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1 Name and surname

Michał Grzegorz Studziński

2 Diplomas, scientific degrees

1. PhD in Physics – 11.06.2015
Institution: Faculty of Mathematics, Physics and Informatics, National Quantum Informa-
tion Centre, University of Gdańsk, Poland
PhD Thesis: Application of theory of groups and algebras representations to some quan-
tum information processing problems
Supervisor: prof. dr hab. Michał Horodecki
Assistant Supervisor: dr Jarosław Korbicz
Revievers: prof. dr hab. Marek Kuś, prof. dr hab. Andrzej Jamiołkowski
Funding source: International PhD project: Physics of future quantum-based information
technologies, grant MPD/2009-3/4 from Foundation for Polish Science.

2. MSc degree in Astronomy – 01.07.2010
Institution: Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus Univer-
sity in Toruń, Poland
Master’s Thesis: Integrability analysis of rational homogeneous potentials
Supervisor: dr hab. Maria Przybylska
Grade: very good

3. BSc degree in Astronomy – 11.05.2009
Institution: Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus Univer-
sity in Toruń, Poland
Bachelor’s Thesis: Integrability analysis of certain classes of rational homogeneous poten-
tials
Supervisor: dr hab. Maria Przybylska
Grade: very good

3 Information on previous employment in scientific institutions

1. 02.01.2022-present: Adiunkt (permanent position)
Institution: Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Gdańsk,
Poland
Supervisor: dr hab. Marek Krośnicki, prof. UG

2. 01.2019-01.01.2022: Adiunkt (post-doctoral position)
Institution: Faculty of Mathematics, Physics and Informatics/National Quantum Informa-
tion Centre, University of Gdańsk, Gdańsk, Poland
Supervisor: dr hab. Marcin Marciniak, prof. UG/dr hab. Marek Krośnicki, prof. UG

3. 01.01.2016-31.12.2018: post-doctoral researcher
Institution: Department of Theoretical Physics and Applied Mathematics, University of
Cambridge, Cambridge, United Kingdom
Supervisor: prof. Richard Jozsa

4. 06.2015-31.01.2016: post-doctoral researcher
Institution: Faculty of Mathematics, Physics and Informatics/National Quantum Informa-
tion Centre, University of Gdańsk, Gdańsk, Poland
Supervisor: prof. Michał Horodecki
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4 Description of the achievements according to Art. 219 Para 1 Point
2 of the Act

4.1 Title of the achievement

Single-themed series of publications, titled: Groups and algebras representation theory as a tool for
description and construction of novel quantum information processing protocols.

4.2 List of selected publications

The list of publications related thematically (chronological order):

1. Square-root measurements and degradation of the resource state in port-based teleportation scheme
M. Studziński, M. Mozrzymas, P. Kopszak
Journal of Physics A: Mathematical and Theoretical 55 375302 (2022)
IF: 1.996 / MNiSW points: 100
https://arxiv.org/abs/2105.14886

2. Efficient multi-port teleportation schemes
M. Studziński, M. Mozrzymas, P. Kopszak, M. Horodecki
IEEE Transactions on Information Theory 68(12) 7892-7912 (2022)
IF: 2.978 / MNiSW points: 200
https://arxiv.org/abs/2008.00984

3. Optimal Multi-port-based Teleportation Schemes,
M. Mozrzymas, M. Studziński, P. Kopszak
Quantum 5, 477 (2021)
IF: 2.921 / MNiSW points: 140
https://arxiv.org/abs/2105.14886

4. Efficient Classical Simulation and Benchmarking of Quantum Processes in the Weyl Basis,
D. S. França, S. Strelchuk, M. Studziński
Physical Review Letters 126 210502 (2021)
IF: 9.185 / MNiSW points: 200
https://arxiv.org/abs/2008.12250

5. Multiport based teleportation – protocol and its performance
P. Kopszak, M. Mozrzymas, M. Studziński, M. Horodecki
Quantum 5, 576 (2021)
IF: 2.921 / MNiSW points: 140
https://arxiv.org/abs/2008.00856

6. Positive Maps From Irreducibly Covariant Operators
P. Kopszak, M. Mozrzymas, M. Studziński
Journal of Physics A: Mathematical and Theoretical 53 395306 (2020)
IF: 1.996 / MNiSW points: 100
https://arxiv.org/abs/1911.13137

7. Simplified formalism of the algebra of partially transposed permutation operators with applications
M. Mozrzymas, M. Studziński, M. Horodecki
Journal of Physics A: Mathematical and Theoretical 51 125202 (2018)
IF: 1.996 / MNiSW points: 100
https://arxiv.org/abs/1708.02434
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8. Optimal Port-based Teleportation
M. Mozrzymas, M. Studziński, S. Strelchuk, M. Horodecki
New Journal of Physics 20.5 (2018): 053006
IF: 3.539 / MNiSW points: 140
https://arxiv.org/abs/1707.08456

9. Port-based teleportation in arbitrary dimension
M. Studziński, S. Strelchuk, M. Mozrzymas, M. Horodecki
Scientific Reports 7: 10871 (2017)
IF: 3.998 / MNiSW points: 140
https://arxiv.org/abs/1612.09260

10. Structure of irreducibly covariant quantum channels for finite groups
M. Mozrzymas, M. Studziński, N. Datta
Journal of Mathematical Physics 58, 052204 (2017)
IF: 1.488 MNiSW points: 70
https://arxiv.org/abs/1610.05657

5 Presentation of significant scientific activity

My scientific achievements have a form of collective publications. My own contribution has
been described in section I.2 of the enclosed document "List of scientific or artistic achievements
which present a major contribution to the development of a specific discipline", whereas the
contribution statements of other co-authors are enclosed in a separate document "Contribution
Statements". In addition, the following reference convention is used in this presentation:

• the publications which belong to the presented scientific achievement are referred to as
[H1]-[H10],

• other publications co-authored by me, and not included in the achievement are cited as
[P1]-[P15],

• external publications are cited as [E1]-[E107].

5.1 Introduction

The phenomenon of quantum entanglement is believed to be most amazing and eluding
the schemes of classical thinking. That fact was noticed directly after the mathematical princi-
ples of non-relativistic quantum mechanics had been formulated [E1]. Scientists investigating
mentioned quantum-mechanical effects have realized if we could control and apply them it
would open completely new, not accessible for classical implementations areas [E2]. Today we
exploit these findings and develop the theory of secure quantum algorithms [E3, E4], quantum
cryptography [E5] or quantum computing [E6, E7] - we have cited here only a few classical
results. Such promising perspectives of practical implementation of quantum features as a
resource, clearly demonstrate the importance of undertaken efforts to improve the theoretical
comprehension of this phenomenon as well as its experimental implementation, and finally
commercialization which can be observed in today’s boost for developing quantum technolo-
gies. Besides the enormous progress in the field in the last decades, still, quantum information
is a rich area for new and important results, coming from both directions – theoretical and
practical implementations. One way to make the progress in the area can be by exploiting and
developing the mathematical approach. In our case, it was done by considering the internal
symmetries of the considered systems. It is well-known fact, that whenever a system possesses
symmetries of some kind, its description becomes much easier, and frequently closed formulas
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describing its certain properties can be obtained. To identify and exploit underlying symme-
tries we can use a powerful tool which is group and algebra representation theory, which in
most cases allows us to reduce the underlying complexity of the problem. This is the reason
why a deep understanding of abstract tools together with their ’applicable’ translation is so
important.

The aim of this habilitation series is to deliver new advanced mathematical tools arising from
the representation theory and provide new insights on the set of covariant quantum channels and
their applications for problems related to noisy quantum circuits and their classical simulability
and a better understanding of one of the most important primitives in quantum information
exploiting quantum entanglement- quantum teleportation. More detailed motivation for under-
taking such a research program is included in every section dedicated to a certain particular
research task.

All research results have been obtained with close collaboration with Polish and foreign
scientific centers – The University of Wrocław, The University of Cambridge (United Kingdom) and
The University of Copenhagen. Part of the results has been obtained by the applicant during
his postdoc stays at The University of Cambridge (papers [H1],[H2],[H3],[H4]) and at The
University of Gdńsk (papers [H5],[H6],[H7],[H8]). The last two papers [H9],[H10] have been
published after getting a faculty position at The University of Gdańsk.

The detailed achievements of the undertaken research problems in the habilitation series
can be summarised in the list below:

1. Classification and construction of linear irreducibly covariant maps with respect to finite
groups and chosen compact groups. This is covered in the series of two papers [H1], [H5].

2. Developments in randomized benchmarking protocols and classical simulation of quan-
tum circuits by involving new classes of irreducibly covariant quantum channels. This is
covered in paper [H6].

3. Developing novel mathematical toolkit inspired by the Schur-Weyl duality with applica-
tions to develop and describe new covariant quantum teleportation schemes. All devel-
oped tools are spread among papers on port-based teleportation and multi port-based
teleportation schemes [H2], [H10] [H3], and [H9].

4. Group theoretic description of port-based teleportation protocols in every variant and ar-
bitrary dimension of the port, together with detailed efficiency analysis. Description and
analysis of the recycling scheme for the deterministic port-based teleportation scheme.
This is covered in the series of three papers [H3], [H4], and [H9].

5. Construction and efficiency analysis of novel covariant teleportation protocols with mild
correction for transmission of a large amount of quantum information. Investigation on
ultimate limitations imposed on port-based type protocols by quantum mechanics. This
is covered in the series of three papers [H7], [H10], and [H8].

The results regarding mathematical tools and (multi) port-based teleportation schemes have
been presented as contributed talks at the most prestigious annual conference in the field
- Quantum Information Processing (2018: https://qipconference.org/2018/qutech.
nl/qip2018/qip-2018-program-details/index.html, 2021: https://www.mcqst.
de/qip2021/program/friday.html).

5.2 Primer on representation theory used in this summary

To make the material presented in the habilitation series more accessible for readers we
deliver here a short introduction to some aspects of group representation theory. We focus here
only on the main definitions, notations, and theorems used later in this manuscript. For more
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details, we encourage readers to have a look at references within this text or habilitation papers.
The pieces of information contained in this subsection are not original results of the applicant,
except the presentation and some notation.

Let Sn be a symmetric group over a finite set of n symbols (here number of systems). A
permutational representation is a map V : Sn → Hom((Cd)⊗n) of the symmetric group Sn in
the space H ≡ (Cd)⊗n defined by its action on orthonormal basis {|ek〉}d

k=1 of d−dimensional
space Cd:

∀π ∈ Sn Vπ.|ei1〉 ⊗ |ei2〉 ⊗ · · · ⊗ |ein〉 := |ei
π−1(1)
〉 ⊗ |ei

π−1(2)
〉 ⊗ · · · ⊗ |ei

π−1(n)
〉. (1)

Since the representation V is defined with respect to a given basis in the space Cd it is a matrix
representation, and operators Vπ just permute basis vectors according to the given permutation
π ∈ Sn. The representation V naturally extends to the representation of the group algebra C[Sn]
defined as:

C[Sn] ≡ An(d) := spanC{Vπ : π ∈ Sn} ⊂ Hom((Cd)⊗n). (2)

For the further reasons by writing V(a,n) we understand the following operator 11...a...n ⊗ V(a,n)
permuting systems according to the permutation π = (a, n) with suppressed identity. The
identity operator 11...a...n acts on the first n − 1 particles but a. We will use the notion of
suppressing the identity operator whenever it is clear from the context.

To work with irreducible representations (irreps) of the symmetric group Sn we need to
introduce a notion of a partition. A partition α of a natural number n, which we denote as
α ` n, is a sequence of positive numbers α = (α1, α2, . . . , αr), such that α1 ≥ α2 ≥ · · · ≥ αr
and ∑r

i=1 αi = n. Every partition can be visualised as a Young frame which a collection of
boxes arranged in left-justified rows – see panel A in Figure 1. For a fixed number n, the

Figure 1: Panel A depicts five possible Young frames for n = 4 corresponding to all possible abstract
irreducible representations of the group S4. If the representation space is (Cd)⊗4 the only irreps that
appear are those for which the height h(·) (the length of the first column) of the corresponding Young
frames is no larger than d. In particular, when one considers qubits (d = 2) we have only three admissible
frames: (4), (3, 1), (2, 2). Panel B presents all possible Young frames µ ` 4 satisfying relation µ ∈ α for
α = (2, 1). Green squares depict boxes that are added to the initial frame α. On the most right-hand side,
we present all possible Young frames α ` 3 satisfying relation α ∈ µ for µ = (3, 1). Boxes subtracted
from the initial Young frame µ = (3, 1) are shown in red.

number of Young frames determines the number of nonequivalent irreps of Sn in an abstract
decomposition. The set of all Young diagrams, with up to n boxes, is denoted as Yn. However,
working in the representation space H ≡ (Cd)⊗n, when decomposing of Sn into irreps we take
Young frames α whose height h(α) is at most d. This restricts the set of Young diagrams to the
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set of Young diagrams with no more than d rows, and it is denoted as Yn,d. We endow Yn,Yn,d
with a structure of a partially ordered set by setting

α � µ, (3)

if µi ≥ αi for all i = 1, 2, . . . , l. If α � µ we denote by µ/α a skew Young shape, obtained by
removing from the Young frame µ the boxes of the Young frame of α. Now suppose we have
α ` n− 1 and µ ` n. When writing µ ∈ α we mean Young frames µ generated from α by adding
a single box. Similarly, α ∈ µ denotes Young frames α generated from µ by removing a single
box. Panel B in Figure 1 illustrates these processes. The described procedure, of course, can
be generalized to more boxes being added/removed. We use the same symbols µ ∈ α, α ∈ µ
independently from the number k of boxes added/removed, since k will be always clear from
the context. For any α, µ ∈ Yn we say that µ covers α, or α is covered by µ if α � µ and

α � ν � µ, ν ∈ Yn ⇒ ν = α or ν = µ. (4)

In other words, µ covers α if and only if α � µ and µ/α consists of at least a single box. Having
the concept of Young diagram and sets Yn,Yn,d we define Young’s lattice and its reduced
version. The Young’s lattice of Yn is the non-oriented graph with vertex set Yn and an edge
from λ to µ if and only if λ covers µ. The same definition applies to Young’s lattice of Yn,d, but
we remove all Young diagrams with more than d rows. This idea is illustrated in Figure 2.

Figure 2: The Young’s lattice Y6 composed of six consecutive layers labelled by permutation groups
from S1 to S6. By orange and black dashed lines, we depict two possible paths from irrep λ = (1) of S1
to irrep λ′ = (2, 1, 1, 1, 1) of S6. The reduced Young’s lattice Y6,2, i.e. for d = 2 is defined by all diagrams
on the left-hand side of the red line.

We can introduce also the lexicographic ordering in the set of all Young diagrams for fixed
n. Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µl) be partitions of n. The lexicographical ordering
is defined so that if the first i for which µi 6= λi, if any, has µi ≤ λi, then we write µ ≤ λ.
In particular, we use lexicographic ordering for arranging Young diagrams in every row of
the (reduced) Young lattice from Figure 2 and further for labeling rows and columns of the
teleportation matrix described in Section 5.6.1.

Recall the celebrated Schur-Weyl duality [E8, E9], which states that the diagonal action of
the unitary group U (d) of unitary complex matrices and action of the symmetric group Sn on
(Cd)⊗n commute:

[Vπ, U ⊗ · · · ⊗U] = 0, (5)

where π ∈ Sn and U ∈ U (d), and the space (Cd)⊗n can be decomposed as follows:

(Cd)⊗n =
⊕
α`n

h(α)≤d

Hα
U ⊗Hα

S . (6)
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The symmetric group Sn acts non-trivially on the space Hα
S and the unitary group U (d) acts

non-trivially on the space Hα
U , labelled by the same partitions α. From the decomposition

given in equation (6) we deduce that for a given irrep α of Sn, the space Hα
U is the multiplicity

space of dimension mα (multiplicity of irrep α), while the space Hα
S is the representation space

of dimension dα (dimension of irrep α). Every operator commuting with the diagonal action
of U⊗n, due to Schur’s lemma must be proportional to identity on spaces Hα

U and admits
non-trivial parts on spaces Hα

S . Conversely, any operator commuting with the action of the
permutation group Sn is non-trivially supported on irreducible spaces Hα

U . In very irreducible
space Hα

S one can construct an orthonormal irreducible basis {|α, i〉}, where i = 1, . . . , dα, for
example by exploiting Young-Yamanouchi construction [E9, E10]. With the constructed basis
vectors we associate an irreducible basis operators Eα

ij, for i, j = 1, . . . , dα admitting the following
form:

Eα
ij := 1Hα

U
⊗ |α, i〉〈α, j|Hα

S
. (7)

Sine the basis {|α, i〉}dα
i=1 is orthogonal the above operators fulfil the following relations:

Eα
ijE

α′
kl = δαα′δjkEα

il , Tr Eα
ij = δijmα. (8)

From the operators Eα
ij, by using the completeness relation ∑i |α, i〉〈α, i|Hα

S
= 1Hα

S
, we can con-

struct so-called Young projectors Pα on irreducible components labelled by α:

Pα :=
dα

∑
i=1

Eα
ii = 1Hα

U
⊗ 1Hα

S
, PαPα′ = δαα′Pα, Tr Pα = mαdα. (9)

For a given irrep α of Sn operators Eα
ij from (7) and Pα from (9) can be also written in terms of

the permutation operators Vπ defined through (1) that permute subsystems in (Cd)⊗n:

Eα
ij =

dα

n! ∑
π∈Sn

φα
ji(π

−1)Vπ, Pα =
dα

n! ∑
π∈Sn

χα(π−1)Vπ, (10)

where the numbers φα
ji(π

−1) are the matrix elements of the irreducible representation of π ∈ Sn,
and χλ(π−1) = ∑i φα

ii(π
−1) are respective irreducible characters. Of course, the operators from

the above equation satisfy the same composition rules given in (8). Indeed, the operators Eα
ij

span a basis for Hα
S in the space (Cd)⊗n, since for every element Vπ ∈ An(d), we have

Vπ = ∑
α

dα

∑
i,j=1

φα
ij(π)Eα

ij. (11)

Finally, using relations (10) and (11) one can find left (respective right) action of Vπ on the basis
elements:

VπEα
ij =

dα

∑
k=1

φα
ki(π)Eα

kj, Eα
ijVπ =

dα

∑
l=1

φα
jl(π)Eα

il . (12)

The last expressions prove also that the operators Eα
ij span irreducible basis since the action is

closed with respect to distinct α.

5.3 Irreducibly covariant linear maps

In the series of two papers [H1] and [H5] we characterize complete positivity and positivity
of linear maps which are covariant with respect to the action of an irreducible representation
of a finite group. Such maps are called irreducibly covariant linear maps (ICLM). We say that a
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linear map Φ : B(H) → B(K) is ICLM with respect to irreducible representations U(g), V(g)
for a finite group G if for any input operator X ∈ B(H) and for any g ∈ G, we have:

Φ
(

U(g)XU(g)†
)
= V(g)Φ(X)V(g)†. (13)

The seminal results in the characterization of such a class of maps come from Scutaru [E11]. He
proved a Stinespring-type theorem in the C∗-algebraic framework, for any completely positive
linear map which is covariant with respect to a unitary representation of a locally compact
group. However, his result does not give an explicit way of constructing such maps or more
detailed insight into their interior structure. Nevertheless, ICLM maps forming irreducibly
covariant quantum channels (ICQC) have a wide range of applications ranging from solid-
state physics to quantum information science. For example SU(2)-covariant channels were
used to describe entanglement in spin systems [E12] and allow to prove an extended version
of the Lieb-Mattis-Schultz theorem by use of Matrix Product States [E13]. By increasing the
dimension and considering the SU(d) group one can investigate aspects of dimerization of
quantum spin chains [E14]. In quantum information, covariant channels help to analyze the
additivity property of the Holevo capacity [E15] and minimal output entropy [E16, E17, E18,
E19, E20]. The covariance property also allows to prove strong converse properties for the
classical capacity [E21] and entanglement-assisted classical capacity [E22]. They admit also
interesting results in the context of Birkhoff’s theorem [E23, E24] and allow for constructing
new matrix inequalities from the positive cone [E25]. The above discussion and examples
illustrate the relevance of (irreducibly) covariant channels and highlight the importance of
understanding the structure and properties of such channels in more detail and on a more
general level - without referring ourselves to a particular group, so a more systematic approach
to the problem.

In paper [H1] we obtain a detailed mathematical description of quantum channels–completely
positive, trace preserving (CPTP) linear maps–which are irreducibly covariant with respect to
a finite group G in the case in which:

1. the input and the output Hilbert spaces of the channel are the same, i.e. H = K,

2. a particular unitary irreducible representation U is considered,

3. the tensor product U⊗Uc is simply reducible (or multiplicity free), where Uc denotes the
contragradient representation, i.e. for every g ∈ G, Uc(g) = U

(
g−1)T ≡ U(g).

As it was observed in Corollary 15 in [H1] a map Φ which is ICLM must satisfy the following
decomposition:

Φ = lidΠid + ∑
α 6=id

lαΠα : lid, lα ∈ C, (14)

where Πα are orthogonal projectors on irreducible components labelled by α in U ⊗Uc, and
id labels the identity (trivial) representation. For example, by taking G to be the permutation
group Sn the operators Πα are the Young projectors from (9). From the above decomposition,
it is clear that to ensure an ICLM map is ICQC some additional conditions on coefficients
lid, {lα}α 6=id must be established.

To establish such conditions, in the first step, we derive the spectral decomposition of the
Choi-Jamiołkowski image J(Φ) of any linear map Φ which is ICLM. The eigenvalues and
orthogonal projections arising in this decomposition are expressed entirely in terms of repre-
sentation characteristics of the considered group G. Ensuring J(Φ) ≥ 0 yields necessary and
sufficient conditions on the eigenvalues of the linear map Φ, for which it is an ICQC (Theorem
40 in [H1]). In particular, we show that a map is trace-preserving ICLM if and only if lid = 1
(Proposition 25 in [H1]). We also obtain explicit expressions for the Kraus operators of such
channels (Theorem 41 in [H1]). Our derived results are operative conditions when one fixes

9



the group G and considered representation U. Namely, to ensure that a given map is ICQC we
must satisfy a set of linear inequalities with respect to the coefficients in (14) - this, however,
can be done easily at least numerically. This particular result gives a geometrical interpreta-
tion of the set of solutions for which the given irreducibly covariant linear map (ICLM) is an
irreducibly covariant quantum channel (ICQC). Being more formal we show, that all eigen-
values of the Choi-Jamiołkowski image J(Φ) of an ICQC necessarily lie in the intersection of
contracted simplex and certain subspace generated by the matrix obtained by spectral analysis
of the projectors appearing in the decomposition of an ICLM (Proposition 43, Proposition 47
in [H1]).

Developed tools and characterization, which work for any finite, multiplicity-free group G,
allow us to obtain a wide class of quantum channels that are irreducibly covariant by construc-
tion. These results are contained in Theorem 50 in Section 8.1 of the discussed paper. The
construction is based on particular form of the coefficients {lα}α 6=id in (14):

lα =
1
|G|

1
|ϕα| ∑

g∈G
χα(g) f (g), (15)

for some function f : G → C with certain properties. In addition, we provide explicit ex-
amples of ICQCs for certain multiplicity-free groups: the symmetric groups, S(3) and S(4),
and the quaternion group Q. In each case, we present the matrix representation and corre-
sponding Kraus representation of the ICQC. Additionally, apart from the analytical solution,
we illustrate graphically allowed space of parameters form (14) for which considered maps are
ICQC. Next, for the case of S(3) and Q, using the Peres-Horodecki or positive partial transpose
criterion [E26, E27], we also obtain the condition under which the ICQC is an entanglement
breaking channel [E28].

In paper [H5] we investigate linear maps Φ from (13) satisfying conditions 1,2 and 3, but we
relax the CPTP condition of a given map Φ to just its positivity (P). The problem of classification
and constructing new examples of positive maps, even with certain properties, is still an open
and very complex one despite many attempts and important results in the field [E29, E30,
E31, E32, E33, E34, E35, E36, E37]. One of the main obstacles to progress in this field is the
non-existence of a universal operational criterion for positivity. Namely, to prove that a certain
map is positive one has to check for example its block positivity, while to check the complete
positivity of the given map it is enough to compute only all eigenvalues of the corresponding
Choi-Jamiołkowski image, which in principle can be done effectively. Therefore, it is important
to provide new examples of positive maps and methods of their construction that give insight
into the internal structure of the set of maps under consideration.

We start our considerations from the straightforward (from the definition) construction of
positive ICLMs for finite groups. However, such a method obviously can work effectively only
for low dimensions - in our case qubit case. We constructed positive maps for two-dimensional
irreps of the symmetric group S(3) and the quaternion group Q. In addition, we show that
any qubit ICLM positive map can be decomposed as a sum of CP and CoP (co-positive) map,
which are also ICLM.

To rid of the necessity of checking the block positivity of the resulting Choi-Jamiołkowski
image we developed a novel method of construction. This method is based on results contained
in [P1] and exploits the concept of the inverse reduction map R−1 ∈ End[M(d,C)] [E38, E39]:

∀X ∈ M(d,C) R−1(X) =
Tr(X)

d− 1
1− X. (16)

To construct new families of ICLMs we exploit Theorem 15 from [H5] which is an adaptation
of Theorem 1 from [P1]. In the first step, we define an operator W := (1 ⊗ Φ)P+

d , for some
linear map ICLM Φ, and we demand it is a non-positive operator. This ensures that the cor-
responding map for sure is not a CPTP map. In fact, the operator W is nothing else but the
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Choi-Jamiołkowski image of Φ (we keep here the original notation for simplicity). Next, we
demand that operator W̃ = (1⊗ R−1)W is a positive operator - this ensures the block positivity
of the map Φ under investigation, according to mentioned Theorem 15. Since, the map Φ is
ICLM map it must admit decomposition (14), so due to the results contained in [H1], condi-
tions on positivity (negativity) of the corresponding Choi-Jamiołkowski images of an ICLM can
be written as a set of linear inequalities with respect to the unknown coefficients lid, {lα}α 6=id
from (14) - see Corollary 17 from [H5]. Using discussed here approach we construct positive
maps induced by three-dimensional irreps of the symmetric group S(4) and representations
of the group MU(d, n), which is a subgroup of the monomial unitary group MU(d), where
n is a natural parameter. In particular, we show that the region of parameters for an ICLM
map generated by MU(3, n), for which the map is positive, contains a positivity region for
the generalized Choi map [E40]. What is more, the positivity region for MU(3, n) is substan-
tially larger. This result allows us to treat the generalized Choi map as a positive ICLM for
MU(3) group. For MU(d, n) we were able also to calculate the region of positivity directly by
checking positivity of the corresponding Choi-Jamiołkowski image on product vectors. This
of course extends significantly range of parameters lid, {lα}α 6=id for which the considered map
is positive with respect to the method based on the inverse reduction map. The results re-
garding the MU(d, n) group can be of separate interest, since maps generated by them have
been used to generalize randomised benchmarking protocols [E41], in the particular case where
considered gate set are elements of a finite group, but they do not form 2-design. Moreover,
the group MU(d, n) contains as an element T−gate [E42], which together with Clifford gates
forms the universal set for quantum computations, and the considered group is used in certain
aspects have been used in many-body state theory [E43]. The connection between randomised
benchmarking protocols and ICLMs motivated us for the further studies in this are which are
discussed in the next section of this summary.

Our last contribution is dedicated for studies between celebrated Fujiwara-Algolet condi-
tions [E44] and irreducible unital quantum channels with respect to quaternion group Q. We
have proven that every unital qubit quantum channel can be expressed as a quantum channel
irreducibly covariant with respect to the 2-dimensional irrep of the quaternion group. This
final result is contained in Proposition 35 of [H5]. In fact our result works also for unital posi-
tive maps, giving somehow unification of all unital maps in this regime in a form of geometric
constraints.

5.4 Efficient benchmarking protocol and classical simulation of quantum processes
in the Weyl basis

Noise in experimental and practical implementations of quantum technologies is unavoid-
able due to interaction with the environment. Identifying its sources and efficient diagnostic of
caused errors in the process of quantum evolution is one of the crucial steps in building a scal-
able quantum computer. Different implementations come with multiple hardware-dependent
sources of noise and decoherence making the problem very complex. So far many different
noise diagnostic methods have been developed: randomised benchmarking [E45, E46, E47,
E48], state and channel tomography [E49, E50], gate set tomography [E51] or direct fidelity
estimation [E52]. Generally, different tools for noise diagnostic in quantum circuits, so also
in potential quantum computers, have different regions of applicability and require different
costs.

In paper [H6] we introduce an approach to randomised benchmarking and classical simu-
lation of quantum circuits that relies on Weyl unitaries. For the first time, our model enables
us to identify a number of error models (including their mixtures) which works both for qubit
and higher dimensional systems. In particular, we focus on experimental motivated models
of noise: depolarising, dephasing channel, and noise models including over-rotations affecting
the implementation of a given gate. The protocol is robust to the so-called state preparation
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and measurement (SPAM) errors and scalable with the system size under a natural assumption
that the noise is local, without no further assumptions about the circuit structure. Presented
results significantly extend works [E53, E54].

In the same paper, we applied the developed randomised benchmarking algorithm to sim-
ulate the outputs of quantum circuits on a classical computer. Having a quantum circuit with
a known noise profile, we derive an analytic bound on the sufficient number of samples re-
quired to classically estimate the circuit output up to a given precision. In other words, we
can establish a non-trivial computable bound on the gate noise that needs to be added to each
gate in the circuit in order to render it classically and efficiently simulatable. The developed
in [H6] tools do not depend on the geometry of the circuit and the particular structure of the
gate set. These features differ us from preexisting methods [E55] and can be used to bound the
classical simulation complexity of a wide range of quantum devices used for example in the
VQE regime and near-term devices in general [E56, E57, E58].

Mathematically, when implementing a known unitary U acting on n qudits, the resulting
transformation, due to noise (error) effects described by channelN , is modeled by the quantum
channel N ◦ U , where U is the channel which corresponds to conjugation with U followed by
N . One of the main goal is to learn (estimate) parameters describing given noise channel N
and it can be achieved by studying randomised benchmarking protocols.

Our benchmark protocol makes use of Weyl-Heisenberg unitaries {W(a,b)}d−1
a,b=0, which present

the generalization of the Pauli matrices in higher dimensions. They are defined as W(a,b) =

ZaXb, where X ∈ U(d) is the shift unitary, and Z ∈ U(d) is the phase unitary mapping. We
work with systems consisting of n qudits, then W(a,b) := W(a1,b1) ⊗W(a2,b2) ⊗ · · · ⊗W(an,bn) is a
basis of the space M(dn,C), where (a, b) ∈ (Zd)

2n.
As we pointed out, many practically relevant noise models, such as (local) dephasing or

(local) depolarising channels, are diagonal in the Weyl operator basis. They are elements of a
wider set of Weyl diagonal channels and denote them as T . For any d ≥ 2 they can be represented
as convex combinations of conjugations with the Weyl operators [E59], [E60, Chapter 4]:

T (A) = ∑
(a,b)∈(Zd)2n

p(a, b)W(a,b)AW†
(a,b), (17)

where p(a, b) is a probability distribution on (Zd × Zd)
n, and A is an arbitrary operator. It

is clear that channels from (17) belong to the class of irreducibly covariant quantum channels
discussed in Section 5.3 of this summary, and we present a novel application of the discussed
previously class of maps. Since the considered models of noise are Weyl diagonal channels to

fully describe them is enough to learn their diagonal elements
〈
T
〉(a,b)
(a,b) in the Weyl basis. We

achieve this by introducing and implementing the protocol consisting the following steps:

Weyl randomized benchmarking (WRB) protocol

Input: (a, b) ∈ (Zd)
2n corresponding to the diagonal element we wish to learn and a

sequence length m. Initial state ρ and POVM element E on n qudits.
Output: complex number y.

1. Draw a random (a0, b0) ∈ (Zd)
2n, apply W(a0,b0) followed by a sequence W̄ =

(W(a1,b1), . . . , W(am,bm)) of uniformly random local Weyl unitaries on the n qudits
interspersed with the (noisy) unitary U.

2. Apply W̄†.
3. Measure the state with a POVM {E, 1− E}.
4. When E is measured, output y = χ(a,b)(a0, b0) = exp(i 2π

d 〈(b,−a), (a0, b0)〉) Else,
output y = 0.
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By selecting different sequence lengths and performing an exponential fitting one gets an

estimate of the diagonal µ(a, b) =
〈
T ◦ U

〉(a,b)
(a,b) in the Weyl basis. The knowledge about µ(a, b)

and the fact that T is Weyl diagonal makes it sufficient to estimate the noise parameters be-

cause in this case: µ(a, b) =
〈
U
〉(a,b)
(a,b)

〈
T
〉(a,b)
(a,b). This completely characterizes T whenever the

diagonal of the unitary is nonzero. The maximal sequence length is determined by the spec-
tral gap λ of the considered quantum channel. In fact, the parameter λ−1 is a measure of
the depth at which the noise clearly manifests itself. Theorem 2 of paper [H6] states that for
arbitrary ε > 0 noise parameters µ(a, b) can be estimated with probability δ by performing
M = O(ε−2 log(δ−1 log(1− λ)−1)) Weyl randomized benchmarking experiments each contain-
ing at most Mmax = O(λ−1) gates in the sequence. The parameter λ−1 can be determined
using the initial knowledge for the range for noise parameters reported by the manufacturer
by combining this information with a standard technique called hyper-parameter grid search.
However, our protocol is not limited only to diagonal channels in the Weyl basis. Namely, with
access to a suitable noiseless Clifford gate, our protocol can be applied also for any off-diagonal

elements
〈
N
〉(a1,b1)

(a2,b2)
of any channel N represented in the Weyl basis. In this case we also prove

the analogue of the mentioned theorem (Theorem 2 in the supplementary materials of [H6]).
In particular, these can identify the parameters of other noise models including over-rotations.

In the same paper [H6] we make use of the information about noise in the circuit to bound
its classical simulation complexity. Being more strict, we work in the regime of the weak
simulation. It means that for a given observable E, one can classically simulate (noisy) circuit
CB = N (N) ◦ · · · ◦ N (1) acting on a product input state ρ, if we can estimate Tr(σE) classically
up to an additive error ε > 0, where σ = CB(ρ). In our work we constructed such circuit
sampling algorithm, based on `1 sampling of matrices and vectors, that exploits the results of
the randomised benchmarking test, and works for noisy quantum circuits in continuous and
discrete time.

Circuit sampling algorithm

Input: noisy quantum circuit specified by quantum channels N (1), . . . ,N (N), initial quan-
tum state ρ and observable E.
Output: number x s.t. E(x) = Tr(Eσ).

1. Sample (a0, b0) from the distribution p0.
2. For k = 1, . . . , n: Sample (ak, bk) from pk(ak+1, bk+1|ak, bk)

3. Output x given by

x = sign(ρ(a0, b0))‖ρ‖`1 E(an, bn)×
N

∏
k=1
‖N (k)(ak, bk)‖`1 sign(

〈
N (k)〉(ak ,bk)

(ak+1,bk+1)
)

In Theorem 1 of [H6] we prove that indeed the algorithm samples from the true distribution,
and we give the number of samples required to be ε−close to the empirical expectation value.
We illustrate how to apply our results to simulating local quantum circuits and VQE ansatze.
When the quantum noise channels in the circuit are local and the initial state and observable
are product, then the complexity of our sampling algorithm scales polynomially. Curiously,
whenever we encounter Clifford gates in the circuit, they do not increase the sample complexity
of the algorithm because they act as signed permutations in the Weyl basis. We also extend our
sampling algorithm to the case of quantum circuits that made up of quantum channels of the
form etL, where L is a Lindbladian (Section VII of the supplementary materials in [H6]).

Summarising, our results offer tools for both practitioners – by giving them the ability to
benchmark and learn a range of complex noise models, and for the theorists – by providing
a computable upper bound on the computational power of the noisy quantum devices with a
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clear operational interpretation.

5.5 Contribution to representation theory

Another main ingredient of the habilitation series is developments in the representation
theory of the group algebra C[Sn] ≡ An(d) and the algebra of partially transposed permutation
operators A(k)

n (d) over last k systems:

A(k)
n (d) := spanC{V

(k)
π : π ∈ Sn} ⊂ Hom((Cd)⊗n), (18)

where (k) is short notation for composition of partial transpositions tn ◦ tn−1 ◦ · · · ◦ tn−k+1 with
respect to systems n, n − 1, . . . , n − k + 1. Sometimes, in the literature the algebra A(k)

n (d) is
referred as permutation’s partial transpose algebra [E61]. It turns out that the elements of the
algebra A(k)

n (d) are matrix representations on the space (Cd)⊗n of defined elsewhere abstract
Walled Brauer Algebra (WBA) [E62, E63, E64]. Every element from the algebra A(k)

n (d) satisfies
a similar relation to (5), namely we have

[X, U⊗(n−k) ⊗ · · · ⊗U⊗k
] = 0, ∀X ∈ A(k)

n (d), (19)

where the bar denotes complex conjugation. We say that an operator X satisfying relation (19)
possesses partial symmetry, contrary to operators commuting with the diagonal action of n−fold
tensor product of unitaries in (5). We see that every operator possessing partial symmetry can
be written as a linear combination of partially transposed permutation operators. Conversely,
every operator written in terms of operators V(k)

π satisfies the relation (19). This means we have
a situation similar to the Schur-Weyl duality, and we expect an analogous decomposition of the
space (Cd)⊗n to this from (6):

(Cd)⊗n =
⊕

ξ

Hξ
U ⊗H

ξ
WBA, (20)

where the direct sum runs over all nonequivalent irreps of the considered algebra. The labeling
of the irreps is known due to the earlier papers, see for example [E65, E64] and references
within. In fact, it was shown that every ξ labelling irreps is a double index ξ = (α, µ), where
α ` n− k, and µ ∈ α is obtained by adding k boxes to α. Our goal is to find irreducible matrix
elements of objects arising from the matrix algebra A(k)

n (d), i.e. find irreducible matrix basis,
allowing us for representing operators on Hξ

WBA and effective computations, for an arbitrary
number of systems n, number of partial transpositions k, and dimension d.

In the case of d = 2, we have the relation U = σyUσy, where σy =

(
0 − i
i 0

)
is a Pauli matrix.

This relation defines an isomorphism between two discussed here algebras A(k)
n (2) and An(2).

For any other d > 2, we do not have the mentioned isomorphism and the new algebra A(k)
n (d)

is no longer a group algebra as it is for An(d). It is very easy to see in the simplest case when
k = 1, i.e. when partial transposition acts on the last n−th system. Namely, let us consider
permutation operators Vπ ∈ An(d) for π = (a, n), then it is clear that VπV†

π = 1. However,
taking Vtn

π ∈ A(1)
n (d) ≡ A′n(d), we have Vtn

π (Vtn
π )† = dVtn

π = d2P+
an, where the operator P+

an is
bipartite maximally entangled state. This property makes the considered algebra structurally
very different from the algebra An(d) and makes our further analysis more complex. In fact,
the direct application of the standard methods from the representation theory of the group
algebra of the symmetric group Sn is insufficient here, and a new approach must be developed.
However, from the general theory, we know that every finite-dimensional C∗−algebra is a direct
sum of matrix algebras and consequently is a semi-simple algebra. Of course, the algebra
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A(k)
n (d) with the hermitian conjugation † forms a C∗−algebra and it is semi-simple algebra

for any value of n and d. This means one can decompose it into direct sums of minimal
(irreducible) matrix ideals Mξ :

A(k)
n (d) ∼=

⊕
ξ

Mξ with Mξ = spanC{F
ξ
ij : Fξ

ij F
θ
kl = δξθδjkFξ

il}. (21)

Our primary goal is to identify irreducible ideals Mξ and construct irreducible basis operators
Fξ

ij .
Chronologically, a practical tool kit for irreducible representation formalism for the algebra

A(k)
n (d) has been developed for k = 1 first, and then developed for an arbitrary k. What is more,

all the results in this area have been obtained over many years in a series of papers [H3, H9, H2,
H10], not always fully dedicated to purely mathematical considerations - most of the papers
are dedicated to quantum teleportation protocols. Here, however, to make this summary more
transparent we resign from presenting the results in this area in chronological order. Instead
of this, we discuss an arbitrary k ≥ 1, giving respective comments for the special case of k = 1.
It is also important to stress here that part of the work regarding the case k = 1 has been done
by the applicant during his PhD studies [P3, P4]. However, the approach developed there is
different and of small practical use – this is well explained in Section 2.3 and Section 3 of [H2].

For clarity of further presentation, we start with a short summary of the main contribution
contained in the papers from the habilitation series:

1. In paper [H10] we present effective tools for computing partial traces over an arbitrary
number of systems from the irreducible operator basis in every irrep of Sn emerging from
the Schur-Weyl duality. Additionally, we prove novel orthogonality rules for Sn motivated
by the celebrated Schur orthogonality relations [E66]. In particular, we are talking here
about Proposition 6, Lemma 9, and Corollary 10 from the mentioned paper. These results
on this level of generality extend the results from [E10, E67] for Pµ and they are genuinely
new for the operators Eµ

kl . We write more about these result in Section 5.5.1.

2. In papers [H3, H10, H2] we use the connection that the algebra A(k)
n (d) of partially trans-

posed permutation operators is in fact the matrix representation of the Walled Brauer
Algebra on the space (Cd)⊗n. This connection, due to [E65], gives us all the ideals of
the considered algebra (but not minimal), shows how they are nested, and presents the
connection with the irreps of the symmetric groups Sn−k and Sn−2k. These results give
us a tool for constructing an irreducible matrix basis of the Walled Brauer Algebra on
the space (Cd)⊗n, which is the first result of such kind in the literature. In particular, we
identify the ideal, which is the main object for further understanding (multi) port-based
teleportation schemes. This identification is implied by the symmetries exhibited in our
new teleportation protocols discussed in Section 5.6.

3. Using constructed basis we find irreducible matrix elements of the basic objects for our
study - namely, the permutation operators partially transposed on last k systems, as well
permutation operators belonging to Sn−k, when the partial transposition does not change
the initial operator. This part is also summarised shortly from the technical point of view
in Section 5.5.1.

Obtained results are a non-trivial extension of the tools used in the Schur-Weyl duality
to the case when one has to deal with symmetry of a different type (partial symmetry) –
U⊗(n−k) ⊗U⊗k, where the existing tools cannot be applied straightforwardly. We deliver tools
for studying and understanding the Walled Brauer Algebras on the most friendly level for
potential applications - irreducible matrix representation. These tools allow us for effective
calculations of compositions and partial traces of operators exhibiting partial symmetries which
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we exploit in the description of quantum teleportation protocols in the next sections, but not
only.

It turns out that the considered commutant and the general theory of the Walled Brauer Al-
gebra play a non-trivial role in many other aspects of physics. In antiferromagnetic systems, the
representation theoretic approach based on WBA reduces the complexity of the numerical di-
agonalization of the considered Hamiltonians [E68]. Our tools, in principle, can allow for more
analytical treatment of this problem, possibly leading for further simplifications. Elements of
the WBA theory can be also successfully applied to certain aspects of particle physics [E69]
and gravity theories [E70, E71], where again representation approach leads to simplifications
in analytical considerations. The analysis presented here can be also applied in the field of
quantum information theory - besides considered here quantum teleportation protocols. In
fact, one could use the theory of the matrix representation of WBA for studying and char-
acterizing PPT property of multipartite quantum states, in the spirit of the seminal paper by
Eggeling and Werner [E72]. Next, one could try to analyze ICLM, and their k−positivity, which
are generated by the considered here algebra [E73, E74, E25]. In particular, restricting ourselves
to ICQC we could construct new examples of new quantum channels for which the minimum
output Rényi entropy is not additive [E75]. The first step in this direction, of constructing
ICQC has been done in [E76], where the authors consider Temperley-Lieb quantum channels.
Having a solid mathematical toolkit we are in a position for the full algebraic description of
the universal M → N quantum cloning machines. For the case, 1 → N it was done partially
in [P2] and recently extended in [E77]. In principle, one could also try to apply our tools to
obtain tighter bounds on the worst-case entanglement fidelity for approximate covariant er-
ror correction codes [E78, E79, E80], which could have implications for fault-tolerant quantum
computing or some aspects of the AdS-CFT duality [E81]. Finally, using developed methods
we could analyze higher-order quantum operations. In particular, motivated by [E82, E83], we
could construct quantum combs producing transposition of unknown unitary operation when
one has access to its k uses. This wide range of selected topics shows a huge potential for
developed by us mathematical tools for applications in other problems of modern physics and
mathematics and clearly proves that they were not tailored only for one particular application.

5.5.1 The algebra of partially transposed permutation operators - technical summary

This section contains a compressed technical summary of the main results regarding the
representation theory of the algebra of partially transposed permutation operators A(k)

n (d) con-
tained in the series of papers [H3, H2, H10]. We start by introducing the notion of partially
irreducible representations (PRIR) for easier computations of partial traces and compositions of
operators with the partial symmetries, which is a matrix approach to the Gelfand-Tsetlin con-
struction [E9] in the case of the symmetric group. First, we have to clarify the introduced and
used by us notation. Namely, let us take µ ` n and α ` n − k, for k < n. By index rµ/α we
denote a path on Young’s lattice from diagram µ to α. This path is uniquely determined by
choosing a chain of covered Young frames from µ to α, differencing by one box in each step:

rµ/α = (µ, µn−1, . . . , µn−k+1, α), and µ 3 µn−1 3 · · · 3 µn−k+1 3 α. (22)

In particular, it means that every basis index iµ, labeling matrix elements of φµ, can be written
uniquely using a path on Young’s lattice as

iµ ≡ (rµ/α, lα), α ∈ µ, (23)

where lα denotes now index running only within the range of the irrep α. Additionally, by
writing δiµ jν , where µ ` n and α ` n− k, we understand the following

δiµ jν = δrµ/α r̃ν/β δlα l′β
= δµνδµn−1νn−1 · · · δµn−k+1νn−k+1 δαβδlα l′β

. (24)
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Using the introduced convention, we can illustrate the matrix approach to the Gelfand-Tsetlin
construction (PRIR). Namely, any irrep φµ of Sn can be always unitarily transformed to PRIR
with respect to subgroup Sn−k ⊂ Sn in the following way

∀σ ∈ Sn−k φ
µ
R(σ) =

(
δrµ/α r̃µ/β ϕα

iα jα(σ)
)
=
⊕
α∈µ

ϕα(σ), (25)

where indices iα, jα run from 1 to dimension of the irrep α. The off-diagonal blocks are zero
blocks and they need not to be square. However, for an arbitrary σ ∈ Sn the form of the
resulting decomposition (25) with respect to subgroup Sn−k is more complex since we have
non-zero off-diagonal blocks:

∀σ ∈ Sn φ
µ
R(σ) =

(
(φ

µ
R)

rµ/α ,̃rµ/β

iα jβ
(σ)
)

, (26)

where again the matrices on the diagonal are of the dimension of the corresponding irrep ϕα

of Sn−k. Having the notion of the PRIRs we prove the first main technical results contained
in Lemma 9 and Corollary 10 of [H10] regarding the partial trace over operators Eµ

ij and Pµ

from (10):

Tr(k) E
rµ/β r̃µ/β′

iβ jβ′
=

mµ

mβ
Eβ

iβ jβ
δrµ/β r̃µ/β′

, Tr(k) Pµ = ∑
β∈µ

mµ/β

mµ

mβ
Pβ, (27)

where we use simplified notation for partial trace over last k systems Tr(k) = Trn−2k+1,...,n−k.
These results are used later in the construction of the irreducible operator basis for the con-
sidered algebra A(k)

n (d). In this algebra, for the reasons motivated by (multi) port-based tele-
portation protocols, and described in further sections, we distinguish a particular partially
transposed permutation operator:

V(k) := Vtn
(n−2k+1,n)V

tn−1
(n−2k+2,n−1) · · ·V

tn−k+1
(n−k,n−k+1), (28)

which is the composition of disjoint partially transposed transpositions represented on the
space (Cd)⊗n. Our primary goal was to construct an irreducible matrix operator basis for a
two-sided ideal generated by the element V(k) from (28) and elements of the algebra A(k)

n (d):

M := {VτV(k)V†
τ′ | τ, τ′ ∈ Sn−k} ⊂ A

(k)
n (d). (29)

Having worked out expressions for partial trace over an arbitrary number of particles from
irreducible basis operators of the symmetric group (27), we have constructed an irreducible
matrix basis for the idealM. This is one of the main result concerning mathematical tools and
is contained in Theorem 11 of [H10]:

F
rµ/αrν/α

iµ jν =
mα√mµmν

E
rµ/α

iµ 1α
V(k)Erν/α

1α jν , (30)

where mµ, mν and mα are multiplicities of respective irreps of Sn−k and Sn−2k in the Schur-Weyl
duality. Additionally, the above-defined operators satisfy the following composition rule

F
rµ/αrν/α

iµ jν F
rµ′/βrν′/β

kµ′ lν′
= δrν/αrµ′/β δjνkµ′

F
rµ/αrν′/α

iµ lν′
. (31)

The results contained in (30) and (31) are the analogue of the irreducible matrix basis Eα
ij given

in (10), with orthogonality relations (8), for the group algebra An(d) on the space (Cd)⊗n. The
first attempt for the construction of the irreducible matrix basis operators has been done for
k = 1 in paper [H2] in Theorem 38. In this paper, we have made a crucial in understanding
the general theory of A′n(d) presented by the Author earlier in his scientific career in [P3, P4].
Namely, we rid of certain technical problems which make direct applications of the developed
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tools, even for k = 1 very complex. In particular, we can mention here the necessity of choosing
non-zero elements of the operators spanning the algebra An(d), which can be done in principle
for fixed n and d, but it fails in the general considerations - see Theorem 12 and Remark 13
in [H2]. Additionally, all very complex expressions for objects describing the algebra A′n(d)
by using the concept of the reduced representation can be simplified significantly - Section 4
of [H2]. Despite the progress which has been made, for higher k further analysis was necessary
which is presented in paper [H10].

Going further, in the same Theorem 11 from [H10], we prove that the generating element
V(k) of the idealM can be written in terms of the operators from (30), which is relation similar
to (11):

V(k) = ∑
µ,ν

∑
rµ/α ,̃rν/α

∑
lα

√mµmν

mα
F

rµ/α r̃ν/α

lα rµ/α r̃ν/α lα
. (32)

This particular result is a generalization of Theorem 38 in [H2] for an arbitrary number of par-
tial transpositions k. This relation, together with properties of the irreducible matrix basis for
An(d) allows us to prove Lemma 12 from the discussed paper, in which we evaluate respective
left actions of the basis operators:

F
rµ/α rν/α

kβ rµ/β rν/γ lγ
V(k) = ∑

µ′
∑

rµ′/γ

√mνmµ′

mγ
F

rµ/γ rµ′/γ

kβ rµ/β rµ′/γ lγ
δrν/αrν/γ (33)

and
F

rµ/α rν/α

kβ rµ/β rν/γ lγ
Vτ = ∑

kν

φν
jνkν

(τ)F
rµ/αrν/α

iµ kν
(34)

where φν
jνkν

(τ) are the matrix elements of Vτ for τ ∈ Sn−k, which can be evaluated using
relation (11). These results allow us to derive expressions for irreducible matrix elements of the
objects in interest (Lemma 13 in [H10]):(

V(k)
) rµ/α rν/α

kβ rµ/β rν/γ lγ
= δkβ lγ δrµ/αrµ/β δrν/αrν/γ

√mµmν

mα
, (35)

and

(Vτ)
rµ/αrν/α

iµ jν = δrµ/αrν/α δiµ jν

√
mµ

mν
∑
kµ

φ
µ
kµiµ

(τ), (36)

As we can see the elements from (35) and (36) are connected with the parameters describing
irreps of the symmetric groups Sn and Sn−2k. We also construct a set of projectors, which
are the analog of the Young projectors given in (10). Every such projector in its action pro-
duces restriction to irreducible blocks of the algebra A(k)

n (d) in the ideal M (see Definition 15
in [H10])):

∀α ∀µ ∈ α Fµ(α) := ∑
rµ/α

∑
kµ

F
rµ/αrµ/α

kµ kµ
. (37)

This kind of operators have been firstly defined for k = 1 in Theorem 1 of paper [H3] in
the context of port-based teleportation schemes. Moreover, the operators satisfy orthogonality
rules, similar to these in (9), in indices α, µ, see Lemma 15 in [H10]. Namely, we have

Fµ(α)Fν(β) = δµνδαβFµ(α). (38)

Further, we will see that these projectors play a central role in the description of the measure-
ments in the multi port-based teleportation schemes. Motivated by their applications we prove
a series of more technical lemmas and facts in the spirit of the relations given through (27).
In particular, the main results are contained in Lemma 18, Lemma 19, and Lemma 21 of pa-
per [H10]. Since we do not describe here in detail all the proofs concerning teleportation
schemes, so we decided not to list these expressions here explicitly.
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5.6 Variants of port-based teleportation schemes

The port-based teleportation (PBT) protocol was introduced in 2008 by Hiroshima and
Ishizaka in a series of two papers [E84, E85]. Its breakthrough relies on the fact that the receiver
does not need to apply a correction on his/her side to recover the transmitted quantum state,
contrary to the teleportation protocol proposed in 1993 by Bennett et al in [E86]. The lack of the
last step led to novel applications of PBT in the areas where the ordinary teleportation scheme
is not applicable.

First important result is providing a new architecture for the universal programmable quan-
tum processor, performing computation by teleportation [E7, E87, E84, E85]. PBT schemes were
used effectively in position-based cryptography to engineering protocols for instantaneous im-
plementation of measurement and computation. This application resulted in new attacks on
the cryptographic schemes, reducing the amount of resource in the form of consumable entan-
glement from doubly exponential to exponential [E88]. The qubit PBT schemes have found a
connection with the field of communication complexity and a Bell inequality violation [E89].
This completely new approach allowed to show that for any quantum advantage in commu-
nication complexity, there exists a way of obtaining measurements statistics that violate some
Bell inequality, so there is a deep and general connection between non-locality and quantum
advantage in communication complexity. The qubit PBT can be also interpreted as a universal
simulator for qubit channels [E90] improving simulations of the amplitude damping channel.
Extending PBT protocols to so-called PBT stretching allows to obtain limitations of the fun-
damental nature for quantum channels discrimination [E91]. Recently, aspects of PBT play
a role in the construction of universal quantum circuits for inverting general unitary opera-
tions [E92, E82], theory of storage and retrieval of unitary quantum channels [E93], and even
they are used in the context of AdS/CFT duality [E94]. This wide range of applications and
the possibility of further developments in many problems of the modern quantum information
theory motivates us to study the PBT protocol in all its variants in more detail, especially in the
higher dimensional case.

In all versions of PBT sender (Alice) and receiver (Bob) share N pairs of maximally entan-
gled states, each called a port, see the right-hand side graphic of Figure 3. The collection of all
shared entangled states (ports) we will call here as the resource state and its of the form

|Ψ〉AB = (OA ⊗ 1B)|Ψ+〉AB = (OA ⊗ 1B)|ψ+〉A1B1 ⊗ |ψ
+〉A2B2 ⊗ · · · ⊗ |ψ+〉AN BN , (39)

where A = A1A2 · · · AN , B = B1B2 · · · BN , and OA, with normalization constraint Tr(O†
AOA) =

dN , is a global operation applied by Alice to increase the efficiency of the protocol [E85,
E95], [H3, H4]. In non-optimal PBT OA = 1A, while for the optimal scheme, its explicit
form is known and discussed in [E85], [H4]. Alice to send to Bob an unknown state ψC of
a particle applies a joint measurement ΠAC

i on her halves of the ports and on the state to be
teleported, getting a classical outcome 1 ≤ i ≤ N, transmitted further by a classical channel
to Bob. This classical message indicates the port on which the teleported state arrives and no
further correction is needed. We can distinguish two variants of the protocol:

• Deterministic protocol (dPBT): An unknown quantum state ψC is always transmitted to
the receiver but the transmission is imperfect. The teleportation channel N in general
situation can be expressed as:

N (ΨC) =
N

∑
i=1

TrAC

[
ΠAC

i

((
OA ⊗ 1B̃

)
σAi B̃

(
O†

A ⊗ 1B̃

)
⊗ ψC

)]
, (40)

where by TrAC denotes partial trace over all systems AC but B̃. The states σAa B̃ are called
signal states and have the following explicit form

σAi B̃
:= σi :=

1
dN−1 1Ai

⊗ P+
Ai B̃

, (41)
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Figure 3: The left panel presents a schematic description of the standard quantum teleportation proce-
dure introduced in [E86]. In this scheme, the receiver to recover the transmitted state must apply unitary
correction which depends on the classical message send by the sender. In the right panel, we present
a schematic description the port-based teleportation protocol [E84, E85]. Here, on the contrary to the
standard teleportation scheme, parties share N maximally entangled pairs (ports), and the receiver to
recover the transmitted state must just pick up the right port according to the classical message sent by
the sender. No correction is needed here, however, due to no-programming theorem [E96] transmission
is not perfect, resulting with the fidelity of teleportation smaller than 1. The perfect transmission is
possible only in the asymptotic scenario when N → ∞.

where P+
Ai B̃

is projector on maximally entangled state between systems Ai and B̃. To
learn about the quality of the protocol we check how well one can transmit quantum
correlations. It means we compute the entanglement fidelity F(N ) between the output of
the teleportation channel N when teleporting a subsystem C from a maximally entangled
state P+

CD, and the state after perfect transmission P+
B̃D

:

F(N ) = Tr
[

P+
B̃D

(NC ⊗ 1D)(P+
CD)

]
=

1
d2

N

∑
i=1

Tr
[(

O†
A ⊗ 1B̃

)
ΠAB̃

i
(
OA ⊗ 1B̃

)
σAi B̃

]
. (42)

In particular, in paper [E85] it was shown that the teleportation channel N is in fact
quantum depolarising channel, and as its output, we obtain an isotropic state with mixing
parameter p = p(N, d) connected with the entanglement fidelity F(N ) by the following
expression [E91]:

F(N ) = 1− p +
p
d2 . (43)

Due to the recent result presented in [E97], we know that measurements in the form of
square-root measurements (SRM) are optimal in both PBT versions (non- and optimal PBT).
The optimal measurements in the non-optimal case are:

∀1 ≤ i ≤ N ΠAC
i =

1
√

ρ
σAiC

1
√

ρ
, where ρ =

N

∑
i=1

σAiC. (44)

The operator ρ−1 is restricted to the support of ρ, so to ensure summation of all POVMs
to identity 1AC on the whole space (Cd)⊗N+1, we add to every ΠAC

i an excess term ∆ =
1
N

(
1AC −∑N

i=1 ΠAC
i

)
. However, this extra term does not change the entanglement fidelity

F(N ) of the channel N , since the complement ∆ is orthogonal to the space on which all
operators describing PBT are supported, see [E85, E84], and [H3].

• Probabilistic protocol (pPBT): The transmission is always perfect with F(N ) = 1, but there
is a non-zero probability of failure of the whole process (no teleportation). In this scheme
Alice has access to N + 1 measurements {ΠAC

0 , ΠAC
1 , . . . , ΠAC

N } with measurement ΠAC
0
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corresponding to the failure of teleportation procedure. The efficiency of the protocol is
described by the average probability of success psucc of the scheme equals to [E85], [H3]:

psucc =
1

dN+1

N

∑
i=1

Tr
[
O†

AΠAC
i OA

]
. (45)

The requirement of perfect transmission constraints form of allowed measurements ac-
cessible for Alice, namely can be of the following form [E85], [H3]:

∀1 ≤ i ≤ N ΠAC
i = P+

AiC
⊗ΘAi

, (46)

where Ai denotes all states A1A2 · · · AN but Ai. The optimal form of the operators ΘAi
in

both versions of the pPBT protocols (both optimal and non-optimal cases) was computed
for qubits in [E85] and for higher dimensions in [H3].

It is important here to say a few words about used notational convention. Namely, in both
cases, deterministic and probabilistic, we denote the optimization operation by OA. Of course,
we have to remember that they are different for different versions of the considered protocol.
The same holds for the measurements used by Alice. It will be always clear from the context
about which OA or measurements we are talking about.

In every case, the perfect transmission, with unit fidelity in deterministic or unit probabil-
ity of success in probabilistic PBT, is possible only in the asymptotic limit N → ∞. This is
a consequence of the no-go theorem for the universal processor with finite system size (no-
programing theorem) [E96]. This limitation of PBT makes the question of how well parties can
send quantum states via PBT schemes with the finite number N of ports of arbitrary dimension
d fundamental one, especially in the light of the listed at the beginning applications.

Clearly, the straightforward application of numerical methods do not give good results,
since the dimension of all objects describing PBT protocols grows like dN+1, which causes
real computational problems. Up to now the efficiency analysis of all variants of PBT was
known for qubits and it has been done in [E84, E85]. The analysis was possible by exploiting
the representation theory of SU(2)⊗N , in particular properties of Clebsch-Gordan coefficients,
together with methods from the semidefinite programming. Unfortunately, such methods do
not work effectively in higher dimensions. This is because in the case of SU(d)⊗N there is no
closed-form of the Clebsch-Gordan coefficients and to compute them we need an exponential
overhead in N and d. In the case of d ≥ 2 only partial results have been known, mostly
by lower/upper bounds on the entanglement fidelity and the probability of success for the
non-optimal PBT [E88, E85, E98]. For the deterministic case bounds rely on straightforward
analysis spectral properties of the operator ρ [E85] or connection with the state discrimination
problem [E88], while for the probabilistic PBT come from the no-cloning theorem and the
no-signalling principle [E98]. However, in all cases, it was not known how close they are to
the real values for a finite number of ports N and in any dimension d. The first analytical
attempt to describe the exact efficiency of PBT in higher dimensions has been done in [E99] by
exploiting elements of Temperley-Lieb algebra theory, mostly in its graphical representation.
The authors presented closed expressions for entanglement fidelity as well as the probability of
success for an arbitrary d and N = 2, 3, 4. Graphical methods, however, also are not satisfactory,
mostly due to the fact of a large number of cases that must be considered separately, which
grows exponentially with the number of ports N. Therefore, there was a need to develop
new, more effective methods for the analysis of PBT protocols. For this purpose, we decided
to identify and then use the existing symmetries in the problem, which allows us to apply
elements of group representation theory and finite algebras. Below we will list and discuss the
most important results obtained regarding the study of PBT efficiency in higher dimensions.
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5.6.1 Port-based teleportation in arbitrary dimension

As we pointed out, an outstanding open problem was to find the description of PBT in
higher dimensions and their optimal versions in the most general setting – with the optimal
measurement that works for an arbitrary dimension and number of ports, as well as establish
fundamental limits of their performance, by delivering reasonably computational easy expres-
sions for entanglement fidelity and probability of success. In papers [H3, H4, H2], together
with co-authors, I fully characterize the performance of all existing PBT protocols in arbitrary
dimensions d as well as an arbitrary number of ports N. The possibility of the full description
of all variants of PBT relies on two key innovations described in Section 5.5:

1) A novel connection between the PBT protocols and algebra of partially transposed permu-
tation operators A′d(n).

2) New and effective tools for computing products of operators with partial symmetries com-
bined with partial traces and partial transpositions, both in analytical and numerical ap-
proaches.

As it was stated above the first step was to identify the symmetries in PBT protocols and
show their connection with irreducible representations of the algebra A′d(n). Recall that a
bipartite maximally entangled state is U ⊗U invariant [E100], where the bar denotes complex
conjugation of an element U of the unitary group U (d). This implies the following symmetries
for the all signal states σAB̃

i from (41):

[U⊗N ⊗U, σAB̃
i ] = 0, ∀ U ∈ U (d), (47)

where U acts on B̃, and U⊗N acts on systems A = A1 · · · AN . Construction σAB̃
i allows us to

identify the additional symmetry – covariance with respect to elements from the group SN ,
acting on first N systems:

VπσAB̃
i V†

π = σAB̃
π(i), ∀ π ∈ SN . (48)

In particular, choosing an arbitrary state from the set, say σAB̃
N all the others can be generated

by acting on it with an element from the coset SN/SN−1, whose elements in the representation
V are of the form V[(i, N− 1)], for i = 1, . . . , N− 1. The same kind of covariance as in (48) also
holds for all measurements {ΠAC

i }N
i=1 in all variants of PBT:

VπΠAC
i V†

π = ΠAC
π(i), ∀ π ∈ SN . (49)

Recall that the operator ρ from (44) is a sum over all possible states σAC
i :

ρ =
1

dN

N

∑
i=1

VtC
(Ai ,C)

≡ 1
dN

N

∑
i=1

V ′(i,n). (50)

In the last equality, we renumbered systems according to the rule A1 7→ 1, A2 7→ 2, . . . , AN 7→
N, C 7→ n = N + 1. For notational simplicity by ′ we denote the partial transposition over
n−th system. Relation (50) implies that ρ also exhibits symmetries described in (47) and in
addition, it is invariant with respect to the action of elements from SN . We will extensively rely
on this property later on in this section. Therefore, one of the main building blocks for effective
description of PBT can be written in terms of partially transposed permutation operators form the
algebra A′d(n).

Exploiting the above described symmetries and mathematical toolkit described in Sec-
tion 5.5.1 we proven Theorem 1 and Proposition 2 from [H3] saying that the operator ρ from (50)
has the following spectral decomposition:

ρ = ∑
α`n−2

∑
µ∈α

λµ(α)Fµ(α), (51)
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where Fµ(α) are projectors on irreducible components of algebra A′n(d) from (37) for k = 1,
with corresponding eigenvalues

λµ(α) =
N
dN

mµdα

mαdµ
. (52)

This result allows for solving one of the main technical obstacle, namely evaluate ρ−1 or 1/
√

ρ
from (44). Thanks to the spectral decomposition (51) we can compute entanglement fidelity of
the teleporting channel F(N ) from (42), when OA = 1A (non-optimal deterministic PBT), in
terms of purely group-theoretic parameters describing irreps of SN in the Schur-Weyl duality
(Theorem 12 in [H3]):

F =
1

dN+2 ∑
α`n−2

(
∑
µ∈α

√
dµmµ

)2

. (53)

The quantities from the final expression are effectively computable. For this purpose, we have
written dedicated software in Python with use of the group-theoretic package Sage [E101].
Results of the numerical simulations are depicted in Figure 4. From this figure we see that
entanglement fidelity decreases when dimension d of the port increases, but it goes to 1 for
fixed d and increasing port number N. Additionally, in paper [H2] we have proven that indeed
expression (53) approaches 1 with N → ∞ (Theorem 52) for arbitrary port dimension d.

In paper [H4] we provided analysis efficiency analysis of the optimal PBT, i.e. when Alice
optimizes measurements and the resource state using operation OA from (39). Here the situ-
ation is more complicated compared to the non-optimal deterministic PBT since we must also
find an explicit form of the optimal measurements, the optimal form of OA ensuring maximiza-
tion of F. This can be done by formulating and solving primal and dual semidefinite programs
(chapter 5.1 with Theorem 30 and chapter 5.2 with Theorem 31 of paper [H4]). Again exploiting
internal symmetries of the problem the SDP problems can be solved analytically. What is more,
solutions for the primal and the dual problem coincide giving exact value of the entanglement
fidelity and optimal form of the considered operators (Proposition 32 in [H4]). The optimal
entanglement fidelity is described by static objects - principal minors of so-called teleportation
matrix Md

F introduced in chapter 4 of [H4]:

Fopt =
1
d2 ||M

d
F||∞. (54)

In Figure 4 we depict optimal values of entanglement fidelity Fopt from (54) with entangle-
ment fidelity F for the non-optimal protocol given through (53) - we see increased efficiency
of the optimized PBT scheme. As we can see, to evaluate fidelity Fopt we must know maximal
eigenvalue λmax(Md

F) of the matrix Md
F, so we must know more information about its interior

structure. Rows and columns of the teleportation matrix are indexed by Young frames of N
boxes arranged in strictly decreasing lexicographical order. Then its every matrix element en-
codes mutual relations between Young frames of N and N − 1 boxes. Namely, an element of
the teleportation matrix Md

F, is of the following form (Definition 4 in [H4]):

MF := (nµδµ,ν + ∆µ,ν), (55)

where nµ is a number of Young frames α ` N − 1 for which α ∈ µ, and

∆µ,ν =

{
1 if µ/ν = �,
0 otherwise.

(56)

The symbol µ/ν = � denotes Young frames µ, ν which can be obtained one from another
by moving a single box. In Figure 5 we present explicit forms of the teleportation matrix for
various values of port dimension d and ports number N. It turns out that an analytical form
of λmax(Md

F) is known only in two cases, when d ≥ N (Corollary 8 in [H4]), and when d = 2
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Figure 4: Graphic depicts the comparison of the non-optimal and optimal deterministic PBT scheme.
The symbol dX ENT denotes the fidelity of the deterministic PBT when the resource state consists
of maximally entangled pairs and measurements are of the form of the square-root measurements; X
corresponds to the dimension of the teleported state. The symbol dX OPT denotes the best possible
fidelity achieved by optimizing the resource state and measurement simultaneously, i.e. when one
considers the optimal variant of the teleportation scheme.

1 1

1 112

1 112

1 112

1 121

1 121

1 1

1

Figure 5: Graphic depicts teleportation matrices for the optimal deterministic PBT for a fixed number
of ports N = 5 and various dimensions of ports d = 2, 3, 4 and d ≥ 5. In the graphic, we depict
subsequent principal minors which are defined by Young frames of a height no greater than d. The
whole matrix corresponds to the case when the port dimension is no smaller than 5. The dashed green
square corresponds to d = 4. Next, we have respectively d = 3 (yellow) and d = 2 (black). The empty
cells contain zeros.

(Section 5.3 of [H4]). In the first case, the maximal eigenvalue is just equal to N giving optimal
entanglement fidelity Fopt = N/d2. In the latter case, the teleportation matrix is a tridiagonal
matrix for which eigen-spectrum is known due to Losonczi result [E102]. Applying this we
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reproduce the result for optimal fidelity obtained in [E85] for qubits, which is

Fopt = cos2
(

π

N + 2

)
. (57)

In the other cases one has to use efficient numerical methods described in Section 5.4 of [H4]).
Finally, as we mentioned, the solution of the optimization problems allows us not only to derive
the connection between optimal fidelity and teleportation matrix but also derive the optimal
form of Alice’s measurements, which is the element of the algebra A′n(d)

∀1 ≤ i ≤ N Πi = ΠσiΠ, with Π =
dN
√

N
∑
α

∑
µ∈α

√
mα

dα

vµ

mµ
Fµ(α), (58)

where Fµ(α) are the eigen-projectors from expression 37. The optimal operation OA from (39)
is element of the algebra An(d)

OA =
√

dN ∑
µ

vµ√
dµmµ

Pµ. (59)

In the two above expressions, numbers vµ are entries of the eigenvector corresponding to the
maximal eigenvalue of the teleportation matrix. These numbers can be evaluated analytically
for d ≥ N and d = 2, in the other cases we must support our findings by numerics.

In both cases of the probabilistic PBT, tools relying on the representation theory of the
symmetric group Sn, the algebra of partially transposed permutation operators A′n(d), and
methods coming from semidefinite programming play a substantial role. However, contrary to
the non-optimal deterministic case, here we do not know the form of the optimal measurements
- they are not in the form of the square-root measurements (44), and they must obey the extra
rule, given by expression (46) to ensure teleportation with unit fidelity. Solving analytically
primal and dual problems we have shown that these solutions match each other, giving the
optimal value of the average success probability and optimal form of measurements.

In the non-optimal case, when parties share N copies of maximally entangled state optimal
average success probability psucc from (45) reads (Theorem 3 in [H3]):

psucc =
1

dN ∑
α

m2
α min

µ∈α

dµ

mµ
, (60)

where the minimization is taken over all µ ` N which can be obtained from a given α ` N − 1
by adding a single box. Numerical values obtained from expression (60) are plotted in Figure 6.
Optimal form of the operators {Θi}N

i=1, and it what follows optimal measurements {Πi}N
i=1

from (46) is the following (Proposition 7 in [H3]):

ΠAC
i = P+

i,n ⊗ ∑
α`N−1

d
γµ∗(α)

Pα, (61)

where the quantity γµ∗(α) is a maximal eigenvalue of the operator dNρ for a given α, and Pα is
a Young projector from (9) acting on all systems but i and n. Measurement ΠAC

0 corresponding
to the failure of the protocol is obtained from the normalization condition ∑N

i=0 ΠAC
i = 1AC.

For the optimal case, where Alice optimizes the resource state and measurements simulta-
neously, the general approach is similar to the above ones - however, is more involved from the
technical point of view. Please compare respective SDP problems given in equations (24),(25)
in [H3]), and equations (19), (20) of the same paper. Nevertheless, still we can solve optimiza-
tion problems analytically, and have the strong duality property, getting the optimal value of
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the average success probability psucc and corresponding measurements {Πi}N
i=1 (Theorem 8

in [H3]):

psucc = 1− d2 − 1
N + d2 − 1

, ΠAC
i = P+

i,n ⊗
dN+1

N ∑ν`N m2
ν

∑
α`N−1

mα

dα
Pα. (62)

This time the expression for the optimal average success probability psucc depends only on
the global parameters describing protocol like the number of ports N and their dimension
d. Numerical values obtained from expression (62) are plotted in Figure 6. From the above
expression, we get straightforwardly asymptotic behaviour of the considered protocol. For
example, for d = 2 we see that psucc = 1−O(1/N), and we reproduce result from [E85], while
for d > 2 we give novel results and analysis. It is important to stress here that the remarkably
compact expression for psucc from (62) was possible to obtain thanks to technical lemmas on
purely group-theoretic character proven in Appendix E of paper [H3].
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Figure 6: Dotted lines depict the average success probability when the resource state is fixed to N
copies of maximally entangled pairs. Solid lines depict the average success probability for the optimal
protocol with simultaneous optimization over resource state and measurements. We see that the optimal
protocol clearly outperforms the non-optimal one for fixed dimension d.

5.6.2 Structure of the measurements and the signal states in port-based teleportation

As we described earlier, signal states and measurements in the PBT scheme belong to the
algebra A′n(d). This means we can apply the developed mathematical tool kit for their detailed
description. For the separate interest deserve the results contained in papers [H2] and [H9],
which allow us for further studies of the recycling protocols for PBT discussed in the next
section. In this section, we cover results strictly related to the title of this section, since purely
representation theoretic results have been summarised in Section 5.5.1.

Let us start by summarising the results contained in paper [H2]. The main achievement in
this area was to find an analytical form of eigenvectors for operators V ′(a,n), where 1 ≤ a ≤ n− 1
- this has been done in Proposition 54. These operators are in fact unnormalized signal states
σa from equation (41). Using the result of the proposition we were able to prove that the
entanglement fidelity F from (53) approaches 1 when N → ∞ for any d ≥ 2. This is contained
in Theorem 52, in which as a by-product we obtained a lower bound on F depending only on
global parameters, which are the number of ports N and port dimension d:

F ≥ N
d2 + N − 1

. (63)

This recovers the result of Köning and Beigi [E88], however, we obtain it by completely dif-
ferent, purely group-theoretic methods, without referring ourselves to the state discrimination
problem.
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In the paper [H9] we moved one step further with our analysis of the measurements {Πi}N
i=1

from (44). In the first step, in Proposition 4, by exploiting Lemma 35 from [H2], we evaluated
their matrix elements in terms of irreducible matrix elements of V ′(a,n). This result led us to
composition law for two arbitrary measurements and is contained in Proposition 5 giving us a
very interesting conclusion. Namely, whenever local dimension is high enough, i.e. h(α) < d,
where α labels irreps of SN−1, the resulting POVMS are projective measurements - they satisfy
a rule ΠiΠj = δijΠi. In all other cases, considered POVMs are pseudo-projectors on every irrep
of the algebra A′n(d) with a different constant. Having these findings we reached our main
objective, which is calculating irreducible matrix elements of the square-root of any POVM
(Proposition 6), and its trace with the operator V ′(a,n) (Theorem 8). These results are very
technical and there is no reason to present all of them in detail in this summary. We refer the
Reader to Section IV in [H9] for all the details in this matter. Here, only for the self-consistence
of this summary, we cite the final result concerning evaluating the following traces (Theorem 8
in [H9]):

Tr
(√

ΠaV ′(a,n)

)
= ∑

α:h(α)<d

1
n− 1

(
∑
ν∈α

√
mνdν

)2

+

+ ∑
α:h(α)=d

1√
(n− 1)dα − dθ

√
dα√

(n− 1)

(
∑
ν 6=θ

√
mνdν

)2

,

(64)

where n = N + 1. We see that the final expression depends only on group theoretic quantities
such as multiplicities and dimensions of irreducible representations of the symmetric groups
SN and SN−1 in the Schur-Weyl duality, and does not depend on the index 1 ≤ a ≤ N. The
symbol dθ denotes dimensions of the irreps θ of SN which do not occur in decomposition when
the port dimension is too small. More formally, the irreps θ belong to the following set:

Θ := {θ ` N | θ ∈ α ` N − 1 with h(α) = d and h(θ) = d + 1} . (65)

When one considers irreps of SN−1 for which h(α) < d, then Θ is an empty set. Notice that for
a given Young frame α with h(α) = d there is only one θ with h(θ) = d + 1. Additionally, we
present closed expressions for the above-described objects in the qubit case, depending only on
the number of ports N, see Lemma 9. It was possible because in this regime all Young frames
labeling respective irreps must have up to two rows.

5.6.3 Recycling for deterministic port-based teleportation scheme

From Section 5.6.1 we have learned that no matter what kind of PBT protocol we wish
to implement, to achieve reasonable efficiency measured in entanglement fidelity (dPBT) or
probability of success (pPBT) one must use a substantial number of ports N. This however
leads to the question of how port-based teleportation, in any known variant, is costly in terms
of maximally entangled pairs which parties must prepare before they run the protocol. If
the resulting resource state after one round of teleportation is heavily damaged then it can
happen it is no longer a valid resource for port-based teleportation. This however could lead to
the conclusion that after even a single round of the transmission process parties must have to
prepare and send among them a new resource state - this is obviously a very serious constraint.
However, the general situation is not so dramatic - in paper [E103] authors show that there
exists a variant of the PBT scheme called the recycling protocol for PBT, in which parties can
re-use all the ports with which they have left, still getting asymptotically ideal teleportation.
The recycling protocol in any variant of PBT can be summarised as follows:

1. Alice performs a measurement {ΠAC
i }N

i=1 obtaining an outcome 1 ≤ i ≤ N.

2. Alice sends outcome i to Bob by a classical channel.
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3. Parties apply a transposition (SWAP) between i−th and 1st port

4. Parties do not use port 1 in next rounds of the protocol - they only use remaining N − 1
ports.

5. Parties repeat steps 1-4 using remaining ports to complete transmission of k states.

Figure 7: Schematic description of the recycling scheme for teleporting two unknown quantum states
ψC, ψ̃C. On the left, we see the usual port-based teleportation procedure, when transmission occurred
through i−th port. After this, parties are left with N − 1 ports, we do not have port ψ+

Ai Bi
, since it

has been consumed for teleporting state ψC – figure on the right-hand side. After the measurement in
the first round, each port is no longer in the form of a maximally entangled state, and there are some
correlations between all the ports (light blue ellipse). In the second round, when parties wish to transmit
the state ψ̃C must use this distorted resource state.

As it was explained in [E103] the recycling protocol Prec(N, 2, k) is indeed efficient if the fidelity
F(Prec(N, 2, 1)) between states in the idealized situation, where the state is teleported and the
remaining resource state is untouched, and the real state of the resource after application of a
joint measurement in PBT if high enough. For the qubit case and dPBT the Authors concluded
with the following lower bound

F(Prec(N, 2, 1)) ≥ 1− 11
4N

+O
(

1
N2

)
. (66)

Next, having a lower bound on fidelity F(Prec) after one round of the recycling protocol, one
can establish a similar lower bound after k rounds of the protocol (Lemma 2 in [E103]):

F(Prec(N, 2, k)) ≥ 1− 11k
2N

. (67)

We easily see that the error after each round is at most additive in the number of rounds k.
These results imply that in every round of teleportation Alice one can apply the square-root
measurement obtaining high efficiency of teleportation when parties just re-use the remaining
ports.

In paper [H9] we focus on extensions of the results on the recycling protocol for dPBT
beyond the qubit case and for the first time we discuss recycling for the optimal version of
dPBT. What is more, we derived exact expressions for F(Prec(N, d, 1)) in any variant of dPBT.
Let us summarise our findings in more detail.

The first and the most crucial step toward the final results was the analysis of the interior
structure of these objects from the point of view of representation theory. As we wrote in
Section 5.6.1 the SRMs belong to the algebra A′d(n) and tools developed in papers [H3, H2]
can be effectively applied here. In this matter, we prove several propositions among which the
most important are: composition law which shows when the considered measurements become
projective, we compute matrix elements of the measurements in irreducible blocks, and finally
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Figure 8: The left panel presents values of fidelity F(Prec(N, d, 1)) evaluated for non- (dashed lines)
and optimal (solid lines) dPBT. From these plots, we see that the resource state for optimal PBT is not
necessarily better for recycling protocol than the resource state for its non-optimal counterpart. In fact,
for d = 2 values of F(Prec(N, 2, 1)) for the optimal version are even worse than for the non-optimal one.
The red dashed line shows the lower bound on fidelity in the qubit case given by Eq. (66) up to O(1/N2)
part. The right panel presents the lower bound for F(Prec(N, 2, k)) (the qubit case) and various numbers
of teleportation rounds k. From the plot, we see that F(Prec(N, 2, k)) is relatively high even for not a too
large number of ports.

we present how to effectively calculate square-roots from the measurements occurring in dPBT.
This has been summarised in the previous section of the summary.

Applying these findings we present explicit expressions for the quantity F(Prec(N, d, 1)) in
the case of non-optimal and optimal dPBT for andy d ≥ 2 in the case of dPBT (see Theorem 12
in [H9]):

F(Prec(N, d, 1)) =

√
N

dN+1

 ∑
α:h(α)<d

1
N

(
∑
ν∈α

√
mνdν

)2

+ ∑
α:h(α)=d

1√
Ndα − dθ

√
dα√
N

(
∑
ν 6=θ

√
mνdν

)2
 ,

(68)
while for optimal dPBT we obtained (see Theorem 14 in [H9]):

F(Prec(N, d, 1)) =
1

d1/2 ∑
α`N−1

∑
µ∈α

vαvµ

m1/2
α

∑ν 6=θ
ν∈α

√
mνdν

√
Ndα − dθ

. (69)

The numbers vµ, vnu are elements of the eigienvector corresponding to the maximal eigen-
value of the teleportation matrix described briefly in Section 5.6.1 and in details in paper [H4].
The group theoretic parameters have been evaluated numerically by using the SAGE pack-
age [E101]. In particular case, when d = 2, we present effectively computable expressions
depending only on the number of ports N, without any need to refer to specialized com-
puter simulations – please see Lemma 13 and Lemma 14 in [H9]. Having direct formulas for
F(Prec(N, d, 1)) in both variants of dPBT we could give a lower bound on F(Prec(N, d, k)), after
k rounds of teleportation:

F(Prec(N, d, k)) ≥ 1− 2k(1− F(Prec(N, d, 1))), (70)

which obviously tends to 1 when F(Prec(N, d, 1))→ 1. We summarize our findings on Figure 8
taken from [H9].

Finally, from the obtained results we conclude that there is no particular connection between
the type of the dPBT (so resources states) and values of the recycled fidelity F(Prec(N, d, 1)).
Namely, one can see that the entanglement fidelity F(|Ψ+〉AB, |Ψ〉AB) between the resource
states for non-optimal and optimal dPBT is low when we increase the number of ports N (see
Lemma 16 in [H9]), but the resulting recycled fidelity for them does not differ much.
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5.6.4 Teleporting a large amount of quantum information

In the previous sections dedicated to port-based teleportation protocols, we have discussed
the transmission of a single quantum system by using N ports, each of dimension d. Natural is
to ask how to effectively transmit a composed quantum system or many independent quantum
states exploiting variants of PBT protocols. We come up with five different scenarios:

1. Application of a separate PBT protocol to every single system separately. The disadvantage
of this approach is the necessity of using a large number of separate resource states and sets
of measurements - each resource state and set of measurements for a single system. Our
goal however is to work in the scenario of N ports, without allowing for other, new resource
states for parties. Because of these reasons such a kind of teleportation is not interesting for
us for further analysis.

2. Application of the recycling protocol for the deterministic PBT [E103], [H9]. As it was de-
scribed in Section 5.6.3, in this protocol parties re-use the resource state for the next rounds
of teleportation, in each round dealing with the distorted resource state with one port less.
Results in this regime have been obtained recently, for the time being only for the (non-
)optimal deterministic case [H9], and explicit efficiency in this regime has not been yet eval-
uated for the teleporting channel. In particular, no analysis is known for the probabilistic
variant of the recycling scheme. Additionally, in every step, one has to apply a different set
of measurements, but that is not the case which in we are interested.

3. Application of a standard PBT scheme with a large enough port dimension, which is equal to
d = Dk, where k is a number of teleported systems, and D stands for their local dimension.
Such a scenario is very inefficient because entanglement fidelity and average success prob-
ability drastically decrease when port dimensions grow. This causes a need of exploiting a
large number of shared entangled pairs in the resource state, see Table 1.

Teleportation protocol Entanglement fidelity F

Non-optimised dPBT F = 1− d2−1
4N + O

(
N−3/2+δ

)
Optimised dPBT F ≥ 1− d5+O(d9/2)

4
√

2N2 + O
(

N−3)
Teleportation protocol Averaged probability of success psucc

Non-optimised pPBT psucc = 1−
√

d
N−1E[λmax(G)] + o

(
N−1/2)

Optimised pPBT psucc = 1− d2−1
d2−1+N

Table 1: Asymptotic behaviour of dPBT and pPBT with arbitrary port dimension d and port number N.
All the results are taken from [E95] and [H3].

4. Application of so-called packaged PBT, when N ports we divide into k groups (each package
has N/k ports) and we perform on every group separate PBT protocol, see the left graphic of
Figure 9. The total entanglement fidelity Fpack(N, k) is equal to the product of entanglement
fidelities F(N/k, 1) of every package, so in total we have Fpack(N, k) := F(N/k, 1)k. Such
protocol has been firstly suggested in [E103] and developed in [H7].

5. Application of so called multi port-based teleportation scheme (MPBT). The existence of such
kind of protocol has been suggested in [E103] in non-optimal deterministic variant, how-
ever, its rigorous description along with performance analysis was not known until the
papers [H10, H8, H7] appeared. In the vanilla scheme sender and receiver share N max-
imally entangled pairs, but his time parties want to transmit a composite k−partite state
ΨC = ΨC1C2···Ck or k independent states ΨC = ψC1 ⊗ ψC2 ⊗ · · · ⊗ ψCk , see the right graphic in
Figure 9. To do so, the sender applies a joint measurement on the state ΨC and his/her part
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of the resource state, getting as an outcome multi-index i = {i1, i2, . . . , ik}, which is send to
the receiver by a classical channel. To recover the state, the receiver must just pick up k ports
in the right order, according to obtained multi-index. It is easy to see that in this variant
the sender must have access to k!(N

k ) measurements, this number is of course equal to the
number of possible multi-indices i. In the probabilistic version of the MPBT, we must add
one additional measurement corresponding to the failure of the teleportation process. We
denote the set of all possible values of the multi-index i by I .

As we stressed above, due to the lack of technical tools, efficiency analysis of the MPBT
protocol, its generalization to optimal deterministic case, as well as, formulation of its prob-
abilistic counterpart has been missing. We fully addressed these issues in the series of
papers [H7, H10, H8] and we will summarise our findings in the next two paragraphs.

Figure 9: The left graphic presents the configuration for the packaged PBT protocol with k packages,
each with N/k ports. The right-hand side graphic depicts a schematic description for multi-port based
teleportation protocol (MPBT) with N ports. In both cases, parties transmit k−partite unknown quantum
state ΨC with the highest possible efficiency. Both protocols are described in the main text of this
summary.

Representation theoretic approach to MPBT protocols As it was for the PBT protocols de-
scribed in Section 5.6.1 our goal was to describe deterministic and probabilistic MPBT protocol
in (non-)optimal regimes by evaluating their efficiency and optimal measurements and resource
state. This has been done in two papers [H10, H8]. The general idea behind the MPBT protocols
is similar to the ordinary PBT when k = 1. However, from the technical point of view, the prob-
lem is much more complicated since one needs tools coming from the representation theory of
the algebra of partially transposed operators A(k)

n (d) for more than one partial transposition -
this has been summarised in Section 5.5. Why we need this particular type of representation is
easy to see from the symmetries satisfied by all the objects describing MPBT protocols. Namely,
all the signal states {σAB

i }i∈I satisfy the following commutation relations:[
U⊗(n−k) ⊗U⊗k, σAB

i

]
= 0, ∀ U ∈ U (d),[

Vπ, σAB
i

]
= 0, ∀ π ∈ Sn−2k,

(71)

and they are covariant with respect to the symmetric group S(n− k):

VπσAB
i V†

π = σAB
π(i), ∀ π ∈ Sn−k, (72)

where n = N + k. The same type of symmetries are satisfied for respective measurements
{ΠAB

i }i∈I applied by Alice. From the definition of the set I , we see that for k = 1 we reduce
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the above relations to these described in Section 5.6.1. Having developed necessary representa-
tion theoretic tools, mostly in paper [H10], we could write down respective optimization SDP
problems in the algebra A(k)

n (d) and solve them analytically. The solutions of the primal and
dual problems match each other, giving us optimal values of entanglement fidelity, average
success probability, as well as the optimal form of measurements.

In the deterministic non-optimal case Alice chooses the square-root measurements of the
form

∀ i ∈ I ΠAC
i =

1
√

ρ
σAC

i
1
√

ρ
+ ∆, ρ = ∑

i∈I
σAC

i , (73)

where ∆ is an additional term ensuring summation to the identity operator on the whole space
(Cd)⊗n. We see that the primary technical obstacle is to find the inverse of ρ = ∑i σi. However,
using discussed symmetries we can prove the following eigendecomposition of ρ (Theorem 17
in [H10]):

ρ = ∑
α`N−k

∑
µ`N
µ∈α

λµ(α)Fµ(α), λµ(α) =
k!(N

k )

dN

mµ

mα

dα

dµ
, (74)

where Fµ(α) are the eigen-projectors from expression (37). This time Young frames µ of N boxes
are obtained from Young frames α of N − k boxes by adding k boxes. Having the above, we
prove Theorem 22 from [H10] giving group-theoretic expression for the entanglement fidelity:

F =
1

dN+2k ∑
α`N−k

(
∑
µ∈α

mµ/α

√
mµdµ

)2

, (75)

where mµ/α denotes number of ways in which µ can be obtained from α by adding k boxes.
For the special case of k = 1, we always have mµ/α = 1, and the above expression reduces
to entanglement fidelity for the non-optimal dPBT given by (52). This number can be evalu-
ated numerically using our software and for the qubit case, there exists a compact analytical
expression for it [E104, E105]. In the left panel of Figure 10 we present numerical values of en-
tanglement fidelity for this scheme compared with the ordinary PBT discussed in Section 5.6.1,
but with respectively higher port dimension. We see that the MPBT protocol is more efficient
even than the optimal PBT. For the non-optimal probabilistic scheme studied in [H10], to en-
sure the unit entanglement fidelity we must demand from the measurement analogous relation
to (46), as it was for the standard pPBT:

∀i ∈ I ΠAC
i = P+

AiC
⊗ΘAi

, (76)

where the form of {ΘAi
}i∈I is derived from SDP programs (grey boxes on page 7 in [H10]).

The solution for these optimization programs, together with the expression for the averaged
success probability is presented in Theorem 23 in [H10]. Namely, measurements are elements
of the algebra A(k)

n (d) from (18):

∀ i ∈ I ΠAC
i =

k!(N
k )

d2N P+
AiC
⊗ ∑

α`N−k
Pα min

µ∈α

1
λµ(α)

, (77)

and the average probability of success is of the form:

psucc =
k!(N

k )

d2N ∑
α`N−k

min
µ∈α

mαdα

λµ(α)
, (78)

where the minimisation is taken over all Young frames µ which can be obtained from a given
Young frame α of N − k boxes by adding k boxes. Numerical values of psucc, compared with
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Figure 10: In the left panel we show the performance of the non-optimal deterministic MPBT protocol
measured in entanglement fidelity F, for various choices of initial parameters which are local dimension
d, number of ports N and number of teleported particles k. We achieve better performance than the
standard optimal PBT (OPT) with respective high port dimension for teleporting a state of two qubits
(d = 2, k = 2). In the right panel, we present a comparison of the optimal deterministic MPBT scheme
(k > 1, OPT) with its non-optimal version. In every case, the efficiency in the optimal case is higher.
Additionally, to illustrate the efficiency jump, we plot entanglement fidelities for the standard optimal
PBT (k = 1).

Figure 11: The performance of the probabilistic version of non-optimal MPBT protocol, measured in
average success probability psucc, for various choices of initial parameters which are local dimension d,
number of ports N, and number of teleporting particles k. One can see that we start achieving better
performance than the corresponding optimal PBT scheme with appropriate port dimension for a state
of three qubits (d = 2, k = 3).

the standard optimal probabilistic PBT scheme with enough large port dimension are depicted
in Figure 11.

The optimal deterministic and probabilistic case has been studied mainly in paper [H8].
Solving analytically primal and dual optimization problem we came up to the conclusion that
the optimal entanglement fidelity is described by the generalized teleportation matrix Md,k

F . This
matrix has been defined through Definition 6 in [H8] and studied in chapter 6.2 in the same pa-
per. According to Theorem 7 from [H8], we have the following expression for the entanglement
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fidelity

F =
1

d2k λmax(Md,k
F ), (79)

where k is the number of teleported systems and λmax(Md,k
F ) is maximal eigenvalue of gener-

alised teleportation matrix Md,k
F . Finally, in Theorem 8 we present the optimal form of Alice’s

measurement

Πi = ΠσiΠ with Π = ∑
α`N−k

∑
µ∈α

dµ√
k!(N

k )

√
mα

dα

vµ

mµ
Fµ(α), (80)

where Fµ(α) are the eigen-projectors from expression 37. We see that the measurements belong

to the algebra A(k)
n (d) from (18), while the optimal operation OA is an element of the group

algebra An(d) from (2):

OA =
√

dN ∑
µ

vµ

dµmµ
Pµ, (81)

where Pµ denotes Young projector on irreps of SN labelled by µ ` N. In both equations, the
numbers vµ > 0 are the components of an eigenvector corresponding to the greatest eigenvalue
of the generalized teleportation matrix Md,k

F which can be evaluated numerically. In the case of
optimal probabilistic protocol, by proving Theorem 9 in [H8] of purely group-theoretic taste,
we have derived closed expression for the averaged success probability psucc (Theorem 3 [H8]):

psucc =
N!

(N − k)!
(d2 + N − k− 1)!
(d2 + N − 1)!

. (82)

Using the above result, in Theorem 4 in [H8] we show that whenever the number of teleported
states k = k(N) changes as o(N), then the averaged success probability approaches 1 with
N → ∞ for arbitrary port dimension. Moreover, in the special case of qubits, we show that in
the optimal MPBT averaged success probability goes to 1 with N → ∞ whenever k = o(N).
This result improves the non-optimal MPBT protocol for which we have the same behaviour
for k = o(

√
N). Figure 12 presents the comparison of numerical values of the averaged success

probability psucc for the optimal MPBT with the standard probabilistic PBT with respectively
large port dimension. Finally, in Theorem 5 in [H8] we derived optimal form of measurements
and operation OA as elements of the group algebras An(d) and An(d) respectively:

Πi = P+
AiB
⊗ ∑

α`N−k

dN+k mα

∑ν`N m2
ν

k!(N
k )dα

Pα, OA =
√

dN ∑
µ

√
mµ

dµ ∑ν`N m2
ν

Pµ. (83)

By Pα, Pµ we denote Young projectors on irreps of SN−k and Sk respectively.

MPBT protocols - asymptotic analysis In this section, we summarise the main results con-
tained in paper [H7]. The main purpose of this paper is to evaluate and compare the transmis-
sion capability of all variants of MPBT protocols and compare it with other effective methods
for transmission of a large amount of quantum information described at the beginning of Sec-
tion 5.6.4. We have been interested in how the efficiencies vary when the number of transmitted
states is k ∼ Nα, where α ∈ (0, 1), and the number of ports N to infinity. This is somehow the
most natural way of considering the asymptotic behaviour of MPBT protocols since only in
this scenario number of teleported states k changes together with the number of ports, show-
ing us the real capabilities of a given scheme. In the traditional approach to channel capacity,
the central quantity is the asymptotic rate k/N - number of sent qubits (qudits) per number
of channel (or entangled pair) uses. Here the main objective becomes to identify asymptotic
exponents α for which the transmission is possible since the mentioned rate vanishes for the
PBT. Such considerations, where we ask how much quantum information we can reliably send
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Figure 12: The right-hand side figure presents the comparison of the optimal MPBT scheme (k > 1,
OPT) with its non-optimal version and standard PBT scheme with high enough port dimension. In all
variants, the efficiency is substantially higher. Additionally, on the left-hand side plot, we present the
probability of success for the standard optimal PBT, for port dimensions d = 4 and d = 8. We see that
our scheme for k = 2, d = 2 performs better, which was not the case in the non-optimal MPBT procedure
for the same parameters. This is the only such case.

via teleportation protocols have been considered for the first time and led us to new qualitative
and quantitative results.

We have shown that in general the number of systems to be teleported can be changed
dynamically by the sender with the growing number of ports, still ensuring high efficiency in
the deterministic and probabilistic scheme. In any variant of either PBT or MPBT, we obtain
critical-like behaviour of the quality of transmission. We identify the critical values αcr of
exponents α for several variants, both for exact asymptotic values of a figure of merit and their
lower bounds. Whenever the value of α is below the critical value αcr the values of fidelity
(or probability of success, depending on the scheme) describing transmission are 1, and 0
otherwise.

Now, let us now briefly summarise the main results focusing independently on determinis-
tic and probabilistic MPBT protocol:

1. Deterministic protocols In all deterministic (M)PBT protocols we can relate resulting en-
tanglement fidelity F of transmission with the probability of success pdist of discriminating
set of signal states {σi}i∈I , each given with equal probability 1/|I| = 1/k!(N

k ). This idea
was first suggested by Beigi and Köning in [E88] for k = 1 and further developed by us
in paper [H7]. For MPBT protocols and any feasible set of measurements {Πi}i∈I the
mentioned relation is of the form:

F =
k!(N

k )

d2k pdist, pdist =
1

k!(N
k )

∑
i∈I

Tr(Πiσi). (84)

To find a lower bound on F as a measurements {Πi}i∈I we have chosen square-root
measurements given by expression (73). For such a choice we proved the generalization
of Lemma A.3 from [E88], where we derived lower bound pdist in terms of trace from the
normalized operator ρ = ρ/ Tr(ρ), where ρ is in (74):

pdist ≥
1

dN−k Tr ρ2 . (85)

Next, we have proven one of the central technical result contained in Lemma 1 in [H7],
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where using purely combinatorial reasoning we evaluated Tr ρ2, which is:

Tr(ρ2) = d−N−k
(

N
k

)−1(d2 + N − 1
k

)
. (86)

This however, led us to two lower bounds on F derived in Theorem 2 in [H7], depending
only on global parameters - number of ports N, port dimension d, number of teleported
systems k:

F ≥
(

N
k

)(
d2 + N − 1

k

)−1

≥
(

1− d2 − 1
d2 + N − k

)k

. (87)

Having the above result we are in the position for investigating behaviour of MPBT pro-
tocol for N → ∞, when changing k adaptively with N, so in interesting for us regime.
It turns out that in the deterministic scheme, even the optimal packaged PBT scheme
is outperformed by the lower bound evaluated for non-optimal MPBT. In particular, we
argue that asymptotically in non-optimal deterministic MPBT, one can teleport a much
larger amount of quantum information, i.e. with αcr = 1, in comparison to optimal pack-
aged port-based teleportation, where αcr = 2/3, and one can teleport faithfully only up to
o(N2/3) qubits. The summary of our findings is presented in Table 2 and the left graphic
in Figure 13.

F = 0 Fcr F = 1
Pack.PBT α > 1/2 αcr = 1/2 , Fcr = e−3a2/4 α < 1/2

Pack.OPBT α > 2/3 αcr = 2/3 , Fcr = e−πa3
α < 2/3

MPBT − αcr = 1, Fcr ≥ e−
3a

1−a α < 1

Table 2: Comparison of the asymptotic behaviour of two variants of packaged PBT with MPBT in
deterministic version, where k = aNα. By "cr" we denote the critical values of parameter α for which the
asymptotic value of F exhibits a jump.

2. Probabilistic protocols Results regarding asymptotic behaviour of non-optimal proba-
bilistic case, have been obtained by exploiting group-theoretic expression for the proba-
bility of success derived in [H10], see also (78) of this summary. In this case, we have
restricted ourselves to the case of qubits, where the considered expression turns into el-
egant form, expressed in terms of angular momentum parameters, where we can rid of
the minimization in (78):

psucc =
1

2N
1

N + 1

N−k
2

∑
s=0( 1

2 )

(2s + 1)2
(

N + 1
N−k

2 − s

)
. (88)

Unlike in the deterministic variant in probabilistic non-optimal MPBT the scaling is the
same as for probabilistic optimal packaged PBT, allowing for teleportation asymptotically
o(Nα) qubits with αcr = 1/2. This shows the qualitative difference between a determin-
istic scheme and a probabilistic one. Additionally, for a finite number of ports N we
derived lower and upper bound for psucc in our protocol (Proposition 18 in [H7]). We
achieved this by combining advanced tools from statistical analysis, in particular non-
straightforwardly the celebrated Berry-Essen theorem [E106, E107] with direct estimates
of binomial expressions by their Gaussian approximations. For the optimal probabilistic
MPBT, we work with exact values of success probability for an arbitrary dimension of
the port d. It was possible since the exact formula for the probability of success has been
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derived in [H8] (see equation (82) of this summary) and transformed to useful for us
form:

psucc =
d2

∏
m=2

(
1− k

N − 1 + m

)
. (89)

Considering the above expression we show that one can transmit asymptotically o(Nα)
with a critical exponent equal to 1, clearly outperforming PBT variants. That was illus-

psucc = 0 psucc,cr psucc = 1
Pack.PBT α > 1/3 αcr = 1/3 , psucc,cr = e−ca3/2

α < 1/3
Pack.OPBT α > 1/2 αcr = 1/2, psucc,cr = e−3a2

α < 1/2
MPBT α > 1/2 αcr = 1/2, eq. (15) in [H7] α < 1/2

OMPBT − αcr = 1, psucc,cr = (1− a)3 α < 1

Table 3: Comparison of the asymptotic behavior of probability of success psucc of all variants of pack-
aged PBT with MPBT in probabilistic version when k = aNα. We have c =

√
8/π and by "cr" we denote

the critical values of parameter α for which the asymptotic value of psucc exhibits a jump.

trated in Table 3 and by the right graphic in Figure 13 to see the discussed comparison.

Figure 13: Left graphic: Asymptotic values of the lower bound on entanglement fidelity in MPBT
(orange lines) compared to the fidelity of Pack. OPBT (blue lines), where k = aNα, a = 1, α ∈ (0, 1).
N runs through 102, 103, 104 and 105 as the lines become thicker. Right graphic: Probability of success,
compared for Pack. OPBT (blue lines), and OMPBT (orange lines) protocols, where k = aNα, a = 1

2 .
N runs through 102, 103, 104 and 105 as the lines become thicker.
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6 Presentation of teaching, organizational, and popularisation of sci-
ence achievements

6.1 Teaching achievements

Academic teaching:

1. Lecture in Classical Mechanics (45 hours, the academic year 2022/2023, winter semester,
for the 2nd year of physics students)

2. Tutorials in Classical Mechanics (45 hours, the academic year 2022/2023, winter semester,
for the 2nd year of physics students)

3. Lecture in Classical Information Theory (in English, 30 hours, the academic year 2021/2022,
summer semester, for the 1st year of the second-degree studies for quantum information
technology students)

4. Laboratories in Python with the basics of algorithmic (45 hours, the academic year 2021/2022,
summer semester, for the 1st year of bio-informatics students)

5. Lecture in Classical Mechanics - elements of special relativity (15 hours, the academic year
2021/2022, summer semester, for the 2nd year of physics students)

6. Tutorials in Classical Mechanics (30 hours, the academic year 2021/2022, summer semester,
for the 2nd year of physics students)

7. Tutorials in Stochastic processes: basics and applications (30 hours, the academic year 2021/2022,
summer semester, for the 2nd year of mathematical modelling and data analysis students)

8. Tutorials in Linear Algebra with Geometry (30 hours, the academic year 2013/2014, winter
semester, for the 1st year of physics students)

9. Tutorials in Introduction to Mathematics (30 hours, the academic year 2012/2013, winter
semester, for the 1st year of bio-informatics students)

PhD student supervising:

1. Co-supervisor of Piotr Adam Kopszak, 2019-present, Faculty of Physics and Mathematics,
University of Wrocław

2. Supervisor of Tomasz Patryk Młynik in research grant Sonata 16 (UMO-2020/39/D/ST2/01234),
2022-present, Faculty of Mathematics, Physics and Informatics, University of Gdańsk

Non-academic teaching

1. Lecturing at the summer school "Next generation of quantum information scientists. Gdańsk
series of international school for students", 11.07.2022-22.07.2022, Faculty of Mathematics,
Physics and Informatics, the University of Gdańsk. I delivered 8 hours of lectures enti-
tled "Introduction to quantum computing" (quantum circuit model, the universality of the
quantum circuit model, fundamental quantum algorithms, etc.).
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6.2 Organisational achievements

1. Organisation of the summer school "Next generation of quantum information scientists. Gdańsk
series of international school for students", 11.07.2022-22.07.2022, Faculty of Mathematics,
Physics and Informatics, University of Gdańsk. Together with Dr. Sergii Strelchuk (The
University of Cambridge, United Kingdom), I prepared the whole teaching schedule, lec-
ture notes, list of problems with solutions for 40 hours of lectures + 20 hours of tutorials.
https://gqi.ug.edu.pl/

2. Scientific committee of the planned conference Mathematical Structures in Quantum Me-
chanics, 19-22.06.2023, Faculty of Mathematics, Physics and Informatics, University of
Gdańsk. https://gwmp.ug.edu.pl/

6.3 Popularisation of science achievements

1. 16.03.2023, Open days of the University of Gdańsk, the title of the talk: "Na problemy jutra
FIZYKA!"

2. 09-11.09.2019, Zdolni z Pomorza (eng. Talented from Pomerania), Mathematics of board
games (workshop)

3. 19.11.2017, Polish Science Cafe, Trinity Hall, Cambridge, the title of the talk "A few steps
towards everyday quantum cryptography" (invited)

7 Other scientific achievements

7.1 Bibliometric data

Source: Google Scholar (14.03.2023)

• Number of peer-reviewed publications: 25 (9 before PhD)

• Number of unpublished arXiv preprints: 7 (5 of them are under review process in
scientific journals, please see https://arxiv.org/search/?searchtype=author&
query=Studzi%C5%84ski%2C+M&order=-announced_date_first&size=50&abstracts=
hide)

• Total number of citations: 560

• H-index: 11

• I10-index: 12

Source: Web of Science (14.03.2023)

• Number of peer-reviewed publications: 23 (9 before PhD)

• Total number of citations: 345 (total), 309 (without self-citations)

• H-index: 9

7.2 Awards

1. 08.2021-07.2024, The Minister scholarship for outstanding young researchers, Polish Min-
istry of Education and Science, UMO-SMN/16/0938/2020

2. 05.10.2021, University of Gdańsk Rector’s prize of 3rd degree
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7.3 Track record before PhD

7.3.1 Research included in my PhD thesis:

1. Developments in representation theory The celebrated Peres-Horodecki criterion for the
separability of quantum states is one of the main result in quantum information theory.
It says that whenever 2⊗ 2 and 2⊗ 3 quantum systems stay positive after partial transpo-
sition the state is separable. In higher dimensions, the positive partial transposition (PPT)
property gives a necessary condition for separability. In the general situation deciding
whether a given quantum state is separable/entangled is a very complex task and we
can apply numerical methods like for example Doherty’s algorithm, which is not always
conclusive or apply the notion of an entanglement witness. Another way of approaching
the problem is restricting the set of considered quantum states, for example to the set of
states that possess certain symmetries, but still, contain a wide range of objects. In the
series of papers [P3],[P4] we develop ideas firstly introduced by Werner and Eggeling for
the states which are U ⊗U ⊗U invariant and become positive after partial transposition.
The main goal was to develop a mathematical tool allowing in principle for constructing
PPT states in the multiparty regime when the partial transposition acts on the last sys-
tem. The main observation for our construction was the fact that objects which are U⊗n

invariant, after mentioned partial transposition, become U⊗(n−1) ⊗ U invariant, where
the bar denotes complex conjugation. In fact, such objects belong the algebra of partially
transposed permutation operators, where the partial transposition acts on the last system.
In our work, we identify irreducible (minimal) left ideals of the considered algebra and
give a recipe for constructing an irreducible basis in each of them. We have done this
twofold, in paper [P4] by constructing a set of non-orthogonal basis vectors, to which
we had to apply an orthogonalization procedure by using inversion of the corresponding
Gram matrix. In paper [P3], we applied methods of construction coming from purely
algebra theory, obtaining an orthogonal set of irreducible basis operators. However, in
this approach, we are still left with the technical problem of finding a subset of a lin-
early independent set of operators, which is connected with the inversion problem of the
mentioned Gram matrix. Nevertheless, we were able to prove how to decompose every
partially transposed permutation operator in terms of the proposed basis operators and
work with the quantum systems exhibiting such symmetries. In particular, developed
methods allow us for a detailed description of quantum cloning machines (see below)
and allow for the construction of PPT quantum states for low number of systems n. In
particular, using our tools we were able to reconstruct the previously known results for
U⊗3 invariant states.

2. Description of the universal quantum cloning machines The impossibility of producing
perfect clones of an unknown quantum state is one of the main feature distinguishing
quantum mechanics from the classical world. This feature follows directly from the lin-
earity of the underlying quantum theory. However, still quantum mechanics allows for
producing clones that are not perfect or speaking more formally the fidelity between
clones and the state to be cloned is lower than 1. Having this property, we can ask how
well one can clone quantum states, what is the limit of the resulting fidelity imposed by
quantum theory? In two papers [P2],[P5] we consider the most general scenario of uni-
versal quantum cloning machines (UQCM) producing N clones from one input state. We
started our considerations by investigating the problem for qubits [P5], where we were
able to show that the total system admits symmetries allowing for the application of the
Schur-Weyl duality. Namely, the problem of finding the allowed fidelity of the clones can
be reduced to finding allowed fidelity but on every irreducible space separately. Then
to obtain the full allowed region it is enough to take so-called the convex hull of the
obtained subregions. In particular, we analyzed in detail the case of 1 → 3 UQCM and
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presented graphics of the allowed region by theory region of fidelities of the clones in
three-dimensional space. Reconstruction of the clones with prescribed cloning fidelities
is also discussed. For higher dimensions, the Schur-Weyl duality does not work and new
methods must be derived. In [P2] we argued that the total system under consideration
is in fact element of the algebra studied in papers [P3],[P4]. By applying these tools we
could perform a similar analysis of quantum cloning machines as it was for qubits.

3. Contribution to entanglement distillation One of the most important and fundamen-
tal resource in quantum information protocols is pure entanglement. Unfortunately, in
practice, if we want to run some communication task we have access only to mixed en-
tanglement, which is a limiting factor. One way to rid of this difficulty, before we apply
our target protocol, is to distill pure entanglement in a form of maximally entangled
pairs. To do so we apply a procedure called entanglement distillation. In paper [P6]
we present a distillation procedure from two-qubit states which are mixtures of three
mutually orthogonal states. By exploiting symmetries of the problem we could apply
tools coming from the Schur-Weyl duality and Young symmetrizers. Beig more strict,
we distill entanglement by projecting n copies of the state on permutationally invariant
subspaces and applying on-way hashing protocol. Having the problem rewritten in a
purely group-theoretic manner we could find analytical expressions for the rate of the
protocol. Additionally, we solved this problem using an equivalent approach relying on
algebraic association schemes called the Johnson scheme. We also generalize our ap-
proach to higher dimensions.

7.3.2 Research not included in my PhD thesis:

1. Geometric properties of the private states The main task of quantum cryptography is
to obtain the classical secret key for data encryption from quantum states. This can be
achieved by maximally entangled pairs or a much more broader class of states, called pri-
vate bits. These entangled states are built of two parts - the bipartite key part, from which
we produce the secret key, and the bipartite part protecting the key from an eavesdropper
called the shield part. In paper [P7], we analyzed the geometrical properties of private
states from the point of view of their distance from the set of separable states. We were
interested in private states which admit PPT property (they remain positive operators af-
ter partial transposition) and are far away as possible from the separable states. It means
that from such states no pure entanglement can be distilled but still we can obtain a cryp-
tographic key. We show that there are such private states that for the fixed dimension
of the key part the distance from the set of separable states increases with the growing
dimension of the shield part. The novel feature in our approach is the fact we did not
need to use the method called boosting, relying on tensoring many copies of private state
to achieve a state arbitrarily far from the separable states. This leads us to better distance
scaling than in the previous attempts. Additionally, we presented explicit construction of
private states under consideration.

2. Studies on local random quantum circuits Random unitary matrices are an important
resource in quantum computing and information theory in general. The possible applica-
tions range from quantum cryptography, quantum data-hiding, and foundations of statis-
tical mechanics, up to quantum thermodynamics problems like equilibration of quantum
states. Unfortunately, to implement a random Haar unitary we need an exponential num-
ber of quantum qubit gates and random bits - these properties make impossible practical
implementations. One way to deal with this problem is to consider approximate unitary
t−designs which mimic properties of the Haar measure for polynomials of degrees up
to t. There was even a conjecture, proved later, that polynomial-sized random quantum
circuits acting on n qubits form an approximate unitary poly(n)− design. It was done
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by presenting a ratio of convergence to a given t−design as a function of n. The main
idea is to exploit tools coming from many body physics and translate the problem into
a problem of finding bounds on the spectral gap of a certain Hamiltonian. In paper [P8]
we numerically investigate previously known results in this area, especially focusing on
derived earlier bounds. For various ranges of parameters n ≤ 20 and t ≤ 5, we have
proven that previously known lower bounds, in principle give a little information about
the real situation, and only prove that the gap is closed. It means that there could be
a large difference in actual values of the spectral gap and corresponding lower bound.
Additionally, we compare our numerical results with other lower bounding techniques
and conclude their lack of tightness or even show that they can be inconclusive. Progress
in numerical results was possible due to applications of the Schur-Weyl duality and rep-
resentation theory for the group algebra of the symmetric group S(n). Our methods
combining numerics with an analytical approach for constructing irreducible bases can
be useful in studying many-body systems in general.

3. Transformations between equivalent irreducible representations It is a well-established
fact that group representation theory is a powerful tool in physics, allowing for exploiting
the underlying symmetries in the system under considerations to simplify its description,
finding corresponding conservation laws, and make it more elegant. From the point of
view of computing certain values describing a given system, restricting calculations to
every irreducible block reduces the complexity of computations, and very often allows
even for analytical description. However, to perform calculations one needs to know
matrix representations of the group elements on every nonequivalent component. It can
happen that one representation is more useful for a certain task than another one, and
there is a need to translate our description into a more friendly for us form. In paper [P9]
we give an algorithm on how to construct a unitary transformation between equivalent
irreducible representations for a finite group G. We show that it is possible to construct
a unitary conjugation between sets of equivalent irreducible representations, using very
particular properties of irreducible representations of finite groups. In particular, by using
the orthogonality relations for irreps, which is something different than previously known
approaches based on solving a set of linear equations. We present examples of how the
proposed method works in practice for the permutation group S(n). In particular, we
analyze the similarity transforms for a class of equivalent pairs of permutation group
irreps showing that the resulting transformation matrix has an anti-diagonal form by
using the Young-Yamanouchi representation. We also analyze some generalizations of
the celebrated orthogonality relations for irreducible representations of finite groups.

4. Integrability of classical Hamiltonian systems Many problems of classical mechanics is
described by a set of linear differential equations. For example, in the Hamiltonian ap-
proach, for a system of n degrees of freedom, its evolution is described by a set of 2n
differential equations. A natural question is to ask whether we can find an analytical
solution for a given set of equations. In fact, we ask then about the integrability property
of a system under consideration. In paper [P10] we study the integrability in the Liou-
ville sense of natural Hamiltonian systems with a homogeneous rational potential. Such
potentials describe a wide range of physical systems like cosmological models with a con-
formal scalar field, generalized Hélion-Heiles potentials describing the flat motion of stars
in galaxies, Yang-Mills system with SU(2) gauge fields, and many others - this makes our
restriction strongly physically motivated. In the case of two degrees of freedom, we show
universal relation between the eigenvalues of Hessian of the potential evaluated at all
so-called proper Darboux points. It turns out, this property shows that considered poten-
tials satisfy a finite number of necessary conditions for their integrability coming from the
differential Galois group of variational equations along certain particular solutions. This
gives us a tool for the classification and characterization of such potentials. In particular,
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we have constructed a number of examples of potentials satisfying necessary conditions
and proved their integrability by deriving corresponding functionally independent first
integrals of motion.

7.4 Additional track record after PhD

1. Limitations for private randomness repeaters Most of the cryptography protocols rely
on two main ingredients – private randomness and private key. The distributed secure
key, which is a correlated string of bits, between distant and honest parties ensures the
security of communication which is crucial for the safety of the quantum internet. One
way of safe distribution of the secure key among parties in a quantum network is the
formalism of the quantum repeaters by exploiting maximally entangled states and entan-
glement swapping, called the paradigm of network key swapping. This formalism has
been developed for the most general scenario involving private states. In paper [P11]
we focus on the network properties of the private randomness - complementary to the
private key resource. Our first step was to show that any private state is a particular case
of a so-called independent state, i.e. state containing perfect, directly accessible, private
randomness. Using this connection we were able to prove an upper bound on the rate
of repeated randomness in a similar scenario as it was for the private states. It is equal
to twice the relative entropy with respect to the maximally mixed state and holds for
states with positive partial transposition (PPT). This bound provides a fundamental limit
on the possibility of transferring privacy among the considered network. We show the
usefulness of the derived bound by applying it to separable Werner states and showing
a gap between the localizable and the repeated private randomness for sufficiently large
dimensions. Additionally, in a restricted scenario, we were able to derive an analogous
bound for arbitrary states, not necessarily PPT ones.

2. Leakage of private data and connection with markovianity All proofs of the security of
quantum key distribution do not take into account the everyday environment in which
communicated parties have to deal with. It means their usefulness is only theoretical since
we neglect the imperfections in the production of the quantum key distribution (QKD)
equipment and the active attacks of the eavesdropper known as Trojan Horse Attacks
(THAs). The latter leads to the leakage of the secret key and it is recently been extensively
studied. In paper [P12] we consider the scenario of THA where an eavesdropper has
access to the raw key of the honest parties’ device. The main result contains lower bounds
on the leakage of private randomness and private key. In particular, we have shown that
the private randomness in distributed setting can not drop down by more than S(a) +
log2 |a|, where S is the von Neumann entropy, and a system that has been leaked out to
eavesdropper. In the considered scenario we also focus on so-called irreducible private
states and prove that their two-way distillable key is non-lockable. This is the first result of
such kind for the non-trivial class of mixed states. Additionally, we observed that for the
private states under consideration the key drop is independent on the size of the shield
part. It means in particular, that a larger shield does not protect the key more effectively.
Finally, we proved the connection between the (non)markovianity of quantum dynamics
and hacking. Namely, we show that an invertible map is non-CP-divisible if and only if
there exists a state whose key witnessed by a particular privacy witness increases in time.

3. Distilling secure key from reducible private states As we pointed out earlier obtaining a
secret key for secure communication/data encryption from quantum states is one of the
most fundamental achievements of quantum information science. This was demonstrated
firstly by exploiting maximally entangled states. However, the approach of extracting a
secret key can be extended to private states which is a class of states containing maximally
entangled ones. Nowadays, we have a rich theory describing the quantitative relation
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between secrecy and this class of states but the theory is still developed. In paper [P13]
we formulated the first protocol which distills the secret via measuring the shield part
of reducible private states – we are not restricted only to the key part as it was in all
previously known protocols. We provided an upper bound on its performance in terms
of regularised relative entropy of entanglement. This bound outperforms bounds relying
on the relative entropy of entanglement used earlier in the literature. Using obtained
bound we have made a connection between the set of irreducible private states/strictly
irreducible private states and the existence of entangled key-undistilable states (bound
key states). Namely, if the latter states exist then the sets of irreducible and strictly
irreducible private states are equal. The reverse reasoning also holds, giving us if and
only if conditions. Assuming the bound key states exist, we consider several properties
of the irreducible private states. In particular, we derived a lower bound on the trace
norm distance between bound key states and private states that works in sufficiently
large dimensions.

4. Theory of positive maps and entanglement witnesses As we pointed out earlier one
way of deciding whether a given d⊗ d quantum state ρ is entangled/separable is to use
the notion of an entanglement witness. A non-positive operator W is an entanglement
witness if its expectation value with all separable states is non-negative. This makes the
approach of studying entanglement by entanglement witnesses very general, but techni-
cally very complex. To check whether a given operator W is an entanglement witness
we have to find a positive, but not completely positive linear map Λ for which W is its
Choi-Jamiołkowski image. Due to the lack of characterization of the positive cone such
searching is in principle hard and other methods are required. In paper [P1] we deliver
one additional method for entanglement witnesses construction. Namely, we prove that
it is enough to use non-positive maps, but one has to restrict consideration to the sub-
domain when the considered map is positive. In fact, a map must be a surjection between
set of rank k ≤ d projectors and a set of rank-one projectors. A map satisfying these de-
mands is considered by us the inverse reduction map R−1 for which we have presented
the explicit construction of the new class of entanglement witnesses which can be treated
as a generalization of the Choi entanglement witness.

5. Studies on quantum error correction codes In the last years, we could observe the inter-
est in studying the connection between quantum error correcting codes and a powerful
connection between theories of quantum gravity and field theory known as AdS/CFT
correspondence. This relates gravitational theories in the interior (bulk) of anti-de Sitter
(AdS) spaces to conformal field theories (CFT) defined on the boundary of the space. Re-
cently, the connection between quantum information science and a special toy model of
the AdS/CFT correspondence has been proposed. In paper [P14] we investigate this con-
nection and explore the relation between AME states and quantum error correcting codes
and apply our findings to improve our understanding of the AdS/CFT correspondence.
Namely, we consider the perfect tensor of the network as AME states, and we study the
spreading of the encoded quantum information in the network. Since we can treat it as
a quantum code, we can use tools like code concatenation and stabilizer formalism. In
the first step, we derive the form of logical operators and stabilizer generators for every
code emerging from n + m qudit stabilizer AME state, encoding n into m qudits with
n ≤ m. Our calculations are valid for every local dimension which is a prime number,
which follows from previously known properties of certain graph states. We find that
the upper bound of the entanglement entropy of the boundary state is saturated for AME
input states for every connected bipartition of the boundary, and we postulate its optimal-
ity. In fact, for the AME states we show that our bound correspond with the celebrated
Ryu-Takayanagi formula that connects the entanglement entropy of the conformal field
with the geometry of associated AdS space.
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6. Studies on quantum second laws of thermodynamics – information-theory approach
In the era of miniaturization and developing new and more precise experimental meth-
ods of constructing nanoscale devices, we must ask what are limitations restricting their
functioning. In particular, we can focus on thermodynamics machines, like nano- or even
quantum-engines or refrigerators, and ask about their functioning and possibly find unex-
pected capabilities compared to their classical counterparts. This an important theoretical
goal that touches thermodynamical fundamental limits of Nature – a set of thermody-
namic laws that apply on the quantum scale. In paper [P15] we have made a fundamental
step in this direction. For the first time, we focus on the fully quantum regime – where
we consider evolution of quantum states with coherences when the experimenter has ac-
cess to a heat bath at temperature T, and perform unitary operation commuting with the
total Hamiltonian (thermal operation). We ask what are the limitations on the evolution
of the off-diagonal elements of a density operator between distinct energy levels under
thermal operations. These are in fact genuine second laws of thermodynamics for off-
diagonal elements. We show that there exist two families of bounds, one for diagonal
elements of states (thermo–majorization) and the second one for coherences. By consid-
ering the so-called damping matrix we derived an upper bound on the coherences after
transformation in terms of the initial coherences and probability of transitions between
the energy levels. In particular, we show that obtained bounds do not mix the coherences
among each other, and they do not mix with bounds on the diagonal elements. In the
qubit case, we proved that obtained bounds are tight by constructing a general thermal
operation saturating them. However, for larger dimensions, we constructed an explicit
three-level quasi-cycle for which the bounds cannot be saturated from its construction.
This motivated us to introduce and study a larger class of thermal operations called by
us enhanced thermal operations.
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[P2] Michał Studziński, Piotr Ćwikliński, Michał Horodecki, and Marek Mozrzymas. Group-
representation approach to 1 → n universal quantum cloning machines. Phys. Rev. A,
89:052322, May 2014.

[P3] Marek Mozrzymas, Michał Horodecki, and Michał Studziński. Structure and properties
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[P9] Marek Mozrzymas, Michał Studziński, and Michał Horodecki. Explicit constructions of
unitary transformations between equivalent irreducible representations. Journal of Physics
A: Mathematical and Theoretical, 47(50):505203, nov 2014.
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[E25] Maria Balanzó-Juandó, Michał Studziński, and Felix Huber. Positive maps from the
walled brauer algebra, arxiv: 2112.12738.

[E26] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed staes: necessary
and sufficient conditions. Physics Letters A, 223(1):1–8, 1996.

[E27] A. Peres. Separability criterion for density matrices. Physics Review Letters, 77(8):1413–
1415, 1996.

[E28] P. W. Shor, M. Horodecki, and M.B. Ruskai. Entanglement breaking channels. Reviews in
Mathematical Physics, 15(6):629641, 2003.

[E29] S.L. Woronowicz. Positive maps of low dimensional matrix algebras. Reports on Mathe-
matical Physics, 10(2):165 – 183, 1976.
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[E35] Dariusz Chruściński. On kossakowski construction of positive maps on matrix algebras.
Open Systems & Information Dynamics, 21(03):1450001, 2014.
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