum known as MS1, which

has all the precursor ions collected within the set time or once the automatic gain control

(AGC) target value is reached108,109. Following this, a pre-defined number of the most

abundant precursor ions—“topN”—are selected and subjected to fragmentation. The

resultant fragment ions are then analyzed in a second mass spectrometer scan, referred to

as MS2. This process repeats cyclically, ensuring the most intense ions are continually

selected for fragmentation and analysis. Less abundant peptide ions can be targeted by
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setting a dynamic exclusion window to ensure the same m/z is not repeatedly fragmented.

One advantage of DDA is the immediate usability of MS2 spectra because every spectrum is

derived by fragmenting a narrow m/z isolation window (usually around 1 Da), typically

representing fragments of a singular chemical entity. However, DDA suffers from a small

number of ions that can be fragmented in a single injection. Also, fragmentation is inherently

stochastic, leading to relatively low quantitative reproducibility.

DIA can be viewed as a hybrid approach that merges PRM's strengths with DDA's extensive

protein coverage. In DIA, precursors are segmented into successive m/z windows (typically

5–25 Da). The instrument then cycles within each window, fragmenting all peptide ions.

Analyzing these complex MS2 spectra often requires searching a DDA-established peptide

spectral library, although new bioinformatics tools are making direct analyses possible110–113.

Study shows that the quantification level of DIA schemes is on par with targeted methods111.

As DIA continues to evolve, it is being recognized for its potential in large-scale protein

quantification; hence, impacting precision medicine and drug discovery. However, the width

of MS1 isolation windows in DIA impacts the results. Generally, narrower windows enhance

selectivity and sensitivity, but they lengthen the cycle time, which can reduce data points

over a chromatographic peak. Besides, the choice of spectral library matters. While

comprehensive organism-level libraries are convenient, the risk of false discoveries can be

high. Therefore, a project-specific library generated from a DDA study of the same samples,

is often preferable.

SRM/MRM approach operates on a triple quadrupole mass spectrometer (QqQ MS). In this

mode, targeted peptide precursors pass through Q1, get fragmented, and then only the

selected ions are monitored in Q3114. This consequently produces multiple transition ion

chromatograms; thus, enabling precise detection and quantification. On the other hand,

PRM is an evolution of the SRM/MRM approach. Instead of a third quadrupole, PRM uses a

high-resolution accurate-mass (HRAM) mass analyzer like an Orbitrap or a TOF analyzer.
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Both SRM/MRM and PRM are renowned for their sensitivity, precision, and consistency, but

they have low proteome coverage.

1.3.5. Quantification techniques

A comprehensive understanding of variation in protein levels is critical to distinguishing

healthy and disease phenotypic features, which enables the uncovering of underlying

pathological mechanisms. In MS-based proteomics, proteins can be quantified to determine

changes between conditions. Depending on the study question and sample, several

techniques exist for both proteome-wide as well as quantification of individual proteins.

These techniques broadly fall into two categories—absolute and relative quantification115–117.

The absolute quantification method is used when determining the absolute abundance or

number of individual molecules of particular proteins in a sample. However, this approach is

complex to perform as it requires instruments with the capability of measuring the number of

copies of the given protein in a sample mixture; hence, it is not common. In principle, the

relative quantification technique compares the abundance of a particular protein in each of

two or several samples and then determines the ratio of their occurrence between samples.

Relative quantification methods can be further divided into label-based and label-free

quantification118. Label-based strategies consist of in vitro or in vivo (metabolic) labeling of

proteins or peptides with heavy, non-radioactive, isotopes. This methodology enables

multiplexing of samples; thus, achieving high quantitative accuracy and precision. The

incorporation of heavy isotopes results in a m/z shift of the MS spectrum. In this manner, the

respective signal intensities from labeled and unlabeled peptides are compared to achieve

quantification. Popular chemical labeling methods include tandem mass tags (TMT), isobaric

tags for relative and absolute quantification (iTRAQ), and isotope-coded affinity tags (ICAT).

Stable isotope labeling with amino acids in cell culture (SILAC) is a metabolic labeling

approach that labels proteins in vivo during synthesis. While these label-based techniques

have more quantitative benefits, including high reproducibility and data completeness, they

remain expensive, have several sample preparation steps, and only a small number of
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samples can be analyzed in a single experiment. On the other hand, label-free quantification

can further be subdivided into two classes—measuring of peptide signal intensity using

extracted ion chromatogram (XIC) or counting the number of peptide-to-spectrum matches

(PSM, spectral counting) observed for each protein. In the first approach, the signal intensity

of the area under the chromatographic peak of peptide ion is measured—quantification is

achieved by integrating the ion intensities of a particular peptide over its chromatographic

elution profile. For spectral counting, quantification is accomplished by comparing the

number of MS/MS fragment ion spectra of given peptides between distinct samples.

Label-free relative quantification, in comparison to other methodologies, is simple and

cost-efficient; however, it is low in quantitative accuracy, and oftentimes one requires many

technical replicates to circumvent data missingness.

1.4. Aims of this doctoral thesis

The overall aim of this thesis was to develop, apply, and integrate MS-based proteomics and

immunopeptidomics technologies to study cancer, with a special focus on Glioblastoma

(GBM), aiming to enhance the diagnosis and treatment modalities of cancer.

1. To apply a microscale MS-based proteomics method for the analysis of limited

numbers of cells.

2. To develop a workflow for proteome analysis of formalin-fixed paraffin-embedded

glioblastoma tissues

3. To investigate the impact of hypoxia on antigen presentation in glioblastoma using an

integrated proteomics and immunopeptidomics approach.
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CHAPTER 2: MicroPOTS analysis of Barrett’s oesophageal cell line models identifies

proteomic changes after physiologic and radiation stress

This work was originally published in the Journal of Proteome Research and is presented

with a few modifications:

Weke, K., Singh, A., Uwugiaren, N., Alfaro, J. A., Wang, T., Hupp, T. R., O’Neill, J. R.,

Vojtesek, B., Goodlett, D. R., Williams, S. M., Zhou, M., Kelly, R. T., Zhu, Y., and Dapic, I.

MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes

after Physiologic and Radiation Stress. J. Proteome Res. 20, 2195–2205 (2021).

2.1. Abstract

Moving from macroscale preparative systems in proteomics to micro- and nanotechnologies

offers researchers the ability to deeply profile smaller numbers of cells that are more likely to

be encountered in clinical settings. Herein a recently developed microscale proteomic

method, microdroplet processing in one pot for trace samples (microPOTS), was employed

to identify proteomic changes in ∼200 Barrett’s esophageal cells following physiologic and

radiation stress exposure. From this small population of cells, microPOTS confidently

identified >1500 protein groups and achieved a high reproducibility with a Pearson’s

correlation coefficient value of R > 0.9 and over 50% protein overlap from replicates. A

Barrett’s cell line model treated with either lithocholic acid (LCA) or X-ray had 21 (e.g.,

ASNS, RALY, FAM120A, UBE2M, IDH1, ESD) and 32 (e.g., GLUL, CALU, SH3BGRL3,

S100A9, FKBP3, AGR2) overexpressed proteins, respectively, compared to the untreated

set. These results demonstrate the ability of microPOTS to routinely identify and quantify

differentially expressed proteins from limited numbers of cells. 

2.2. Introduction

Mass spectrometry (MS) has emerged as the most powerful technology for the analysis and

discovery of proteins103. Since the term proteome was coined in 1994,74 researchers have

used MS to comprehensively define the molecular mechanisms that underpin cellular
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functions. To achieve this goal, there are two main approaches to proteomics: top-down and

bottom-up, with the latter being more often applied today77,119. Significant gains have been

made by applying these approaches in large-scale studies120 to fully profile protein

expression and their post-translational modifications. However, standard proteomic analysis

demands substantial amounts of starting material to exhaustively characterize a proteome.

For instance, about 105 to millions of cells have typically been used to achieve a high

proteome coverage121. Historically, utilization of such large amounts of starting material often

precluded the ability of proteomics to compete with genomics in the analysis of small

numbers of cells. This is because genomics allows sample material to be amplified through

polymerase chain reaction (PCR)122. Proteomics, on the other hand, has had to pay special

attention to sample preparation of small numbers of cells in order to avoid adsorptive losses

of low-abundance proteins. Therefore, this limitation has hampered the application of

proteomics to study samples of limited availability, such as human tissues from, e.g.,

biopsies.

Against the backdrop of the shortcomings of traditional macroscale sample preparation,

mostly inherited from the field of protein chemistry, methods for working with limited numbers

of cells have recently been reported, including laser capture microdissection, immobilized

enzyme reactors, fluorescence-activated cell sorting (FACS), and microfluidics

formats85,123–128. For example, using laser capture microdissection, Clair et al.124 identified

>3400 proteins from 4000 cells. However, none of these recent developments allowing the

characterization of proteomes from fewer than 1000 cells by MS-based proteomics can yet

be said to be the method of choice for exploring proteomes. Thus, there is burgeoning

interest in the community to develop and optimize highly sensitive and specific microscale

proteomic workflows to interrogate protein changes in both health and disease.

Consequently, reports of micro- and nanoscale MS-based proteomics have dramatically

increased in number lately because they facilitate new opportunities to explore trace levels

of samples previously out of reach to researchers92,129–131. For instance, an ultrasensitive

22



nanoscale method, which used gold nanoparticles, identified 650 proteins from a proteomic

analysis of 80 cells with a detection limit of proteins reaching 50 zmol132. Additionally, many

integrated proteome methods optimized for single-cell analysis are increasingly becoming

commonplace133,134. Some newly assembled proteome analysis devices have reported high

numbers of identified proteins, e.g., 328 proteins identified from analysis of 10 single HeLa

cells, and with a detection limit approximated to be between 1.7–170 zmol135.

One new microfluidics-based platform termed nanodroplet processing in one pot for trace

samples (nanoPOTS) that was developed recently has demonstrated remarkable results

from the proteomic analysis of small samples82. By applying a bottom-up proteomic

approach, nanoPOTS proved to be capable of processing samples in nanowells with

volumes of less than 200 nL.82 This method was applied in the analysis of about 10 to 140

cells, and over 1500 proteins were confidently identified. Recently, nanoPOTS was also

integrated with a top-down proteomic workflow, and ∼170 to ∼620 proteoforms from ∼70 to

∼770 HeLa cells were quantitatively identified with high confidence136. An adaptation of

nanoPOTS that utilizes conventional micropipettes and operates in low-microliter range

called microdroplet processing in one pot for trace samples (microPOTS) has also been

developed to address a few bottlenecks such as the demands for nanoliter pipetting platform

and highly skilled personnel to run nanoPOTS. Initially, microPOTS was applied to ∼25

cultured HeLa cells and 50 μm square mouse liver tissue thin sections, and about 1800 and

1200 unique proteins were generated from HeLa cells and mouse liver, respectively137.

Additionally, high reproducibility was reported based on pairwise Pearson’s correlation

coefficient values of 0.96–0.98, and with median CVs of ≤12.4% from the results of the

previously mentioned analysis.

In this study, we applied the microPOTS to characterize proteomes of ∼200 cells used as

Barrett’s esophagus cell model following various perturbations. Barrett’s esophagus is a

premalignant condition thought to arise in the lower esophagus due to chronic reflux of

gastric acid and bile leading to genotoxic stress and mutation of the gatekeeper genes TP53
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and SMAD4138. Barrett’s confers an approximately 100-fold greater risk of development of

esophageal adenocarcinoma, and understanding the molecular changes during

carcinogenesis may be useful to guide preventative therapy139. It is known that gut bacteria

modify bile acids derived from cholic acid and chenodeoxycholic acid to deoxycholic acid

and lithocholic acid (LCA)140. In turn, deoxycholic acid and lithocholic acid are conjugated to

yield a variety of conjugated bile salts that can exist in wide-ranging concentrations in

patients being monitored for acid-reflux disease. It is not known whether there is a specific

role for bile acids in the selection for specific genetic mutations in esophageal

adenocarcinoma progression. Recent work has demonstrated a novel sponge-device

(Cytosponge) can sample small numbers of surface cell populations from the esophagus

without endoscopy and can determine the presence of Barrett’s esophagus141. This device

can also be used to triage patients with Barrett’s for more intensive endoscopic surveillance

according to the presence of markers of progression to esophageal adenocarcinoma142. As

these devices become integrated into clinical practice the molecular changes during the

progression from Barrett’s to esophageal adenocarcinoma need to be identified from the

small numbers of cells retrieved during sampling. Identifying protein markers of progression

that can be tested by immunohistochemistry will aid in improving the sensitivity and

translation of this technology. The findings of this study reveal that microPOTS allowed for

the identification of >1500 proteins from fewer than 200 cells, and radiologic and physiologic

stress induced proteomic changes in cell models.

2.3. Experimental Section

2.3.1. Materials

MicroPOTS chips were fabricated in-house as described previously137. The microwell chips

were designed with a diameter of 2.2 mm and a well-to-well spacing of 4.5 mm. LC-MS

grade water and acetonitrile, formic acid (FA), iodoacetamide (IAA), and dithiothreitol (DTT)

were purchased from Thermo Fisher Scientific (Waltham, MA). N-Dodecyl β-d-maltose
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(DDM) was a product of Sigma-Aldrich (St. Louis MO). Both Lys-C and trypsin were

purchased from Promega (Madison, WI).

2.3.2. Cell culture

CP-A cells were cultured in keratinocyte media (ThermoFisher) supplemented with human

recombinant epidermal growth factor (rEGF), bovine pituitary extract (BPE), 1%

penicillin/streptomycin (Invitrogen) and incubated at 37 °C with 5% CO2. All other chemicals

and reagents were obtained from Sigma unless otherwise mentioned. The guide RNAs

targeting the p53 and smad4 genes to generate isogenic gene knockout cells are described

in a separate manuscript. Briefly, the guide RNAs were either cloned into lentiCRISPRv2

transfer plasmid or procured as custom synthetic crRNAs from Integrated DNA Technologies

(IDT), USA; tracrRNA was also manufactured by IDT. Cells were either transfected using

attractene transfection reagent (Qiagen) or electroporated using Nucleofector Kit V (Amaxa,

Lonza). After the electroporation, cells were transferred into a 6-well plate and allowed to

recover for 3–5 days. The bulk population was single-cell isolated using flow cytometry and

individual cells were deposited into 96-well plates using BD FACSJazz cell sorter. Individual

colonies obtained were later replicated into 96-well plates and screened for successful gene

deletion using immunocytochemistry against the p53 or Smad4. The clonal lines that stained

negative for corresponding proteins were further expanded, and the loss of functional p53

and Smad4 protein was confirmed by immunoblotting against respective antibodies and

Sanger sequencing for selected knockout clones using the primers flanking the gRNA

cleavage site confirmed the genetic editing.

2.3.3. Cells treatment with LCA and X-ray

CPA wildtype, p53 null, and p53 Smad4 double null cell lines were cultured in triplicate and

treated with 10 μM lithocholic acid (LCA) or DMSO as a control for 24 h or irradiated with 2

Gy X-ray and cultured for a further 24 h. Following the treatment, the cells were trypsinized,

washed with PBS, counted and samples were prepared with 2 × 105 cells in 50 μL PBS for

each condition.
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2.3.4. Proteomic sample preparation in microwells

To prepare samples for LC-MS analysis, 5 μL of 1% DDM and 0.5 μL of 500 mM DTT were

added to 50 μL of sample, followed by incubation at 65 °C and 600 rpm for 1 h to lyse the

cells and denature proteins. The cell lysates were diluted to 200 cells/500 nL with 50 mM

ABC (pH 8.5), and 500 nL of cell suspension was pipetted into the microwells. Next, 500 nL

of 10 mM IAA was added, and the samples were allowed to incubate in the dark at room

temperature for 45 min. Two-step enzymatic digestion was applied by sequentially adding

500 nL of 10 ng/μL Lys-C and 500 nL of 20 ng/ μL trypsin in Ammonium bicarbonate buffer,

followed by incubation at 37 °C for 3 and 10 h, respectively. Thereafter, 500 nL of 5% FA

was added, followed by incubation at RT for 1 h. The chips were stored in the humidified box

sealed in a Ziploc bag at 4 °C until analysis.

2.3.5. LC-MS/MS analysis

A nanoPOTS autosampler was employed to introduce samples in microwells into LC-MS143.

The samples in microwell chips were extracted and loaded into a solid-phase extraction

(SPE) column (4 cm long, 150 μm i.d., packed with 3 μm, 300 Å C18 particles, Phenomenex,

Torrance, CA, USA) using 100% buffer A (0.1% formic acid) delivered by a Dionex UltiMate

NCP-3200RS pump. After sample loading, the concentrated peptides were separated using

a 50 cm long, 50 μm i.d. nanoLC column with an integrated electrospray emitter (PicoFrit

column, New Objective, Woburn, MA, USA). The LC column was packed in-house with the

same C18 particles used for the SPE column described above. The LC flow rate was 150

nL/min. A 50 min linear gradient from 8% to 22% buffer B (0.1% formic acid in ACN) was

used for peptide elution, followed by raising the gradient to 35% buffer B in 10 min to elute

hydrophobic peptides. The column was then washed by flushing the column with 80% buffer

B for 5 min. Finally, the column was equilibrated using 2% buffer B for 15 min before the next

injection.

An Orbitrap Fusion Lumos Tribrid MS (ThermoFisher, San Jose, USA) operating in

data-dependent acquisition mode was employed for peptide signal collection. To trigger
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electrospray, a high voltage of 2200 V was applied at the metal union (Valco, Houston, USA)

between the SPE column and LC column. The ion transfer tube was set at 200 °C for

desolvation and the radio frequency of the ion funnel was set at 30% for optimal peptide

transmission. For MS1 acquisition, an Orbitrap resolution of 120 000, an MS scan range from

375 to 1600, an AGC level of 1 × 106, and a maximum injection time of 100 ms were used.

Precursor ions with charges between +2 and +7, and intensity values over 1 × 104 were

selected for HCD fragmentation and MS2 scanning. Precursors were isolated with an m/z

window of 2 and fragmented by high energy dissociation (HCD) set at 30%. The fragment

ions were transferred to Orbitrap for MS2 acquisition at a scan resolution of 60 000 and a

maximum injection time of 118 ms. To reduce repeated sampling, an exclusion duration of 30

s and m/z tolerance of ±10 ppm was applied.

2.3.6. Data and statistical analysis

The .raw files from LC-MS/MS were loaded in the MaxQuant software (v1.6.7.0) for analysis.

Identification of peptides was performed using the built-in Andromeda to search against the

reviewed UniProt human proteome database (2019 release with a total of 42 427 entries,

where 20 350 were reviewed and 22 077 were unreviewed). All of the search parameters

were used in their default setting. The enzyme was set to trypsin, and maximum missed

cleavages set to 2, while fixed modification was set to carbamidomethylation of cysteines

and a false discovery rate (FDR) at peptide-to-spectrum matches (PSM) and protein levels

set to 0.01. The resulting .txt output files from MaxQuant were loaded into R statistical

environment (v4.0.2) and preprocessed before analyzing with DEP (differentially enrichment

analysis of proteomic data) package144,145. The DEP package offers a robust and

reproducible analysis workflow for MS-based proteomics data when determining differentially

enriched/expressed proteins. DEP filters out contaminant and reverse protein sequences,

logarithmically transforms the data, and then normalizes the data by variance stabilizing

normalization (VSN) method. Subsequently, it imputes missing values and runs statistical

tests to determine proteins with significantly altered expression levels. The latter step is
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made feasible by the test_diff function, which performs a differential enrichment test based

on protein-wise linear models and empirical Bayes statistics using limma146,147. Data

visualization was carried out using the BPG (v6.0.1)148 and BioVenn (v1.0.2)149 packages.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE150 partner repository with the data set identifier PXD020741.

2.3.7. Protein annotation and assessment of physicochemical aspects

The sequences of the identified proteins and gene ontology (GO) for protein annotation

regarding cellular components were accessed and retrieved from UniProtKB151. To calculate

the grand average of hydropathy (GRAVY) value for the protein sequences, an online

GRAVY calculator was used152.

2.4. Results and discussion

2.4.1. Analysing Barrett’s oesophageal cell samples by microPOTS

The field of proteomics is rapidly changing with new technologies and methods advancing

the capacity to examine a larger proportion of the proteome from small numbers of cells

even down to the single-cell153 level with a high degree of certainty. Over the past five years,

the quest to design and develop highly sensitive and specific proteomic methodologies for

this purpose has become intense, and many such methods have now been made

available154–156. Moving away from macroscale preparative techniques in proteomics to

micro- and nanotechnologies offers researchers the ability to characterize smaller numbers

of cells that are more likely to be encountered in clinical settings. The recently unveiled

microPOTS system is one of the methodologies that are promising and poised to widen the

window of possibilities in proteomics research137. This study aimed at applying the

microPOTS separation system to identify proteome signatures of either physiological stress

or radiation in 200 Barrett’s esophageal cells. Initially, CP-A p53 single null (CP-A KO) and

CP-A p53-SMAD4 double null cells (CP-A dKO) were generated, and together with the

parental CP-A wild-type cells (CP-A WT), were subsequently subjected to either LCA or
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X-ray treatments. The microPOTS system was then applied for protein extraction and a

nano-LC-MS workflow followed as depicted in Figure 2-1.

Figure 2-1. Overview of the Workflow of MicroPOTS for the Identification of Proteomic

Changes in ∼200 CP-A Cells after Treatment with Either LCA or X-ray. First, cells

were grown in keratinocyte media, and the generated CP-A null cells and wild-type

were subjected to different stressors as previously described. a, Samples were then

processed for protein extraction and further digested into peptides using the

microPOTS system. b, The collected peptides were subsequently subjected to

LC-MS/MS analysis. c, A spectrum showing the relative intensity and mass-to-charge

ratio (m/z) of the ions being analyzed. d, The resulting files were loaded into

MaxQuant for peptide identification, after which the output files of this step were next

imported into the R statistical environment and analyzed using the DEP package. e,

The results of the analysis were then visualized using the previously mentioned R

packages.

2.4.2. Protein identification from different CP-A genotypes and stress conditions

All the samples reported a high number of identified protein groups, with each replicate

having over 1500 protein groups from only 200 cells. Replicates from each sample type were

averaged and the mean value of protein groups was visualized using a bar graph (Figure

2-2a). The average number of confidently identified protein groups for each sample type was
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as follows with the average number of proteins identified in parentheses: CP-A WT (2273),

CP-A KO (1673), CP-A dKO (2008), CP-A LCA-WT (1685), CP-A LCA-KO (2004), CP-A

LCA-dKO (1821), CP-A X-ray-WT (2300), CP-A X-ray-dKO (2345), and CP-A X-ray-KO

(2367). The total number of proteins obtained from three replicates increased to over 2000

for all sample types when results were pooled from three wells for each sample type (Figure

2-2b). Next, an intersection analysis was performed to assess the number of shared and

uniquely identified proteins. From this comparison, it was shown that over 1800 (60%)

proteins could be identified in all sample types. Comparison of the total proteins from three

replicates of CP-A LCA-WT, CP-A LCA-KO, and CP-A LCA-dKO produced a high protein

overlap of 67% with 1867 proteins (Figure 2-2c). Out of these 1867 proteins, 93 (3.4%), 185

(6.7%), and 195 (7%) were unique to LCA-WT, LCA-KO, and LCA-dKO, respectively. The

X-ray treatment equally reported a high overlap of 2354 (77%) proteins between the groups

(Figure 2-2d). Also, the WT, KO, and dKO samples were overlapped with their

corresponding treatment groups (LCA and X-ray) to determine the number of shared

proteins and proteins that were unique to each sample. There was a high overlap of greater

than 60% for the number of identified proteins for each sample type (Supplementary Figure

2-1). The number of identified proteins in this work is comparable to a previous study that

performed proteomic analysis on small numbers of cells (∼100) on an LTQ-Orbitrap system

and identified ∼1500 proteins157.
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Figure 2-2. Barplots and Venn diagram plots respectively showing the number of identified

protein groups and overlap for CP-A WT, CP-A KO, and CP-A dKO samples of ∼200

cells. a, Average numbers of identified protein groups with each bar representing the

mean and standard deviation (error bars) of replicates from individual sample types.

b, Total numbers of identified protein groups from three replicates for each sample

type. c, A 67% overlap of the identified proteins for samples treated with LCA. d,

Samples treated with X-ray show a 77% overlap for the identified protein groups.

2.4.3. Evaluation of protein extraction efficiency and reproducibility

The results show that over 1500 proteins were confidently identified from 200 cells in all

sample types. This high number of identified proteins from only 200 cells indicates the high

extraction efficiency of the microPOTS system for microscale proteomic analysis. A look at

the mean and standard deviations across the sample types reveals a consistency in the

number of identified proteins. As illustrated in Supplementary Figure 2-2, almost all

replicates had over 75% fully tryptic cleavage sites with fewer than 25% missed cleavages,

indicating good tryptic digestion, which also translates into a high extraction efficiency.
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The evaluation of microPOTS reproducibility in this study was predicated on two

approaches—qualitative and quantitative analysis. Just like in the case of method

comparison studies158–160 that often use this kind of approach, we decided to use the strategy

to assess the performance of microPOTS. The reproducibility of the measurements is

important in evaluation of the results and correct identification of proteins is critical to

discovering new proteomic signatures with high certainty and specificity161–164. Qualitative

reproducibility was achieved by comparing the overlap of the identified proteins between

sample types and illustrating the shared proteins in an area-proportional Venn diagram. In

Figure 2-3a, results for LCA-treated CP-A dKO cells showed over 52% protein overlap

between the replicates. Whereas for the X-ray-treated CP-A dKO cells, an overlap of 73%

was reported between replicates. Additionally, protein overlap between replicates for the rest

of the samples was assessed, and a high protein overlap of over 50% was reported for

almost all comparisons (Supplementary Figure 2-3). Further, quantitative reproducibility

between the replicates was assessed using the LFQ values of replicates to perform a

pairwise Pearson’s correlation coefficient analysis. As shown in Figure 2-3b, the quantitative

assessment of reproducibility demonstrated a high Pearson’s correlation coefficient value (R

> 0.9). A high correlation coefficient (R > 0.9) was observed for almost all the pairwise

comparisons that were conducted (Supplementary Figure 2-4). CP-A KO replicates

reported a lower correlation coefficient (R = 0.83) relative to the rest of the samples.

Reproducibility of the MicroPOTS system was further assessed by computing the coefficient

of variation (CV) for individual protein intensities in each sample condition (Figure 2-3c). All

samples except CP-A KO showed little variation with a median CV that is less than 50%

(Supplementary Table 2-1).
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Figure 2-3. Qualitative and quantitative comparison of the identified proteins between

replicates. a, The area-proportional Venn diagrams illustrate the proportion of shared

and unique proteins between technical replicates. b, Scatter plots showing Pearson’s

correlation coefficient between logarithmically (log10) transformed quantile normalized
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LFQ values of the corresponding replicates. c, A boxplot representing the distribution

of coefficient of variation for quantile normalized protein intensities across different

experimental conditions. Each dot represents the CV of an individual protein intensity

within each sample type.

2.4.4. Comparison of microPOTS data to bulk proteomics dataset

The microPOTS data were compared to an existing data set of the same cell line (CP-A).

The samples that generated the bulk data were prepared and analyzed according to

standard proteomic workflows as described in Notes 2-1. The resulting data were processed

and analyzed using bioinformatics tools as stated in Notes 2-2. Next, we correlated all the

overlapping proteins that were confidently identified between the two data sets using

Pearson correlation method. As illustrated in the scatter plot in Supplementary Figure 2-5,

there was a high positive correlation of R = 0.625.

2.4.5. Comparison of physicochemical aspects of identified proteins

It has been established that high molecular weight (MW) and basic proteins are often

challenging to extract due to their propensity to undergo intra- and intermolecular

interactions165,166. As such, we were interested in exploring the MW, and GRAVY distribution

patterns of the identified proteins. The GRAVY distribution scores for LCA-treated CP-A dKO

cells indicated that a high number of hydrophobic proteins were detected with microPOTS

(Figure 2-4a). A similar distribution trend of GRAVY was noticed from all the sample types

with the majority of identified protein IDs within the 0.4 to −0.2 range (Supplementary

Figure 2-6). LCA-treated CP-A WT cells showed that the most abundant proteins had a MW

between 20 and 30 kDa in all sample types (Figure 2-4b). Additionally, a similar MW

distribution pattern was observed across all sample types, which demonstrates that the

proteins show no major difference regarding their physicochemical characteristics

(Supplementary Figure 2-7). Next, the distribution of identified proteins according to their

subcellular localization was explored, which showed that over 50% of the identified proteins

resided within the cytosolic region, and this was observed across all sample types. Nearly
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20% of confidently identified proteins for all the sample types were located within the cytosol

(Figure 2-4c). All samples revealed that few ribosomal proteins could be detected by the

microPOTS system, and this finding is consistent with Zhu et al.82 reported in their study.

Ribosomal and cytoskeleton-derived proteins were the least likely to be identified with a

percentage of less than 5%. The distribution pattern for subcellular proteins was almost the

same across all sample types (Supplementary Figure 2-8).

Figure 2-4. Assessment of the physicochemical features and subcellular localization of the

identified proteins. Distribution of, a, GRAVY in CP-A LCA-dKO, b, molecular weight
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in CP-A LCA-WT, and c, subcellular localization of identified proteins in CP-A

X-ray-KO.

2.4.6. Effect of stress on protein expression

Differential expression levels of the identified proteins were determined between CP-A WT,

CP-A KO, and CP-A dKO as well as between their corresponding treatment set (LCA and

X-ray treated groups). A pairwise comparison for all sample types was carried out to

evaluate differentially expressed proteins between cells treated with different stresses. The

findings from the present study indicate that LCA and X-ray induced changes in the

proteome of CP-A cells, which is also consistent with the findings of Proungvitaya et al. that

reported bile acids-induced alteration of protein expression in model cells system167.

Significant alterations were observed in CPA-dKO cells following LCA and X-ray treatment.

Specifically, a pairwise comparison between CP-A LCA-dKO and CP-A dKo revealed that 21

proteins were upregulated, and 13 proteins were downregulated, some of which include

ASNS, RALY, CSRP1, CTSD, FAM120A, ESTD, and GSR (Figure 2-4a). Also, CP-A

X-ray-dKO and CP-A dKO comparison reported 32 upregulated proteins with 14

downregulated proteins, including NONO, SAR1A, HNRL2, PLEC.1, FARSA, S100P,

FKBP3, and AGR2 (Figure 2-4b). Supplementary Table 2-2 and Supplementary Table 2-3

represent the complete list of proteins that were significantly differentially expressed for LCA

and X-ray-treated CP-A dKO cells, respectively. Anterior Gradient 2 (AGR2) is a member of

the protein disulfide isomerase family, and its overexpression has been associated with

many human cancers including neoplasia of the esophagus168,169. This evidence is consistent

with the present study, which has shown that AGR2 is overexpressed in Barrett’s

esophageal cells (CP-A X-ray-dKO). Having detected ∼1500 proteins from fewer than 200

cells, and capturing differential expression, signify a potential use of the microPOTS-LC-MS

method to explore subcellular populations within a tissue/tumor microenvironment including

T-cells, fibroblasts, and macrophages.
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Figure 2-5. Volcano plots illustrating the fold difference in the expression levels of proteins

in, a, CP-A LCA-dKO vs CP-A dKO and, b, CP-A X-ray-dKO vs CP-A dKO. The

horizontal coordinate represents the log2 fold change difference, while the vertical

coordinate represents the −log10p-value. Black color indicates proteins with

nonsignificant changes in abundance, blue color represents significantly

downregulated proteins, and red color represents significantly upregulated proteins.

2.5. Conclusion

In this study, a recently developed proteomic method called microPOTS was applied to

identify proteins and determine the changes in the proteome of ∼200 cells (including an

isogenic cell panel being used for the Barrett’s esophageal studies) following radiation and

physiological stress treatment. The results show that the microPOTS method is applicable

for use in qualitative and quantitative proteomic studies where only low cell numbers are

available. Ionizing radiation was one stress used since it is DNA damaging and can activate

p53 function. LCA was used since it is a component of bile acids that can impact on acid

reflux disease and cancer progression in this tissue. The results were highly reproducible (R

> 0.9) between replicates, allowing us to investigate confidently the effect of stress on the

cells important in biological applications. With the microPOTS method ∼1500 unique proteins

37



were quantified in all the samples. Moreover, results for the cells treated with LCA revealed

differential expression analysis of 21 upregulated proteins and 13 downregulated proteins

(CP-A LCA-dKO vs CP-A dKO), some of which include RALY, CSRP1, ASNS, ESTD, and

FAM120A. Also, a comparison set between CP-A X-ray-dKO and CP-A dKO reported 33

significantly overexpressed proteins and 15 underexpressed proteins, including NONO,

SKP1, HNRL2, PLEC.1, S100P, FKBP3, and AGR2. The results of the present study offer a

basis for further studies to deeply interrogate in the future the molecular mechanisms that

underpin LCA induction of proteome changes using clinical biopsies, which could aid in

uncoupling the distinct role of bile acids in the selection for specific genetic mutations in

esophageal adenocarcinoma progression. Importantly, the use of microPOTS, while not as

sensitive as its companion technique nanoPOTS, was implemented and will be used in

future studies.
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CHAPTER 3: DIA-MS proteome analysis of formalin-fixed paraffin-embedded

glioblastoma tissues

This work was originally published in Analytica Chimica Acta and is presented with a few

modifications:

Weke, K.†, Kote, S.†, Faktor, J., Al Shboul, S., Uwugiaren, N., Brennan, P. M., Goodlett, D.

R., Hupp, T. R., and Dapic, I. DIA-MS proteome analysis of formalin-fixed paraffin-embedded

glioblastoma tissues. Anal. Chim. Acta 1204, 339695 (2022). † equal contribution

3.1. Abstract

Developments in quantitative proteomics and data-independent acquisition (DIA)

methodology are enabling quantification of proteins in biological samples. Currently, there

are a few reports on DIA mass spectrometry (MS) approaches for proteome analysis of

formalin-fixed paraffin-embedded (FFPE) tissues. Therefore, to facilitate detection and

quantification of immune- and glioblastoma (GBM)-relevant proteins from FFPE patient

materials, we established a simple and precise DIA-MS workflow. We first evaluated different

lysis buffers for their efficiency in protein extractions from FFPE GBM tissues. Our results

showed that more than 1700 proteins were detected and over 1400 proteins were quantified

from GBM FFPE tissue microdissections. GBM-relevant proteins (e.g., GFAP, FN1, VIM, and

MBP) were quantified with high precision (median coefficient of variation <12%). In addition,

immune-related proteins (e.g., ILF2, MIF, and CD38) were consistently detected and

quantified. The strategy holds great potential for routinizing protein quantification in FFPE

tissue samples.

3.2. Introduction

Mass spectrometry (MS)-based proteomics is currently the last frontier for comprehensive

characterization of proteins and their functional changes. The data-dependent acquisition

(DDA) strategy has been primarily used to detect and quantify proteins for a long time.

However, due to insufficient proteome coverage and reproducibility occasioned by the

39



stochastic sampling of the most intense peptide ions, the quantitative proteomics field is now

shifting to data-independent acquisition (DIA) methodology107,110,170,171. DIA-MS is based on a

full scan of all precursors that are subsequently isolated and fragmented within a defined

mass-to-charge (m/z) window until the scanning covers the entire m/z range of the initial full

scan172–174. DIA-MS has demonstrated high reproducibility and precision in protein

quantification175. It has been successfully applied so far on freshly frozen (FF) and

formalin-fixed paraffin-embedded (FFPE) tissue samples (Table 3-1). Thus, DIA-MS is

increasingly becoming popular in quantifying proteins in clinical samples111,176–179.

Table 3-1. A brief highlight of tissue proteomics studies using DIA-MS or DDA-MS

Reference Tissue origin
and amount

Buffer
component

Column
type

Mass
spectrometer

# of
identified
proteins

Marchione
et al.179

human FFPE
liver, 1 mm
thick

5% SDS 100
mM Tris pH 8.5

20 cm x
75 μm i.d

Q Exactive
HF-X,
(DIA-MS)

3,297

Hou et al.171 human FF
esophageal
squamous
cell
carcinoma

2% SDS, 7 M
urea, 10 mM
EDTA, 0.1 M
Tris-HCl, pH 7.6

50 cm x
75 μm i.d

TripleTOF
5600+,
(SWATH-MS)

1,758

Kim et al.111 human FF
colorectal
cancer tissue,
1 μg

Liquid Tissue
buffer

10 cm x
100 μm
i.d

TSQ Quantiva,
(DIA-MS)

3,713

Gao et al.178 human
hepatocellular
carcinoma
tissue, 0.2 g

50 mM Hepes, 6
M urea, 2 M
thiourea, 1 x
protease
inhibitor

15 cm x
75 μm i.d

TripleTOF
5600+,
(SWATH-MS)

4,216

Pirog et
al.180

human GBM,
15 μm thick

100 mM ABC,
30% ACN (PCT)

21 cm x
75 μm i.d

TripleTOF
5600+,
(DDA-MS)

998

1% SDS, 0.1 M
Tris pH 7.6
(FASP)

700

8 M urea, 30%
ACN, 100 mM
ABC (ISD)

1,233
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Föll et al.159 mouse
kidney, 10 μm
thick

0.1% RapiGest,
0.1 M HEPES
pH 8, 1 mM DTT
(DT)

15 cm x
50 μm i.d

Orbitrap
Q-Exactive
plus,
(DDA-MS)

1,841

4% SDS, 0.1 M
HEPES pH 7.5,
0.05 M DTT
(FASP)

1,857

HEPES - 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid.
Tris - Tris(hydroxymethyl)aminomethane.

However, the application of DIA-MS on FFPE is still limited compared to DDA-MS. FFPE

samples from diagnostic laboratories are of particular interest for retrospective studies since

they have considerable follow-up data useful for correlating observed clinical outcomes with

patient-specific proteome. In addition, formalin fixation and paraffin embedding is a routine

method for tissue preservation, and regular tissue collection and long-term stability make

them easily accessible for large cohort studies181. Therefore, effective proteomics analysis of

FFPE is critical to the study of clinically-relevant proteins and the discovery of novel protein

biomarkers for early disease detection and prediction of clinical outcomes. Recently, the use

of DIA-MS on clinical FFPE samples facilitated tumor stratification and enabled the discovery

of potential biomarkers for prostate cancer182. While FFPE specimens remain more

appealing for retrospective investigations than FF tissues, they present a challenge for

proteomics analysis due to introduced protein crosslinks during the fixation process. Thus,

effective protein extraction from the FFPE tissues is crucial for successful analysis.

Effective extraction of proteins from FFPE samples requires reversing the

formaldehyde-induced crosslinks. Some of the methods described used heat-induced

antigen retrieval (HAIR)183,184 to achieve this. Numerous protocols have been published for

protein extraction from human tissues for subsequent LC-MS analysis. Extraction buffers are

used with the main goal of successfully solubilizing and denaturing proteins. Some of the

buffers as primary amine-containing buffers, such as ammonium bicarbonate (ABC) are
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often supplemented with chaotropes (e.g., urea or guanidine hydrochloride), organic

solvents (e.g., acetonitrile (ACN) or trifluoroethanol), and/or detergents (e.g., RapiGest,

sodium dodecyl sulfate or sodium deoxycholate) all to achieve good protein

extraction125,158,159,180,185,186. In Table 1, we have briefly highlighted several protein extractions

and digestion protocols, including in-solution digestion (ISD)79,187, direct trypsinization

(DT)158,159,188, filter-aided sample preparation (FASP)185,189, and single-pot, solid

phase-enhanced sample preparation (SP3)190 for FFPE tissue proteomics. To date, protein

retrieval with ISD protocols and optimized chemical buffers is a typical workflow in tissue

proteomics. Therefore, a critical assessment of chemical buffers is crucial prior to

establishing the most effective workflow for MS-based proteome analysis of FFPE tissue

samples.

Herein we present a study focused on establishing a simple DIA-MS workflow for detecting

and quantifying immune- and GBM-relevant proteins in patient-derived FFPE microdissected

tissue samples. GBM is cancer with unmet clinical needs with a median survival rate of less

than two years46. In addition, it exhibits high molecular heterogeneity12,191, which complicates

its biology. Therefore, to ramp up studies on complex tumors such as GBM, simple, highly

precise, and easily implementable proteomics methods are necessary. Here, we compared

the efficiency in protein extraction of three different buffers to find the best conditions for

protein isolation and digestion. Consequently, we determined if single-shot DIA-MS using

∼10 mm2 (15 μm thick) GBM FFPE tissue sections would precisely quantify the expression

levels of relevant proteins. As a result, we detected and quantified GBM-relevant proteins

such as fibronectin 1 (FN1), vimentin (VIM), and myelin basic protein (MBP) from the

DIA-MS data. Additionally, immune-relevant proteins such as C3, CD47, CD38, interleukin

enhancer-binding factor 2 (ILF2), and macrophage migration inhibitory factor (MIF) were also

quantified. Thus, this approach offers novel opportunities for accelerating biomarker

discovery using patient-derived FFPE samples.
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3.3. Materials and methods

3.3.1. FFPE tissue samples

Tissue samples used in this study were acquired from human GBM patients (n = 5)

according to local ethical approvals (University of Edinburgh, Edinburgh Cancer Research

Centre, reference number 06/S1101/16). All ethical requirements regarding using human

specimens for research were taken into account. Informed consent was obtained from

patients, and the Royal Edinburgh Hospital Ethics Review Committee approved the study.

3.3.2. Sample collection

GBM FFPE tissue samples were frozen in liquid nitrogen within 60 min of surgical removal

and stored at −80 °C. Each FFPE sample was evaluated by a neuropathologist to confirm

the GBM diagnosis. A set of five GBM tissues were further processed. Three 4 μm, 10 μm,

and 15 μm thick FFPE tissue sections were retrieved from each block of GBM tissue.

3.3.3. Sample processing

Glass-mounted FFPE tissue sections were initially deparaffinized and rehydrated prior to

applying the various extraction protocols used in the study. FFPE tissue was deparaffinized

by using two xylene washes for 2 min each. ACN, ethanol, and water were acquired from

VWR-Avantor (PA, USA). Other chemicals, unless otherwise stated, were obtained from

Sigma (MO, USA). Tissue rehydration was performed in ethanol series from 100% to 85%

and a final 70%, each for 2 min, and followed by placing the glass slide in LC-MS grade

water twice for 2 min each. The deparaffinized and rehydrated tissue sections were then

scratched off from the glass slide using a clean razor and put into a clean LoBind Eppendorf

tube (Merck, Darmstadt, Germany).

Method 1 - (ACN-containing buffer with ISD). Here, the extraction buffer consisting of 50 μL

of 30% ACN and 100 mM ABC was added to the samples. The sample-extraction buffer

mixture was incubated at 95 °C for 90 min followed by cooling to 37 °C. Disulfide bonds were

reduced by adding 2.8 μL of 700 mM dithiothreitol (DTT) to the sample-buffer mixture and
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then incubated at 37 °C for 30 min. Alkylation was performed by adding 9.2 μL of 700 mM

iodoacetamide (IAA) to the mixture and incubating for a further 30 min at 37 °C in the dark.

After incubation, samples were diluted by adding 120 μL of 100 mM ABC and 880 μL of

LC-MS grade water. Protein digestion was carried out by adding trypsin (Promega, MA,

USA) to each tissue section in a ratio of 5 ng/mm2, and incubating at 37 °C for 17 h.

Digestion was quenched by adding 50 μL of 5% trifluoroacetic acid and vortexed for 30 s.

Method 2 - (ACN-urea-containing buffer with ISD). For this protocol, 50 μL of 30% ACN, 100

mM ABC were added to the samples, and the mixture was incubated for 90 min at 95 °C.

Subsequently, the sample-buffer mixture was cooled down to 37 °C after which, 50 μL of 8 M

urea was added. Next, 5.6 μL of 700 mM DTT was added to the mixture, followed by a

30-min incubation at 37 °C. For alkylation, 18.4 μL of 700 mM IAA was added, and the

sample was incubated for 30 min at 37 °C in the dark. Samples were diluted by adding 120

of 100 mM ABC and 880 μL of LC-MS grade water. Protein digestion was conducted as

previously mentioned.

Method 3 - (ACN-urea-RapiGest-containing buffer with ISD). Here, 50 μL of 30% ACN, 100

mM ABC, 45 μL of 8 M urea, and 5 μL of 1% RapiGest were added to the samples, and the

mixture was incubated for 90 min at 95 °C. Reduction of disulfide bonds was achieved by

adding 5.6 μL of 700 mM DTT to the samples and subsequently incubating for 30 min at 37

°C. Alkylation was accomplished by adding 18.4 μL of 700 mM IAA followed by a 30-min

incubation at 37 °C in the dark. Samples were diluted by adding 120 of 100 mM ABC and

880 μL of LC-MS grade water. Trypsinization was carried out as already mentioned.

The resulting peptides were desalted on Waters Sep-Pak C18 cartridges (Fisher Scientific,

NH, USA). Peptides were desalted using 5% methanol with 0.1% TFA and were

subsequently eluted using 50% ACN with 0.1% TFA. Peptide eluates were vacuum dried

using a SpeedVac concentrator (Thermo Scientific, MA, USA) and were then stored at −80

°C until LC-MS/MS analysis.
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3.3.4. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis

LC-MS/MS analysis was performed using Ultimate 3000 RSLCnano (ThermoFisher

Scientific, MA, USA) coupled to Orbitrap Exploris 480 mass spectrometer (ThermoFisher

Scientific, MA, USA). The dried peptides were reconstituted in 30 μL of loading buffer (0.08%

TFA in 2.5% ACN). Afterward, the peptide concentration was measured using NanoDrop

2000 (Thermo Scientific, MA, USA) absorbance at 280 nm. About 800 ng of peptides for

each sample were injected into the LC system and analyzed in 3 technical replicates. First,

peptides were trapped and concentrated on an Acclaim™ PepMap™ 100C18 trap column

(ThermoFisher Scientific, MA, USA) of 300 μm i.d x 5 mm, and packed with 5 μm, 100 Å

particles. Subsequently, 75 μm i.d x 15 cm Acclaim™ PepMap™ RSLC 100 reverse phase

C18 analytical column packed with 2 μm particles having 100 Å pore size, was used to

separate peptides at a flow rate of 300 nL/min. The analytical column was first equilibrated

for 10 min at 2.5% solvent B (0.1% (v/v) TFA in acetonitrile) and 97.5% of solvent A (0.1%

(v/v) TFA in water). Following, to separate the peptides, solvent B was increased in a 90-min

gradient between 2.5% and 40%. A post-gradient cycle of 99% B was followed by a post-run

equilibration at 2.5% B. The analytical column was coupled to the Nanospray Flex Ion

Source. Recording of all MS measurements and spectra was done in resolution positive ion

mode with a high voltage of 2500 V. For DDA mode, the ion transfer tube was heated to a

temperature of 250 °C. MS1 data was acquired by setting the Orbitrap resolution to 120000,

an MS scan range of 350–1200 m/z, an AGC (automatic gain control) level to custom mode,

and a maximum injection time mode to auto. Precursor ions with charges between +2 and

+6 and intensity values over 5.0e3 were selected for subsequent higher-energy C-trap

dissociation (HCD) fragmentation and MS2 scanning. Precursors were isolated with an m/z

window of 2 and fragmented by HCD set at 30%. The product/fragment ions were channeled

to the Orbitrap for the MS2 acquisition at a scan resolution of 15000 and a maximum

injection time mode set to 60 ms. Repeated sampling was avoided by setting the dynamic

exclusion mode to custom, exclusion after n times to 1, exclusion duration to 20, and mass

tolerance to 10 parts per million (ppm). For data-independent acquisition (DIA) mode,
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precursor mass range was 400–1100, isolation window (m/z) of 8, window overlap (m/z) of 1,

number of scan events set 87, collision energy of 30%, and in a fixed mode, orbitrap

resolution of 15000, and the scan range mode was set to auto. In addition, the AGC target

was set to custom mode, the maximum injection time set to 25 ms, and microscan was set to

1.

3.3.5. MS data analysis

Mass spectrometer DDA data were processed with MaxQuant192 (v1.6.17.0). A reviewed

UniProt human proteome database with 20381 protein entries (download on March 4, 2021)

was used. MaxQuant data processing was done as previously described193, with a few

modifications. The fixed modification was set to carbamidomethylation of cysteines and the

false discovery rate (FDR) for both protein and peptide-to-spectrum matches (PSM) levels

was set at 0.01. A spectral library was generated from DDA-MS data using the FragPipe

(v14.0) workflow that comprises MSFragger194 (v3.1.1), Philosopher (v3.4.13), and Python

(3.8.5). The generated library consisted of 2058 protein isoforms, 2058 protein groups, and

17001 precursors in 14702 elution groups. DIA-MS RAW files were processed with

Data-Independent Acquisition by Neural Networks (DIA-NN) software (v1.7.15)113. DIA-NN

was operated in both library and library-free modes. The gene-centric output matrix was

used for further analysis in an R statistical environment (v4.1.0). Protein intensities values for

the processed DDA and DIA data were normalized by the median method followed by

logarithmic (base 10) transformation. Custom R scripts were used for creating visualizations

of the processed data.

3.3.6. Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE150 partner repository with the data set identifier PXD029497.
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3.4. Results

3.4.1. Comparative evaluation of different lysis buffer compositions

To establish a robust, simple, and precise FFPE tissue DIA-MS proteomics workflow, we first

evaluated the efficiency of three ISD-based protocols (Method 1, Method 2, and Method 3)

for protein extraction and digestion. Firstly, lysis buffers were used to analyze the samples of

GBM FFPE tissue sections of varying thicknesses (4 μm, 10 μm, and 15 μm) using DDA-MS

(Figure 3-1)

Figure 3-1. Method evaluation and DIA-MS analysis of GBM FFPE tissues workflow. a,

Deparaffinization and rehydration of FFPE tissue sections. The 4 μm, 10 μm, or 15

μm thick GBM tissue sections were first deparaffinized by two xylene washes
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followed by rehydration using a gradient of ethanol washes (100%, 85%, and 70%)

and a final wash with LC-MS grade water. b, Protein extraction, digestion, and

peptides clean-up. Tissues were scrapped into the Eppendorf tubes and three

methods were each applied to process the deparaffinized and rehydrated tissue

sections. c, LC-MS analysis of the resulting peptides were analyzed by Ultimate 3000

RSLCnano coupled to Orbitrap Exploris 480 mass spectrometer. d, DIA-MS data

analysis using DIA-NN with MSFragger-generated spectral library.

The number of identified proteins was compared between the methods and the results are

shown in Supplementary Figure 3-1a. All the methods showed to be sensitive enough to

detect more than 1000 proteins from 4 μm tissue microdissection. More specifically, with

Method 1, Method 2, and Method 3, we have detected 1274 ± 159, 1405 ± 15, and 1311 ±

171 proteins, respectively (results are shown as mean ± standard deviation [SD]). Moreover,

we observed a trend showing urea-containing buffers had higher numbers of protein

identifications than the ACN only buffer, which agrees with our previous study on FF uterus

tissue195. For 10 μm thick sections, 1356 ± 38, 1303 ± 75 and 1347 ± 6 proteins were

identified by Method 1, Method 2, and Method 3, respectively. A similar trend was witnessed

with 15 μm thick sections. The average number of detected proteins by all methods for 4 μm

(1330 ± 68) thick tissue was comparable to 10 μm (1335 ± 28) or 15 μm (1337 ± 10) thick

sections implying that small tissue thickness as 4 μm can be used. However, a somewhat

higher SD value for 4 μm tissue compared to 10 μm and 15 μm tissue microdissections

might be related to the decreasing amounts of input material for ISD proteomic analysis195. In

our further work, we focused on protein quantification from DDA measurements, and results

showed that slightly less than 1000 proteins on average in any of the measurement groups

were quantified (Supplementary Figure 3-1b).

Next, we overlapped proteins identified by individual methods for all tissue thicknesses to

determine the proportion of common proteins. Results from 3 technical replicates were first

combined and unique IDs in each group were overlapped. A high percentage (>90%)
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overlap was observed with 4 μm, 10 μm, and 15 μm reporting, 91%, 95%, and 95% of

shared proteins, respectively (Supplementary Figure 3-1c). This demonstrates that almost

all the detected proteins in each case were similar, indicating a similarity in the performance

of tested methods. Consequently, the high percentage of shared proteins among the

methods has shown a similar distribution pattern for gene ontology (GO) terms and

physicochemical characteristics of the identified proteins (Supplementary Figure 3-1d).

Further, we selected a few (20) GO terms previously shown to have differential regulation in

GBM196,197. The highest percentage of the top five cellular components are cytosolic, followed

by the extracellular exosome, cytoplasmic, nuclear, and plasma membrane. As illustrated in

the inset in Supplementary Figure 3-1d, a median molecular weight (MW) of ∼42 kDa was

observed across the comparison groups. Further, in the evaluation of misscleaved sites,

methods showed similarity in the number of missed cleavages, and over 60% of cleavage

sites were fully cleaved in all the comparison groups (Supplementary Figure 3-2). Overall,

Method 3 (25.1%) showed a slightly smaller proportion of missed cleavages relative to

Method 1 (25.3%) and Method 2 (27.5%) — indicating a beneficial effect of including

RapiGest.

3.4.2. Quantitative analysis and evaluation of precision

Quantitative analysis is an important aspect of biomarker discovery and presents a particular

analytical challenge in DDA strategies due to missing intensities values. Thus, we focused

on evaluating the precision of quantification methods in each tissue thickness category. The

data was quantile-normalized before performing logarithmic transformation (base 10). We

correlated technical replicates using a pairwise Pearson's correlation coefficient to determine

quantitative reproducibility between sections processed with the same method. We observed

a high Pearson's correlation (R > 0.90) between technical replicates in all the methods

(Figure 3-2a). We subsequently carried out a coefficient of variation (CV) analysis to discern

methods that allowed minimal fluctuations in protein quantification. CV analysis was applied

to the log-transformed data and the resulting values were expressed as percentages. From
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this, we noticed less variability in protein quantification in almost all the methods as we could

observe CV values of <20% (Figure 3-2b). For 4 μm thick sections, we could observe

17.3%, 16.2%, and 23.8% CV values in Method 1, Method 2, and Method 3, respectively. In

10 μm thick sections, 11.5%, 14.0% and 10.5% CVs corresponded to Method 1, Method 2

and Method 3. As for the 15 μm thick sections, we found 17.5%, 12.0%, and 15.3% with

Method 1, Method 2, and Method 3, respectively. High precision was witnessed with Method

2 and 3 where 10 μm or 15 μm thick sections were used. We then calculated the mean CVs

in each thickness category by summing up CVs for the three methods and averaging.

Overall, the 4 μm thick sections comparatively reported the highest variation with a mean CV

of 19.1%, which is likely to be related to the low input material. Mean CV values of 12% and

14.9% were recorded for 10 μm and 15 μm thick sections, respectively.
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Figure 3-2. Quantitative reproducibility assessment. a, Scatter plots illustrating the

correlation between technical replicates processed by each of the three methods.

The LFQ values were normalized using the quantile method, and then log (base 10)

transformed. Each dot in the plot represents a protein, and the red line indicates the

regression line. The Pearson's correlation coefficient value is indicated by R. Each

column displays the scatter plot for the individual method e.g., from left-to-right:

Method 1, Method 2, and Method 3. Each row displays the scatter plot for different

sizes of tissue sections e.g., from top-to-bottom: 4 μm, 10 μm, and 15 μm. b, Violin

plots showing CV for each method using different tissue sizes.

3.4.3. Comparison of sequence coverage

Sequence coverage represents the average percentage of amino acids covered in the

identified protein. The type of strategy applied to prepare samples for mass spectrometric

proteomic analysis can influence the sequence coverage of the identified proteins198. We

compared the sequence coverage as a function of protein abundance for the covered

proteome by each method (Figure 3-3a). The sequence coverage and intensity values for

technical replicates analyzed by the same method were averaged to obtain mean values. In

4 μm sections, all methods performed similarly in terms of sequence coverage of the

proteins (Method 1 = 14.3%, Method 2 = 14.1% and Method 3 = 14.8%). We, however,

observed an increasing trend in the percentage sequence coverage in the case of 10 μm

and 15 μm thick tissue compared to 4 μm thick sections. For 10 μm thick sections, the

coverage values were 18.4%, 16.5%, and 17.5% for Method 1, Method 2, and Method 3,

respectively. On the other hand, the 15 μm thick tissue sections reported the following

coverage values; 17.5%, 18.4%, and 17.9% for Method 1, Method 2, and Method 3,

respectively. The difference in the sequence coverage between relatively smaller sections (4

μm) and larger (10 μm or 15 μm) is likely attributable to the amounts of the input material.

Interestingly, this suggestion was perfectly demonstrated with the urea-RapiGest-containing

buffer (Method 3) as we could see an increase in the percentage of sequence coverage with
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14.8%, 17.5%, 17.9% reported for 4 μm, 10 μm and 15 μm thick sections, respectively. Next,

we were interested in comparing the number of proteins having percentage sequence

coverage greater than 20%. From this comparison, we could observe that Method 2 and

Method 3 showed the number of proteins having a sequence coverage greater than 20%

increase with increasing tissue size from 4 μm to 15 μm.

Figure 3-3. Sequence coverage and ranked abundance across the methods. a, Scatter plots

of the percent of mean protein sequence coverage (y-axis) and quantile-normalized

and logarithmically (base 10) transformed mean LFQ values (x-axis). Each column

represents the method type (Method 1, Method 2, and Method 3 successively) and

each row represents the size of the tissue section (4 μm, 10 μm, and 15 μm

successively). Median protein sequence coverage averaged at 20%, and thus,

proteins detected with sequence coverage above this value were considered highly
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covered by peptides. The gray color indicates proteins with sequence coverage less

or equal to 20% while cello color indicates proteins with sequence coverage above

20%. A density trace marked with a rug on both axes shows the spread of values

along the coordinates, and the color codes of the rug correspond to the different

tissue sizes. The number of complete observations in all replicates for each scatter is

shown by n. The number of proteins with sequence coverage greater than 20% is

shown by the # symbol. b, Dynamic range plot based on quantile normalized and

logarithmically (base 10) transformed mean LFQ values of consistently identified

proteins in all methods for each size of tissue section (4 μm from top, 10 μm middle

and 15 μm bottom) used. The x-axis shows the ranked order distribution. The red

color indicates proteins that have been reported as potential biomarkers in GBM.

For the three thickness categories, we examined them based on proteins relevant to GBM

that were covered. At first, we cataloged most proteins that have been reported as clinically

relevant or candidate biomarkers for GBM. The raw (LFQ intensities) protein abundance

values were quantile-normalized and subsequently, log (base 10) transformed, and the

outputs were ranked. Finally, the ranked lists were intersected with the list containing

GBM-relevant proteins. We noticed an increase in the number of GBM-relevant proteins with

increasing tissue thickness, e.g., 72, 86, and 91 for 4 μm, 10 μm, and 15 μm, respectively

(Figure 3-3b).

Having performed a comparative evaluation of the three methods, we selected Method 3

(ACN-urea-RapiGest-containing buffer) and applied it to analyze five patient samples. Even

though all the methods demonstrated comparable performance we could witness some

consistency in protein identification and quantification with Method 3, which informed the

decision to select it for the next step in our DIA-MS analysis workflow.
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3.4.4. DIA-MS reliably detects and quantifies putative GBM biomarkers in FFPE tumor

tissues

We optimized a DIA-MS workflow with an 8 Da window to perform an in-depth analysis of

FFPE tissues to capture and quantify GBM-relevant proteins. Patient-derived GBM tissue

samples (n = 5) with 15 μm thick sections were processed in three biological replicates using

Method 3 (ACN-urea-RapiGest-containing buffer). With our single-shot DIA-MS workflow, we

were able to identify >1700 proteins across the samples. This was a huge improvement in

proteome coverage compared to what we observed with the DDA analysis workflow (Figure

3-4a). We compared different functionalities of DIA-NN by analyzing the data in either

library-free or spectral library mode (Supplementary Figure 3-3a and b; Supplementary

Figure 3-4a, b, c, d).

We also compared DDA-MS and DIA-MS based on the sequence coverage. DIA-MS

achieved a higher mean sequence coverage of 28.6% than 24.7% by DDA-MS

(Supplementary Figure 3-5a, b, c). DIA-MS has been demonstrated in several

studies111,112,199,200 to outperform DDA-MS in terms of sensitivity and proteome coverage.

Therefore, this result corroborates such earlier findings. To interrogate the protein expression

profile, we proceeded with the gene-centric matrix output of DIA-NN. Using protein

intensities, we performed Pearson's cross-correlations of all LC-MS runs (n = 15) and

technical replicate values were first averaged before correlating the samples. The global

correlation matrix revealed strong agreement among replicates of the sample with a high

Pearson's correlation coefficient of R > 0.8 (Supplementary Figure 3-6). Further, we

explored the CV for all quantified proteins in each patient sample. All the samples recorded

low median CV values of <20%, with an average of 16.2% and a median of 11.9% (Figure

3-4b). The low CV values indicate the high precision of our DIA-MS workflow for in-depth

protein quantification. To explore the differences in the patient proteome profiles, we

performed a principal component analysis (PCA) of quantified proteins (n = 1498) in all

samples.
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Figure 3-4. DIA-MS analysis of FFPE tissues derived from GBM patients (n = 5). a, Bar plots

displaying the number of identified peptides and proteins with either DDA-MS or

DIA-MS. b, Raincloud plot illustrates the CV of quantile-normalized protein intensities

in all the sections for each patient e.g., A, B, C, D, and E. The midline of the boxplot

in the raincloud plot indicates the median CV, the half violin illustrates the density of

values. Each dot in the plot corresponds to the calculated CV for the individual

protein in all sections per patient. c, Principal component analysis of proteins

detected in all patient FFPE tissue samples. The color corresponds to different

patients. d, Lollipop plot showing the top 20 GBM-relevant proteins. The ranking was

based on quantile-normalized log (base 10) transformed mean intensity.
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The PCA clearly classified the samples according to the patient where they were derived

(Figure 3-4c). This finding demonstrates that the separation is driven by patient-specific

proteome signatures. We further examined the expression values of proteins across

samples. First, a mean intensity value was calculated and then ranked from highest to

lowest. A screen of the top twenty proteins in terms of intensity values revealed the presence

of GBM-relevant markers such as glial fibrillary acidic protein (GFAP)201–203 (Figure 3-4d).

Similarly, VIM and MBP, which showed high-intensity values relative to other proteins, have

been reported as valuable biomarkers in GBM204,205. The confirmation of the presence of the

proteins unique to glioma- and specifically GBM in the analyzed data demonstrates our

DIA-MS workflow's high sensitivity and robustness in detecting and quantifying

disease-relevant proteins (e.g., FN1 and BASP1). Next, we set out to explore the variation in

quantifying top twenty proteins based on intensity values by calculating their CVs using

mean expression intensities. The CV analysis recorded low values of 11.4% and 10.5% for

mean and median, respectively (Supplementary Figure 3-7). This result further supports

the robustness of our pipeline for protein quantification.

In order to investigate the observed proteome differences in the PCA (Figure 3-4c) further,

we performed an unsupervised hierarchical clustering on the relative expression levels of 78

proteins with promising clinical utility in the context of GBM. As illustrated in Figure 3-5a,

each patient displayed a distinct gradient on the heatmap, concordance with the PCA result.

Next, we selected a few clusters of proteins focusing on those having high relative

expression levels, and determined the variation in quantification. CV was calculated for

replicates of the proteins for each cluster. We observed a lower CV at the cluster level

(Figure 3-5a) compared to the global CV witnessed in Supplementary Figure 3-7. Again,

all this data supports the robustness of the pipeline that we used in this analysis. Next, we

leveraged STRING software to query the nature of the interaction of the 78 GBM-relevant

proteins (Figure 3-5b). The network reported significant interactions with protein-protein

interaction (PPI) enrichment p-value of <1.0e-16 and an average local clustering coefficient
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of 0.527. This result demonstrates the ability of the DIA-MS workflow in this study to capture

the PPI of interest that could be interrogated further to get some exciting biological insights

concerning GBM tumor evolution and progression.

Figure 3-5. Heatmap and STRING diagram for a few selected proteins. a, Heatmap of

relative expression levels of all proteins detected in all DIA-MS runs. Unsupervised

hierarchical clustering is based on the scaled protein expression values. Clusters

with high expression values are marked with cello color while those with low

expression values are indicated with orange color. The boxplots show the CV

distribution for proteins in the selected clusters. b, STRING diagram displaying the

interaction of the 78 GBM-relevant proteins.
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3.4.5. Screening of immune-related genes in a DIA-MS dataset

With the intensified interest in developing novel immunotherapeutics, a comprehensive

understanding of how immune cells infiltrate GBM is necessary. We screened our DIA-MS

dataset to identify the detected immune-related genes. Out of the 1498 quantified proteins,

348 were associated with the immune system. Next, we leveraged the recently published

CPTAC (Clinical Proteomic Tumor Analysis Consortium) mRNA data21 to correlate with the

protein expression levels in our dataset. When we intersected the CPTAC mRNA dataset

with the cataloged 348 genes, we found 320 common immune-related genes. A low positive

Pearson's correlation coefficient of R = 0.37 (Figure 3-6a) was reported when we compared

the DIA readouts to CPTAC's mRNA expression levels (FPKM values). A low correlation

between transcriptome and proteome has been reported in previous studies206,207, and this is

consistent in our study. The transcripts expression levels do not completely reflect the

protein abundance since proteins undergo various post-transcriptional modifications. This

phenomenon possibly contributes to the low positive correlation between transcriptome and

proteome. A pairwise protein-level correlation between data in this study and CPTAC

reported a positive Pearson's correlation coefficient value of R = 0.42 (Supplementary

Figure 3-8). Some of the proteins e.g. MIF, which are currently being pursued as novel drug

targets, showed elevated relative expression levels (Figure 3-6b).
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Figure 3-6. Exploring expression levels of immune-related genes. a, Scatter plot showing

the correlation between protein and mRNA expression levels. The yellow line

represents the line of best fit with the shaded area showing the 95% confidence

interval. R and p-value are based on Pearson's coefficient correlation. b, Boxplot

showing the abundance of top immune-relevant proteins.

3.5. Discussion

FFPE tissue samples have shown superiority over other sample types since they are stable

over long storage; hence, providing more opportunities for researchers to discover

clinically-relevant proteins182. Thus, efficient protein extraction from FFPE samples is crucial

for targeted and discovery-based proteomics research. Presently, several methods applying

DDA-MS for FFPE tissue sample proteomics analysis have been reported208–210. DIA-MS is

increasingly being applied in tissue proteomics. However, there are currently few studies on

GBM where DIA-MS has been performed. Therefore, we aimed to establish a simple and

highly precise DIA-MS workflow able to detect and quantify both GBM-relevant and

immune-related proteins in the GBM tumor.

The analytical superiority of DIA-MS over DDA-MS has been demonstrated in several

studies110,200. Besides, it was recently shown that DIA-MS could yield results comparable to

those generated using selected reaction monitoring (SRM)111. Our study's observed

increment in the number of detected proteins with DIA-MS relative to DDA-MS was

consistent with earlier works211. The random sampling of the most abundant ion species in

the DDA-MS has been cited as one of the contributing factors in lower protein identification

in comparison to DIA-MS. Moreover, the stochastic sampling nature in DDA-MS often

generates a high number of missing protein intensity values110. We achieved high precision

in protein quantification, indicated by the low CV values.

The DIA-MS detected most of the proteins relevant to GBM pathology, including FN1, VIM,

MBP, and GFAP18,212–215. VIM and GFAP are co-expressed in human glioma216, and
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overexpression of VIM has been associated with poor survival outcomes for GBM

patients217. The co-expression of these two proteins is evident in our DIA-MS data, as

depicted by their relatively elevated expression intensity values (Figure 3-4d). Taken

together, this evidence is a demonstration of how sensitive and precise this DIA-MS

workflow is for the quantification of proteins in FFPE tissue samples. The detection of these

proteins in glioma samples has been performed mainly by using relatively less sensitive

techniques. A recent study using a Q-Exactive mass spectrometer reported a significant

elevation of VIM in GBM patient specimens212.

Overexpression of brain acid soluble protein 1 (BASP1) has been shown to promote the

proliferation of cancer cells218. In pancreatic cancer tissue, quantitative proteomics analysis

using Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer identified BASP1 as

a candidate prognostic biomarker219. BASP1 plays a role in the organization of the

cytoskeleton elements. FN1, a glycoprotein with cell adhesive features, has been implicated

in tumor cell migration and invasion by interacting with integrin proteins220. Additionally, its

overexpression in glial tumors has been associated with an increased migration rate of

tumor cells221. Some of the immune-related proteins (e.g., MIF, CD47, and TTYH1) that we

detected and quantified with high precision are currently being interrogated as potential

targets for immune-based therapy. MIF has been found differentially expressed in a

subpopulation of GBM myeloid-derived suppressor cells and could be potentially targeted to

repress immunosuppression in tumor microenvironment222. Elevated expression of MIF with

poor survival was recently reported in GBM samples in patients with

O-6-Methylguanine-DNA Methyltransferase (MGMT) methylation223.

To conclude, the quantitative MS proteomics field is quickly gravitating towards simple and

highly sensitive workflows that enable in-depth coverage and precise quantification of

proteome-wide expression. In this regard, DIA-MS has emerged top and is increasingly

being applied to quantify proteins in tissues. Therefore, accurate and precise quantification

of proteins in patient-derived FFPE samples is expected to provide new leads to discover
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novel therapeutic targets. In this study, a simple DIA-MS workflow was established and was

successfully applied to patient-derived GBM tissue samples (n = 5). This DIA-MS approach

enabled precise detection and quantification of proteins, and over 1400 proteins were

quantified. Importantly, immune-related (e.g. MIF) and GBM-relevant proteins (e.g., GFAP)

were detected and quantified. Finally, we anticipate that our approach would be useful for

researchers interested in quantitative MS proteomic analysis of FFPE tissue specimens.

Notably, it facilitates the detection and quantification of protein candidates for new

therapeutic strategies for glioma and other malignant tumors.
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CHAPTER 4: The interplay of hypoxia and antigen presentation in glioblastoma tumor:

Insights from proteomics and immunopeptidomics

This work is from unpublished manuscript.

Weke, K., Dziubek, K., Papak, I., Muszczek, M., Hupp, T.R., Kote, S. The interplay of

hypoxia and antigen presentation in glioblastoma tumor: Insights from proteomics and

immunopeptidomics. Unpublished manuscript.

4.1. Abstract

Glioblastoma (GBM) is a highly aggressive and deadly brain tumor. The tumor

microenvironment (TME) of GBM is characterized by hypoxia, which can suppress antitumor

immune responses. Antigen presentation via the human leukocyte antigen class I (HLA-I)

molecules is a critical process for T cells to recognize and eliminate tumor cells. However,

the impact of hypoxia on antigen presentation in GBM is not fully understood. In this study,

we used an integrated approach—combining mass spectrometry (MS)-based proteomics

and immunopeptidomics strategies to investigate the interplay between hypoxia and antigen

presentation. We found that severe hypoxic stress (0.1% O2) induces significant changes in

the GBM proteome. Key enzymes (ERAP1 and ERAP2) in the antigen processing and

presentation machinery (APM) were downregulated in hypoxia. Moreover, the findings

revealed that HLA-I-associated antigen peptide repertoire was reduced under hypoxia.

Overall, these results open a newer horizon to explore the interplay between hypoxia and

antigen presentation, and we propose that carboxypeptidase A4 (CPA4) has a potential role

in shaping the tumor immunopeptidome landscape under a hypoxic microenvironment.
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4.2. Introduction

Glioblastoma (GBM) is the most aggressive and common primary brain tumor in adults,

leading to substantial morbidity and mortality. GBM accounts for 14.9% of all primary brain

tumors and has a median survival of just 15 months post-diagnosis24,25,46. The aggressive

nature of GBM coupled with its resistance to conventional radiation and chemotherapy

contribute to its dismal prognosis224. Therefore, the urgent need for developing novel

therapeutic strategies against GBM has never been clearer. One emerging avenue of

research focuses on leveraging the immune system to target GBM-specific antigens, offering

a unique therapeutic approach225–228. For such strategies to be efficacious, it is paramount to

understand the tumor microenvironment (TME), as it heavily influences immune responses

within the tumor. A significant player within the TME, with profound consequences on tumor

biology, is hypoxia229–231. GBM tumors, given their rapid proliferation rate, often exhibit

regions of hypoxia, where the oxygen concentration falls below 2%, due to the tumor

outpacing its vascular supply232,233. This hypoxic environment stabilizes the transcription

factor hypoxia-inducible factor 1 α (HIF1α), which modulates numerous cellular pathways

and impacts immune cell functions, thereby aiding tumor evasion from immune

recognition234,235.

In order for CD8+ T cells to recognize and mount an immune response against tumor cells,

the tumor antigens must first be processed and then presented to them. Effective

presentation of tumor antigens is through the antigen processing and presentation

machinery (APM) in complex with the human leukocyte antigen class I (HLA-I)

molecule236–238. The impact of hypoxic on antigen presentation remains unresolved with

some studies showing enhanced HLA-I expression, while others depict its downregulation.

For instance, using murine tumor cells, Kajiwara et al.239 reported that hypoxia augments the

expression of MHC (major histocompatibility complex) class I. Contrarily, Sethumadhavan et

al.240 and Mohan et al.241 demonstrated hypoxia-induced downregulation of HLA-I. Therefore,
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the interplay between hypoxia and antigen presentation in tumors is a complex and

multifaceted phenomenon, requiring an in-depth study to fully understand.

Mass spectrometry (MS)-based proteomics and immunopeptidomics are two powerful tools

that can be used to investigate this interplay. MS-based proteomics allows for the

identification and characterization of the proteins that are expressed by tumor cells under

hypoxic conditions. A proteomics study to explore the effects of hypoxia on antigen

presentation showed that the APM components did not change significantly under a hypoxic

environment241. Immunopeptidomics can be used to identify and quantify the antigenic

peptides associated with HLA-I (pHLA-I). In a large-scale study, applying immunopetidomics

strategies, GBM tumor antigens were identified242. In this study, we aim to delve deeper into

hypoxia's effect on antigen presentation. We integrated MS-based proteomics and

immunopeptidomics approaches to investigate the interplay between hypoxia and antigen

presentation in U-87 GBM cell lines.

4.3. Materials and methods

4.3.1. Cultivation of cells under hypoxia or normoxia

U-87 MG GBM cell lines were obtained from ATCC, cat. HTB-14. Cells were cultured in

DMEM high glucose medium (Gibco, cat. 41966029) supplemented with 10%

heat-inactivated Premium Plus FBS (Gibco, cat. A4766801) and 100UI/ml

Penicillin-Streptomycin (Gibco, cat. 15140122). Cultures were maintained in the humidified

atmosphere supplemented with 5% CO2 at 37°C. Depending on the experimental

conditions, cells were supplemented with varying levels of oxygen including 21%, 5%, 1%, or

0.1% of oxygen. Cultures requiring reduced oxygen levels (below 21%) were maintained in

InVivo2 1000 Dual Chamber Hypoxia Workstation, Baker Ruskinn.

4.3.2. Protein isolation for Western Blot (WB)

Cells were washed two times with PBS and stored at -80°C until lysed directly on a cell

culture plate with ice-cold CelLytic™ M (Sigma-Aldrich, cat. C2978) mixed with protease
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inhibitors (Sigma-Aldrich, cat. P8340-1ML). Subsequently, lysates were gently mixed on ice

for 20 minutes and centrifuged for 15 minutes at 14,000 x g at 4°C. Protein concentration in

the supernatant was quantified by Bradford assay. Lysates were mixed with 4X reducing

sample buffer and samples were denatured by boiling for 5 minutes at 95°C.

4.3.3. Immunoblotting

Protein lysates were resolved by 8% SDS-PAGE using 50µg of total protein lysate per well.

Resolved proteins were then transferred to a nitrocellulose blotting membrane (Amersham

Protran®) using Trans-Blot® Turbo™ Transfer System (Bio-Rad). Subsequently, membranes

were blocked overnight in 5% non-fat dry milk in 0.1% Tween 20 Phosphate buffered saline

(PBST) at 4°C. The next day, membranes were washed three times with 0.1% PBST and

incubated overnight at 4°C with anti-HIF1A polyclonal antibody (cat. SAB1405933,

Sigma-Aldrich) diluted in 2% blocking buffer. Restore Plus Western Blot Stripping Buffer

(Thermo Scientific™, cat. 46430) was used for membrane re-probing with anti-ß-actin

antibody (Abcam, cat. ab6276). Following primary antibody incubation, membranes were

washed three times in PBST and incubated for 1 hour at RT with HRP-conjugated rabbit

anti-mouse secondary antibody, dilution 1:5000 (abcam, cat. ab6728). Finally, membranes

were washed three more times with PBST, visualized by ECL substrate (Westar Antares,

CYANAGEN), and ChemiDoc imaging system (Bio-Rad).

4.3.4. Flow cytometry analysis

Cells were dissociated from a cell culture plate with 0.25% Trypsin (Thermo Scientific™, cat.

25200072). Subsequently, 1,000,000 cells were aliquoted into flow cytometry tubes and

centrifuged for 5 minutes at 1500rpm. Next, cell pellets were washed in PBS and centrifuged

for 5 minutes at 1500 rpm. Subsequently, cells were stained for HLA I expression with 5µl of

anti-HLA I antibody (clone W6/32, Thermo Scientific™ cat. 11-9983-42) for 30 minutes at RT,

protected from light, and washed two times with PBS. Cell pellets were resuspended with

250µl of PBS and analyzed with BD FACSAria II cell sorter (BD Biosciences). Results were

analyzed with FlowJo v10.8.1 flow cytometry analysis software (BD Biosciences).
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4.3.5. Immunopeptidomics sample preparation

pHLA-I were isolated by antibody-free method. Cells were taken out of the incubators and

immediately placed on ice. Culture medium was subsequently discarded and cells were

washed three times with ice-cold PBS. Next, 2 mL of citrate-phosphate buffer at pH 3.3

—(prepared using 0.131 M citric acid, 0.066 M Na2HPO4, and 150 mM NaCl, all from Sigma,

PL)—was added to the cells and incubated for 3 min while continuously swirling the plate to

ensure maximum contact of the buffer with cells and dislodgement of peptides bound to

HLA-I molecules. Replicates were subsequently pooled and transferred to a clean 15 mL

falcon tube and centrifuged at 1000 rpm for 5 min at 4°C to remove potential cell debris and

media components. Next, peptides were purified using Oasis HLB VAC RC 30 mg cartridges

(Waters, Germany). The cartridge was conditioned by adding of 1 mL of 0.2% formic

acid/methanol, followed by an equilibration with 0.2% formic acid/water. Next, samples was

loaded and washed three times with water/5% methanol/0.2% formic acid. Peptides were

eluted with 1 mL water/80% methanol/0.2% formic acid and diluted to water/40%

methanol/0.2% formic acid. Eluted peptides were subjected to an ultrafiltration step using an

Ultracel-3kDa centrifugal filter unit (Merck, Poland). Initially, 1 mL of LC-MS grade water was

added to the filters and centrifuged at 14000 xg for 30 min to rinse them before use. Filters

were inserted in new collection tubes and eluted peptides were added, followed by

centrifugation at 14000 xg for 30 min. Finally, the extracted peptides were evaporated using

vacuum centrifugation and then stored at −20°C until MS analysis.

4.3.6. Proteomics sample preparation

After collecting pHLA-I, cells were washed three times with ice-cold PBS to remove any

citrate-phosphate buffer left. Next, cells were gently scratched off the culture plate and

transferred into a 1.5 mL Eppendorf tube, followed by a 5-minute centrifugation at 1000 rpm.

The supernatant was aspirated out and the pellet was immediately snap-frozen in liquid

nitrogen until the following day. Cell lysis was performed by adding 200 µL of 8 M urea in 0.1

M Tris/HCl—lysis buffer—to the cell pellet. The mixture was vortexed for a minute and

66



subsequently sonicated softly for 15 minutes. Samples were frozen overnight at -80℃ to

enhance lysis. Subsequently, samples were subjected to three successive cycles of

snap-freezing in liquid nitrogen and thawing. Afterward, centrifugation was performed at

17,000 xg for 30 minutes at room temperature, and the clear supernatant was transferred to

a clean LowBinding Eppendorf tube. Protein quantification was done using Pierce™ BCA

Protein Assay Kits (Thermo Scientific™ cat. 23225). The next steps were carried out

following the filter-aided sample preparation (FASP)80 protocol with some modifications.

Firstly, 200 µL of lysis buffer was added to a Microcon-10kDa centrifugal filter (Merck

Millipore cat. MRCPRT010), followed by 50 µg of protein sample, which were mixed gently

and then centrifuged for 30 minutes at 17,000 xg, discarding the filtrate afterward. Following

this, 200 µL of lysis buffer was added to the relatively dry filter. Proteins were reduced to

break disulfide bonds by adding 40 µL of 50 mM TCEP to samples and incubating at 37℃

and 600 rpm for 30 min. Subsequently, 100 µL of 0.05 M IAA in lysis buffer was added to

each filter and was left in the dark with gentle shaking at room temperature for 20 minutes,

and then centrifuged at 17,000xg for 25 min, and the filtrate was discarded. Each filter was

washed thrice with 200 µL of 0.1 ABC and then centrifuged for 30 minutes at 14,000xg for

each successive wash. The filter was transferred to a new holding Eppendorf. Next, 50 µL of

50 mM ABC was added to the filter followed by trypsin in a 1:100 ratio (trypsin to protein.

The sample was incubated overnight in a chamber at 37℃ for trypsin digestion. Peptide

digest was collected by centrifuging the filter at 17,000 xg for 15 minutes. Subsequently, 50

µL of 0.5 M NaCl was added to the filter, followed by another centrifugation at 17,000 xg for

20 minutes. For peptide purification, Harvard Apparatus MicroSpin C-18 SPE columns were

activated by the addition of 200 µL of 0.1% FA in ACN and centrifuged at 300 xg for 2

minutes, and was repeated twice. Columns were equilibrated by adding 200 µL of 0.1% FA

in water and centrifuging at 300 xg for 2 minutes, which was again repeated. Another 200 µL

of 0.1% formic acid in water was added and allowed to stand for 15 minutes before a

centrifugation at 300g for 2 minutes. The sample was loaded onto the column, followed by

centrifugation at 300 xg for 2 minutes. After washing the samples three times with 200 µL of
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0.1% FA in water, peptides were eluted stepwise using 200 µL of 0.1% FA in 50% ACN and

then 200 µL of 0.1% FA in 80% ACN, and a final 200 µL of 0.1% FA in 100% ACN, each

successive step was followed by centrifugation at 300 xg for 2 minutes. Lastly, the eluate

was transferred to a 1.5 mL LowBinding microtube (Axygen) and evaporated to dryness in a

vacuum centrifuge. Samples were then stored at -80℃ until LC-MS measurement.

4.3.7. LC-MS/MS sample measurement

Ultimate 3000 RSLCnano (ThermoFisher Scientific, MA, USA) coupled to Orbitrap Exploris

480 mass spectrometer (ThermoFisher Scientific, MA, USA) were used for LC-MS/MS m.

Initially, the dried peptides were reconstituted in 30 μL of loading buffer (0.08% TFA in 2.5%

ACN). Afterward, the peptide concentration was determined using NanoDrop 2000 (Thermo

Scientific, MA, USA) with absorbance set to 220 nm.

Samples were injected into the LC system and analyzed in 3 technical replicates. First,

peptides were trapped and concentrated on an Acclaim™ PepMap™ 100C18 trap column

(ThermoFisher Scientific, MA, USA) of 300 μm i.d x 5 mm and packed with 5 μm, 100 Å

particles. Subsequently, 75 μm i.d x 15 cm Acclaim™ PepMap™ RSLC 100 reverse phase

C18 analytical column packed with 2 μm particles having 100 Å pore size was used to

separate peptides at a flow rate of 300 nL/min. The analytical column was first equilibrated

for 10 min at 2.5% solvent B (0.1% (v/v) TFA in acetonitrile) and 97.5% of solvent A (0.1%

(v/v) TFA in water). Following, to separate the peptides, solvent B was increased in a 90-min

gradient between 2.5% and 40%. A post-gradient cycle of 99% B followed a post-run

equilibration at 2.5% B. The analytical column was coupled to the Nanospray Flex Ion

Source. Recording of all MS measurements and spectra was done in resolution positive ion

mode with a high voltage of 2500 V. For DDA mode, the ion transfer tube was heated to a

temperature of 250 °C. MS1 data was acquired by setting the Orbitrap resolution to 120000,

an MS scan range of 350–1200 m/z, an AGC (automatic gain control) level to custom mode,

and a maximum injection time mode to auto. Precursor ions with charges between +2 and

+6 and intensity values over 5.0e3 were selected for subsequent higher-energy C-trap
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dissociation (HCD) fragmentation and MS2 scanning. Precursors were isolated with an m/z

window of 2 and fragmented by HCD set at 30%. The product/fragment ions were channeled

to the Orbitrap for the MS2 acquisition at a scan resolution of 120000 and a maximum

injection time mode set to 60 ms. Repeated sampling was avoided by setting the dynamic

exclusion mode to custom, exclusion after n times to 1, exclusion duration to 20, and mass

tolerance to 10 parts per million (ppm). For data-independent acquisition (DIA) mode, the

precursor mass range was 350-1100, isolation window (m/z) of 13, window overlap (m/z) of

1, number of scan events set 62, collision energy of 30%, and in a fixed mode, orbitrap

resolution of 30000, and the scan range mode was set to auto. In addition, the AGC target

was set to custom mode, the maximum injection time mode was set to 25 ms, and

microscan was set to 1.

4.3.8. MS data processing and analysis

A study-specific spectral library was generated from DDA data using MSFragger194 (v3.8) in

the FragPipe (v20.0) proteomics pipeline. Both reviewed (20361 entries) and unreviewed

(58691 entries) UniProt human proteome database (79220 total entries), downloaded on

May 17th, 2022, was used. Most algorithms were used in the default setting with few

adjustments. Precursor mass tolerance and fragment mass tolerance were set to 8 and 10

ppm, respectively. For proteomics data, the enzymatic protein digestion button was checked

and set to trypsin, while for immunopeptidomics, the nonspecific protein digestion was

switched on. The generated library consisted of 4107 protein isoforms, 4107 protein groups,

and 44227 precursors in 34541 elution groups. DIA-MS RAW files were processed with

Data-Independent Acquisition by Neural Networks (DIA-NN) software (v1.8)113. DIA-NN was

operated in both library and library-free modes. The report output matrix was used for further

analysis in an R statistical environment (v4.1.0). Protein and peptide intensity values were

logarithmically transformed and normalized by the median for pHLA-I data and VSN method

for proteomics data. Statistical tests were performed using the DEqMS R package.
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4.4. Results and discussion

4.4.1. Experimental design and study workflow

Sample preparation and MS data acquisition were conducted as described in the preceding

sections. Normoxia was defined as 21% oxygen, while 0.1%, 1%, and 5% were defined as

different levels of hypoxia. Cells were grown in hypoxia or normoxia for 48 hours or 168

hours, and then both proteomics and immunopeptidomics analysis was performed (Figure

4-1a, b, c)

Figure 4-1. Schematic workflow for proteomics and immunopeptidomics analysis. Panel a,

cultivation of U-87 MG cell lines under normoxia or hypoxia, Western blotting

analysis, and fluorescence-activated cell sorting (FACS) analysis. Panel b,

immunopeptidomics, and proteomics sample preparation. Panel c, LC-MS/MS

measurement, and data analysis. Created with BioRender.com.
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4.4.2. HIF1α is markedly expressed at 0.1% hypoxia

HIF1α stabilizes under low oxygen concentrations and is a critical marker for detecting

cellular response to hypoxia71. To determine the responsiveness of U-87 cell lines to varying

hypoxic levels, we performed WB to check HIF1α expression. We observed a marked

increase in HIF1α levels in 0.1% hypoxia, as shown by the relatively bigger and dense band,

indicating the cells' adaptation to the hypoxic conditions (Figure 4-2a). Besides, relatively

small increases were noticed with 1% and 5% hypoxia conditions. Furthermore, WB analysis

of the cells' response to extended hypoxia (168 hours) showed that HIF1α protein levels

increased, similar to what was seen after 48 hours of exposure (Figure 4-2b). This finding

confirms the established understanding of HIF1α as a marker for cellular adaptation to

hypoxia71,233,243,244. Increased induction of HIF1α in 0.1% hypoxia indicates a strong cellular

response to severe hypoxic conditions. In a study that characterized the response of several

patient-derived GB cell lines to hypoxia, both HIF-1α and HIF-2α proteins were found

induced at 1% O2 concentration245.

Next, we performed a flow cytometry analysis to determine the expression of surface HLA-I

molecules. We observed that the cell lines expressed surface HLA-I molecules under both

normoxic and hypoxic conditions. However, there was no remarkable difference in the

expression levels between normoxia and any of the hypoxic levels (Figure 4-2c, d, and e).

The 5% hypoxic condition reported a relatively higher count of median fluorescence intensity

compared to either 0.1% or 1% hypoxia level, suggesting that the expression of HLA-I

molecules may have been slightly reduced in a more hypoxic environment. Previous flow

cytometry analysis demonstrated that hypoxia downregulates HLA-I molecules240. Notably,

the confirmation of HIF1α induction and expression of HLA-I molecules under hypoxia

signaled that these cells were fit for subsequent experimental procedures to decipher the

interplay between hypoxia and antigen presentation.
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Figure 4-2. Analysis of U-87 MG GBM cells’ responsiveness to hypoxia and determination of

surface expression of HLA-I molecules. a and b, WB analysis of HIF1α protein

expression under normoxia or hypoxia for 48 hours and 168 hours, respectively. c-e,

FACS analysis of surface expression of HLA-I molecules under normoxia or hypoxia

(5%, 1%, and 0.1%, respectively) for 48 hours and 168 hours.

4.4.3. Hypoxia-induced proteome changes in U-87 GBM cell lines

Proteomics data were processed using DIA-NN, as mentioned earlier. The resulting

protein-level data matrix was analyzed in an R statistical environment. Over 3000 and 25000

proteins and peptides were respectively confidently identified and quantified, with a high

(>70%) fraction of samples having complete data (Supplementary Figure 4-1a, b). This

number of IDs shows a relatively deep coverage of the proteome. Next, we did control

checks to assess the quantitative quality of the data. The data was of good quality, and as

illustrated in Supplementary Figure 4-1c, there were no instances of sample loading
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problems. Quantitative values were logarithmically transformed and normalized using the

variance stabilizing normalization method (VSN).

To detect differential abundance between groups, differential expression analysis of

quantitative mass spectrometry data (DEqMS)246 was used to perform statistical testing. All

three hypoxic levels were compared to normoxia, and the resulting data was visualized with

volcano plots (Figure 4-3a). A total of 361 proteins were differentially expressed between

0.1% hypoxia and normoxia (top panel). For 1% hypoxia versus normoxia, 250 proteins had

significant differential abundance (middle panel). A comparison between 5% hypoxia and

normoxia had 101 proteins with significant differential abundance (bottom panel). All

differentially expressed proteins from the three comparison groups were overlapped, as

illustrated in Figure 4-3b. About 23 proteins were common in all the comparison groups, and

an overlap between 0.1% hypoxia vs. normoxia and 1% hypoxia vs. normoxia reported the

highest number (133) of shared proteins with differential abundance. Next, we assessed the

magnitude of differential expression by plotting a heatmap of log2 fold changes for the top

most differentially expressed proteins common in all three comparison groups.

The 0.1% hypoxia vs. normoxia had the highest fold changes, followed by 1% hypoxia vs.

normoxia and then 5% hypoxia vs. normoxia (Figure 4-3c). These results show that different

hypoxic levels have varied changes in the protein expression profile of U-87 GBM cells.

Moreover, the highest number of differentially expressed proteins (361) was observed under

the most severe hypoxic condition (0.1% O2). This suggests that these cells under extreme

hypoxic conditions undergo significant molecular changes, perhaps as a response to cope

with such low oxygen availability. Furthermore, it seems that 5% O2 is the least severe

hypoxia hypoxic environment, possibly suggesting that U-87 cells might find 5% hypoxia

relatively tolerable and less of a stress factor compared to 0.1% or 1% hypoxic conditions.

The observed higher fold change at 0.1% hypoxia indicates more dramatic changes to the

proteome in response to severe hypoxia. The finding that 0.1% O2 resulted in the highest

number of differentially expressed proteins corroborates the WB analysis and indicates a
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heightened cellular response under extreme hypoxic stress. A label-free shotgun proteomics

analysis identified 2928 proteins and found 1034 proteins unique to the hypoxia condition.

Further, 17 proteins were differentially expressed in U-87 GBM cells cultured under hypoxic

conditions (1% O2) compared to normoxic conditions (21% O2)247. The differentially

expressed proteins were involved in various cellular processes, including metabolism, cell

cycle regulation, and hypoxia response.
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Figure 4-3. Hypoxia-dependent differential regulation of U-87 MG cells’ proteome. a,

Volcano plots of differentially regulated proteins. Top, middle, and bottom panels

represent 0.1% hypoxia vs. normoxia, 1% hypoxia vs. normoxia, and 5% hypoxia vs.

normoxia, respectively. The X-axis represents the log2 fold change in protein

expression, whereas the Y-axis indicates -log10 of adjusted p-values. The muted
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raspberry color highlights significantly upregulated proteins under hypoxia, while dark

teal displays downregulated ones. Proteins with relatively much lower adjusted

p-values or higher fold change are labeled. b, Venn Diagram showing the overlap of

differentially regulated proteins among comparison groups. Each circle in the

diagram represents a set of proteins, either upregulated or downregulated. The

intersecting areas indicate sets of proteins with shared regulation across the

experimental groups. c, A heatmap displaying the most differentially regulated

proteins that are shared by all comparison groups. Rows represent the individual

proteins, and the columns represent the different comparison groups. The color

intensity indicates the fold change of expression of each protein under hypoxic

(0.1%, 1% and 5% oxygen) compared to normoxia, with a gradient of color (from

white to dark grey) indicating a range from low to high expression levels.

4.4.4. Metabolic reprogramming is a key adaptation to extreme hypoxic stress

To understand the top regulated pathways, we subsetted upregulated proteins at 0.1%

hypoxia and performed gene set enrichment analysis using the KEGG pathway database.

Metabolic-related pathways—including glycolysis/gluconeogenesis, carbon metabolism,

biosynthesis of amino acids, protein digestion, and absorption—and the HIF−1 signaling

pathway were the most enriched (Figure 4-4a). To understand whether the set of

differentially regulated proteins common to all three hypoxic levels is involved in the

fundamental cellular process, we used gene ontology (GO) enrichment analysis and

discovered the top ten enriched processes (Figure 4-4b). Some of these biological

processes include regulation of cytokine production, vasculature development, and tube

development. These findings are consistent with previous studies showing hypoxia-induced

metabolic switch from oxidative phosphorylation to glycolysis. A TMT 6-plex proteome

analysis of hypoxic glioblastoma cells by Kora et al.248 identified a number of proteins that

were differentially expressed under hypoxic conditions, including the glycolytic pathway.
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Figure 4-4. Enrichment analysis of differentially regulated proteins. a, Lollipop plot of top

enriched KEGG pathways at 0.1% hypoxia. The horizontal coordinate represents the

magnitude enrichment. Adjusted p-values are color-coded from blue (low) to red

(red). The size of the lollipop circle corresponds to the number of genes for the

respective pathway. Network of enriched GO (biological process) for the top

significantly regulated proteins common in three different hypoxic levels. Dark green

nodes represent more significantly enriched gene sets, and bigger nodes represent

larger ones. Thicker edges represent more overlapped genes.

4.4.5. Hypoxia-dependent dysregulation of APM components

The antigen processing machinery (APM) comprises different components, including

enzymes (ERAP), TAP, HLA, etc., which are necessary for effective antigen processing and

presentation by the HLA-I molecules249,250. Dysregulation of any of these components can

significantly alter HLA-I antigen repertoire, thereby limiting recognition of tumor cells by

cytotoxic CD8+ T cells240,251. Using our proteomics data, we investigated whether 0.1%

hypoxia altered the expression pattern of APM components. As illustrated in the barplot

(Figure 4-5a) showing the log2 fold change (<-1 or > 1), most of the APM components were

not significantly different except for the enzymes (ERAP 1 and 2), which were

downregulated. This finding is similar to Mohan et al.241; however, for their study, they had a

contrary observation with the enzymes, which were not significant. ERAPs are involved in

trimming of peptides for HLA-I presentation; therefore, dysregulation of their expression

profiles potentially impacts the kind and number of peptides presented by HLA-I. We noticed
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a surprising observation with carboxypeptidase A4 (CPA4), which was increased many folds

(Figure 4-5b). CPA4 is a member of the A family of carboxypeptidases, which are

exopeptidases that cleave C-terminal amino acids from peptides and proteins252. The

oncogenic effects of CPA4 on tumor progression have been reported with some findings

showing its potential utility as a poor prognostic biomarker253–255. Moreover, Moon et al.256

demonstrated a HIF-1α-dependent elevation of CPA4 in hypoxic human adipose-derived

stem cells, which is consistent with our finding.

While there is no previous study on the involvement of CPA4 in trimming peptides for HLA-I

presentation, we speculated that its marked elevation under hypoxia might, to some degree,

lead to the cleaving of C-terminal amino acids from proteins prior to proteasomal

degradation. To further investigate this hypothesis, we studied the peptide sampling from

source proteins and assessed the sampling pattern at the C-terminus and N-terminus of

proteins that were dysregulated the most. To achieve this, we used our immunopeptidomics

data and mapped peptides to their respective source proteins using COBALT alignment

tool257. We observed a distinct distribution of peptides in the C- and N-terminus for hypoxia

compared to normoxia. For instance, under hypoxia, filamin-A protein (FLNA) had fewer

peptides at the C-terminus with zero peptide sampling at position ~2000, whereas under

normoxia, peptides are sampled from this position (Figure 4-5c). This finding suggests that

marked elevation of CPA4 under hypoxia potentially shortens the proteins from the

C-terminus before or during proteasomal degradation. Therefore, we are proposing that

CPA4 has a potential role in shaping the HLA-I-bound peptide repertoire under a hypoxic

environment.
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Figure 4-5. Hypoxia-dependent dysregulation of APM components. a, A barplot displaying

log2 fold change between 0.1% hypoxia vs. normoxia for APM proteins. Blue and

black bars represent downregulated and upregulated proteins, respectively. b, A

barplot for a fold change comparison of CPA4 and ERAPs enzymes. The muted

raspberry color indicates a fold change for the 0.1% hypoxia vs. normoxia, while the

dark teal color shows a fold change for the 5% hypoxia vs. normoxia. c, COBALT

alignment visualization for filamin-A protein. The top panel displays peptide alignment

from normoxia data whereas the bottom panel is for 0.1% hypoxia. Aligned amino

acid sequences are shown in different colors, from red to blue, and appear like dots

on the alignment map.
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4.4.6. Hypoxia alters HLA-I peptide repertoire

To further explore the impact of hypoxia on HLA-I peptide repertoire, peptide characteristics

including identification counts, and length distribution were evaluated. Initially, we explored

proteins that presented the most by HLA-I molecules. The 0.1% hypoxia demonstrated the

highest peptide sampling from the source proteins. Top sampled proteins include G3P,

ENOA, VIME, and ALDOA, among others (Figure 4-6a). Next, we compared peptide counts

from the three different hypoxic levels to normoxia. The normoxic group had the highest

number of peptides followed by 5% hypoxia, then 1% hypoxia, and 0.1% hypoxia had the

least peptide counts (Figure 4-6b). Peptides bound to HLA-I are between 8 to 15 amino

acids long with a predominant 9 mer. We compared the peptide length distribution patterns

for normoxia, 0.1%, 1%, and 5% hypoxia for U-87 cells cultured for 48 hours or 168 hours.

As was expected, 9 mer had the highest count—confirming the classical profile of HLA-I

peptides. We noticed that the 48-hour experiment had more count compared to 168 hours

(Figure 4-6c).
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Figure 4-6. Hypoxia alters HLA-I peptide repertoire. a, A barplot of most presented source

proteins for different hypoxic levels and normoxia. The horizontal axis represents the

individual proteins and the vertical axis displays a cumulative number of peptides for

the corresponding protein. b, A barplot showing the number of identified peptides

from each experimental group. c, Barplots displaying peptide length distribution for all

experimental groups and different cell culturing durations.

4.5. Conclusion

In conclusion, this study provides insights into the effects of hypoxia on antigen processing

and presentation. The proteomic analysis revealed significant alterations in the U-87 GBM

cell proteome under extreme hypoxic stress (0.1% O2), with 361 differentially expressed

proteins compared to normoxia. Metabolic reprogramming emerged as a central adaptation

mechanism, with pathways related to glycolysis/gluconeogenesis, carbon metabolism, amino
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acid biosynthesis, and HIF-1 signaling being highly enriched. Hypoxic stress resulted in the

dysregulation of components of the APM, particularly the downregulation of ERAP enzymes.

Marked elevation of CPA4 was observed under hypoxia. This finding suggests a potential

role of CPA4 in shaping the HLA-I-bound peptide repertoire under hypoxia by cleaving

C-terminal amino acids from proteins before or during proteasomal degradation. Overall, our

results suggest that hypoxia has a complex and multifaceted impact on antigen presentation

in GBM. Future studies are needed to further elucidate the underlying mechanisms and to

identify potential therapeutic targets to overcome hypoxia-mediated immune suppression in

GBM.
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CHAPTER 5: Conclusions and future directions

In conclusion, the three studies presented in this thesis have made significant contributions

to the field of proteomics and immuno-oncology. The first study developed a novel

microscale proteomics method, microPOTS, which can identify and quantify differentially

expressed proteins from limited numbers of cells. This method has the potential to be used

for early detection of cancer and other diseases, as well as for monitoring the response to

therapy. The second study established a simple and precise DIA-MS workflow for proteome

analysis of FFPE tissues. This easy-to-implement workflow can be used to detect and

quantify immune- and GBM-relevant proteins from FFPE patient materials.

The third study investigated the interplay between hypoxia and antigen presentation in GBM

using an integrated approach—combining MS-based proteomics and immunopeptidomics

strategies. The study found that hypoxia induces significant changes in the GBM proteome,

downregulates critical enzymes in the APM, and reduces the HLA-I-associated antigen

peptide repertoire. These findings provide new insights into the mechanisms of immune

escape in GBM, and suggest that targeting the APM components to enhance their

expression under hypoxia may be a promising therapeutic strategy. Future directions for this

research include further development and optimization of these methodologies for

applications in clinical settings. Further investigation of the interplay between hypoxia and

antigen presentation in GBM, including confirming and improving these new findings and

exploring the possibilities of reversing hypoxia-induced downregulation of APM components

as a new immunotherapeutic strategy.
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Appendices

Appendix I: Supplementary material for chapter 2

Supplementary Figure 2-1. Venn diagram illustrating the shared number of identified

proteins among different sample types, as well as proteins that are unique to each sample

type.

Supplementary Figure 2-2. The number of missed cleavages is shown for all replicates and

is expressed in percentage.
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Supplementary Figure 2-3. Qualitative assessment of the reproducibility of the microPOTS

system. Area proportional Venn diagrams illustrate the overlap of the number of identified

proteins among the replicates for each sample type.
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Supplementary Figure 2-4. Quantitative assessment of the reproducibility of the

microPOTS system. The scatter plots illustrate the pairwise comparison of the logarithmically

(base 10) transformed LFQ.

Supplementary Figure 2-5. Scatter plot with associated Pearson’s correlation coefficient (R

= 0.625) between microPOTS and bulk proteomics for all overlapping 1066 proteins that we

identified. Geometric mean normalization was used to normalize the protein intensities and a

coefficient of variation (CV) was computed for each dataset. The vertical and horizontal

coordinates respectively represent the log10 transformed protein intensities for bulk and

microPOTS analyses of CP-A cells. Each dot shows an individual protein and the size of the

dots indicates the ratio of protein intensities for microPOTS versus bulk proteomics

analyses. The color ranges from violet (low CV in microPOTS) to dark blue (high CV in

microPOTS). Color transparency is controlled by the CV values for bulk analysis, with more
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intense color illustrating high CV values while low CV values are more transparent. Proteins

with potential outlier intensity values are labeled on the plot.

Notes 2-1. Sample preparation and LC-MS analysis for bulk proteomics dataset.

Samples were prepared according to filter-aided sample preparation protocol (FASP)80.

Evaporated digests were dissolved in 50 µl of loading buffer composed of 5% acetonitrile

(ACN), and 0.05% trifluoroacetic acid (TFA) in liquid chromatography-mass spectrometry

(LC-MS) grade water. Approximately, 1 µg of peptide sample was loaded into LC fluidics.

Peptide trapping, peptide separation, and data-dependent mass spectrometry were

performed as described by Way et al.258 and Faktor et al.259. Briefly, peptide concentration

and separation were performed on Eksigent Ekspert nanoLC 400 system (AB-SCIEX)

nano-LC system online coupled to TripleTOF 5600+ (AB-SCIEX) mass spectrometer.

Peptide samples were concentrated and desalted on a cartridge trap column (300 µm i.d. x5

mm) packed with C18 PepMap100 sorbent with 5 µm particle size (Thermo Fisher

Scientific). Analytical separation was carried out on a 25 cm fused-silica emitter column with

75 µm inner diameter (New Objective), packed in-house with ProntoSIL C18 AQ 3 µm beads

(Bischoff Analysentechnik GmbH). LC mobile phases were composed of 0.1% formic acid

(FA) in LC-MS grade water (mobile phase A) and 0.1% FA in LCMS grade ACN (mobile

phase B). A gradient starting at 5% B linearly increasing up to 40% B in 120 min with a flow

rate of 300 nL/min was employed to separate peptides prior to their introduction into mass

spectrometer (MS). MS was operated in data-dependent mode, and the top 20 intense

precursor ions were fragmented with an exclusion time set to 12 s. The minimum precursor

ion intensity was set to 50 cps and 100 ms accumulation time per precursor.

Notes 2-2. Bulk data analysis and comparison to microPOTS data.

The Brno dataset was analyzed using the bioinformatics methods implemented in FragPipe

(v14.0). Since the two datasets were generated by different mass spectrometers, we

decided to re-analyze the microPOTS data using the same analysis pipeline to avert any

subtle variation that could have possibly been introduced while using different bioinformatics
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workflows for each dataset. Briefly, MSConvert with peakPicking filter enabled was used to

convert the .wiff and .raw files to mzML file format. Subsequently, the files were loaded in the

FragPipe software, and peptide identification was performed using the MSFragger software

(v3.1.1)194 to search against the reviewed UniProt human proteome database (2020 release

with a total of 20379 reviewed entries). All search parameters were used in their default

setting. For the Brno dataset (AB-SCIEX), the MS1 quantification was performed with

IonQuant activated and m/z window (ppm) and RT window (minutes) set to 30 and 8

respectively. For the microPOTS dataset, the MS1 quantification was performed with

IonQuant activated and m/z window (ppm) and RT window (minutes) set to 10 and 5

respectively. In either case, the Protein quant was set to MaxLFQ. The resulting .tsv file was

imported to the R statistical environment (v4.0.3) for correlation analysis and subsequent

visualization with the ggplot2 package.
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Supplementary Figure 2-6. Assessment of physicochemical characteristics. Distribution of

GRAVY scores of the identified proteins in each sample type.
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Supplementary Figure 2-7. Assessment of physicochemical characteristics. Distribution of

molecular weight (kDa) of the identified proteins in each sample type.
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Supplementary Figure 2-8. Subcellular localization. Distribution of the identified proteins in

various subcellular locations for each sample type.

Supplementary Table 2-1. Median coefficient of variation (CV) for quantile normalized

protein LFQ values for each sample type.
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Supplementary Table 2-2. List of differentially expressed proteins between CP-A dKO cells

with or without LCA treatment. ‡ indicates the ratio between the specific value of expression

intensity of the protein in LCA-treated CP-A dKO cells and untreated CP-A dKO cells. §
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indicates the direction of protein expression, whether upregulation or downregulation. †

indicates proteins that were to be consistently differentially expressed with bulk analyses in

other studies.
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Supplementary Table 2-3. List of differentially expressed proteins between CP-A dKO cells

with or without X-ray treatment. ‡ indicates the ratio between the specific value of expression

intensity of the protein in X-ray-treated CP-A dKO cells and untreated CP-A dKO cells. §

indicates the direction of protein expression, whether upregulation or downregulation. †

indicates proteins that were to be consistently differentially expressed with bulk analyses in

other studies.
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Appendix II: Supplementary material for chapter 3

Supplementary Figure 3-1. Method evaluation. a, A bar plot representing the number of

identified proteins in each tissue section that was analyzed (orange, cello, and mulberry

correspond to 4 µm, 10 µm, and 15 µm sizes, respectively). b, Number of quantified

proteins. c, Area-proportional Venn diagrams illustrating the number and proportion of

overlapping identified proteins for the three methods (M-1, M-2, and M-3) for each tissue

thickness. d, Bar plots showing the proportion of a subset of the gene ontology (GO) terms

for the identified proteins (cello and mulberry correspond to 10 µm and 15 µm, respectively).

Inset, density plots showing the molecular weight (Mw) distribution of the identified proteins

in 10 µm and 15 µm thick GBM tissue sections. The letter n marks the number of proteins.
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Supplementary Figure 3-2. Evaluation of digestion efficiency. Bar plots showing the

proportion of the missed cleavages sites for Method 1, Method 2, and Method 3 for each

tissue thickness (4 µm, 10 µm, or 15 µm). Dark blue, light blue, and red colors represent 0,

1, and 2 missed cleavages, respectively.

Supplementary Figure 3-3. Comparison of protein identifications using different

approaches. a, Bar plots showing the number of identified peptides and proteins with

DDA-MS, DIA-MS in a spectral library mode and DIA-MS in library-free mode. b,

Area-proportional Venn diagram showing the number of proteins shared and distinct

between spectral library and library-free modes.
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Supplementary Figure 3-4. Quantitative comparison of DIA-NN library and library-free

approaches. a, Pearson’s correlation coefficient analysis between two technical replicates for

data processed using a library approach. b, Two technical replicates were combined and

correlated with a third technical replicate for data processed with spectral library approach. c

and d, same as a and b, but with data processed using a library-free approach.

Pearson's correlation coefficient analysis between technical replicates for data processed

with either library or library-free revealed a relatively higher R value for the library than

library-free approach (Supplementary Figure 3-4a, b, c, and d). As illustrated in

Supplementary Figure 3-3, the library-free quantification provided more hits than library

approach. However, the quantification precision based on the transition picked up by

library-free approach seems to be less precise compared to the quantification based on the

transition picked up by library approach. Therefore, we decided to proceed with the data

processed with the spectral library. It is important to note that a thorough comparison of the

quantitative precision of two approaches might be necessary prior to deciding the approach

to use for some data.
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Supplementary Figure 3-5. Comparison of sequence coverage by DDA-MS and DIA-MS. a,

Notched boxplot comparison of sequence coverage between DDA-MS and DIA-MS. The

centerlines show the medians, box limits indicate the 25th and 75th percentiles and the

mean sequence coverage is marked by the asterisks. b, Sequence plot for Interleukin

enhancer-binding factor 2 (ILF2) - Q12905 for DDA-MS analysis showing the percent
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sequence coverage and amino acid position within the ILF2 protein sequence. c, Same as b

but for DIA-MS analysis.

Sequence coverage is the fraction of amino acids covered in the sequence of the identified

protein. Supplementary Figure 3-5a shows the distribution of the sequence coverage for all

the identified proteins using either DDA-MS or DIA-MS. We also compared the sequence

coverage between DDA-MS and DIA-MS using a single protein. For this comparison, we

randomly selected one of the immune-relevant proteins (ILF2) and determined its sequence

coverage in either DDA-MS or DIA-MS data. DIA-MS reported a higher sequence coverage

(37%) for ILF2 compared to DDA-MS, which reported 19% (Supplementary Figure 3-5b,c).

Supplementary Figure 3-6. Global correlation matrix of protein relative expression levels

between samples. The protein intensity level in each sample is compared to intensity levels

in all other samples, and Pearson’s correlation coefficient is calculated, where an R value of

1 and black color indicate a strong positive correlation.
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Supplementary Figure 3-7. Boxplot showing the interpatient CV distribution for the top 20

proteins. Each dot represents a CV that is calculated based on the intensity values of the

individual protein in all tissue sections for the patient in case.

Supplementary Figure 3-8. Scatter plot showing Pearson’s correlation coefficient (R = 0.42)

between DIA-MS (this study) and DDA-MS (CPTAC - Clinical Proteomic Tumor Analysis

Consortium) proteomics data. Protein values were transformed (log10) and subsequently

Z-scored to standardize the data. Each dot represents the expression intensity value of an

individual protein, and the red line indicates the regression line.
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Appendix IV: Supplementary material for chapter 4

Supplementary Figure 4-1. Overview of proteomics data. a, Mirrored bar plots representing

the number of proteins (in black) and peptides (in blue) identified and quantified with

horizontal axis displaying the counts while the vertical axis showing bars fro respective
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samples. b, Scatter plot illustrating data completeness in the entire dataset. c, density plot

showing the abundance distribution of all measured samples.
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