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Abstract

Calculating the dynamics of a non-isolated system is generally computationally hard and
sometimes even not feasible. Due to that reason, one needs to use di�erent approximations
that are detrimental to the accuracy of the results. However, in the majority of the current
research papers, people tend to simply use the Markovian master equation (or GKLS.)
While it is extremely simple to calculate and it is justi�ed to use it in some circumstances
one cannot always trust it as the �nal answer. This thesis aims to show that there are
more ways to deal with open quantum system dynamics that are more reliable and easily
implementable �for some systems� than the GKLS equation. Among those, we just focus
on those that preserve the positivity of the state, i.e. the dynamics are completely positive.

The results will be presented in increasing order of precision. We begin with the re-
sults obtained from the familiar Markovian regime, followed by those obtained under non-
Markovian approximations, such as the re�ned weak coupling approximation and a novel
one introduced by us. Additionally, a fermionic resonant model has also been considered
and we have shown that it can be solved exactly.

We have also applied the Markovian and non-Markovian dynamics to perform some
desired tasks such as charging a quantum battery or estimating the temperature of a system.
Finally, we compared the results from di�erent approaches whenever possible.
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Streszczenie

Obliczanie dynamiki nieizolowanego systemu jest generalnie trudne, a czasem nawet niewykon-
alne. Z tego powodu stosowane s¡ ró»ne przybli»enia, które niekorzystnie wpªywaj¡ na
dokªadno±¢ wyników. W wi¦kszo±ci aktualnych prac badawczych wykorzystywane s¡ Markowskie
równania fundamentalne (GKLS). Chocia» podej±cie to jest proste obliczeniowo i u»ycie go
jest uzasadnione w pewnych okoliczno±ciach, jednak»e nie zawsze mo»na ufa¢ uzyskanym
wynikom i traktowa¢ ich jako pewnik. Ta praca ma na celu pokazanie, »e istnieje wi¦cej
sposobów radzenia sobie z dynamik¡ otwartych systemów kwantowych. Sposoby te s¡
bardziej niezawodne i ªatwiejsze do wdro»enia (dla niektórych systemów) ni» równanie
GKLS. W±ród nich skupiamy si¦ tylko na tych, które zachowuj¡ dodatni¡ okre±lono±¢ stanu,
czyli na dynamice caªkowicie dodatniej.

Wyniki zostan¡ przedstawione w kolejno±ci rosn¡cej dokªadno±ci, pocz¡wszy od wyników
uzyskanych z dobrze znanego re»imu Markowa, nast¦pnie uzyskanych przy przybli»eniach
niemarkowskich, takich jak udoskonalone przybli»enie sªabego sprz¦»enia, a ko«cz¡c na
wprowadzonym przez nas nowym przybli»eniu. Dodatkowo rozwa»ony zostaª fermionowy
model rezonansowy, dla którego zostaªo przedstawione ±cisªe rozwi¡zanie.

Aby opisa¢ pewne istotne zagadnienia �zyczne, takie jak ªadowanie baterii kwantowej
czy oszacowanie temperatury systemu u»yta zostaªa zarówno dynamika Markowska jak i
niemarkowska. W ko«cowym etapie pracy wyniki otrzymane dla ró»nych podej±¢ zostaªy ze
sob¡ porównane, tam gdzie byªo to mo»liwe.
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Notation

During the whole thesis we shall omit the hats on the operators and set ℏ = KB = 1.
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Chapter 1

Introduction

Quantum mechanics has revolutionized our understanding of the microscopic world on the
atomic and subatomic levels. However, quantum systems are often described in isolation,
assuming that they are completely separated from their environment [Sak06, Sha12]. In
reality, almost all physical systems are open and interact with their surroundings, leading to
complex quantum dynamics that is challenging to model and simulate [BP02, RH12, Lid19,
Sch14].

The study of open quantum systems has gained signi�cant attention in recent years due
to its practical applications in quantum computing, quantum communication, and quantum
sensing [Mer07, GT07, DRC17]. Open quantum systems are characterized by the interac-
tion between the system and its environment, which results in a loss of coherence and the
emergence of decoherence e�ects [BP02].

As commonly said, physics is the art of doing approximations and, I would humbly
add that this is especially true when working with open quantum systems. There exists a
plethora of methods and the list keeps growing day by day. The reason is that in general, it
is very computationally demanding to calculate the dynamics of an open quantum system
without using any approximation.

One of the most notorious among them is the so-called Markovian approximation. It
assumes that the environment does not have any memory, so the dynamics after the present
time t does not depend on the past, i.e. times before t. It is very helpful and simpli�es
the calculations a lot, but it only works in some regimes. In general, most processes in
nature have memory and are not Markovian. This non-Markovianity is useful to perform
some desired tasks such as systematic quantum control [RKK15], and perfect mixed state
teleportation [LBP14].

If one would like to account for these memory e�ects, one may try to get the dynamics
using other approximations. For that matter, we will resort to the so-called re�ned weak
coupling [Riv17], �rst introduced by Alicki [Ali89] and later by Schaller and Brandes [SB08].
In this case, one does not end up with a master equation but rather with an exponent that
gives the evolution. In that sense, we may call it the re�ned weak coupling equation. It
is interesting because it ensures that the dynamics is completely positive while being non-
Markovian, which is a property that any physical evolution should have.

Another way to deal with memory e�ects is employing the Bloch-Red�eld equation
[Red57, Blo57]. The drawback of using it is the fact that its dynamics is not completely
positive and one may get non-physical states (given by non-positive matrices). However,
there are some techniques to avoid this non-positivity [GN99, Whi08] Yet it is used in current
research and especially in the �eld of Quantum Chemistry [JIP+15, CLAFLO+23]

This thesis aims to understand better the di�erent approximations �speci�cally we will
focus on the class of them that preserve complete positivity of the dynamics�when dealing
with an open quantum system and see their range of validity. However, the dynamics of
some systems are too complex to be accurately described by some given approximations so

1



2 CHAPTER 1. INTRODUCTION

one needs to pay the price of losing accuracy and keep approximating. Because of that, for
some systems and platforms, we are not able to get the exact solution or the dynamics under
the re�ned weak coupling approximation. Thus, we present di�erent results obtained using
Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) master equation [GKS76, Lin76, CP17],
the re�ned weak coupling equation [Ali89, SB08, Riv17], and exact dynamics. We apply
these solutions for interesting tasks such as charging a quantum battery or estimating the
temperature of the system. Additionally, we compare the results obtained under di�erent
regimes, whenever it is applicable.

To that end, this thesis is organized into four chapters. First, we introduce the dynamics
of an open quantum system, we derive the GKLS master equation and the re�ned evolution
equation. The next chapter presents the results obtained in a quantum battery setting intro-
duced in [AFM+18] using the GKLS master equation. The results of this chapter are based
on our papers [RAS+22, RRAM+22]. and aim to improve the charging procedure of open
quantum batteries. Later, in the third chapter, we show non-Markovian results obtained
using the re�ned weak coupling and an approach derived by us [ARAH22]. Moreover, we
benchmark the results obtained in the re�ned weak coupling approximation with the ones
obtained using the GKLS equation in the aforementioned battery setting. This benchmark
is based on a work by us that is not yet published [RSH]. In the last chapter, we present an
exact solution of the resonant level model, namely without the need for any master equation
or any kind of approximation as in the other chapters. This aims to improve the description
of the �Spin-boson� model in the fermionic case. We apply the solution of the system to
estimate its temperature and compare it to what one obtains when using the Markovian
master equation. In addition, we benchmark the dynamics obtained exactly with the ones
obtained using the GKLS master equation. This chapter is again based on one work that is
in preparation [RMPLH].

The results presented in the thesis are structured in increasing order of accuracy. Namely,
we start with the most di�cult scenarios �the cases in which we had to resort to more
approximations and hence the results are not that accurate�, and continue until the easiest
model that we solved in an exact way, which gives us the most accurate results.



Chapter 2

Open Systems Dynamics

We are all familiar with the dynamics that a closed system undergoes, namely those given
by the von Neumann equation [BP02]

∂ρ(t)

∂t
= −i[H(t), ρ(t)], (2.1)

where ρ(t) and H(t) are the state and the Hamiltonian of the system, respectively. For
convenience, one can rewrite it as

∂ρ(t)

∂t
= L(t)ρ(t), (2.2)

where L(t) is the Liouvillian super operator. Eq. (2.2) can readily be solved as

ρ(t) = T exp

[∫ t

t0

dsL(s)
]
ρ (t0) (2.3)

where T is the time-ordering operator that orders the products of time-dependent operators
in such a way that the �rst acting on the right is the one evaluated at the smallest value of
t.

In most cases, our system of interest (let us call it S) interacts with the environment/bath
(B) and we are solely interested in the reduced state ρS . In that situation, one could
compute ρSB(t) using Eq. (2.3) and then trace out the degrees of freedom of the subsystem
B. In real cases though, this turns out to be impracticable. Then, one typically traces
out the subsystem B from Eq. (2.1) and then applies some approximations to get the
dynamics for ρS(t). As now ρS(t) is no longer a closed system (remember that interacts
with some degrees of freedom of B) its dynamics correspond to the dynamics of an open
system [AL07, BP02, RH12, Sch14, Lid19]. These dynamics are no longer unitary and one
needs to resort to some approximations to solve them.

In the �rst section of the chapter, we present the microscopic derivation of the GKLS
master equation �which is of wide interest because describes a Markovian evolution [AL07,
Nor97, BP02, RH12]�, explain in which regimes the approximations used to obtain it work,
enumerate some properties of the steady state, and describe the global and local approach
to calculate GKLS.

In the last section, we present the re�ned weak coupling evolution to derive a way
to compute the dynamics and account for memory e�ects. Moreover, we show that the
dynamics obtained under the re�ned weak coupling evolution tends to be those obtained
using the global approach when time goes to in�nity.

3



4 CHAPTER 2. OPEN SYSTEMS DYNAMICS

2.1 Microscopic derivation of GKLS master equation

Before starting the derivation of the Markovian master equation we would like to note that
the GKLS equation is a general form to compute the dynamics of open quantum systems
and is often used phenomenologically. However, Davies proposed a microscopic derivation
of the GKLS master equation [Dav74, Dav76] that we present here. Hence, throughout the
thesis, we deal with the GKLS-Davies equation.

Consider now that we start with a scenario analogous to the one depicted in Fig. (2.1).
In that case, we have that the total system (S + B) lives in the Hilbert space HT =
HS⊗HB where HS and HB represent the Hilbert space for the system and the environment,
respectively. We assume that the Hamiltonian of the system (S +B) can be expressed as

H = HS ⊗ IB + IS ⊗HB + V, (2.4)

where V accounts for the interaction between the system and the bath. For simplicity, let
us call HS ⊗ IB as HS and the same for the environment.

Figure 2.1: Pictorical representation of an open quantum system. The calligraphy letters
represent the Hilbert spaces in which the Hamiltonians and states �live�. Figure based on
[Man20].

We start from the von Neumann equation for the total system in the interaction picture
with respect to the free Hamiltonians HS and HB

∂ρ̃SB(t)

∂t
= −i[Ṽ (t), ρ̃SB(t)], (2.5)

where Ã = U†(t)AU(t) and U(t) = e−i(HS+HB)t. One can integrate the di�erential equation
to get1

ρSB(t) = ρSB(0)− i
∫ t

0

ds[V (t), ρSB(t)]. (2.6)

It is convenient for us to inject Eq. (2.6) back into Eq. (2.5) and trace out B to obtain

∂

∂t
ρS(t) = −iTrB [V (t), ρSB(0)]−

∫ t

0

dsTrB [V (t), [V (s), ρSB(s)]] . (2.7)

We now assume that the initial state of the system is a product state of the form
ρSB(0) = ρS(0) ⊗ ρB(0). Furthermore, we note that any interaction Hamiltonian V (in

1We omit tildes from now on during this chapter, and all the operators are in the interaction if we do
not say otherwise.



CHAPTER 2. OPEN SYSTEMS DYNAMICS 5

Schrodinger picture) acting on HS ⊗HB can be written as (see [RH12] for the proof)

V =
∑
k

Ak ⊗Bk, (2.8)

where A†
k = Ak and B†

k = Bk.
Keeping that in mind, we can compute

TrB(V (t)ρSB(0)) = TrB

(∑
k

Ak(t)⊗Bk(t)ρS(0)⊗ ρB(0)

)
=
∑
k

Ak(t)ρS(0)TrB(Bk(t)ρB(0)) = 0,

(2.9)
where we used that TrB(Bk(t)ρB(0)) = 0 which is always a mild assumption as long as
[HB , ρB ] = 0 [KCK08]. That is usually the case because one considers that the bath starts
in thermal equilibrium and is given by the Gibbs state

ρB(0) =
e−βHB

Tr(e−βHB )
, (2.10)

where β is the inverse temperature of the bath. Moreover, Ak(t) = eiHStAke
−iHSt and

Bk(t) = eiHBtBke
−iHBt. With this, we now have

∂

∂t
ρS(t) = −

∫ t

0

dsTrB [V (t), [V (s), ρSB(s)]] . (2.11)

If the bath is su�ciently larger than the system and the coupling between them is small
(weak-coupling approximation), one could consider that the system of the system will not
a�ect the system of the bath during the whole evolution and write the state of the system as
ρSB(t) ≈ ρS(t)⊗ρB(0). This is called the Born approximation. Even though we present it as
an approximation, it may be more accurate to treat it as an ansatz to solve the equations.2

In that way we get

∂

∂t
ρS(t) = −

∫ t

0

dsTrB [V (t), [V (s), ρS(s)⊗ ρB(0)]] = −
∫ t

0

dτ TrB [V (t), [V (t− τ), ρS(t− τ)⊗ ρB(0)]] ,

(2.12)
where we perform a change of variables in the integrand because it will be useful later.

This equation is non-local in time, the dynamics at time t depend on the states at all the
previous times. To simplify the matters, we take the so-called Markov approximation and
consider that the �short-memory� of the bath only keeps track of the events within the time
range [0, τB ], where τB is the relaxation time of the bath and it is related to the correlation
functions of the reservoir. Thus, we substitute ρS(t− τ) by ρS(t) and get

∂ρS(t)

∂t
= −

∫ t

0

dτ TrB [V (t), [V (t− τ), ρS(t)⊗ ρB(0)]] . (2.13)

This approximation is justi�ed if the integrand becomes almost zero for t >> τB . In
addition, one considers that the coupling between the bath and the system g obeys g <<
1/τB . Finally, assuming again that the correlation function of the reservoir is negligible for
t >> τB , we can send the limit of the integral to in�nity as3

∂ρS(t)

∂t
= −

∫ ∞

0

dτ TrB [V (t), [V (t− τ), ρS(t)⊗ ρB(0)]] , (2.14)

which is the Bloch-Red�eld equation4 [Red57, Blo57]. It is generally not completely positive
(CP) and therefore it can make the state non-positive (some techniques try to circumvent

2See [RH12] for a very interesting discussion about this.
3For a rigorous proof, see [ABLZ12].
4Some people de�ne Eq. (2.13) as the Bloch-Red�eld equation (see for example [Whi18, Lid19, BP02].)



6 CHAPTER 2. OPEN SYSTEMS DYNAMICS

the issue [GN99, Whi08].)5 As mentioned before, there is a caveat here, the dynamics
described by (2.14) are only meaningful for times bigger than the relaxation time τB .

Eq. (2.14) is still non-CP and it can lead to unphysical states. To obtain CP dynamics,
one has to resort to an extra approximation, the so-called secular approximation. To do so,
let us rewrite Eq. (2.14) using Eq. (2.8) for V (t),

∂ρS(t)

∂t
= −

∑
k,k′

∫ ∞

0

dτ TrB [Ak(t)⊗Bk(t), [Ak′(t− τ)⊗Bk′(t− τ), ρS(t)⊗ ρB(0)]] .

(2.15)
To be as explicit as possible, we will expand the double commutator as

TrB [Ak(t)⊗Bk(t), [Ak′(t− τ)⊗Bk′(t− τ), ρS(t)⊗ ρB(0)]] (2.16)

= Ak(t)Ak′(t− τ)ρS(t) Tr [Bk(t)Bk′(t− τ)ρB(0)] (2.17)

−Ak′(t− τ)ρS(t)Ak(t) Tr [Bk′(t− τ)ρB(0)Bk(t)] (2.18)

−Ak(t)ρS(t)Ak′(t− τ) Tr [ρB(0)Bk′(t− τ)Bk(t)] (2.19)

+ ρS(t)Ak(t− τ)Ak′(t) Tr [Bk(t)ρB(0)Bk′(t− τ)] . (2.20)

It is useful to de�ne now the two-point correlation functions of the bath as

Bkk′(t, t− τ) = Tr [Bk(t)Bk′(t− τ)ρB(0)] (2.21)

= Tr
[
eiHBtBke

−iHBteiHB(t−τ)Bk′(t− τ)e−iHB(t−τ)ρB(0)
]

(2.22)

= Tr
[
eiHBτBke

−iHBτBk′(t− τ)ρB(0)
]
= Tr [Bk(τ)Bk′ρB(0)] (2.23)

= Bkk′(τ, 0) ≡ Bkk′(τ), (2.24)

where we consider that ρB is a stationary state and thus commutes with HB .
The correlation functions of the bath do not depend on the time t and without loss of

generality, we can set t = 0. Following similar calculations, one can show that B∗kk′(τ) =
Bkk′(−τ). Using these properties, we can simplify the Eq. (2.15) as

∂ρS(t)

∂t
= −

∑
k,k′

∫ ∞

0

dτBkk′(τ)
(
[Ak(t), Ak′(t− τ)ρS(t)] + h.c.

)
, (2.25)

where h.c. stands for the hermitian conjugate. The next step is moving the operators to the
frequency domain. For that matter, let us assume that the spectrum of the Hamiltonian of
the system is discrete, HS =

∑
ε ε|ε⟩⟨ε|. Hence

Ak(t) = eiHStAke
−iHSt =

∑
ε,ε′

e−i(ε′−ε)t|ε⟩⟨ε|Ak|ε′⟩⟨ε′| =
∑
ω

Ak(ω)e
−iωt, (2.26)

where ω = ε′ − ε (it is called Bohr frequency) and Ak(ω) =
∑

ω=ε′−ε⟨ε|Ak|ε′⟩|ε⟩⟨ε′|. They
are called jump operators (or eigenoperators) of the system and they ful�ll the following
properties

Ak(ω) = A†
k(−ω) (2.27)∑

ω

Ak(ω)e
−iωt =

∑
ω

A†
k(ω)e

iωt. (2.28)

5In this sense, even if some people call it a Markovian equation, it is not strict Markovian because
Markovian dynamics should preserve the positivity of the states. Thus, we will call the Markovian master
equation the one obtained after performing the secular approximation and ensuring CP dynamics. In other
words, the GKLS equation. As this subject is indeed an ongoing research discussion, we recommend the
reader to take a look at [RHP14] to know more.
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Let us now calculate the two terms of the commutator in Eq. (2.25)

Ak(t)Ak′(t− τ)ρ(t) =
∑
ωω′

eiω
′te−iω(t−τ)A†

k (ω
′)Ak′(ω)ρ(t) =

∑
ωω′

eiωτei(ω
′−ω)tA†

k (ω
′)Ak′(ω)ρ(t),

(2.29)

Ak′(t− τ)ρ(t)Ak(t) =
∑
ωω′

e−iω(t−τ)eiω
′tAk′(ω)ρ(t)A†

k (ω
′) =

∑
ωω′

eiωτei(ω
′−ω)tAk′(ω)ρ(t)A†

k (ω
′) .

(2.30)

We can now de�ne

Γkk′(ω) =

∫ ∞

0

dτeiωτBkk′(τ), (2.31)

which is the one-sided Fourier transform of the autocorrelation functions of the bath Bkk′ .
So, in the frequency domain, Eq. (2.25) reads

∂ρS(t)

∂t
= −

∑
k,k′

∑
ω,ω′

(
Γkk′(ω)ei(ω

′−ω)t
[
A†

k(ω
′), Ak′(ω)ρS(t)

])
+ h.c. (2.32)

Now we can �nally move on to perform the secular approximation �which is done in the
spirit of the rotating wave approximation in quantum optics [GZZ04, BF05, LP00]�. To
do that, we eliminate the crossed terms ω ̸= ω′ assuming that they are rapidly oscillating
if t >> |ω − ω′|−1, and thus they average to zero. Before we also made the assumption
that t >> τB , so the secular approximation is only valid if |ω − ω′|−1 > τB for all ω ̸= ω′.
Therefore, one can summarize all the approximations as

g << 1/τB < min
ω ̸=ω′

|ω − ω′|. (2.33)

With this, we have

∂ρS(t)

∂t
= −

∑
k,k′

∑
ω

(
Γkk′(ω)

[
A†

k(ω
′), Ak′(ω)ρS(t)

])
+ h.c. (2.34)

However, it is convenient to still do some simpli�cations in the formula to get the �nal
GKLS equation. We �rst de�ne the Fourier transform of the autocorrelation functions as

γkk′(ω) =

∫ ∞

−∞
dτeiωτBkk′(τ), (2.35)

which ful�lls γ∗kk′(ω) = γk′k(ω). Hence,

Γkk′(ω) =

∫ ∞

0

dτeiωτBkk′(τ) =

∫ ∞

0

dτeiωτ 1

2π

∫ ∞

−∞
dω′e−iω′τγkk′(ω′) (2.36)

=
1

2π

∫ ∞

−∞
dω′γkk′(ω′)

∫ ∞

0

dτei(ω−ω′)τ , (2.37)

where we used the inverse Fourier transform for Bkk′(τ). With the help of the mathematical
identity ∫ ∞

0

dτeiωτ = πδ(ω) + iP
(
1

ω

)
, (2.38)

where P(x) denotes the Cauchy principal value and can be calculated for a function f as[
P
(
1

ω

)]
(f) = lim

ε→0

∫ ε

−ε

dω
f(ω)

ω
. (2.39)
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Thus

Γkk′(ω) =
1

2
γkk′(ω) + iSkk′(ω), (2.40)

where

Skk′(ω) =
1

2π

∫ ∞

−∞
dω′γkk′(ω′)P

(
1

ω − ω′

)
. (2.41)

As Skk′(ω) = S∗
k′k(ω), we can rewrite

γkk′(ω) = Γkk′(ω) + Γ∗
k′k(ω) (2.42)

Skk′(ω) =
1

2i
(Γkk′(ω)− Γ∗

k′k(ω)) , (2.43)

which after some tedious but straightforward calculations (see [Lid19] for details) allows us
to obtain the GKLS equation

dρS(t)

dt
= −i [HLS, ρS(t)]+

∑
ω

∑
kk′

γkk′(ω)

(
Ak′(ω)ρS(t)A

†
k(ω)−

1

2

{
A†

k(ω)Ak′(ω), ρS(t)
})

,

(2.44)
where

HLS =
∑
ω

∑
kk′

Skk′(ω)A†
k(ω)Ak′(ω), (2.45)

is the so-called Lambshift Hamiltonian �we call it Hamiltonian because it is Hermitian by
construction� and it commutes with the Hamiltonian of the system, i.e. [HLS, HS ] = 0. This
Hamiltonian accounts for the shifts in the energies of the system produced by the interaction
with the bath. The other term of the dynamics

D(ρS(t)) =
∑
ω

∑
kk′

γkk′(ω)

(
Ak′(ω)ρS(t)A

†
k(ω)−

1

2

{
A†

k(ω)Ak′(ω), ρS(t)
})

, (2.46)

accounts for the dissipation (or incoherent evolution) and is usually called the dissipator.
γkk′(ω) are called the decaying rates and we will see later that one can rewrite them as
γkk′(ω) = 2πTr [Bk(ω)Bk′ρB(0)].

We would like to note that Eq. (2.44) is in the interaction picture with respect to the
free Hamiltonians of the system. However, due to the construction of the jump operators,
it is straightforward to get the dynamics in the Schrödinger picture as

dρS(t)

dt
= −i [HS +HLS, ρS(t)]+

∑
ω

∑
kk′

γkk′(ω)

(
Ak′(ω)ρS(t)A

†
k(ω)−

1

2

{
A†

k(ω)Ak′(ω), ρS(t)
})

,

(2.47)
where the only new term is the Hamiltonian of the system HS and we note that ρS(t) is
now in the Schrödinger picture.

The above equation gives CP dynamics as long as γ(ω) is a semide�nite positive matrix.
The proof of that follows from Bochner's theorem [RS+80, RS+75] that states that the
Fourier transform of a function is positive if the function is of a positive type. A function
f(x) is of a positive type if the matrix fmn = f(xm − xn) is positive semide�nite for any
xm and xn. In our case, f(x) = Bkk′(τ) = Tr[Bk(τ)Bk′ρB(0)] which can be proven to be of
positive type (see [RH12] for the proof.)

To �nish, we would like to note that the evolution of ρS will be given as

ρS(t) = eLtρS(0), (2.48)

where

L(·) = −i [HS +HLS , (·)] +
∑
ω

∑
kk′

γkk′(ω)

(
Ak′(ω)(·)A†

k(ω)−
1

2

{
A†

k(ω)Ak′(ω), (·)
})
(2.49)
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is the action of the Liouvillian (or generator of the dynamics) superoperator to any operator.6

2.1.1 Steady state properties

The steady state of a general evolution is given by

∂ρst
∂t

= Lρst = 0. (2.50)

Nonetheless, it is not always the case that any initial state relaxes to a steady state, namely

lim
t→∞

ρ(t) = ρst. (2.51)

To ful�ll this, the only eigenoperator of the adjoint Liouvillian L† with null eigenvalue should
be proportional to the identity [AL07]. In other words, the only operator that commutes
with all the jump operators of the system and its Hamiltonian is again proportional to the
identity [AFH09]. These are called the ergodicity conditions.7

The Gibbs state with respect to the system's Hamiltonian HS and with the same tem-
perature T as the bath, i.e.

τS =
e−βHS

Tr(e−βHS )
, (2.52)

is a steady state for the GKLS master equation. Let us prove it. First, note that starting
with the bath at the thermal state we have

⟨Ba(t)Bb(0)⟩ = Tr(τBe
iHBtBae

−iHBtBb) =
1

Tr(e−βHB )
Tr(Bbe

i(t+iβ)HBBae
−iHBt) (2.53)

=
1

Tr(e−βHB )
Tr(Bbe

i(t+iβ)HBBae
−i(t+iβ)HBe−βHB ) = ⟨Bb(0)Ba(t+ iβ)⟩,

(2.54)

which is called Kubo-Martin-Schwinger (KMS) condition [Kub57, MS59]. Second, we have

γab(ω) =

∫ ∞

−∞
dτeiωτ Tr(Ba(τ)BbτB) =

∫ ∞

−∞
dτeiωτ Tr(BbBa(τ + iβ)τB). (2.55)

We can now rewrite Ba(τ) as we did in Eq. (2.26) and then Ba(τ) =
∑

ω e
−iωτBa(ω).

However, this has the problem that the correlation functions will be periodic and when
integrating them from zero to in�nite, the integral will diverge [RH12]. The only way to
solve this problem is to consider that the spectrum of the bath is continuous and in that
case, Ba(τ) =

∫ ωmax

−ωmax
dωe−iωτBa(ω) where ωmax is the maximum eigenfrequency of the

bath (it can be in�nite.)
In that case

γab(ω) =

∫ ∞

−∞
dτeiωτ Tr(BbBa(τ + iβ)τB) =

∫ ∞

−∞
dτeiωτ

∫ ωmax

−ωmax

dω′e−iω′(τ+iβ) Tr(BbBa(ω
′)τB)

(2.56)

=

∫ ωmax

−ωmax

dω′eβω
′
∫ ∞

−∞
dτeiτ(ω−ω′) Tr(BbBa(ω

′)τB) =

∫ ωmax

−ωmax

dω′eβω
′
2πδ(ω − ω′) Tr(BbBa(ω

′)τB)

(2.57)

= 2πeβω Tr(BbBa(ω)τB) = 2πeβω[Tr(B†
a(ω)BbτB)]

∗ (2.58)

= 2πeβω[Tr(Ba(−ω)BbτB)]
∗ = eβωγ∗ab(−ω) = eβωγba(−ω), (2.59)

6The notation (·) indicates that this is where the operator is in the formula.
7This is indeed an interesting topic and we defer the reader to [Spo77, Fri77, Fri78] for more details.
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where we used the de�nition of Dirac's delta and assumed that ω was in the spectrum of
the bath, i.e. ω ∈ {−ωmax, ωmax}.8 In addition, we used that γab(ω) = 2πTr(Ba(ω)BbτB)
which can be easily obtained performing analogous calculations. Finally, we have

τAAa(ω) = eβωAa(ω)τA (2.60)

τAA
†
a(ω) = e−βωA†

a(ω)τA. (2.61)

With all these properties, we can calculate the stationarity of the thermal state as

∂τS
∂t

=
∑
ω

∑
a,b

γab(ω)

[
Ab(ω)τSA

†
a(ω)−

1

2

{
A†

a(ω)Ab(ω), τS
}]

(2.62)

=
∑
ω

∑
a,b

γab(ω)
[
e−βωAb(ω)A

†
a(ω)τS −A†

a(ω)Ab(ω)τS
]

(2.63)

=
∑
ω

∑
a,b

[
γab(ω)e

−βωA†
b(−ω)Aa(−ω)− γab(ω)A†

a(ω)Ab(ω)
]
τS (2.64)

=
∑
ω

∑
a,b

[
γba(−ω)A†

b(−ω)Aa(−ω)− γab(ω)A†
a(ω)Ab(ω)

]
τS = 0. (2.65)

We defer the reader to reference [Lid19] for more detailed calculations.
Nonetheless, the steady state should be the partial trace of the Gibbs state of the total

Hamiltonian (system plus bath) up to some corrections in the strength of the coupling
between the system and the bath [TMCA22, �WS+22]. This has been extensively discussed
and it is an active area in the �eld. So, even when the dynamics given by the GKLS are
CP, there are some problems with it such as its failure to describe the dynamics if the
levels of the system are nearly degenerated (one can see [TR08] for a method to deal with
continuous Hamiltonians and preserve CP dynamics), and giving the incorrect steady state
[Ali89]. In the case of an almost degenerate spectrum, according to Alicki and Lendi [AL07],
one may still use the GKLS equation, derived for the degenerate levels, and add splitting
as a Hamiltonian perturbation. This is the so-called local approach that we will introduce
in the next subsection.

On the other hand, although the Bloch-Red�eld equation [Blo57, Red57] is not CP, it
has been shown that in some cases [FC11, TWH12, CA21, PGM+20, TDKP22] one obtains
the expected steady state.

To sum up, the drawbacks and advantages of using each equation and the range of their
validity as well as coming up with better and more re�ned approximations are still exciting
ongoing research problems.

Finally, before concluding this section we talk about two approaches, local and global,
to deal with more complex systems in which our system of interest is made of interacting
subsystems that do not interact directly with the bath.

2.1.2 Local and global approach

We shall now examine how the GKLS-Davies equation works in presence of degeneracy and
show how it leads to the so-called �local-global� problem. We shall explain this through an
example. We explain this section using an example. Consider a Hamiltonian of this form

H = HA +HC + gHAC +HB + VAB , (2.66)

8The aforementioned property, γab(ω) = eβωγba(−ω), it is very important and it is used to prove the
detailed balance condition and to obtain the Pauli master equation [Lid19, BP02], which gives the evolution
of the populations. As an example, this is interesting for adiabatic quantum computing and quantum
annealing in which all the important information is contained in the ground state [AL18].
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where

HA = HC = ω|1⟩⟨1|, (2.67)

VAB = σx,A ⊗B, (2.68)

HAC =
1

2

(
σ+ ⊗ σ− + σ− ⊗ σ+

)
, (2.69)

with B being a bath operator that we do not need to specify and σ+ = σ−† = |0⟩⟨1|. Both
HA and HC correspond to two-level systems. If we consider g = 0, we will have that the
jump operators9 will only connect the following states

|00⟩ ←→ |10⟩, |11⟩ ←→ |01⟩, (2.70)

as seen in Fig. (2.2(a)).

(a) g=0

(b) g ̸= 0

Figure 2.2: Jumps between the energies of the system for both g = 0 and g ̸= 0.

Nevertheless, the situation is completely di�erent even if one moves away from g = 0
in�nitesimally and breaks the degeneracy. In that case (g ̸= 0 and �xed), to compute the
jump operators, one needs to �rst diagonalize the whole Hamiltonian HA + HC + gHAC .
Doing so, one gets that the eigenfrequencies are ω ± g/2 which respectively correspond to
the eigenvectors |ψ+⟩ = 1√

2
(|01⟩+ |10⟩) and |ψ−⟩ = 1√

2
(|01⟩ − |10⟩), and 2ω and zero for

excited and the ground state respectively (|11⟩ and |00⟩.) This translates to the following
jump operators

S
(
ω +

g

2

)
=

1√
2
(|ψ−⟩⟨11|+ |00⟩⟨ψ+|) , (2.71)

S
(
ω − g

2

)
=

1√
2
(|ψ+⟩⟨11| − |00⟩⟨ψ−|) , (2.72)

and the transpose of them (see Fig. (2.2(b)) for a pictorical representation.)

9They are simply given by S(ω) = |0⟩⟨1| ⊗ IC and S(−ω) = |1⟩⟨0| ⊗ IC .
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This discontinuity is non-physical since one would not expect the jump operators to
di�er so much for small g's. This problem stems from the fact that the GKLS equation
works only for times t >> 1

∆ω (secular approximation) where ∆ω is the smallest di�erence
of frequencies in HA. In our case, ∆ω = g.

To treat this, one uses the local approach �where one treats the interaction HAC as a
perturbation, and gets the jump operators as in the case with null g � and keeps in mind
that it is valid for t << 1

g . And the global approach (analogous to the case with g ̸= 0) for

t >> 1
g .

Moreover, there exists a general rule exposed in [AL07, Ali89, BF05]. Namely, that
for any Hamiltonian H = H0 + V one can get the GKLS equation for the whole H, that
is the global approach, or instead derive it for H0 and add V in the Hamiltonian part of
the �nal GKLS form (local approach.) The global scheme is valid for t >> 1/∆ω, where
ω corresponds to the frequencies of H. The local one is justi�ed for times that are both
t >> 1/∆ω for ω's in H0 and t << 1/∆ω for ω's in V . Therefore, when we say that we
treat something as a perturbation, it explicitly means that we apply the local approach as
introduced here.

In this thesis, we deal with one bath. Nevertheless, we would like to point out that
the problem has also been studied for two baths. It was �rst highlighted in [LK14]. In
[HPLM+17], the authors showed that for two baths if the interaction between the subsystems
g is smaller than the natural frequencies of the systems that interact with the bath, the
local approach is justi�ed. On the other hand, if g is bigger than the decaying rate of
the systems one should use the global approach. Besides, we defer the reader to [SAC21,
GCN+17, DCLH+18] to see the validity and issues with the local approach as well as for
the comparison between the two approaches in detail.

2.2 Re�ned weak coupling

In reference, [Riv17] the re�ned weak coupling was used to calculate the spin-boson model.
This approach has the advantage that it both accounts for non-Markovian e�ects and de-
scribes CP dynamics. Thus, in [Riv17] some non-Markovian e�ects were described. Here
we present its derivation.

As before, we consider a Hamiltonian of the form

H = HS +HB + V, (2.73)

and the initial condition ρ(0) = ρS(0) ⊗ ρB where [HB , ρB ] = 0. We again move to the
interaction picture with respect to HA and HB . Thus, the state of the subsystem S ful�lls

ρ̃S(t) = TrB [U(t)ρS(0)⊗ ρBU†(t)], (2.74)

where U(t) = T e−i
∫ t
0
Ṽ (s)ds and Ã = e−i(HS+HB)tAei(HS+HB)t. T is the time-ordering

operator.

Expanding the unitary U(t) in Eq. (2.74), we get

ρ̃S(t) = ρS(0)−
1

2
T
∫ t

0

dt1

∫ t

0

dt2 TrB

[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρB

]]
+O(Ṽ 3), (2.75)

where we used that the �rst order term is zero, i.e. Tr[Ṽ (t)ρB ] = 0. As we explained in
chapter (2), we can always assume that as long as ρB is a stationary state of HB .
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Now, we calculate

T
∫ t

0

dt1

∫ t

0

dt2 TrB

[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρB

]]
=

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρB

]]
(2.76)

+

∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1) TrB
[
Ṽ (t2),

[
Ṽ (t1), ρS(0)⊗ ρB

]]
,

(2.77)

where θ(x) is the Heaviside step function and is de�ned

θ(x) :=

{
1, x > 0

0. x ≤ 0
(2.78)

We can compute the double commutator terms as∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
[
Ṽ (t1),

[
Ṽ (t2), ρS(0)⊗ ρB

]]
=

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
(
Ṽ (t1)Ṽ (t2)ρS(0)⊗ ρB

)
(2.79)

−
∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
(
Ṽ (t1)ρS(0)⊗ ρBṼ (t2)

)
−
∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
(
Ṽ (t2)ρS(0)⊗ ρBṼ (t1)

)
(2.80)

+

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
(
ρS(0)⊗ ρBṼ (t2)Ṽ (t1)

)
, (2.81)

and analogously∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1) TrB
[
Ṽ (t2),

[
Ṽ (t1), ρS(0)⊗ ρB

]]
=

∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1) TrB
(
Ṽ (t2)Ṽ (t1)ρS(0)⊗ ρB

)
(2.82)

−
∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1) TrB
(
Ṽ (t2)ρS(0)⊗ ρBṼ (t1)

)
−
∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1) TrB
(
Ṽ (t1)ρS(0)⊗ ρBṼ (t2)

)
(2.83)

+

∫ t

0

dt1

∫ t

0

dt2θ(t2 − t1) TrB
(
ρS(0)⊗ ρBṼ (t1)Ṽ (t2)

)
. (2.84)

Now, knowing that θ(x) = 1+sgn(x)
2 and de�ning W (t) ≡

∫ t

0
Ṽ (s)ds we notice that we can

arrange all the terms in three di�erent expressions (after some algebra)

Z1[ρS(0)] = −TrB [W (t)ρS(0)⊗ ρBW (t)], (2.85)

Z2[ρS(0)] = TrB [W
2(t)ρS(0)⊗ρB ]+

∫ t

0

dt1

∫ t

0

dt2θ(t1−t2) TrB
[[
Ṽ (t1), Ṽ (t2)

]
ρS(0)⊗ ρB

]
(2.86)

and

Z3[ρS(0)] = TrB [ρS(0)⊗ρBW 2(t)]−
∫ t

0

dt1

∫ t

0

dt2θ(t1−t2) TrB
[
ρS(0)⊗ ρB

[
Ṽ (t1), Ṽ (t2)

]]
.

(2.87)
Finally, ρ̃S(t) = ρS(0) + Z(t)[ρS(0)] +O(Ṽ 3) where

Z(t)[ρS(0)] = −
1

2
(2Z1[ρS(0)] + Z3[ρS(0)] + Z2[ρS(0)]) (2.88)

= −i[Λ(t), ρS(0)] + TrB

[
W (t)ρS ⊗ ρBW (t)− 1

2
{W 2(t), ρS ⊗ ρB}

]
. (2.89)
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In addition, Λ(t) is an hermitian operator and reads

Λ(t) =
1

2i

∫ t

0

dt1

∫ t

0

dt2θ(t1 − t2) TrB
[[
Ṽ (t1), Ṽ (t2)

]
ρB

]
. (2.90)

If we write ρB in its eigenbasis and perform the trace, we can see that the for any �xed t, the
coe�cients will be positive and Z(t) will have GKLS form. Then, as up to the second order
we have ρS(t) = (I + Z(t))ρS(0) + O(Ṽ 3) ≃ eZ(t)ρS(0), the dynamics will be completely
positive and will approach the exact one for short times.

It is possible to express all the quantities that appear in Z(t) in terms of the jumping
operators introduced in Eq. (2.26). We just state the results and defer the reader to [Riv17]
to see all the details. The hermitian operator Λ(t) reads

Λ(t) =
∑
ω,ω′

∑
k,l

Ξkl (ω, ω
′, t)A†

k(ω)Al (ω
′) (2.91)

with

Ξkl (ω, ω
′, t) =

1

2i

∫ t

0

dt1

∫ t

0

dt2 sgn (t1 − t2) ei(ωt1−ω′t2) Tr
[
B̃k (t1 − t2)BlρB

]
(2.92)

and the whole exponent

Z(t) [ρS(0)] = −i [Λ(t), ρS(0)]+
∑
ω,ω′

∑
k,l

Γkl (ω, ω
′, t)

[
Al (ω

′) ρS(0)A
†
k(ω)−

1

2

{
A†

k(ω)Al (ω
′) , ρS(0)

}]
,

(2.93)
where

Γkl (ω, ω
′, t) =

∫ t

0

dt1

∫ t

0

dt2e
i(ωt1−ω′t2) Tr

[
B̃k (t1 − t2)BlρB

]
. (2.94)

The same result could be obtained if one used the expression for the second order cumulant
K(2)(t) exposed in [MABL13].

Finally, the next subsection shows how the re�ned weak coupling approach tends to the
global GKLS equation for long times.

2.2.1 Global GKLS equation from long time limit in re�ned weak

coupling

Here we argue that for long times the dynamics obtained by the re�ned weak coupling
approximation match those obtained in the weak coupling limit and after applying the
Born, Markov, and secular approximation. In other words,

lim
t→∞

Z(t)
t
→ LG (2.95)

where LG is the Liouvillian for the global GKLS.
To do so, we start with the dissipation rates

Γkl (ω, ω
′, t)

t
=

1

t

∫ t

0

dt1

∫ t

0

dt2e
i(ωt1−ω′t2) Tr

[
B̃k (t1 − t2)BlρB

]
(2.96)

=
1

t

∫
dv

∫ t

0

dt1

∫ t

0

dt2e
i[(ω−v)t1−(ω′−v)t2] Tr [Bk(v)BlρE ] , (2.97)

where in the last line we decomposed Bk in terms of the bath's jump operators Bk(ω) as
Bk =

∫
dνBk(ν). If we now perform the integration over t1 and t2 we get

Γkl (ω, ω
′, t)

t
=

∫
dvt exp

[
i
(ω − ω′) t

2

]
sinc

[
(ω − v)t

2

]
sinc

[
(ω′ − v) t

2

]
Tr [Bk(v)BlρE ] .

(2.98)
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Using the lemma from [Riv17], namely

lim
t→∞

∫
I

f(ω)t sinc

[
(ω + a)t

2

]
sinc

[
(ω + b)t

2

]
dω = 2πδa,bf(−a), (2.99)

if a ∈ I and zero otherwise (for su�ciently well-behaved functions f(ω)), we get

lim
t→∞

Γkl (ω, ω
′, t)

t
= 2πδω,ω′ Tr [Bk(ω)BlρE ] , (2.100)

where the Kronecker delta takes care of the secular approximation and 2πTr [Bk(ω)BlρE ]
corresponds to the Markovian decaying rate. Thus, the dissipator of the re�ned weak
coupling approach tends to be the dissipator of the global GKLS master equation. One
could also derive the same for the lamb shift Hamiltonian but it is a little bit more involving
(see [Riv17] for the proof.) This proof is not completely rigorous because one does the
following

lim
t→∞

Z(t) = lim
t→∞

t
Z(t)
t

= t lim
t→∞

Z(t)
t
≈ tLG. (2.101)

Taking out t of this limit cannot be always justi�ed. Fortunately, we will see some numerical
results that support the result. Not only that but also there has been some theoretical work
done to prove this limit more rigorously[mar]. Hence, we can now state that limt→∞Z(t)/t =
LG and so the dynamics are the same for both approaches for long times because eZ(t) ≈
eLGt.
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Chapter 3

Markovian dynamics

In this chapter, all the presented results have been obtained using GKLS [GKS76, Lin76,
BP02] equation. As mentioned in chapter 2, to get this type of master equation one should
use several assumptions and approximations. Whilst this can be seen as a drawback, the
easiness of the calculations and the fact that in a plethora of circumstances, the use of
master equations can be justi�ed [RPHP10], makes them very appealing.

During this chapter, we talk about our results when charging quantum batteries where
their dynamics are modeled by Markovian master equations. Before moving to our original
results, we �rst talk about quantum batteries in general and the known results in the
literature.

3.1 Quantum Batteries

Batteries are ubiquitous in almost every aspect of our lives. They are useful because they
store energy that can be used for future tasks. Essentially, a quantum battery [BD21] is a
battery that due to its dimensions is subject to the laws of quantum physics.

A priori, one could think about whether studying them is meaningful at all. Some
papers [AF13, HPLHA13, BVMG15, CPB+17] showed a quantum advantage in collectively
charging many-body systems and therefore, positively answered the question. Since then,
the area has seen a growing interest from the physics community. A lot of di�erent models
have been studied to see if one can use them as quantum batteries. To name a few: spin
chains [LLM+18], quantum dots and superconducting qubits [FCA+18a], qubits in an optical
cavity [AKM+19a], and disordered chains [CCDWGPH20, ZDZ22].

Treating a quantum battery as an open system is necessary if one wants to encapsulate
noise e�ects, which always appear in laboratories. In this situation, di�erent methods
have been proposed to get improvements in charging processes. To give some examples:
in [SÇCZ19, QM20], a passive method was introduced to charge qutrit batteries through
the so-called dark states, and in [GCCB20] measurements empowered by linear feedback
schemes [MGP21] obtained better results in charging than considering the system to be
isolated.

In this thesis, we will consider the charger-mediated approach that was introduced in
[AFM+18]. See Fig. (3.1) for a visual description. The charger is the only component
of the system that interacts with the bath. Then, during the whole charging process, it
dissipates energy into the environment. In this setting, using the local1 GKLS master
equation [HPLM+17] comes in handy and makes the calculations easier than resorting to
the global one. Since the interaction between the charger and the battery will be weak, it
is reasonable to do so. As the charger interacts with the battery (typically they both are
qubits or oscillators), the setting allows for the pumping of energy from the pulse to the

1See subsection (2.1.2) for more details about the local approach and global approach.
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charger
laser pulse

environment

battery

Figure 3.1: Charger-mediated approach. A classical electromagnetic �eld pumps the charger
while this interacts with a battery and an environment. Picture taken from our paper
[RAS+22].

battery, while at the same time keeping the battery partially isolated, which improves the
quality of the stored energy.

Because we are interested in the useful energy stored in the battery, the �gure of merit
will be the ergotropy [ABN04]. Let us �rst de�ne the internal energy of the system as
E(ρ) = Tr(ρH), where ρ is the state of the system and H its Hamiltonian. In a cyclic
unitary process, where the Hamiltonian of the system is the same at the beginning and the
end of the process, one can de�ne ergotropy E(ρ) as

E(ρ) := E(ρ)− E(ρp), (3.1)

where ρp is the so-called passive state and its relationship with ρ is ρp = minU UρU
†, where

one minimizes over all the unitaries. If one deals with pure states, the passive state will
always be the ground state of the system. Then, when trying to maximize ergotropy is
convenient that the �nal state will be pure.

In the literature [FCA+18b, FAM+19, AKM+19b, AKM+19a, JFSR+20], people inves-
tigated how one could bene�t from quantum correlations and quantum coherence of the
initial state when charging a quantum battery in the charger-mediated approach. This has
the inconvenience of the energy costs needed to prepare the initial state in a speci�c way.
In our works, however, we relaxed these requirements �the initial state being in the ground
state, which is experimentally friendly� and we obtained better results in terms of energy
and ergotropy stored in the battery, and also in the energy cost from the �eld2 in two dif-
ferent paradigms. In the �rst one, we use tools of Optimal Control Theory, speci�cally,
Krotov's method [KF83, Kro88, Kro95, KK99]. In the last one, we see how injecting an
ancillary system �we call it a catalyst because it barely stores energy during the process�
helps boost the �nal energy stored in the battery. The results are shown in the following
subchapters.

3.1.1 Optimal charging of quantum batteries

One can distinguish between two ways of performing a desired transformation of a quantum
system: autonomous and non-autonomous.

For the �rst approach, one prepares an extra quantum system that interacts with the
main one through a time-independent coupling. This coupling can activate additional inter-
actions between the parts of the main system. To calculate the energy costs of the process,
one needs to account for the preparation and the dynamics of the additional system. The
autonomous paradigm is used for describing thermal machines [WH19, Mit19].

On the other hand, in the non-autonomous paradigm, one controls the system actively.
This is the case of driving the system through a time-dependent pulse, or in feedback

2The explicit de�nition will be later introduced.
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schemes, which depend on measurements and operations performed when needed and can
be based on both quantum and classical information processing [Llo00].

In this thesis, we use an external classical (laser) drive, with no feedback mechanism
whatsoever. The reason is that we do not expect to get any improvements from the in-
teraction with the bath. Therefore, we use the open-loop approach (no information about
the system is retrieved during the process) to describe the �eld. This is the minimal non-
autonomous model possible and is motivated by its simplicity to be studied in experiments.
The assumption of the laser being classical is justi�ed if one considers the weak back-reaction
that the system imposes on the laser.

As we are in the charger-mediated approach, the laser does not interact directly with the
battery. Therefore, the charger mediates the interaction between them. This setting does
not allow one to study settings made of many chargers that are charged in a synchronized
way. In [ASFM22] similar scenarios were studied in which there was no drive, and they
concluded that coherence shared between the chargers (oscillators) improved the energy
and ergotropy stored on the battery.

Nevertheless, the method proposed here can be extended to many control �elds that
interact with many chargers. Unfortunately, one can see that the optimization becomes less
e�cient when �nding the optimal �eld when having more batteries [RAS+22].

Next, we explain Krotov's method and outline the results obtained.

Krotov's method

In any charging scheme, one desires that the dynamics corresponding to the process evolve
from a given initial state �usually the ground state of the battery� to a target state �the
excited state of the battery� in a given time, τ . To make the calculations the most general
and realistic possible, we will be only concerned with the evolution of an open quantum
system given by

dρ

dt
= Lρ, ρ(t0) = ρ0, (3.2)

where ρ0 is the initial state and L the Liouvillian. Within this evolution, if one wants to drive
the initial state of the system to some desired state while bounding the energy injected into
the charger by the �eld, one can use Krotov's method [KF83, Kro88, Kro95, KK99] �that
relies on an iterative numerical tool [ZR98, WG07, Goe19] and it is been used extensively in
the literature [TKO92, RNK12, SKT93, BKT97, ST02]� to minimize a general functional3

J
[
ρ(i)(τ), ε(i)(t)

]
= Jτ

(
ρ(i)(τ)

)
+

∫ τ

0

ga

(
ε(i)(t)

)
dt, (3.3)

where ρ(i)(τ) represents the state of the system at the �nal time τ steered by the electrical
�eld of iteration i, ε(i)(t). Jτ corresponds to Jτ = 1− F i(τ), where F i(τ) = tr

[
ρtgt †ρi(τ)

]
is the �delity between the states ρi(τ) and ρtgt, and ρtgt is the target or desired state.

The last part of the functional takes into account the energy cost of the drive:

ga

(
ε(i)(t)

)
=

λa
S(t)

(
ε(i)(t)− ε(i−1)(t)

)2
(3.4)

=
λa
S(t)

(
∆ε(i)(t)

)2
, (3.5)

where λa > 0 is a numerical parameter that enters in the optimization �the smaller the λa
the faster the optimization is� and S(t) ∈ [0, 1] allows for the control of the shape of the

3This functional can be easily generalized to having n di�erent �elds and target states. See
[kro, GBGE+19] for more details on this and also on a comparison between Krotov's and other optimization
methods.
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pulse. During the thesis S(t) has the form

S(t) =


sin2

(
π
2

t
ton

)
for 0 ≤ t ≤ ton

1 for ton < t < τ − to�
sin2

(
π
2
(t−τ)
to�

)
for τ − to� ≤ t ≤ τ,

(3.6)

where ton = to� = 0.005τ and it takes into account the turning o� and on of the �eld which
may disturb the system in a non-trivial way. It also makes our results more experimentally
feasible. We model the initial �eld (guess �eld) as ε(i=0)(t) = S(t)κ. In our numerical
simulations, we choose κ big enough to ensure fast convergence. However, κ should not be
too large to obtain optimized pulses that are not energetically costly. The term

(
∆ε(i)(t)

)2
accounts for the di�erence in the shape of the pulse in two consequent iterations.

We did not choose S(t) and ε(i=0)(t) arbitrarily. We did it in such a way as to ensure
that at the initial and �nal times, the �eld has small values. Minimizing the di�erence
between the �eld in one iteration and the next guarantees that there will not be substantial
modi�cations of the �eld in the aforesaid regime. Thus, turning on and o� the optimized
�eld would be done smoothly.

The optimization consists of �nding a way to produce a diminution of the value of the
functional when increasing the iterations, i.e.

J
[
ρ(i+1)(τ), ε(i+1)(t)

]
≤ J

[
ρ(i)(τ), ε(i)(t)

]
. (3.7)

This is achieved when the classical �eld is updated as [ZR98]

∆ε(i)(t) =
S(t)

λa
Im

[
Tr

(
σ(i−1)(t)

(
i∂L
∂ε(t)

∣∣∣
(i)

)
ρ(i)(t)

)]
. (3.8)

where ρ and σ correspond to the density matrix of the so-called forward and backward states
respectively. Above, we used a shorthand notation for

∂L
∂ε(t)

∣∣∣
(i)

=
∂L
∂ε(t)

∣∣∣
ε(t)=ε(i)(t)

. (3.9)

This derivative is not always easy to calculate. Not only that but sometimes the fact that
it may depend on ε(t) itself could lead to numerical instabilities. The reason is that in that
case, the derivative should be evaluated in the control �eld from the preceding iteration.
Fortunately, for the case at hand, the Liouvillian is linear in the control �eld ε(t), making
the derivative simple enough to get an analytic form.

The backward states σ evolve according to [GRK14]

dσ

dt
= −L†σ, σ(τ) = ρtgt, (3.10)

where the time goes backward. L† is the adjoint Liouvillian and it will be explicitly written in
the next sections. The initial condition σ(τ) = ρtgt is not the most general one. Nevertheless,
for the sake of this thesis and the calculations presented here it is su�cient.

Now that we have de�ned all the ingredients and components, we can explain the algo-
rithm. To make matters simpler, we will consider that ∂L

∂ε(t) does not depend on time, that
is also our case. We construct a grid made of N + 1 time points to discretize it. The initial
time is, as usual, t = 0 and the �nal is t = τ . We denote dt as the di�erence between two
points in the grid. The states are only de�ned at the points of the grid.

We denote ε(i=1)(t) as the initial guess of the control �eld. Firstly, for the iteration i we
compute σ(i−1)(t) by propagating the backward states σ as in Eq. (3.10) with �eld ε(i)(t)
from t = τ to t = 0 along the whole time grid. Now, to calculate the change in the �eld,
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Eq. (3.8) can be discretized and used to get the update of the �eld with our initial state ρ0
as follows

∆ε(i)(t̄) =
S(t̄)

λa
Im

[
Tr

(
σ(i−1)(t)

(
i∂L
∂ε(t)

∣∣∣
(i)

)
ρ(i)(t)

)]
, (3.11)

with the main di�erence being that the update is now calculated for time t̄ = t+dt/2 instead
of t. This solves the problem with Eq. (3.8) where the �eld is calculated at time t using
the states at also time t. However, to get the states at this time, one needs to propagate
them with the �eld from (3.8). Hence, the solution for this is calculating the �eld at t̄
so, the update does only depend on the information from past points in the grid. In fact,
(3.8) is just the continuous version of (3.11) when the distance between two-time points
goes to zero. In addition, it is important to note that convergence is only mathematically
guaranteed in the continuous limit.

With this new �eld, we can propagate the forward states ρ while sequentially updating
the �eld for all time points. One then obtains ρ(i)(t) and ε(i)(t). The way to do this is
extending the �eld values calculated at t̄ to t + dt, with the assumption that doing this
discretization does not produce rapidly oscillating �elds �if that were the case, one can
always make dt smaller�.

Finally, we go to the next iteration, i+1, where now the guess �eld will be the updated
�eld of the iteration i. We then repeat the procedure until we reach the convergence of the
functional from Eq. (3.3).

Results

We investigate the setting in which the charger and the battery are both quantum harmonic
oscillators (QHO) and the dissipation is modeled by the local GKLS equation. We will
compare the case in which the classical �eld is oscillatory (see [AFM+18] for the explicit
form)4 with the one in which we optimize the control �eld ε(t). In the latter, the Hamiltonian
reads5

H = HA +HB +HAB − µε(t)(a+ a†)⊗ IB , (3.12)

with
HA = ωa†a, HB = ωb†b, HAB = g(a†b+ ab†), (3.13)

and µ the coupling strength between the charger and the �eld.
The operators a and b are bosonic annihilation operators acting on the charger and

the battery respectively and ful�ll the commutation relationships [a, a†] = [b, b†] = 1. The
dissipation from the charger to the bath is accounted for through the Lindblad superoperator

DT [ρ] = γ(n+ 1)Da[ρ] + γnDa† [ρ], (3.14)

where Dc(·) = c(·)c† − 1/2{c†c, ·} for any operator c, n = 1
eω/T−1

corresponds to the occu-
pation number of the mode with frequency ω of the bosonic bath, and γ is the decaying
rate.

In this setting, as we are performing an optimization over the control �eld ε(t), another
�gure of merit is

Wτ =

∫ τ

0

dt |ε(t)|2, (3.15)

where τ is the �nal time of the evolution. It can be understood as the energy cost of the
�eld. In addition, apart from the ergotropy stored in the battery and the energy spent by

4In this chapter, we are comparing the results with those from [AFM+18]. Then, we used the same
parameters as them. In the next chapter, as we rigorously benchmark and test the global, local, and the
re�ned weak coupling equation, we pay more attention to the parameters for which the local approach is
justi�ed. This validity is explained in subsection (2.1.2).

5As the reader may notice, we are now dealing with an external driving that is time-dependent. We will
consider it as a perturbation (µ is small) and we assume that the in�uence of this term only appears in the
commutator part in the GKLS equation [RPHP10]. We will also assume this for the catalytic evolution.
This is again the local approach with respect to the �eld term as mentioned in subsection (2.1.2).
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the �eld, we are also interested in describing the e�ciency of the optimized procedure. To
quantify it, we will de�ne the quality factors as

αE =:

(
Eopt(ρ)
Eosc(ρ)

− 1

)
× 100%, (3.16)

αW =:

(
Wosc(ρ)

Wopt(ρ)
− 1

)
× 100% (3.17)

where all the values will be evaluated at the �nal time τ and the subindices represent if we
optimized the �eld (opt) or not (osc).

The Hamiltonian of Eq. (3.12) is quadratic on the bosonic operators so the evolution
preserves the gaussianity of the initial state. Since our initial state is on the ground state,
and hence it is Gaussian, all the information of the state at any time t is encoded in the
�rst and second moments of the operators [Ser17]. This simpli�es the problem because no
one has to perform the optimization over a low-dimensional space. Thus, we need to rewrite
the evolution of the forward and backward states, and the update of the �eld as a function
of the �rst and second moments.

To do so, we �rst de�ne a vector of operators

r = (x1, x2, p1, p2)
T , (3.18)

where xj =
√

1
2ω (aj + a†j) and pj = i

√
ω
2 (a

†
j − aj) with j = 1, 2.6 As mentioned before,

the operators from the vector ful�ll the bosonic commutation relations, and this translates

to [r, rT ] = iJ , with J =

(
02 I2
−I2 02

)
, where I2 and 02 are the identity matrix and the

zero matrices, respectively. In full generality, any state of the system can be described by
its statistical moments

⟨r1 . . . r4⟩ = Tr ρr1 . . . r4. (3.19)

In the case that the state is Gaussian, the �rst and second moments are enough to fully
describe the state. So we construct the vector |r⟩ of the �rst moments

|r⟩ =
4∑

i=1

⟨ri⟩|i⟩, (3.20)

as well as the second moment's matrix:

V =
1

2

4∑
i,j=1

⟨{ri, rj}⟩|i⟩⟨j|. (3.21)

Consequently, to perform the optimization via Krotov's method, we need to arrange all the
elements of |r⟩ and V in a vector-like object ψ and perform the whole procedure on it. As
V is symmetric by construction, we just need the elements from the upper triangular part.

6Here we used the mass of the oscillators m = 1.
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Thus, we have

ψ =



c
|r⟩1
|r⟩2
|r⟩3
|r⟩4
V11
V12
V13
V14
V22
V23
V24
V33
V34
V44



, (3.22)

where c is an independent parameter needed to linearize the equations of motion.
The evolution of the state ρ reads7

dρ

dt
= −i[H, ρ] +DT (ρ). (3.23)

From this, we can compute the expectation values for the desired operators via Heisenberg
equations. Accordingly, for any operator O one has

d⟨O⟩
dt

= i⟨[H,O]⟩+ ⟨D†
T (O)⟩, (3.24)

where D†
T (O) is the adjoint dissipator and reads

D†
T (O) = γ(n+ 1)

(
a†Oa− 1

2
{a†a,O}

)
+ γn

(
aOa† − 1

2
{aa†, O}

)
. (3.25)

Computing Eq. (3.24) for all the components of ψ we can express the evolution as

∂ψ

∂t
= Afψ, (3.26)

which will be the forward equation of motion with the initial constraint ψ(t = 0) = φi,
where φi is the vector-like object of Eq. (3.22) for the initial state. Af is given by

Af =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 − γ
2

0 1
g
w

0 0 0 0 0 0 0 0 0 0

0 0 0
g
w

1 0 0 0 0 0 0 0 0 0 0
√

2wµε(t) −w2 −gw − γ
2

0 0 0 0 0 0 0 0 0 0 0

0 −gw −w2 0 0 0 0 0 0 0 0 0 0 0 0

γ
(
n+1

2

)
w

0 0 0 0 −γ 0 2
2g
w

0 0 0 0 0 0

0 0 0 0 0 0 − γ
2

g
w

1 0 1
g
w

0 0 0

0
√

2wµε(t) 0 0 0 −w2 −gw −γ 0 0 0 0 1
g
w

0

0 0 0 0 0 −gw −w2 0 − γ
2

0 0 0 0 1
g
w

0 0 0 0 0 0 0 0 0 0
2g
w

2 0 0 0

0 0
√

2wµε(t) 0 0 0 −w2 0 0 −gw − γ
2

0
g
w

1 0

0 0 0 0 0 0 −gw 0 0 −w2 0 0 0
g
w

1

γw
(
n + 1

2

)
0 0 2

√
2wµε(t) 0 0 0 −2w2 0 0 −2gw 0 −γ 0 0

0 0 0 0
√

2wµε(t) 0 0 −gw −w2 0 −w2 −gw 0 − γ
2

0

0 0 0 0 0 0 0 0 −2gw 0 0 −2w2 0 0 0



.

(3.27)

7It is the GKLS master equation, as we said at the beginning of the chapter.
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Analogously, the backward evolution should be computed from the adjoint Liouvillian
dynamics (see Eq. (3.10))

d⟨O⟩
dt

= i⟨[H,O]⟩+ ⟨DT (O)⟩, (3.28)

where

DT (O) = γ(n+ 1)

(
aOa† − 1

2
{a†a,O}

)
+ γn

(
a†Oa− 1

2
{aa†, O}

)
(3.29)

is the usual dissipator. Again, we can rewrite our Gaussian formalism as

∂χ

∂t
= Abχ, (3.30)

where it should be noted that the time runs backward. In this case, the boundary condition
is χ(τ) = φtar, where φtar corresponds to the target state and τ is the �nal time of the
evolution. De�ning M = Af −Ab, we have

M =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 γ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 γ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 γ 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 γ 0 0 0 0 0 0 0 0 0 0

2γ(n+ 1
2 )

w 0 0 0 0 γ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 γ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 γ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 γ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 γ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 γ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 γ 0 0 0

2γw
(
n+ 1

2

)
0 0 0 0 0 0 0 0 0 0 0 γ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 γ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ



, (3.31)

which is more compact that both Af and Ab.
The last element needed to perform the optimization is the update of the �eld. It is

given in Eq. (3.8) and for the iteration i is

∆εi(t) =
S(t)

λa
Im

[
Tr

(
σi−1(t)

i∂L
∂ε(t)

∣∣∣
(i)
ρi(t)

)]
= −S(t)

λa
Im
[
Tr
(
σi−1(t)

[
µ(a1 + a†1), ρ

i(t)
])]

,

(3.32)
where ρ and σ are the usual density matrices for the forward and backward states, respec-
tively. For the same reasoning as before, this update can be calculated as a function of the
elements in ψ and χ. We defer the reader to our paper [RAS+22] to see the explicit version.

The optimization results are compared with those from [AFM+18] in Fig. (3.2). It is
easy to see that the values of the energy and the ergotropy are higher in the optimized case.
Not only there is an advantage on these values, but also on the energy used by the �eld: for
the optimized �eld is 30.73, and for the oscillatory pulse is 31.41. This results in a quality
factor αW = 2.2%. While the improvement is not very big, it is quite relevant in terms
of the ergotropy extraction αE = 25%. Moreover, it is clear from Fig. (3.2)(b) that more
energy is transferred to the battery for both optimized and non-optimized cases for longer
times. It is worth noting that if we allow more time to charge the battery, the quality factor
would be better than before, especially in the energy cost (αW = 157% and αE = 28%.)
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a) b)

c)

Figure 3.2: Energy (solid line) and ergotropy (dotted line) are plotted versus gτ where the
green color indicates the case of optimizing the �eld and the black color when pumping the
charger with the oscillatory �eld given in [FAM+19]. In a), the �nal time is the time in
which the energy and ergotropy have the maximum values in the non-optimized case. In
b), we doubled the �nal time. We set g = 0.2ω, γ = 0.01ω, F = µ = 0.1ω, n = 1 and
κ = 0.01. c) shows that in the zero temperature regime n = 0, the state remains pure, and
thus ergotropy and energy are the same. These values are those from plot a).

Whether the initial state for the system is |0⟩C ⊗ |0⟩B and the driving ε(t) is �xed
at temperature T, the ergotropy will be independent of the temperature. Truly, one can
separate the energy as

Eε(t),T = Eε(t),T=0 + Eε(t)=0,T (3.33)

and prove that
Eε(t),T = Eε(t),T=0 = Eε(t),T − Eε(t)=0,T . (3.34)

To prove Eq. (3.34), one follows an analogous procedure to the one in [FAM+19]. In their
case though, the driving was sinusoidal. The aforementioned proof makes use of the fact
that under the evolution of a quadratic Hamiltonian plus a lossy channel at temperature
T = 0, the state remains coherent and product at all times [Ser17].

To sum up, our algorithm is useful for �nding a battery's optimal driving. We can choose
the target state in such a way as to get the amount of energy of any other resource we can
think of. Even though we used the method for pure states, it can be also used for mixed-
state evolution. This can lead to physically realistic settings such as having some noise in
the initial state. Finally, we would like to note that even though the results here are not
Markovian in the most strict sense (see [RHP14] for a detailed review) because we have a
time-dependent term in the Hamiltonian (the �eld), we put them in this chapter because
we got them from using the GKLS equation and manually adding this time-dependent term
in the master equation.

3.1.2 Catalytic charging of quantum batteries

We start by investigating the framework considered before where the charger and battery
are both oscillators with the same frequency and the whole dynamics are modeled by the
local GKLS equation [AFM+18]. For the sake of completeness, we write explicitly the
Hamiltonian of the system (taken from [AFM+18])

H = ωa†a+ ωb†b+ g(ab† + ba†) + F
(
eiωf ta+ e−iωf ta†

)
, (3.35)

where the interaction between the charger and the pulse has been computed using the dipole
approximation and the rotating wave approximation (RWA) [LP00]. We again use the local
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GKLS which in the interaction picture with respect to the charger and the battery reads

ρ̇ = L[ρ] = −i[g(ab†+ba†)+F
(
ei∆af ta+ e−i∆af ta†

)
, ρ]+γ(n+1)Da[ρ]+γnDa† [ρ], (3.36)

where ∆af = ωf − ω is often zero i.e. the frequency is the laser is the same as the natural
frequency of the battery and the charger and the dissipators are de�ned in the same way
as before. In that case, we can see in Fig. (3.3) the energy and ergotropy dynamics for
some parameters shown in the caption. Whether the bath is at zero temperature (n = 0)
the Markovian evolution preserves the coherent nature of the state because our model is a
quantum harmonic oscillator linearly coupled to the bath [Kos72]. So, we start with the
whole system being in the ground state (a coherent state) and the dynamics will preserve
the purity and then ergotropy will be the same as the energy.8

Interestingly, in Fig. (3.3) we can see the bounds on the available ergotropy. For all
temperature regimes this bound holds. Truly, bounds exist on the energy stored in the
charger and the battery. They are of the order (F/g)2, in the case of not having noise
(n = 0) and with an oscillating frequency of the order g. Having local noise (n ̸= 0)
suppresses these oscillations. This is the case because, even when the frequency of the laser
is the same as the natural frequency of the charger and the battery, the whole system is
o�-resonant.

Figure 3.3: O�-resonant charging. Energy EB/ω (solid line) and ergotropy WB/ω (dotted
line) stored on a quantum battery B, charged by the interaction with A (the quantum
charger) as a function of gt. The parameters are: g = 0.2ω, F = 0.1ω, γ = 0.05ω and
∆af = 0. In a), n = 0 and b), n = 1.

To note this o�-resonance, we de�ne a new pair of operators as

C± =
1√
2
(a± b). (3.37)

If we rewrite Eq. (3.35) in terms of C+ and C− we obtain

H = ω+C
†
+C+ + ω−C

†
−C− +

F√
2

(
e−iωf tC+ + eiωf tC†

+

)
+

F√
2

(
e−iωf tC− + eiωf tC†

−

)
,

(3.38)
where ω± = ω ± g. Then, the global frequencies ω± are di�erent that the frequency of the
laser ωf and this system is o�-resonant. The stronger the coupling g, the further from the
resonance the system is. Of course, one can avoid this problem by tuning ωf to be the
same as one of the global frequencies. Indeed, in Fig. (3.4) we can see that the energy
keeps increasing in that case. This setting has the caveat of needing to know the coupling
constant g or having the experimental capability of tuning the laser to all the spectrum of
frequencies.

On the other hand, one could get similar by adding a qubit �between� the charger and
the battery. The Hamiltonian is now

8That is the case because the ground state has zero energy.
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Figure 3.4: On-resonant charging. Energy EB/ω (dashed line) and ergotropyWB/ω (dotted
line) of the quantum battery B charged through the interaction with the quantum charger
A versus gt and ωf = ω+ = ω + g (the same results hold for ω−), g = 0.2ω, F = 0.1ω and
γ = 0.05ω. In a) n = 0, and in b) n = 1.

H = ωa†a+ ωqq
†q + ωb†b+ gaq(aq

† + a†q) + gbq(bq
† + b†q) + F

(
eiωf ta+ e−iωf ta†

)
(3.39)

where q = σx− iσy with σx and σy being the Pauli matrices. Following a similar procedure
as before, we can de�ne the super-mode operators

C+ = sin θ a+ cos θ b, (3.40)

C− = cos θ a− sin θ b, (3.41)

where
sin θ =

gaq√
g2aq + g2bq

, cos θ =
gbq√

g2aq + g2bq

, (3.42)

and rewrite Eq. (3.39) as

H = ω+C
†
+C++ω−C

†
−C−+ωqq

†q+g(C+q
†+C†

+q)+F sin θ(e−iωf tC++e
iωf tC†

+)+F cos θ(e−iωf tC−+e
iωf tC†

−),
(3.43)

where, now ω± = ω and g =
√
g2aq + g2bq. The laser �eld is now in resonance with the mode

C− (and C+) of the charger-battery system. As before, when one has no noise, there is an
unbounded transfer of energy to C− mode that neither depends on the coupling constants
gaq and gbq or the energy gap wq of the catalyst, which may be unknown or �uctuate during
the time. In the noise case, there is still an improvement in the energy that would depend
on the dissipation rate.

The energy stored on the qubit is logically bounded by ωq. Considering the energy
splitting in the ancillary qubit to be equal to ωq = ω and also ωf = ω = ωq we can write
the evolution of the system in the interaction picture with respect to the free Hamiltonians
of the battery and the charger as

ρ̇ = −i
[
g(aq† + qa† + bq† + qb†) + F

(
a+ a†

)
, ρ
]
+ γ
(
(n+ 1)Da[ρ] + nDa† [ρ]

)
. (3.44)

where we consider that the qubit is isolated (γq = 0.) Of course, one can consider that
the qubit su�ers from dissipation (see [RRAM+22] for the results.) As displayed in Fig.
(3.5) numerical results show the unbounded growth in energy and ergotropy extraction.
Remarkably, the energy of the qubit is near zero during the whole charging process. Because
of that, we call the qubit catalyst [LBS21a, LBS21b, Tur07]. Furthermore, the catalyst does
not get signi�cantly entangled with any component of the system. Accordingly, one could
reset it and apply it for further charging procedures with no energy cost.
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Figure 3.5: Catalyst charging. Plot of energy stored in the battery EB/ω (dashed line),
ergotropy extraction WB/ω (dotted line), and energy of the catalyst EC(t) (green) as a
function of gt where gaq = gbq = 0.2ω, F = 0.1ω, γa = 0.05ω and ∆af = 0. In a) n = 0 and
in b) n = 1.

The catalyst charging has the advantage of not depending on probing the coupling
strength and its �uctuations. As a �nal comment, we note that the current proposal is
experimentally feasible with the current superconducting technology [UTC+21]. Nowadays,
with the available techniques for nano-fabrication of quantum circuits, it is possible to design
qubits and resonators in the strong-coupling regime gaq ∼ ωq [BGGW21]. So it is possible
to observe these e�ects experimentally [KQC+17]. For more on experimental realizations of
the results presented in this chapter, please see [RRAM+22, RAS+22].



Chapter 4

Non-Markovian dynamics

Until this chapter, we have presented results in the Markovian regime. Nevertheless, the
majority of the process that happens in nature is non-Markovian. The treatment of non-
Markovian dynamics is far more complex than the Markovian one. If the system is simple
enough, e.g. the resonant level model [Sch14], or preserves Gaussian states [RPHP10], one
can resort to an exact treatment. However, in this chapter, we tackle some ways to solve the
Liouvillian dynamics, under some assumptions and approximations, but without resorting
to the Markovian one. More precisely, we use the re�ned weak coupling approximation
and one novel approximation that we will later introduce. Therefore, our results contain
non-Markovian e�ects.

First, we compare the results obtained in the battery setting introduced before in three
schemes: using the global approach, local, and the re�ned weak coupling equation. Finally,
we show our novel non-Markovian approximation [ARAH22] and apply it to some cases.

4.1 Benchmark in the battery setting

In the battery setting, our system of interest consists of two interacting subsystems, the
charger, and the battery. Hence, as introduced in chapter 2, one can derive the GKLS
equation in two di�erent ways: one can treat the interaction between the subsystems as a
perturbation or not. We shall compute the dynamics in both cases and compare them with
the re�ned weak coupling scheme.

In our benchmark, we use the equations from [AFM+18] for the local approach. There-
fore, we just need to compute the dynamics equations for the global and the re�ned case.
Let us start with the global.

The Hamiltonian reads

H = ω0a
†a+ ω0b

†b+ g(ab† + a†b) + F (e−iω0ta† + eiωta) (4.1)

+

∫ ∞

0

dωωb†ωbω +

∫ ∞

0

dωh(ω)(ab†ω + a†bω) = HS +HB +HSB .

Moreover, as explained in subsection (2.1.2), we consider the �eld as a perturbation in our
three approaches so it will only produce energy shifts. This is valid as long as F << ω0,
and F << g. Again, the Hamiltonian is quadratic and if one starts with a Gaussian state
it will preserve its gaussianity. Therefore, one only needs to calculate the �rst and second
moments of the operators.

For the global case, as mentioned before, one needs to diagonalize the whole system
(battery+charger) to construct the eigenoperators. For our case, we have that the free
Hamiltonian H0 can be rewritten as

H0 = ω0a
†a+ ω0b

†b+ g(ab† + a†b) = Ω+c
†
1c1 +Ω−c

†
2c2, (4.2)

29
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where c1 = 1√
2
(a+ b), c2 = 1√

2
(a− b) and Ω± = ω0 ± g. So the whole Hamiltonian reads

H = Ω+c
†
1c1 +Ω−c

†
2c2 +

1√
2

∫ ∞

0

dωh(ω)(c1b
†
ω + c†1bω) +

1√
2

∫ ∞

0

dωh(ω)(c2b
†
ω + c†2bω)

(4.3)

+

∫ ∞

0

dωωb†ωbω. (4.4)

With this, we can construct our new jump operators as

A1(Ω+,−) =
1√
2
c1,2 = A†

1(−Ω+,−) (4.5)

A2(Ω+,−) =
−i√
2
c1,2 = A†

2(−Ω+,−) (4.6)

B1(Ω+,−) =
h(Ω+,−)bΩ+,−

2
= B†

1(−Ω+,−) (4.7)

B2(Ω+,−) =
−ih(Ω+,−)bΩ+,−

2
= B†

2(−Ω+,−). (4.8)

Following the same procedure as in [RH12] (see the examples) and after some algebra1, one
gets the �nal master equation in Schrödinger's picture

d

dt
ρS(t) = −iΩ+

[
c†1c1, ρS(t)

]
− iΩ−

[
c†2c2, ρS(t)

]
(4.9)

+

[
γ (Ω+)

2
[n (Ω+) + 1]

](
c1ρS(t)c

†
1 −

1

2

{
c†1c1, ρS(t)

})
(4.10)

+

[
1

2
γ (Ω+)n (Ω+)

](
c†1ρS(t)c1 −

1

2

{
c1c

†
1, ρS(t)

})
(4.11)

+

[
1

2
γ (Ω−) [n (Ω−) + 1]

](
c2ρS(t)c

†
2 −

1

2

{
c†2c2, ρS(t)

})
+

[
1

2
γ (Ω−)n (Ω−)

](
c†2ρS(t)c2 −

1

2

{
c2c

†
2, ρS(t)

})
(4.12)

where γ(Ω±) = 2πJ(Ω±). Now, following the arguments exposed in the subsection (2.1.2),
we have the �eld term appearing on the master equation in the part with the commutator.
Thus, if we move to the interaction picture with respect to H = ω0a

†a+ ω0b
†b and write ci

in terms of a and b, the master equation �nally reads2

d

dt
ρS(t) = −i

[
F
(
a1 + a†1

)
+ g

(
a1a

†
2 + a2a

†
1

)
, ρS

]
+

2∑
j,k

K
(1)
j,k

[
ajρ(t)a

†
k −

1

2

{
a†kaj , ρS(t)

}]
(4.13)

+

2∑
j,k

K
(2)
j,k

[
a†jρ(t)ak −

1

2

{
aka

†
j , ρS(t)

}]
(4.14)

1We discarded the Lamb shift.
2We de�ned a ≡ a1 and b ≡ a2 just to write this equation in a compact form. For the rest of the chapter,

we stick to a for the charger and b for the battery.
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where

K
(1)
11 =

1

4
[γ+(n(Ω−) + 1) + γ−(n(Ω−) + 1)] = K

(1)
22 , (4.15)

K
(1)
12 =

1

4
[γ+(n(Ω+) + 1)− γ−(n(Ω−) + 1)] = K

(1)
22 , (4.16)

K
(2)
11 =

1

4
[γ+n(Ω+) + γ−n(Ω−)] = K

(2)
22 , (4.17)

K
(2)
12 =

1

4
[γ+n(Ω+)− γ−n(Ω−)] = K

(2)
21 , (4.18)

where γ± = γ(Ω±). Using that for any operator O we have d
dt ⟨O⟩ = Tr(O d

dtρS(t))
3 we

obtain the following equations of motion
⟨ȧ⟩ = −i(g⟨b⟩+ F )− 1

8 ⟨a⟩(γ+ + γ−)− 1
8 ⟨b⟩(γ+ − γ−)

⟨ḃ⟩ = −ig⟨a⟩ − 1
8 ⟨a⟩(γ+ − γ−)−

1
8 ⟨b⟩(γ+ + γ−)

(4.19a)



〈
aḃ†
〉
= i
[
g
(〈
a†a
〉
−
〈
b†b
〉)
− F ⟨b⟩∗

]
− 1

4

〈
ab†
〉
(γ+ + γ−)− 1

8

(
⟨a†a

〉
+ ⟨b†b⟩)(γ+ − γ−)

+ 1
4 (γ+n+ − γ−n−)〈
˙b†b
〉
= 2g Im

〈
ab†
〉
− ⟨b†b⟩

4 (γ+ + γ−)−
Re(⟨ab†⟩)

4 (γ+ − γ−) + n+γ+

4 + n−γ−
4〈

˙a†a
〉
= −2 Im

[
g
〈
ab†
〉
+ F ⟨a⟩

]
− (γ+ + γ−)

⟨a†a⟩
4 − Re(⟨ab†⟩)

4 (γ+ − γ−) + n+γ+

4 + n−γ−
4

(4.19b)
〈
ȧ2
〉
= −2i(g⟨ab⟩+ F ⟨a⟩)− ⟨a

2⟩
4 (γ+ + γ−)− ⟨ab⟩

4 (γ+ − γ−)

⟨ȧb⟩ = −i
[
g
(〈
a2
〉
+
〈
b2
〉)

+ F ⟨b⟩
]
− ⟨a

2⟩
8 (γ+ − γ−)−

⟨b2⟩
8 (γ+ − γ−)− ⟨ab⟩

4 (γ+ + γ−)〈
ḃ2
〉
= −2ig⟨ab⟩ − ⟨b

2⟩
4 (γ+ + γ−)− ⟨ab⟩

4 (γ+ − γ−)
(4.19c)

Where we de�ned n± = n(Ω±). For the sake of completeness, the local equations read
[AFM+18] (in a di�erent interaction picture

˙⟨a⟩ = −i(g⟨b⟩+ F )− γ

2
⟨a⟩

˙⟨b⟩ = −ig⟨a⟩
(4.20a)



˙⟨ab†⟩ = i
[
g(⟨a†a⟩ − ⟨b†b⟩)− F ⟨b⟩∗

]
− γ

2
⟨ab†⟩

˙⟨b†b⟩ = 2g Im⟨ab†⟩

˙⟨a†a⟩ = −2 Im[g⟨ab†⟩+ F ⟨a⟩]− γ⟨a†a⟩+ γn

(4.20b)


˙⟨a2⟩ = −2i(g ⟨ab⟩+ F ⟨a⟩)− γ

〈
a2
〉

˙⟨ab⟩ = −i[g(
〈
a2
〉
+
〈
b2
〉
) + F ⟨b⟩]− γ

2
⟨ab⟩

˙⟨b2⟩ = −2ig ⟨ab⟩
(4.20c)

where now γ and n correspond to the frequency ω0.

3Actually, this is not mathematically true because we are in an interaction picture and then the operators
evolve. However, in this speci�c picture, their evolution is encoded in a phase, and for the quantity that we
will calculate ω0

(
⟨a†a⟩+ ⟨b†b⟩

)
, it does not make any di�erence. See [NB22] for a very clear explanation.
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The remaining part of this subchapter is devoted to calculating the re�ned weak coupling
equations for analogous quantities to those presented before. The re�ned weak coupling
generator Z(t) has the same form of the master equation obtained for the global approach,
with the di�erence being the decay rates and the Lamb shift. Hence, for the interaction
picture with respect to the free Hamiltonian of the global modes (H = Ω+c

†
1c1 + Ω−c

†
2c2),

we get [SHW]

Z(t)[ρS(0)] = −i[ξ+(t)c†1c1 + ξ−(t)c†2c2 + F
(
(a+ a†) cos(gt)− i(b− b†) sin(gt)

)
, ρS(0)]

(4.21)

+
γ+1
2

(
c1ρS(0)c

†
1 −
{c†1c1, ρS(0)}

2

)
+
γ+2
2

(
c†1ρS(0)c1 −

{c1c†1, ρS(0)}
2

)
(4.22)

+
γ−1
2

(
c2ρS(0)c

†
2 −
{c†2c2, ρS(0)}

2

)
+
γ−2
2

(
c†2ρS(0)c2 −

{c2c†2, ρS(0)}
2

)
, (4.23)

where

ξ+,−(t) =
1

4π

∫ ∞

0

dφt2
[
sinc2

(
Ω+,− − φ

2
t

)
P
∫ ∞

0

dν
J(ν)(nν + 1)

φ− ν
+ sinc2

(
Ω+,− + φ

2
t

)
P
∫ ∞

0

dν
J(ν)nν
φ+ ν

]
,

(4.24)

γ+,−
1 =

∫ ∞

0

J(ν)t2 sinc2
(
Ω+,− − ν

2
t

)
(nν + 1)dν, (4.25)

γ+,−
2 =

∫ ∞

0

J(ν)t2 sinc2
(
Ω+,− − ν

2
t

)
nνdν, (4.26)

nν =
1

eν/T − 1
. (4.27)

We added the �eld term in the corresponding interaction picture in the Hamiltonian part
as usual.

As we are interested in the evolution of the �rst and second moments, we should go to
the Heisenberg picture using

⟨A⟩(t) = Tr (A(0)ρ(t)) = Tr
(
A(0)eLtρ(0)

)
= Tr

(
eL

†t[A(0)]ρ(0)
)
. (4.28)

Therefore, our adjoint generator is

Z†(t)[ρS(0)] =
γ+1
2

c†1ρS(0)c1 −
{
ρS(0), c

†
1c1

}
2

+
γ−1
2

c†2ρS(0)c2 −
{
ρS(0), c

†
2c2

}
2


(4.29)

+
γ+2
2

c1ρS(0)c†1 −
{
ρS(0), c1c

†
1

}
2

+
γ−2
2

c2ρS(0)c†2 −
{
ρS(0), c2c

†
2

}
2

 (4.30)

+ i
[
F
(
(a+ a†) cos(gt)− i(b− b†) sin(gt)

)
+ ξ+c†1c1 + ξ−c†2c2, ρS(0)

]
. (4.31)
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Now we can apply it to the operators that are interesting to us and we get4

Z†(t)[a] = −iF cos(gt) + (
1

2
γ+2 −

1

2
γ+1 − 2iξ+)

(
a

4
+
b

4

)
+ (

1

2
γ−2 −

1

2
γ−1 − 2iξ−)

(
a

4
− b

4

)
(4.32)

Z†(t)[a†] = iF cos(gt) + (
1

2
γ+2 −

1

2
γ+1 + 2iξ+)

(
a†

4
+
b†

4

)
+ (

1

2
γ−2 −

1

2
γ−1 + 2iξ−)

(
a†

4
− b†

4

)
(4.33)

Z†(t)[b] = F sin(gt) + (
1

2
γ+2 −

1

2
γ+1 − 2iξ+)

(
a

4
+
b

4

)
+ (

1

2
γ−1 −

1

2
γ−2 + 2iξ−)

(
a

4
− b

4

)
(4.34)

Z†(t)[b†] = F sin(gt) + (
1

2
γ+2 −

1

2
γ+1 + 2iξ+)

(
a†

4
+
b†

4

)
+ (

1

2
γ−1 −

1

2
γ−2 − 2iξ−)

(
a†

4
− b†

4

)
(4.35)

Z†(t)[a†a] = −iF cos(gt)
(
−a+ a†

)
+

1

2
γ+1

(
−ab

†

4
− a†a

2
− a†b

4

)
+

1

2
γ−1

(
ab†

4
− a†a

2
+
a†b

4

)
(4.36)

+
1

2
γ+2

(
1

2
+
ab†

4
+
a†a

2
+
a†b

4

)
+

1

2
γ−2

(
1

2
− ab†

4
+
a†a

2
− a†b

4

)
+ i(ξ+ − ξ−)

(
−ab

†

2
+
a†b

2

)
(4.37)

Z†(t)[b†b] = F (b+ b†) +
1

2
γ+1

(
−ab

†

4
− a†b

4
− b†b

2

)
+

1

2
γ−1

(
ab†

4
+
a†b

4
− b†b

2

)
(4.38)

+
1

2
γ+2

(
1

2
+
ab†

4
+
a†b

4
+
b†b

2

)
+

1

2
γ−2

(
1

2
− ab†

4
− a†b

4
+
b†b

2

)
− i(ξ+ − ξ−)

(
ab†

2
− a†b

2

)
(4.39)

Z†(t)

[
a†b+ b†a

2

]
=
F

2

(
sin(gt)

(
a+ a†

)
+ i cos(gt)

(
b− b†

))
+

1

2
γ+1

(
−ab

†

4
− a†a

4
− a†b

4
− b†b

4

)
(4.40)

+
1

2
γ−1

(
−ab

†

4
+
a†a

4
− a†b

4
+
b†b

4

)
+

1

2
γ+2

(
1

2
+
ab†

4
+
a†a

4
+
a†b

4
+
b†b

4

)
(4.41)

+
1

2
γ−2

(
−1

2
+
ab†

4
− a†a

4
+
a†b

4
− b†b

4

)
(4.42)

Z†(t)

[
a†b− b†a

2

]
=
F

2

(
sin(gt)

(
a− a†

)
+ i cos(gt)

(
b+ b†

))
+

1

2
γ+1

(
ab†

4
− a†b

4

)
+

1

2
γ−1

(
ab†

4
− a†b

4

)
(4.43)

+
1

2
γ+2

(
−ab

†

4
+
a†b

4

)
+

1

2
γ−2

(
−ab

†

4
+
a†b

4

)
− iξ+

(
a†a

2
− b†b

2

)
− iξ−

(
−a

†a

2
+
b†b

2

)
,

(4.44)

As we are interested in calculating eZ
†(t), it is more convenient to see the action of the

4During this section if we do not specify the label, all the operators are evaluated at t zero, namely
a ≡ a(0).
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superoperator as a linear transformation. Thus, if we construct a vector of operators as

O⃗ =



a
a†

b
b†

a†a
b†b

a†b+b†a
2

a†b−b†a
2


, (4.45)

therefore we can translate the action of Z†(t) to a transformation of the vector O⃗ to a new
one O⃗′.

This new vector O⃗′ is given by O⃗′ =MO⃗ + b⃗ where

M =



Γ+ − Ξ+ 0 Γ− − Ξ− − ig 0 0 0 0 0
0 Γ+ + Ξ+ 0 Γ− + Ξ− + ig 0 0 0 0

Γ− − Ξ− − ig 0 Γ+ − Ξ+ 0 0 0 0 0
0 Γ− + Ξ− + ig 0 Γ+ + Ξ+ 0 0 0 0

iF cos(gt) −iF cos(gt) 0 0 2Γ+ 0 2Γ− −2Ξ− − 2ig
0 0 F F 0 2Γ+ 2Γ− 2Ξ− + 2ig

F
2 sin(gt) F

2 sin(gt) iF
2 cos(gt) − iF

2 cos(gt) Γ− Γ− 2Γ+ 0
F
2 sin(gt) −F

2 sin(gt) iF
2 cos(gt) iF

2 cos(gt) −Ξ− − ig Ξ− + ig 0 2Γ+


(4.46)

and

b⃗ =



−iF cos(gt)
iF cos(gt)
F sin(gt)
F sin(gt)
γ+
2

4 +
γ−
2

4
γ+
2

4 +
γ−
2

4
γ+
2

4 −
γ−
2

4
0


, (4.47)

where we de�ned

Γ+ =
−γ+1 − γ

−
1 + γ+2 + γ−2
8

, (4.48)

Γ− =
−γ+1 + γ−1 + γ+2 − γ

−
2

8
, (4.49)

Ξ+ = i
(ξ+ + ξ−)

2
, (4.50)

Ξ− = i
(ξ+ − ξ−)

2
. (4.51)

Ξ+ and Ξ− correspond to the Lamb shift terms.
Now we can use that

O⃗′ = Z†(t)[O⃗] =MO⃗ + b⃗. (4.52)

As Z†(t)[I] = 0 then we have:

Z†2(t)[O⃗] = Z†(t)[MO⃗ + b⃗] =M(MO⃗ + b⃗), (4.53)

and iterating we get
Z†n(t)[O⃗] =Mn−1(MO⃗ + b⃗). (4.54)
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Thus, �nally, the whole evolution is given by [SHW]

O⃗(t) = eZ(t)[O⃗] = O⃗ +

∞∑
n=1

Mn−1(MO⃗ + b⃗)

n!
(4.55)

= O⃗ − (O⃗ +M−1⃗b) +

∞∑
n=0

MnO⃗

n!
+

∞∑
n=0

Mn−1⃗b

n!
(4.56)

= O⃗ − (O⃗ +M−1⃗b) + eM O⃗ + eMM−1⃗b (4.57)

= (eM − I)M−1⃗b+ eM O⃗. (4.58)

From it, we can compute the expectation values of the operators as in Eq. (4.28)

⟨O⃗(t)⟩ = (eM − I)M−1⃗b+ eM ⟨O⃗⟩ (4.59)

where

⟨O⃗⟩ =



⟨a(0)⟩
⟨a†(0)⟩
⟨b(0)⟩
⟨b†(0)⟩
⟨a†a(0)⟩
⟨b†b(0)⟩
⟨a

†b+b†a(0)
2 ⟩

⟨a
†b−b†a

2 (0)⟩


. (4.60)

It is important to keep in mind that the calculation of local and global equations for the
observables has been performed in a di�erent interaction picture from the one used in the
re�ned weak coupling. To address this issue, we note that for the latter case, we computed
the expectation value in the intermediate picture as

⟨A⟩I(t) = Tr (AρI(t)) = Tr
(
US(t)AU

†
S(t)ρ(t)

)
(4.61)

where US = e−i(Ω+c†1c1+Ω−c†2c2)t. We are interested in the �real� expectation value of the
operator, namely ⟨A⟩(t) = Tr (Aρ(t)). Thus, we have:

⟨a†a⟩I(t) = Tr
(
US(t)a

†aU†
S(t)ρ(t)

)
= Tr

([
cos(gt)a† + ib† sin(gt)

]
[cos(gt)a− ib sin(gt)] ρ(t)

)
(4.62)

= cos2(gt)⟨a†a⟩(t) + sin2(gt)⟨b†b⟩(t)− 2 sin(gt) cos(gt) Im
(
⟨a†b⟩(t)

)
, (4.63)

and

⟨b†b⟩I(t) = Tr
(
US(t)b

†bU†
S(t)ρ(t)

)
= Tr

([
i sin(gt)a† + b† cos(gt)

]
[−i sin(gt)a+ b cos(gt)] ρ(t)

)
(4.64)

= sin2(gt)⟨a†a⟩(t) + cos2(gt)⟨b†b⟩(t)− 2 sin(gt) cos(gt) Im
(
⟨ab†⟩(t)

)
. (4.65)

If we sum up these two expectation values, we obtain

⟨a†a⟩I(t) + ⟨b†b⟩I(t) = ⟨a†a⟩(t) + ⟨b†b⟩(t). (4.66)

Therefore, our �gure of merit will be this sum of expectation values.5

Before presenting the results, we would like to make some comments. For our numerical
calculations, we consider the spectral density of the bath to be Ohmic, J(ν) = αν. Thus,

5As mentioned before, it is easy to see that for the local and global case ⟨a†a⟩I(t) = ⟨a†a⟩(t) and the
same for b, because the only di�erence when moving to the interaction picture is only a phase.
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(a) g=0.1ω0 (b) g=0.6ω0

Figure 4.1: Plot of ⟨a†a⟩(t) + ⟨b†b⟩(t) for local, global, and re�ned approaches and for short
times. For the plot F = 0.001ω0, T = 0.2, J(ω) = αω, and ω0 = 1. For the plot in the left
α = 0.2

π , and for the right α = 0.4
π .

(a) g=0.1ω0 (b) g=0.6ω0

Figure 4.2: Plot of ⟨a†a⟩(t) + ⟨b†b⟩(t) for local, global, and re�ned approaches and for short
times. For the plot F = 0.001ω0, T = 0.2, J(ω) = αω, and ω0 = 1. For the plot in the left
α = 0.2

π , and for the right α = 0.4
π .

γ1 generally diverges because of the term without nν . To cure this, we make use of the
regularization techniques exposed in [WMHA21], in particular the type (⋆⋆) referred there.
For our speci�c case, we have∫ ∞

0

J(ν)t2 sinc2
(
Ω− ν

2
t

)
→ 2tJ(Ω). (4.67)

In addition, we would like to remind the reader that we considered the Lamb shift to be
zero for practical reasons. Thus, as in the GKLS equation (both local and global), the only
divergent term is the Lamb shift, we do not need to put any cut-o� term in the spectral
density.

Before talking about our numerical results, we would like to argue that the local approach
for long times gives unphysical results. To do so, we resort to the analytical derivations
presented in [AFM+18]. For temperature T = 0, and starting from the ground state, one
has that due to the speci�c characteristics of the model (see [AFM+18] for more details) the
energy of the battery EB is simply given by EB(t) = ω0|⟨b(t)⟩|2 where one can analytically
compute b(t) and get

⟨b(t)⟩ = −F
g

(
1− e−

γt
4

(
cosh (ετ/4) +

γ

ε
sinh (ετ/4)

))
(4.68)

with ε ≡
√
γ2 − (4g)2. If one takes the limit of t→∞, one will get EB(t→∞) = ω0(F/g)

2

which is divergent if g goes to zero. This result contradicts what one would naturally
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expect, namely, the energy of the battery going to zero. To cure this, one may use the
global approach, perform the same limit and see whether the energy goes to zero. Indeed,
this is the case. For global, we have

⟨b(t)⟩ = −
2F
(
−iγ+ + 4g

(
−e−

γ−t

4 +igt − e− 1
4 t(γ++4ig) + 2

)
+ i
(
γ− + γ−

(
−e− 1

4 t(γ++4ig)
)
+ γ+e

− γ−t

4 +igt
))

(4g + iγ−) (4g − iγ+)
,

(4.69)
and taking the limit when g goes to zero we get

Eb(t) = ω0|⟨b(t)⟩|2 = 4ω0

∣∣∣∣∣∣
F
(
i
(
−e− 1

4 (tγ+)γ− + γ− + e−
1
4 (tγ−)γ+

)
− iγ+

)
γ−γ+

∣∣∣∣∣∣
2

, (4.70)

which is indeed zero for all times because γ+ = γ− for g = 0. As one will see from our plots,
the local approach is not accurate for times bigger than 1/(2g) (as expected.) [DTA+18]

We now present our numerical results in two di�erent regimes: long times and short
times. In Fig. (4.2) the results for the �rst scheme are plotted. We can see that regardless
of g, the local approach is not good for long times. However, as one decreases g, the local
approach gets more similar to the re�ned and global steady result. The reason is that if
we decrease the interaction strength between the subsystems, we almost end up having just
one subsystem interacting with the bath and disconnected from the other subsystem.

On the other hand, the global approach gives always the same result in the steady limit
as the re�ned weak coupling, as expected [Riv17, WMHA21]. Furthermore, we can see that
in all cases the Markovian dynamics thermalize faster than non-Markovian ones (re�ned.)
Additionally, in Fig. (4.1) we can see the results for the short time scale. We see that
especially for small g re�ned and local approach agree and the plots look very similar to the
ones obtained in [WMHA21] for the qutrit case. Finally, for times comparable to 1/(2g)
both local and global are not accurate to describe the dynamics. The reason is that these
times correspond to a transient regime in which non-Markovian e�ects arise, as one can also
notice in subsection (2.1.2).

To conclude, we would like to mention that one could improve the results by diagonalizing
the whole Hamiltonian �including the �eld term�. In that case, the �eld will appear in the
dissipator and the dynamics will be more precise and valid for all values of F . Plus, one has
to keep in mind that we are comparing the results with the re�ned weak coupling equation,
which is indeed more precise than both the local and global approach but it is still non-exact.

4.2 Markovian-vacuum approximation

We now present another non-Markovian approximation �rst stated in [ARAH22]. We call
it Markovian-vacuum approximation and the reason for that will be noticed later. The
approximation assumes that the long-time behavior of the excited population of the atom
decays exponentially. To mathematically express it, we �rst need to introduce our model.

The setting is a continuous mode quantum laser interacting with an atom6. The total
Hamiltonian reads

H = H0 +HI , (4.71)

H0 = HA +HF , (4.72)

where

HA ≡ ω0|1⟩⟨1|, (4.73)

HF ≡
∑
λ

∫
d3k⃗ωk⃗λa

†
k⃗λ
ak⃗λ, (4.74)

6We will consider the atom to behave as a two-level system.
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are the free Hamiltonians of the atom and the �eld, respectively. The interaction between
them is given by

HI =
∑
λ

∫
d3k⃗ [f(ωk⃗λ)σ

+ak⃗λ + f∗(ωk⃗λ)σ
−a†

k⃗λ
], (4.75)

where ak⃗λ is the usual annihilation bosonic operator of mode(k⃗,λ), λ±1 is the polarization,

k⃗ is the continuous wave vector, and σ+ (σ−) is the raising (lowering) operator for the atom.
Finally,

f(ωk⃗λ) = i

√
ωk⃗λ

2(2π)3ε0
e⃗k⃗λ · D⃗ (4.76)

is the coupling constant [MW95], e⃗k⃗λ is the unit vector of the electric �eld and D⃗ is the
atomic dipole moment vector.

When expanding the dynamics in the Dyson series, in�nities (or terms that depend on
the cut-o�) will appear from the commutation relations. Thus, we would re-normalize the
Hamiltonian in a way that all of these divergent terms will be encoded in a single parameter
(Lamb Shift δω) whose value can be computed using quantum electrodynamics. Even though
the physical meaning of using it is not clear at the moment, it serves as a tool to solve the
dynamics of the system in the coherent basis of the laser �eld.

Thus, we rewrite the Hamiltonian as the sum of two non-Hermitian parts7 H = H0r+HIr

where

H0r = HAr
+HF = Ω|1⟩⟨1|+

∫
dk ωka

†
kak (4.77)

and

HIr =

∫
dk [f(ωk)σ

+ak + f∗(ωk)σ
−a†k] + ib|1⟩⟨1|, (4.78)

where b = iδω + γ, Ω = ωA − iγ, and ωA = ω0 + δω, where as usual, γ is the decay rate. If
we now move to the interaction picture with respect to the free Hamiltonian H0r , we get

H̃Ir (t) = eiH0r tHIre
−iH0r t (4.79)

=

∫
dk[f(ωk, t)σ

+ak + f ′(ωk, t)σ
−a†k] + ib|1⟩⟨1|, (4.80)

where we de�ned

f(ω, t) = f(ω)e−i(ω−ωA+iγ)t, (4.81)

f ′(ω, t) = f∗(ω)ei(ω−ωA+iγ)t. (4.82)

If we choose to de�ne

A(t) ≡
∫
dkf(ωk, t)ak, (4.83)

A′(t) ≡
∫
dkf ′(ωk, t)a

†
k, (4.84)

we end up with

H̃Ir (t) = σ+A(t) + σ−A′(t) + ib|1⟩⟨1|. (4.85)

7For simplicity, we have denoted
∫
d3k⃗ as

∫
dk and we have dropped the λ subscript.
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These newly de�ned operators ful�ll the following commutation relations

[A(ti), A
′(tj)] =

[∫
dk f(ωk, ti)ak,

∫
dk′ f ′(ωk′ , tj)a

†
k′

]
(4.86)

=

∫
dk

∫
dk′ f(ωk, ti)f

′(ωk′ , tj)[ak, a
†
k′ ] (4.87)

=

∫
dk

∫
dk′f(ωk, ti)f

′(ωk′ , tj)δ(ωk − ωk′) (4.88)

=

∫
dk ei(ωA−iγ)(ti−tj)e−iωk(ti−tj)|f(ωk)|2 (4.89)

= ei(ωA−iγ)(ti−tj)

∫
dk e−iωk(ti−tj)|f(ωk)|2 (4.90)

= F r(ti − tj), (4.91)

where F r(t) ≡ ei(ωA−iγ)t
∫
dk e−iωkt|f(ωk)|2.

We see in the next section, concretely in the Friedrichs-Lee model [Lee54, Fri48, Lon16],
that the Markovian-vacuum approximation �namely, that the excited population of the atom
decays exponentially for long times� can be cast into

F r(t) ≈ bδ(t), t > 0, (4.92)

in a distributional sense. Speci�cally, one only performs the approximation inside integrals.

4.2.1 Friedrichs-Lee model

To justify our approximation we consider the Friedrichs-Lee model [Lee54, Fri48, Lon16].
We �rst consider the model without the re-normalization to make the reader familiar with
the kind of calculations we will later apply to the re-normalized one, and from there, we will
justify Eq. (4.92).

If one considers the �eld to be initially in the ground state, the dynamics given by the
total system Hamiltonian will leave invariant the space given by the span of the vectors:
|e⟩ ≡ |1⟩ ⊗ |{0}⟩, |f⟩ ≡

∫
dk|0⟩ ⊗ f(ωk)|{1k}⟩ where |1⟩ (|0⟩) denotes the excited (ground)

state of the two-level system and |{0}⟩ (|{1k}⟩) the vacuum state of the �eld (the state that
has one photon in the k-th mode with an arbitrary weight f(ωk)). Hence the interaction
Hamiltonian, originally given in Eq. (4.75), now reads

HI = |e⟩⟨f |+ |f⟩⟨e|, |f⟩ =
∫
dk f(ωk)|0⟩|{1k}⟩, (4.93)

where {ωk} speci�es the frequencies corresponding to each excited mode of the electrical
�eld.

As mentioned before, we apply the approximation

⟨e|e−iHt|e⟩ ≃ e(−iωA−γ)t, (4.94)

which means that the survival amplitude (for long times) decays exponentially. H is the
total Hamiltonian. If we move to the interaction picture UI(t) = eiH0te−iHt the evolution
ful�lls

UI(t) = I− i
∫ t

0

eiH0s(|e⟩⟨f |+ |f⟩⟨e|)e−iH0sUI(s)ds. (4.95)

where H and H0 are given in Eqs. (4.71) and (4.72), respectively. We can de�ne the matrix
elements as

K(t) = ⟨e|UI(t)|e⟩, M(t) = ⟨ft|UI(t)|e⟩ (4.96)
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and the vector

|ft⟩ =
∫
dkeiωktf(ωk)|0⟩|{1k}⟩. (4.97)

Inserting Eq. (4.95) into Eq. (4.96) one obtains

K(t) = 1− i
∫ t

0
eiω0sM(s) ds,

M(t) = −i
∫ t

0
e−iω0sF (t− s)K(s) ds, (4.98)

where we de�ne F (t) ≡
∫
dk e−iωkt|f(ωk)|2. Now we can use the Laplace transform

F(z) =
∫ ∞

0

e−ztF (t) dt (4.99)

and its properties to transform Eq. (4.98) into

K(z) = 1

z
− i1

z
M(z − iω0), M(z) = −iF(z)K(z + iω0). (4.100)

Finally, we can solve for K(z) and get

K(z) = 1

z + F(z − iω0)
. (4.101)

4.2.2 Dissipative re-normalization scheme in Friedrichs-Lee model

Now we move to the (non-unitary) re-normalized interaction picture UIr (t) ≡ eiH0r te−iHt.
In this picture, the evolution reads

UIr (t) = I− i
∫ t

0

ds eiH0r s
[
|e⟩⟨f |+ |f⟩⟨e|+ ib|1⟩⟨1|

]
e−iH0r sUIr (s), (4.102)

where H0r is previously de�ned in Eqs. (4.77) and H is the total Hamiltonian as usual. The
survival amplitude can be expressed in terms of our new picture as

⟨e|e−iHt|e⟩ = e(−iωA−γ)t⟨e|UIr (t)|e⟩. (4.103)

In analogy with what we did in the section before, we de�ne

Kr(t) = ⟨e|UIr (t)|e⟩, Mr(t) = ⟨ft|UIr (t)|e⟩, (4.104)

where |ft⟩ is de�ned in Eq. (4.97).
Hence

Kr(t) = ⟨e|UIr (t)|e⟩ = ⟨e|I− i
∫ t

0

ds eiH0r s
[
|e⟩⟨f |+ |f⟩⟨e|+ ib|1⟩⟨1|

]
e−iH0r sUIr (s)|e⟩

(4.105)

= 1− i
∫ t

0

eiΩsMr(s) ds+ i(δω − iγ)
∫ t

0

Kr(s) ds (4.106)

Analogously, one obtains

Mr(t) = −i
∫ t

0

e−iΩsF (t− s)Kr(s) ds. (4.107)

We now apply the Laplace transform and get

Kr(z) = 1
z − i

1
zM

r(z − iΩ) + i(δω − iγ) 1zK
r(z),

Mr(z) = −iF(z)Kr(z + iΩ), (4.108)
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and we �nally obtain

Kr(z) =
1

z + F(z − iωA − γ)− iδω − γ
. (4.109)

Therefore, the desired probability can be re-expressed as

⟨e|e−iHt|e⟩ = e(−iωA−γ)tKr(t), (4.110)

where Kr(t) is obtained by inverting the Laplace transform of Eq. (4.109). From this, we
are now ready to justify our approximation.

4.2.3 Justi�cation of the approximation

Looking at Eq. (4.110), we see that our approximation translates to Kr(t) ≃ 1, for long
times t. We can relate this with its Laplace transform using the Tauberian theorem

Y(z) ≃ z−n as z → 0 ⇐⇒ Y (t) ≃ n

Γ(n+ 1)
t(n−1) (4.111)

as t→∞, where Γ(x) is the Gamma function. Setting n = 1 we observe that Kr(t) ≃ 1 for
long times if and only if Kr(z) ≃ 1/z for small values of z. Making the substitution in Eq.
(4.109) we have that

F(z − iωA − γ) ≃ γ + iδω (4.112)

or consequently
Fr(z) ≃ b. (4.113)

Thus, if we take the inverse Laplace transform of Eq. (4.113), our approximation in the
time domain becomes

F r(t) ≈ bδ(t), t > 0. (4.114)

And for negative times
F r(t) ≈ b∗δ(t), t < 0. (4.115)

The proof goes as follows. From the de�nition of F r(t) we have

F r(t) = eγth(t) ≈ bδ(t), (4.116)

in which

h(t) ≡
∫
dk e−i(ωk−ωA)t|f(ωk)|2.

Then if t < 0 we get

F r(t) = F r(−u) = e−γuh∗(u) = e−2γu (eγuh(u))
∗ (4.117)

≈ e−2γub∗δ(u) = e2γtb∗δ(−t) = e2γtb∗δ(t) (4.118)

= b∗δ(t), (4.119)

where we dropped e2γt in the last equality because inside the integrals this term will be one.
One can compute explicitly γ and δω. To do so, we compute the Laplace transform of

F r(t)

Fr(z) =

∫ ∞

0

dte−(zr−γ)tei(ωA−ω−zi)t

∫
dω4πω2|f(ω)|2, (4.120)

where we used the dispersion relation ω = kc, and set c=1. Furthermore, zr ≡ Re(z),
zi ≡ Im(z). To ensure the convergence of the integral when t→∞ is needed that zr−γ > 0.
In that case

Fr(z) =

∫
dω

4πω2

z + i(ω − ωA)− γ
|f(ω)|2. (4.121)
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Expanding for z small, and consequently γ will be small, we have

1

z − iωA − γ + iω
=

zr − γ + i(ωA − ω − zi)
|zr − γ|2 + |ωA − ω − zi|2

=
zr − γ

|zr − γ|2 + |ωA − ω − zi|2
+ i

ωA − ω − zi
|zr − γ|2 + |ωA − ω − zi|2

(4.122)

≈ πδ(ωA − ω) + iP
(

1

ωA − ω

)
. (4.123)

Now computing the integral we have

Fr(z) ≈ 4π2ω2
A|f(ωA)|2 + iP

∫
4πω2

ωA − ω
|f(ω)|2dω, (4.124)

and if we use the approximation from Eq. (4.113) we have

γ + iδω +O(z) ≈ 4π2ω2
A|f(ωA)|2 + iP

∫
4πω2

ωA − ω
|f(ω)|2dω, (4.125)

and hence

γ ≈ 4π2ω2
A|f(ωA)|2, δω ≈ P

∫
4πω2

ωA − ω
|f(ω)|2dω. (4.126)

4.2.4 Results

We now extend our approximation to all time values, not just for long times as we used in
the derivation. Therefore, using it, the S-matrix elements SIr,ij(t, 0) ≡ ⟨i|UIr (t, 0)|j⟩, will
be fully determined by the normal ordered terms, the decay rate and the Lamb shift, which
facilitates the calculations a lot.

To see this result we �rst do the Dyson series for UIr (t) (in the interaction picture with
respect to H0r ) and get

UIr (t, 0) = I− i
∫ t

0

dt1H̃Ir (t1) + (−i)2
∫ t

0

dt1

∫ t1

0

dt2H̃Ir (t1)H̃Ir (t2) + . . . (4.127)

If we apply now our approximation, the result will be greatly simpli�ed. It is given by the
next theorem:

Theorem 4.1. The evolution of S-propagator elements SIr,ij(t, 0) ≡ ⟨i|UIr (t, 0)|j⟩ of the
whole system is given by:

SIr,11(t, 0) ≃ IF +
∑
n=1

(−i)2n
∫ t

0

dt1 . . .

∫ t2n−1

0

dt2nA
′(t2) . . . A

′(t2n)A(t1) . . . A(t2n−1),

(4.128)

SIr,00(t, 0) ≃ IF +
∑
n=1

(−i)2n
∫ t

0

dt1 . . .

∫ t2n−1

0

dt2nA
′(t1) . . . A

′(t2n−1)A(t2) . . . A(t2n),

(4.129)

SIr,01(t, 0) ≃
∑
n=1

(−i)2n−1

∫ t

0

dt1 . . .

∫ t2n−2

0

dt2n−1A
′(t1) . . . A

′(t2n−1)A(t2) . . . A(t2n−2),

(4.130)

SIr,10(t, 0) ≃
∑
n=1

(−i)2n−1

∫ t

0

dt1 . . .

∫ t2n−2

0

dt2n−1A
′(t2) . . . A

′(t2n−2)A(t1) . . . A(t2n−1),

(4.131)
where IF is the identity matrix in the �eld space.
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We do not prove the theorem here (see [ARAH22] for the whole proof.) However, we
apply it to di�erent cases.

First, let us simplify the usual di�erential equation ful�lled by the time-operator

d

dt
UIr (t) = −iH̃Ir (t)UIr (t). (4.132)

Thanks to our theorem, one can obtain the following equation

d

dt
SIr (t) = −i

(
σ+SIr (t)A(t) + σ−A′(t)SIr (t)

)
, SI(0) = I. (4.133)

A convenient representation of the previous di�erential equation is given in the coherent basis
of the �eld. The basis is spanned by coherent states of the form |{α}⟩ ≡ |α1, α2, . . . , αn⟩.
Projecting Eq. (4.133) to this new basis, we easily obtain

d

dt
Sβα
Ir

(t) = −i
(
Aα(t)σ

+ +A′
β(t)σ

−
)
Sβα
Ir

(t), Sβα
Ir

(0) = ⟨{β}|{α}⟩ (4.134)

where

Aα(t) ≡ eiΩtfα(t), A′
β(t) ≡ e−iΩtf∗β(t), (4.135)

and

fα(t) =

∫
dk f(ωk)α(ωk)e

−iωkt. (4.136)

Moving now to the Schrödinger picture and de�ning

Uβα(t) ≡ 1

Nβα
et(−iωA−γ)|1⟩⟨1|Sβα

Ir
(t), (4.137)

where Nβα ≡ ⟨{β}|{α}⟩. This new propagator is normalized (Uβα(0) = I) and satis�es

d

dt
Uβα(t) = −i

[
(ωA − iγ)|1⟩⟨1|+ fα(t)σ

+ + f∗β(t)σ
−
]
Uβα(t). (4.138)

Furthermore, we can de�ne the parameter ξ = β−α and change the propagator accordingly
to Uαβ(t) ≡ Uξ

α(t). For this new propagator, the evolution reads

d

dt
Uξ
α(t) = −i

[
(ωA−iγ)|1⟩⟨1|+fα(t)σ++f∗α(t)σ

−+f∗ξ (t)σ
−
]
Uξ
α(t) = −i

[
HAr

+Hα(t)+f
∗
ξ (t)σ

−
]
Uξ
α(t).

(4.139)
where

HAr
≡ (ωA − iγ)|1⟩⟨1|, (4.140)

Hα(t) ≡ fα(t)σ+ + f∗α(t)σ
−. (4.141)

If we move to the interaction picture (non-unitary) with respect to HAr
+ Hα(t), we

obtain

Ũξ
α = T ei

∫ t
0
dt′(HAr+Hα(t′))T e−i

∫ t
0
dt′(HAr+Hα(t′)+f∗

ξ (t
′)σ−). (4.142)

So Ũξ
α ful�lls

d

dt
Ũξ
α(t) = −if∗ξ (t)σ̃−(t)Ũξ

α(t) (4.143)

with

σ̃−(t) = T ei
∫ t
0
dt′(HAr+Hα(t′))t′σ−T e−i

∫ t
0
dt′(HAr+Hα(t′))t′ . (4.144)
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Vacuum state of the �eld

We start with the easiest case in which the initial state �eld is the vacuum (α = 0.) In that
case one readily obtains

Ũξ(t) = e−ihξ(t)σ
−
= I− ihξ(t)σ−, (4.145)

where

hξ(t) =

∫ t

0

dt1f
∗
ξ (t1)e

−iωAt1−γt1 . (4.146)

To get the reduced evolution of the state of the atom, we need to trace out the �eld

ρ̃A(t) = trF {ρ̃AF } =
∫
Dβ ⟨{β}|ρ̃AF (t)|{β}⟩ =

∫
Dβ ⟨{β}|Ũ(t)ρ̃AF (0)Ũ

†(t)|{β}⟩

(4.147)

=

∫
Dβ ⟨{β}|Ũ(t)ρ̃A(0)⊗ |{α}⟩F ⟨{α}|Ũ†(t)|{β}⟩ =

∫
Dβ |Nβα|2Ũαβ(t)ρ̃A(0)(Ũ

αβ(t))†

(4.148)

=

∫
Dξ e−∥ξ∥2

Ũξ(t)ρA(0)
(
Ũξ(t)

)†
=

∫
Dξ e−∥ξ∥2 (

I− ihξ(t)σ−) ρA(0)(I+ ih∗ξ(t)σ
+
)

(4.149)

=

∫
Dξ e−∥ξ∥2

(
ρA(0) + ih∗ξ(t)ρA(0)σ

+ − ihξ(t)σ−ρA(0) + |hξ(t)|2σ−ρA(0)σ
+
)
(4.150)

=

∫
Dξ e−∥ξ∥2

(ρA(0) + |hξ(t)|2σ−ρA(0)σ
+) = ρA(0) + χ(t)σ−ρA(0)σ

+ (4.151)

= eΓ̃(t)[ρA(0)], (4.152)

where during the calculation we used α = 0 and we de�ned the superoperator Γ̃(t) as

Γ̃(t) ≡ χ(t)σ−(·) σ+, (4.153)

and

χ(t) ≡
∫
Dξ e−∥ξ∥2

|hξ(t)|2. (4.154)

Moreover, we have considered that for Gaussian complex random noise, the �rst moments
are zero, i.e.

⟨hξ(t)⟩ =
∫
Dξ e−∥ξ∥2

hξ(t) = 0. (4.155)

χ(t) is given by

χ(t) =

∫
Dξ e−∥ξ∥2

∫ t

0

dt1

∫ t

0

ds1 fξ(t1)f
∗
ξ (s1)e

−iωA(t1−s1)−γ(t1+s1) (4.156)

=

∫ t

0

dt1

∫ t

0

ds1

∫
dk e−γ(t1+s1)e−iωk(t1−s1)e−iωA(t1−s1)|f(ωk)|2 (4.157)

=

∫ t

0

dt1

∫ t

0

ds1 e
−2γt1e−2iωA(t1−s1)F r(t1 − s1), (4.158)

where F r(t) is de�ned as usual. We can simplify the χ(t) expression if we use our approxi-
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mation in the time domain. Thus

χ(t) =

∫ t

0

dt1

∫ t

0

ds1 e
−2γt1e−2iωA(t1−s1)F r(t1 − s1) (4.159)

=

∫ t

0

dt1

∫ t1

0

ds1 e
−2γt1e−2iωA(t1−s1)F r(t1 − s1)︸ ︷︷ ︸

t1>s1

+

∫ t

0

ds1

∫ s1

0

dt1 e
−2γt1e−2iωA(t1−s1)F r(t1 − s1)︸ ︷︷ ︸

t1<s1

(4.160)

≈
∫ t

0

dt1

∫ t1

0

ds1 e
−2γt1e−2iωA(t1−s1)bδ(t1 − s1) +

∫ t

0

ds1

∫ s1

0

dt1 e
−2γt1e−2iωA(t1−s1)b∗δ(t1 − s1)

(4.161)

= 2γ

∫ t

0

e−2γt1dt1 = 1− e−2γt, (4.162)

where we separated the integral in two di�erent regimes, one with the argument of F r being
positive and the other being negative. We also used that b+ b∗ = 2γ.

The equation for ρ̃A(t) reads

ρ̃A(t) = ρA(0) + χ(t)σ−ρA(0)σ
+ = ρA(0) +

(
1− e−2γt

)
σ−ρA(0)σ

+. (4.163)

Thus the master equation in the interaction picture is given by

d

dt
ρ̃A(t) =

d

dt
eΓ̃(t)[ρA(0)] =

∫ 1

0

dsesΓ̃(t)
d

dt

(
Γ̃(t)

)
e(1−s)Γ̃(t)[ρA(0)] =

d

dt

(
Γ̃(t)

) [
eΓ̃(t)[ρA(0)]

]
(4.164)

= 2γe−2γtσ−ρ̃A(t)σ
+ = Λ̃[ρ̃A(t)], (4.165)

where we used the formula for the derivative of an exponential of a matrix [Sni64, Wil67]

d

dt
eA(t) =

∫ 1

0

dsesA(t)

[
dA(t)

dt

]
e(1−s)A(t)ds, (4.166)

and de�ned
Λ̃[·] = 2γe−2γtσ−(·)σ+. (4.167)

Moving back to Shcrödinger picture we get

d

dt
ρA(t) =

d

dt

(
e−iHAr tρ̃A(t)e

iH†
Ar

t
)

(4.168)

= −i[HA, e
−iHAr tρ̃A(t)e

iH†
Ar

t]− γ{|1⟩⟨1|, e−iHAr tρ̃A(t)e
iH†

Ar
t}+ e−iHAr t

d

dt
ρ̃A(t)e

iH†
Ar

t

(4.169)

= −i[HA, ρA(t)]− γ{|1⟩⟨1|, ρA(t)}+ 2γσ−ρA(t)σ
+, (4.170)

where we used e−iHAr tσ− = σ− and σ+eiHAr t = σ+ as well as e−iHAr tσ+ = eωAt+γtσ+ and
σ−e−iHAr t = σ−e−ωAt+γt. We also de�ned HA ≡ ωA|1⟩⟨1|. To conclude, we see that the
evolution is given by the GKLS master equation. This is why we named the approximation
Markovian-vacuum.

Coherent state of the �eld

Here we compute the case in which the �eld is in a coherent state. Before any calculation,
let us rede�ne γ → γ

2 and thus b+ b∗ = γ.
The evolution now reads

d

dt
Uξ
α(t) = −i

[
ωAP1 + fα(t)σ

+ + f∗α(t)σ
−]Uξ

α(t)−
[γ
2
P1 + if∗ξ (t)σ

−
]
Uξ
α(t), (4.171)



46 CHAPTER 4. NON-MARKOVIAN DYNAMICS

where P1 ≡ |1⟩⟨1|. If we de�ne the unitary interaction picture with respect to Hα(t) ≡
ωAP1 + fα(t)σ

+ + f∗α(t)σ
−, the unitary operator will be

Uα(t) = T e−i
∫ t
0
dt′Hα(t′), (4.172)

and the evolution reads

d

dt

(
Uα(t)U

ξ
α(t)U

†
α(t)

)
= Uα(t)

(
−
[γ
2
P1 + if∗ξ (t)σ

−
]
Uξ
α(t)

)
U†
α(t), (4.173)

enabling us to calculate the Dyson expansion for Uξ
α(t) as

Uξ
α(t) = Uα(t, 0)

[
I−

∫ t

0

ds1

(γ
2
P̃1(s1) + if∗ξ (s1)σ̃

−(s1)
)

(4.174)

+

∫ t

0

ds1

∫ s1

0

ds2

(γ
2
P̃1(s1) + if∗ξ (s1)σ̃

−(s1)
)(γ

2
P̃1(s2) + if∗ξ (s2)σ̃

−(s2)
) ]

+O(γ3),

(4.175)

where X̃ ≡ U†
α(s1)XUα(s1).

With this expansion, we are ready to calculate ρA(t) up to the �rst order in γ. Then we
have

ρA(t) = Λ(t)ρA(0) =

∫
Dξ e−∥ξ∥2

Uξ
α(t)ρA(0)

(
Uξ
α(t)

)†
(4.176)

=

∫
Dξ e−∥ξ∥2

Uα(t, 0)
[
I−

∫ t

0

ds1

(γ
2
P̃1(s1) + if∗ξ (s1)σ̃

−(s1)
)]
ρA(0) (4.177)

×
[
I−

∫ t

0

ds2

(γ
2
P̃1(s2)− ifξ(s2)σ̃+(s2)

)]
U†
α(t, 0) (4.178)

= Uα(t, 0)
[
ρA(0)−

∫ t

0

ds1
γ

2

(
P̃1(s1)ρA(0) + ρA(0)P̃1(s1)

)
(4.179)

+

∫
Dξ e−∥ξ∥2

∫ t

0

ds1

∫ t

0

ds2f
∗
ξ (s1)fξ(s2)σ̃

−(s1)ρA(0)σ̃
+(s2)

]
U†
α(t, 0) (4.180)

= Uα(t, 0)
[
ρA(0)−

γ

2

∫ t

0

ds1

(
P̃1(s1)ρA(0) + ρA(0)P̃1(s1)

)
(4.181)

+

∫ t

0

ds1

∫ t

0

ds2 e
γ(s1−s2)e−iωA(s1−s2)F r(s1 − s2)σ̃−(s1)ρA(0)σ̃

+(s2)
]
U†
α(t, 0)

(4.182)

≈ Uα(t, 0)
[
ρA(0)−

γ

2

∫ t

0

ds1

(
P̃1(s1)ρA(0) + ρA(0)P̃1(s1)

)
(4.183)

+

∫ t

0

ds1

∫ s1

0

ds2 γe
γ(s1−s2)e−iωA(s1−s2)δ(s1 − s2)σ̃−(s1)ρA(0)σ̃

+(s2)
]
U†
α(t, 0)

(4.184)

= Uα(t, 0)
[
ρA(0)−

γ

2

∫ t

0

ds1

(
P̃1(s1)ρA(0) + ρA(0)P̃1(s1)

)
+ γ

∫ t

0

ds1 σ̃
−(s1)ρA(0)σ̃

+(s1)
]
U†
α(t, 0),

(4.185)

where again we have made use of our approximation. One could expand up to higher orders
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in γ and get the solution analogously. We state the result up to the second order here

ρA(t) = Λ(t)ρA(0) ≈ Uα(t, 0)
[
ρA(0)−

∫ t

0

ds1
γ

2

(
P̃1(s1)ρA(0) + ρA(0)P̃1(s1)

)
(4.186)

+ γ

∫ t

0

ds1 e
−γs1 σ̃−(s1)ρA(0)σ̃

+(s1) +
γ2

4

∫ t

0

ds1

∫ t

0

ds′1P̃1(s1)ρA(0)P̃1(s
′
1) (4.187)

− γ2

2

∫ t

0

ds′1

∫ s′1

0

ds′2

(
σ̃−(s′2)ρA(0)σ̃

+(s′2)P̃1(s
′
1) + P̃1(s

′
1)σ̃

−(s′2)ρA(0)σ̃
+(s′2)

)
(4.188)

− γ2

2

∫ t

0

ds1

∫ s1

0

ds′2

(
σ̃−(s1)ρA(0)P̃1(s

′
2)σ̃

+(s1) + σ̃−(s1)P̃1(s
′
2)ρA(0)σ̃

+(s1)
)
(4.189)

+
γ2

4

∫ t

0

ds1

∫ t

0

ds′1

(
ρA(0)P̃1(s

′
1)P̃1(s1) + P̃1(s1)P̃1(s

′
1)ρA(0)

)
(4.190)

+ γ2
∫ t

0

ds1

∫ s1

0

ds′1 σ̃
−(s1)σ̃

−(s′1)ρA(0)σ̃
+(s1)σ̃

+(s′1)
]
U†
α(t, 0). (4.191)

If one moves to the interaction picture with respect to Hα one can see that the evolution
that one gets is the same as the one given by T eΛ̃(t) (expanding it to the second order in
γ)8 where

Λ̃(t) = −γ
2

∫ t

0

ds1{P̃1(s1), (·)}+ γ

∫ t

0

ds1 σ̃
−(s1)(·)σ̃+(s1). (4.192)

This generator is of GKLS form for any given t, due to the positivity of γ, and thus the
map ensures that the dynamics are CP. Hence, as we already know that the most general
solution for a Liouvillian equation is of the form

ρ(t) = T exp

[∫ t

0

dsL(s)
]
ρ (t0) , (4.193)

where we set the origin of time at zero, this implies that in our case we have

L̃(t) = −γ
2
{P̃1(t), (·)}+ γσ̃−(t)(·)σ̃+(t). (4.194)

Finally, our master equation reads

dρ̃(t)

dt
= L̃(t)ρ̃(t) = −γ

2
{P̃1(t), ρ̃(t)}+ γσ̃−(t)ρ̃(t)σ̃+(t), (4.195)

and in the Schrödinger picture

dρ(t)

dt
= −i [Hα(t), ρ(t)]−

γ

2
{P1, ρ(t)}+ γσ−ρ(t)σ+. (4.196)

The only di�erence this equation has with respect to the Markovian master equation is
the time dependence in the Hamiltonian. Therefore, the dynamics are not Markovian even
though they are still CP, so they are more accurate.

8As pointed out in our paper [ARAH22], that the evolution is given by this expression is a conjecture.
We were only able to prove it up to the second order in γ. However, we strongly believe that it holds for all
orders.
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Chapter 5

Exact dynamics

Throughout this thesis, it has become apparent that computing the exact dynamics of an
Open Quantum System is generally very demanding. Even in one of the simplest cases that
one can think of, namely, the Spin-boson model [LCD+87, RH12], there is no exact solution
known. However, there still exist some systems which allow for semi-analytical1 solutions.
An example of this is the resonant level model. In this chapter, we �rst introduce and solve
the model and then we use the results from quantum estimation theory to infer and estimate
the temperature of the system2. While doing so, we benchmark the exact result with those
obtained in the weak coupling limit (those given by the GKLS master equation.)

5.1 Resonant level model

The resonant level model [Sch14] consists of a fermionic system (e.g. a quantum dot)
interacting with a fermionic bath via linear interaction. The Hamiltonian reads

H = εd†d+
∑
q

ωqb
†
qbq +

∑
q

(tqb
†
qd+ t∗qd

†bq), (5.1)

where bq and d annihilate a fermion in the qth mode of the bath and the system, respectively,
and ε and ωq are the gap energies of our system and the qth mode of the bath. Since
they are fermions, they obey the fermionic anticommutation relations, i.e. {d, d†} = I,
{bq, b†k} = Iδqk, and {bq, bk} = {a, b†q} = {d, d} = 0. Moreover, the coupling strength
between the dot and the bath is given by tq which relates to the spectral density of the bath
Γ(ω)3 as follows

Γ(ω) = 2π
∑
q

|tq|2δ(ω − ωq), (5.2)

where we consider that the spectral density is modeled by a Lorentzian distribution

Γ(ω) =
Γδ2

ω2 + δ2
. (5.3)

As our last assumption, we use the wideband limit that corresponds to the limit case in
which the width of the Lorentzian goes to in�nite, making the frequency-dependent density
become constant i.e. limδ→∞ Γ(ω)→ Γ.

We would like to write the density matrix of the system/dot in the number basis and
as it is a fermion, and the eigenvalues of the number operator N = d†d are either 0 or 1,

1Here by semi-analytical solutions we mean that one can arrive at an analytical formula to compute the
dynamics but must resort to numerical methods to calculate it.

2This is generally called quantum thermometry. See [MSC19] for an extensive review of the �eld.
3We would like to note that we changed the notation from the other chapters, in which the spectral

density of the bath was given by J(ω) because Γ(ω) is the common notation in the literature of resonant
level models.
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the basis is {|0⟩⟨0|, |1⟩⟨1|}. Furthermore, the fermionic superselection rules [FLB13] do not
allow for superposition states as |ψ⟩ = a|0⟩ + b|1⟩. This simpli�es the problem at hand
because the density matrix of the dot at any time t of the evolution, in the aforementioned
basis reads

ρ(t) =

(
1− p1(t) 0

0 p1(t)

)
, (5.4)

and an easy calculation shows that ⟨d†d⟩(t) = Tr(d†dρ(t)) = p1(t). Thus, just knowing
⟨d†d⟩(t) is enough to get the whole dynamics of the system. The last thing that is worth
mentioning is that since we are considering both the bath and the system, they both form
a closed system and hence the evolution is given by a unitary transformation. Then, if one
moves to the Heisenberg picture �the time evolution is no longer in the states but in the
operators, as opposed to the Schrödinger one� d†d(t) = d†(t)d(t) which is not mainly the
case when dealing with open systems.

We now resort to Heisenberg equations to get the evolution of the operators. In our
case, we get the following system of equations

iḋ(t) = εd(t) +
∑
q

tqbq(t), (5.5)

iḃq(t) = ωqbq(t) + t∗qd(t) (5.6)

where Ȧ(t) corresponds to the time derivative with respect to the operator A. One can read-
ily solve the system of equations by introducing the ansatz vq(t) = eiωqtbq(t) and injecting
it into (5.6). Then, we can get the solution for this new variable vq(t) as

vq(t) = −it∗q
∫ t

0

dseiωqsd(s) + vq(0). (5.7)

Now we can move back to the bath operators bq(t) and we get

bq(t) = −it∗q
∫ t

0

dseiωq(s−t)d(s) + e−iωqtbq(0), (5.8)

where of course we used the fact that bq(0) = vq(0) which is given by the de�nition of vq(t).
Finally, we inject bq(t) into (5.5) and this gives us

ḋ(t) = −iεd(t)− iξ(t)−
∫ t

0

χ(s− t)d(s)ds, (5.9)

where we de�ned ξ(t) =
∑

q tqe
−iωqtbq(0) and χ(t) =

∑
q |tq|2eiωqt. The last term on the

right-hand side can be simpli�ed by using

∫ t

0

∑
q

|tq|2eiωq(s−t)d(s) =

∫ ∞

−∞
dωδ(ω − ωq)

2π

2π

∫ t

0

ds
∑
q

|tq|2eiω(s−t)d(s) (5.10)

=
1

2π

∫ t

0

ds

∫ ∞

−∞
dωΓ(ω)eiω(s−t)d(s) (5.11)

≈ 1

2π

∫ t

0

ds

∫ ∞

−∞
dωΓeiω(s−t)d(s) = Γ

∫ t

0

dsδ(s− t)d(s) = Γ

2
d(t),

(5.12)

where we used (5.2) to go from the �rst to the second line and the wideband limit for
the approximation. The �nal factor 1/2 appears because of the normalization of the Delta
function.
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We can now rewrite (5.9) as

ḋ(t) = −iεd(t)− iξ(t)− Γ

2
d(t) = −i

(
ε− iΓ

2

)
d(t)− iξ(t), (5.13)

and then solve it in an analogous form as (5.7), i.e. de�ning another variable. To avoid
repetition we just state the result:

d(t) = e−i(ε−iΓ
2 )td(0)− i

∫ t

0

dsei(ε−iΓ
2 )(s−t)ξ(s), (5.14)

with ξ(s) de�ned as before. Instead of proceeding as we did, we could have solved the system
of equations using Laplace transformations [Sch14]. We chose this method because of its
simplicity.

As we are interested in the state of the system ρ(t) we need to compute the expectation
values from (5.14). As usual in the literature, we would consider that the initial state
is a product state (see maybe some references about not having this) and that the bath
starts in thermal equilibrium at some inverse temperature β which means that its reduced
state is a Gibbs state τB(β) = e−β(HB−µN)/Z with the Hamiltonian of the bath being
HB =

∑
q ωqb

†
qbq, Z the so-called partition function that accounts for the normalization,

and µ the chemical potential. Hence, the initial state of the whole closed system (dot +
bath) is

ρ(0) = ρS(0)τB(β). (5.15)

With this choice of the initial state, we now calculate ⟨d†d(t)⟩. Noting the fermionic nature
of both the bath and the dot, we have that ⟨d†⟩ = ⟨d⟩ = ⟨bq⟩ = ⟨b†q⟩ = 0 for all q, and as
the bath begins in a thermal state ⟨b†qbq′(0)⟩ = δq,q′fβ(εq) where fβ(ωq) =

1
1+eβ(ωq−µ) is the

Fermi distribution. Thus,

p1(t) = ⟨d†d(t)⟩ = e−Γt⟨d†d(0)⟩+
∫ t

0

ds

∫ t

0

ds′e
Γ
2 (s−t+s′−t)e−iε(s′−s)⟨ξ∗(s′)ξ(s)⟩ (5.16)

= e−Γtp1(0) +

∫ t

0

ds

∫ t

0

ds′e
Γ
2 (s−t+s′−t)e−iε(s′−s)

∑
q

|tq|2e−iωq(s−s′)fβ(ωq) (5.17)

≈ e−Γtp1(0) +
Γ

2π
e−Γt

∫ ∞

−∞
dω

∫ t

0

ds

∫ t

0

ds′e
Γ
2 (s+s′)e−i(ε−ω)(s′−s)fβ(ω) (5.18)

= e−Γtp1(0) +
2

π

∫ ∞

−∞
dωΓfβ(ω)

1− 2e−Γt/2 cos[(ω − ε)t] + e−Γt

Γ2 + 4(ω − ε)2
, (5.19)

where we de�ned p1(0) ≡ ⟨d†d(0)⟩.
Even though (5.19) cannot be solved analytically in general, one can get numerical

results. Before moving to the next subsection, we will plot p1(t) and compare it with the
Markovian case and the re�ned weak coupling case.

For the Markovian case, p1(t) will simply be given by the Markovian master equation of
one fermion interacting with a fermionic bath. It reads [Pot19]

∂tp1 = −γ [1− fβ (ε)] p1 + γfβ (ε) p0 = −γ [p1 − fβ (ε)] , (5.20)

where γ is the decaying rate and its solution is

p1(t) = p1(0)e
−γt + fβ(ε)

(
1− e−γt

)
. (5.21)

As we used the wide-band limit, this means that γ = 2πΓ(ε) ≈ 2π Γ
2π = Γ.4

42π appears in the denominator because when computing the Markovian master equation they de�ned
the spectral density as Γ(ω) =

∑
q |tq |2δ(ω − ωq) [Pot19].
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We do not compute the re�ned weak coupling approach in this case. The reason is that
not only it is more involving to calculate because the interaction part of the Hamiltonian
does not have a tensor structure �as we are dealing with fermions�, but also because the
results for the Markovian case are good to di�erentiate the steady state properties when
applying and not applying approximations.5

In Fig. (5.1), we can see that the steady state population in the Markovian case does
not depend on the coupling between the bath, as previously pointed out in chapter (2), and
it only corresponds to the Gibbs state on our subsystem for a given temperature. This is
indeed problematic as in reality the steady state depends on Γ (see the exact dynamics in
Fig. (5.1).)

(a) Γ=0.01 (b) Γ=0.1

(c) Γ=0.5

Figure 5.1: Plot of the occupation number n ≡ p1(t) as a function of time for di�erent
coupling strengths of the bath. We set ε = 1, µ = 0 and β = 1 for all of them.

Nevertheless, if one restricts oneself to the weak coupling limit (Γ << ε) not only the
steady state matches but also the transient dynamics do. It is easy to understand why the
reduced Gibbs state is now the correct steady state. In full generality, the steady state of
our subsystem is the so-called mean force Gibbs state [TMCA22] and corresponds to

τMF = TrB(τSB) (5.22)

where

τSB ≡
e−βHtot

ZSB
(5.23)

is the Gibbs state for the whole system including the bath, ZSB = TrSB(e
−βHtot) is the

total partition function, and Htot = HS + HB + HSB . In the weak coupling limit, as the
interaction between the system and the reservoir is weak, one can approximate the mean
force Gibbs state by

τMF ≈ TrB

(
e−β(HS+HB)

ZSB

)
=

e−βHS

Tr(e−βHS )
, (5.24)

5It is good to remind the reader that the re�ned weak coupling approach has the same steady state as
the global GKLS master equation.
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which is indeed the reduced Gibbs state of the subsystem and corresponds to the steady
state given by the GKLS equation.

In the next subsection, we will focus on the precision of measuring the temperature of
the system, and for that matter, Quantum Fisher Information will be introduced.

5.1.1 Quantum estimation bounds

In layman's terms, the so-called classical Fisher Information (FI) [LMV+17] is a quantity
that tells us the amount of information a random variable X, that can be computed in
an experiment, carries about some parameter θ that one would like to estimate. In other
words, the bigger FI is, the more precision about θ one can get when measuring X. If one
then de�nes p(x|θ) as the probability of getting an outcome x ∈ X conditioned on θ, the FI
captures the e�ect of changing in�nitesimally θ on p(x|θ), i.e.

Fc(θ) :=
〈
(∂θ log p(x|θ))2

〉
x
=
∑
x

(∂θp(x|θ))2

p(x|θ)
, (5.25)

where ⟨·⟩x denotes the expectation value for all the outcomes x ∈ X.
In quantum physics, the probabilities of obtaining some outcome are represented by

positive operator-valued measure (POVM) measurements [Hel69, NC02, Wil13]. For our
case in hand, we focus on measurements made of a discrete amount of semi-de�nite positive
operators Π = {Πl} which can be called POVM-elements. Therefore, following Born's rule
[Bor55, Max26] the probability of measuring an outcome l is given by pl(θ) = Tr(Πlρ(θ))
where ρ(θ) is the state of our system and that we assume depends on θ in some way. Since
we are dealing with probabilities

∑
l pl(θ) = 1, which translates to operators as

∑
l Πl = I.

Generally, one is interested in sampling n times independently (in other words, n mea-
surements) though. In that case, x = (x1, x2, · · · , xn), the total probability factorizes
p(x) = Πn

i=1p(xi) as the total Fisher Fc,t(θ) = nFc(θ). Hence, one could build an estimator
ϑ(x) for the parameter θ. For our results, we will restrict the set of estimators to the subset
of unbiased ones, ⟨ϑ(x)⟩x = θ. Then we can quantify how the uncertainties when measuring
Π a�ect the statistics through the mean-squared error

δ2 (Π;ϑ(x)) =
〈
(ϑ(x)− ⟨ϑ(x)⟩x)

2
〉
x
=
〈
(ϑ(x)− θ)2

〉
x
= (∆ϑ(Π))2, (5.26)

where of course the results depend on the measurement Π.
Importantly, there exists a lower bound on the estimation error that one can obtain

when performing n measurements. It is called the Cramér-Rao bound and it holds for any
unbiased estimator [GG99, Fri00, Cra16]. It reads

∆ϑ(x)(Π) ≥ 1√
nFc(Π, θ)

, (5.27)

and in general can be only saturated when n→∞ (see [MSC19] for more details.) Hence, if
we get a smaller error than the bound, we can be sure that there is some quantum-enhanced
estimation [CEB+05, BC94, GLM04, GLM11, TA14]. This enhancement is possible thanks
to quantum entanglement [HHHH09, HLK+12, Tót12, SML+14].

Since we are interested in thermometry, from now on we will write the temperature T as
the parameter to estimate. Let us now introduce a de�nition that will become meaningful
later: the symmetric logarithmic derivative (SLD). The SLD LT is de�ned as

∂ρT
∂T

=
LT ρT + ρTLT

2
. (5.28)

One should note that as ρ and its derivate are hermitian operators, this implies that L has
to be self-adjoint.
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Let us note that ∂T p(x|θ) = Tr(∂TΠxρT ) = Re[Tr(ρTΠxLT )] where we used the fact
that L is a hermitian operator. Using this at Eq. (5.25) we �nd

Fc(T ) =
∑
x

(∂T p(x|T ))2

p(x|T )
=
∑
x

(Re[Tr(ρTΠxLT )])
2

Tr(ρTΠx)

(1)

≤
∑
x

∣∣∣∣∣Tr(ρTΠxLT )√
Tr(ρTΠx)

∣∣∣∣∣
2

(5.29)

=
∑
x

∣∣∣∣∣Tr
[ √

ρT
√
Πx√

Tr(ρTΠx)

√
ΠxLT

√
ρT )

]∣∣∣∣∣
2

(2)

≤
∑
x

Tr (ΠxLT ρTLT ) = Tr(ρTL
2
T ).

(5.30)

A few comments are in order. The inequality (1) can be saturated if Tr(ρTΠxLT ) is real.
For (2) we used Cauchy-Schwarz inequality |Tr(A†B)|2 ≤ Tr(A†A) Tr(B†B) which holds for
every matrix A and B. Finally, for the last equality, we used the normalization constraint,∑

x Πx = I.
This upper bound to Fc(T ) does not depend on the measurement performed. There-

fore, one can de�ne the quantum Fisher Information(QFI) as F(T ) = maxΠ Fc(T ) where
the maximization is over all possible measurements. The optimal measurement �in the
sense that gives the best estimation of T� corresponds to projective measurements onto the
eigenbasis of LT [BC94, TA14]. Unfortunately, this is not always feasible in experiments.

Finally, before moving to the results for the thermometry in the resonant level model,
let us state the quantum Cramér-Rao bound

∆T (x)(Π) ≥ 1√
nFc(Π, T )

≥ 1√
nF(T )

, (5.31)

where T is the unbiased estimator of the temperature T .

5.1.2 Thermometry in the resonant level model

In the resonant level model, the QFI is given by measuring on the number basis. Indeed,
LT is given by (5.28), so for the model (we omit the label t for the time)

∂

∂T
ρ(T ) =

(
−ṗ1(T ) 0

0 ṗ1(T )

)
=

1

2

(
LT

(
1− p1(T ) 0

0 p1(T )

)
+

(
1− p1(T ) 0

0 p1(T )

)
LT

)
,

(5.32)
where ∂p1

∂T ≡ ṗ1. Then the expression of LT that ful�lls (5.32) is

LT =

(
− ṗ1(T )

(1−p1(T ) 0

0 ṗ1(T )
p1(T )

)
(5.33)

and the QFI is

F(T ) = Tr(ρL2
T ) =

ṗ21(T )

(1− p1(T ))p1(T )
(5.34)

which exactly corresponds to the FI (see Eq. (5.25))

Fc(T ) =
ṗ21(T )

p1(T )
+ =

(−ṗ1(T ))2

(1− p1(T ))
=

ṗ21(T )

(1− p1(T ))p1(T )
. (5.35)

Now we will move to our results obtained performing numerical integration.
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Numerical results

In this subsection, we deal with the dynamics of the system through numerical integration
of the following6

p1(t) = e−Γtp1(0) +
2

π

∫ ∞

−∞
dωΓfβ(ω)

1− 2e−Γt/2 cos[(ω − ε)t] + e−Γt

Γ2 + 4(ω − ε)2
, (5.36)

and

ṗ1(t) =
Γβ

2π

∫ ∞

−∞
dω

(ω − µ)e−Γtsech2
(
1
2β(µ− ω)

) (
−2eΓt

2 cos(t(ω − ε)) + eΓt + 1
)

Γ2 + 4(ω − ε)2
, (5.37)

where even though we are getting the derivative with respect to the temperature T , we leave
everything as a function of β.

We focused on two quantities: accumulated QFI (Ft(T ) = F(T )
t ), and the squared

relative error ∆T
T . The former is motivated as follows. Suppose we prepare a state ρ (we

call it the probe) which interacts with some bath at temperature T and we let the system
evolve for some �xed time t. After the evolution, we measure the probe to estimate the
temperature of the system. We reset the system and repeat this procedure M = τ

t times.
We also consider that the time that it takes to prepare the initial probe is not comparable
to the duration of the evolution. Then, one can think of using the accumulated QFI (or rate
of QFI) as a �gure of merit [SPL22, MMRK22].

Regarding the relative error, from Eq. (5.27) we know that (for just one sampling, i.e.
n = 1)

∆T

T
≥ 1√

F(T )T 2
. (5.38)

Therefore, we plot 1
FT 2 and consider that it is proportional to

(
∆T
T

)2
.

Figure 5.2: Plot of 1
FT 2 ∝ (∆T

T )2 (which is the relative error when estimating the tem-
perature T ), as a function of T for the steady state. The dashed line corresponds to the
Markovian master Equation (γ = 0.1).

We benchmark our exact results with the Markovian master equation for one fermion
introduced in Eq. (5.20). In Fig. (5.2), 1

FT 2 the relative error is plotted for the steady state
limit, and we can see that as we increase the temperature, the exact results (independently
of the coupling Γ) match better with the Markovian approximation. On the other hand,
for small temperatures T << ε = 1, the exact results di�er from the Markovian ones. This
deviation depends on the coupling Γ, albeit in a non-trivial way. If we keep decreasing the

6Even though the probability p1(t) depends on the temperature T, we do not write the dependence
explicitly for ease of notation.
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Figure 5.3: Plot of Quantum Fisher Information over time vs time for di�erent Γs. The
inset plot corresponds to the case of the Markovian master Equation (with the decaying
rate being γ = 0.1). We set ε = 1, µ = 0, and we start from the ground state of the dot.

temperature, regardless of Γ, the exact results tend to zero Fisher Information (or in other
words, in�nite error) polynomially and the Markovian ones exponentially.7

In addition, in Fig. (5.3) we see Ft(T ) as a function of time t for the exact dynamics
for di�erent coupling strengths Γ. We can notice that, especially for T = 0.1, in the exact
dynamics we get a clear advantage if we wait before performing a measurement. This waiting
time depends on the strength of the coupling. On the contrary, in the Markovian regime
(inset plots), the accumulated Fisher information monotonically decreases when t increases.
Thus, the dynamics of the evolution (in the exact case) help us to get better precision when
estimating the temperature of the system, while it is not the case in the Markovian results.

7We defer the readers to [RPHP10, GH82, Car99] for a discussion of the validity of Markovian approxi-
mation for low temperatures.



Chapter 6

Conclusions

As seen throughout this work, it is di�cult to calculate the dynamics of open quantum
systems. Thus, it is vitally important to know when one can use a given approximation
or another. In this thesis, we focused on three di�erent approaches to dealing with open
quantum systems (from the least approximations used to the most): the exact treatment,
the re�ned weak coupling (and in parallel long-times approximation), and the Markovian.

The latter has turned out to be very versatile and easy to apply to di�erent settings,
especially the local approach. In particular, in that regime, it has been easy to implement
techniques from control theory, and also to add an ancillary system (catalyst), to boost
the charging process of a battery. Moreover, in the fermionic system, it has shown good
agreement when compared with the exact dynamics for weak coupling with the reservoir.

On the contrary, the second approach (re�ned weak coupling) is not that easy to be
computed in general. However, we have been able to calculate its dynamics and compare it
with the global and the local approach �for the battery setting�. For the battery setting,
we have seen that it interpolates between the local (for short times) and the global (for long
times.) [WMHA21] Hence, it is indeed useful to use the re�ned weak coupling, especially
when one deals with systems made of interacting subsystems that may or may not be
connected to di�erent baths. On the contrary, the re�ned weak coupling approach may
not be that interesting when working with single systems as it describes the same steady
dynamics as the GKLS master equation.

We are aware that there exist far more approximations that we have not exposed here but
the goal of this thesis was never about being an exhaustive list with all the approximations
and their pros and cons. The main objective was to take some of the approaches and study
them in di�erent scenarios and for di�erent tasks. In addition, we wanted to show the reader
the richness and the extension of this �eld and that all did not end with using the GKLS
equation.

We would like to �nish enumerating some open problems and improvements that one
may try to pursue. From the results presented in chapter 3, more speci�cally, the ones
related to quantum control, one could try to improve them and adapt Krotov's method to
use it for the re�ned weak coupling dynamics. To apply Krotov's algorithm one needs a
di�erential equation. However, for the re�ned weak coupling evolution, one obtains directly
the dynamics. So, it may be cumbersome to get them in terms of a di�erential equation.
One may need to resort to the techniques used in [Riv17]. Certainly, another venue of
interest will be to study more complex quadratic systems, such as two batteries (oscillators)
interacting with each other.

The results presented in chapter 4 (non-Markovian chapter) for the battery setting could
be improved if one came up with a way of diagonalizing the Hamiltonian containing the �eld
term instead of considering it as a perturbation (for global and re�ned.) This should be
doable using the Floquet theory [RH12, San17]. In this way, the �eld would also appear
in the dissipator and the dynamics will be more accurate. Regarding the results for the
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Markovian-vacuum approximation, one could try to extend our results to a d-level atom.
In addition, the re-normalization scheme that we explained here may be useful to deal with
cut-o� terms and any kind of divergences that populate open quantum dynamics.

Finally, from the last chapter, one could use the fact that quadratic fermionic systems
can be analytically solved and study more di�cult systems like the one presented in [MP18].
Doing that, one could again do some benchmarking and probe the quality of the Markovian
approximation there. Furthermore, making use of the Jordan-Wigner transformation, one
could translate the fermionic systems to spins and again compare the di�erent approaches
there. In this case, as spins will have a tensor product structure, one could also compute
the re�ned weak coupling dynamics.
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