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SUMMARY OF THE RESEARCH CONDUCTED
The future of the European industry requires advances in the development and 

characterization of advanced chemicals and organic compound chemicals in combination with 

nanoforms of the substance, leading to the reliable development of new, safe, and sustainable 

chemicals for various applications, such as antibacterial activity and efficient drug delivery. 

The development of new, advanced chemicals requires an understanding of the relationship 

between their structure, physicochemical properties, and the potential hazards that newly 

developed chemicals may pose to humans and the environment. Unfortunately, experimental 

studies using various complex methods are time-consuming and costly. Several strategies have 

been proposed in the literature to reduce the number of experiments and increase the efficiency 

of selecting an ‘optimal candidate’. One of the most promising approaches for the development 

of new functional chemicals is based on a computational framework combined with 

experimental validation. For example, pyrene derivatives developed from functionalized 

Schiff-based compounds are useful measures against bacterial infections and therefore have 

the potential to be used as effective drugs against multidrug-resistant bacteria (MDR). 

However, to date, binding studies with plasma proteins, such as bovine serum albumin (BSA), 

are still unknown; thus, a better understanding of the binding mechanism in truly drug-based 

applications is still limited. Therefore, in the first case study [A], I proposed an integrated 

approach based on molecular dynamics (MD) and experimental validation to investigate the 

interaction and stability of BSA with newly synthesized potent pyrene derivatives (PS1 and 

PS2). In addition, Poisson-Boltzmann molecular surface mechanics (MMPBSA) with Gromacs 

software were used to determine the free energies of binding BSA-PS1 and BSA-PS2 

complexes at 300 K. The results obtained based on MD may be crucial for the efficient design 

of new functionalized Schiff-based pyrene derivatives in a virtual (computational) space. The 

efficacy of new drugs can be enhanced by functionalizing and coupling organic molecules with 

the nanoforms of the substance (NPs). However, there is limited knowledge about the uptake 

of newly developed NP-based drug delivery systems by biological cells; thus, because of this 

lack, many drugs fail in the first phase of clinical trials. Therefore, in the second case study 

[B], I applied MD to investigate the influence of the selected physicochemical properties of the 

cancer drug methotrexate (MTX) grafted with hydrophilic-γ-polyglutamic acid (MTX-SS-γ-

PGA) on its cellular uptake at different pH values. For this study, three theoretical models 

describe drug-loaded nanoparticles (MTX-SS-γ-PGA) at three different pH values, such as (1) 
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pH 7.0 (the so-called neutral pH model), (2) pH 6.4 (the so-called tumor pH model), and (3) 

pH 2.0 (the so-called stomach pH model). The cellular uptake mechanism was proposed by 

free energy barrier analysis using classical MD and MD-based umbrella sampling methods 

supported by the WHAM tool. The proposed research reveals fundamental insights into 

molecular dynamics that will allow researchers to determine the influence of the pH, structure, 

charge, and energy of NPs on the cellular uptake of anticancer drugs. The presented study may 

be a starting point for the efficient and safe development of models critical for drug delivery to 

cancer cells at the earliest possible stage (before humans). However, it should be kept in mind 

that many other factors may influence the uptake of nanoparticles, including the 

physicochemical properties of nanoparticles, protein–particle interactions, and subsequent 

agglomeration, diffusion, and sedimentation. Accordingly, NPs can agglomerate rapidly in 

response to changes in the dispersing environment and form particles with large diameters. 

Depending on biological conditions (especially pH), the agglomerate can dissociate and 

become a source of much smaller (often more toxic) particles in the body, such as a "Trojan 

horse." The agglomerate formation is strongly dependent on surface charge (zeta potential (ζ)), 

which stabilizes dispersed nanoparticles and prevents their agglomeration. Therefore, to 

control stability in a biological medium, several factors affecting the zeta potential (ζ) of 

nanoparticles (NPs) must be considered, including complex interactions between the 

nanostructure and the composition of the protein corona (PC). Effective in silico methods 

(based on machine learning and quantitative structure-property relationships (QSPRs)) could 

help predict and characterize the relationship between the physicochemical properties of NP 

and the formation of PC and biological outcomes in the medium at an early stage of 

experimentation. However, currently developed models are limited to simple descriptors that 

do not represent the complex interactions between the core, the coating, and their PC 

fingerprints. In this context, in the third case study [C], for the first time, a set of complex 

descriptors was developed that describes the quantitative relationship between the value of the 

zeta potential (ζ), the core, the coating of NPs, and their PC fingerprints (the so-called nano-

QSPR model). The nano-QSPR model was developed by partial least squares regression using 

a genetic algorithm (GA-PLS) and is characterized by a high external predictive power Q2EXT 

= 0.89. 

In addition, the zeta potential can potentially be used as a pre-indicator of cellular interactions 

with charged ions or NP molecules. When a more positive zeta potential (ζ) (surface charge) 
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of NPs is present in a biological medium, cellular uptake is likely due to the presence of 

negatively charged ions in the top layer of the cell membrane. Unfortunately, an excess amount 

of toxic ions may have unknown toxic effects on the human body and the environment. 

Therefore, their potential exposure should be controlled in the early stages of new chemical 

development. To assist this similar kind of process, in the fourth case study [D], I combined 

TD-DFT calculations with experimental data and used an additional molecular electrostatic 

potential (MESP) map to understand the mechanism of charge variation in the nucleophilic 

addition of cyanide ions inside and outside the surface. When cyanide ions enter the 

bloodstream, they immediately damage the mitochondrial electron transport chain, preventing 

cells from breathing and interrupting the cellular respiration process. Therefore, the elimination 

of these toxic ions is a major challenge in the development of new structures. In this context, 

computational and spectroscopic methods for the intermolecular interaction of the 

malononitrile-functionalized DMN probe with cyanide ions in solutions are investigated. In 

this case, a TD-DFT calculation was used to calculate the absorption spectra for these 

functionalized probes, and our results correlated well with the experimental data. Based on the 

results obtained, I have described how the colorimetric response of the transition to the 

malononitrile-functionalized DMN probe prevents intramolecular charge transfer when 

cyanide ions are added, leading to the development of a Michael channel at the site where the 

dicyanovinyl group undergoes β-conjugation with cyanide. 

Four lessons can be drawn from the thesis presented in the context of the computational 

design process of safe, sustainable, and targeted chemicals and nanoforms of substances. First, 

it was directed toward nanoinformaticians. The zeta potential (ζ) of NPs cannot be modeled 

based on the structure of the NPs themselves. The developed models should be described as 

functions of both the structural properties determined by the NP core and coating and the 

biological medium determined by the formation of the protein corona. This will enable reliable 

predictions for advanced nanosystems for targeted delivery. Second, the project addresses the 

nanosafety community. The NP protein corona fingerprints (NP features in real-time) could be 

much more crucial for controlling and governing the zeta potential of NPs than the 

nanostructure features themselves. Therefore, the change in the fate or uptake of nanosystems 

due to the formation of a protein corona in the biological medium cannot be ignored. Third, the 

charge, geometry, and energetics of NP, which affect the cellular uptake mechanism, should 

be studied by molecular models that describe different and real environments that can be 
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expressed by different pH values. Fourth, the same newly developed substances that open new 

opportunities for the industry may pose a serious risk to humans and the natural environment. 

Therefore, it is critical to evaluate the potential risk of chemical substances that may be present 

both in the environment (i.e., the human body) and in the aquatic environment. 
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1. Introduction 

1.1. From organic molecules to nanoscale compounds 

Organic molecules are generally defined as carbon-containing molecules, with a few 

exceptions, such as CO1. The potential of carbon atoms to form compounds with each other 

and with other atoms allows a variety of precipitated chemical groups to be joined by larger 

molecules, including polymers. Decades of research in organic chemistry have yielded insights 

into many different molecules that can be used to design new functional properties of molecules 

by integrating different chemical substituents and appending different types of groups that can 

serve as building blocks for combined functionalities2. The ability to create a self-assembly 

model would allow the design of molecules that would enable the construction of 

nanostructures and large-scale orders. Although organic molecules are the basis of life, modern 

chemistry considers a greater variety of molecules than nature3. Therefore, in the real world, 

they can be compatible with biomolecules and combined with proteins and various 

biomolecules. This finding makes it possible to use the natural ability of many biomolecules to 

self-assemble and modify the structural arrangement of biomolecules to study different 

functionalities and design hybrid molecules for many different medical applications. Organic 

molecules have become more attractive as materials for many applications that previously 

occurred in nature in many forms, enabling many applications that were not previously 

available. Organic molecules act as versatile and finely tuned building blocks for specific 

properties in nanoscale and bulk solids. Based on this aspect, organic compounds are 

characterized by functional groups that alter the physicochemical properties of the compounds, 

leading to many potential applications in many fields and industrial sectors, such as medicine, 

pharmaceuticals, drugs, food, fuels, etc4. The field of pharmaceuticals in nanomedicine and 

nanotechnology is growing rapidly today. Recently, NP consideration has been the most 

advanced, either in the field of scientific research or in the commercial sector. The size of NPs 

plays an important role in their physiological and biochemical properties and their different 

arrangements, such as polymer NPs, fullerenes, metal NPs, and ceramic NPs. They have unique 

physicochemical properties due to their surface and size, and their physical and chemical 

properties can differ significantly from those of their larger counterparts5. The functional 

coating improves the physicochemical properties and properties of nanoparticles/nanomaterials 

for potential applications that play an important role in medicine. It is also believed that 
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improved performance and adaptability can be achieved through nanoscale modifications and 

changes in composition, whereby specific potential applications can be achieved. However, in 

the case of the design of functional groups and/or materials, another difficult task is to align 

their specific properties and functionalities by developing and applying a specific independent 

methodology for collecting all information at the atomic level using various complementary 

techniques. This is called the long-recognized goal of complex modeling6 and the selection of 

specific functional groups with specific properties. Functional materials are groups of atoms 

that are used to develop advanced materials and synthesize them for specific functions with the 

right structural and morphological arrangements to obtain custom properties for specific 

applications. Functional materials can therefore have unique physicochemical properties 

compared to those of simple components. In this context, the migration of organic molecules 

into the nanoscale allows us to better understand the mechanisms of the behavior of molecules 

in their environment that shed light on specific applications. Based on this aspect, my 

dissertation focuses mainly on the industrial application of these specific properties, which 

implies the development of new functional materials with micro-/nanostructures of compounds 

using different calculation methods. In this context, organic compounds are characterized by 

functional groups arranged in a particular group of atoms or molecules, determining certain 

specific properties that are applied massively to the daily life of humans. For example, pyrene 

derivatives have been used in a wide range of applications, taking advantage of the unique 

structural, optical, and charge-transfer properties of pyrene compounds. Polycyclic aromatic 

hydrocarbon pyrene is a rigid, flat, and planar molecule with unique specific properties due to 

its structural arrangement, and it is used in many applications. The molecular structure of 

pyrene is shown in Figure 1.          

 

 

Figure 1. The molecular structure of pyrene has numbered C–H bonds. 
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Pyrene derivatives are used in many fields, such as organic electronics, bioimaging 

techniques for fluorescent labels and sensors, confirmatory assembly studies of 

macromolecules, micelles, and supramolecules, and various applications of the functional 

groups of pyrene compounds that determine chemical reactivity. In recent decades, Schiff bases 

have become a category of widely used organic compounds with numerous applications in 

daily life. In addition to these diverse applications, modifications of Schiff bases7-10 by 

condensation of S-substituted dithiocarbazates with various aldehydes and ketones have 

recently become possible, with considerable attention paid to combating bacterial infections. 

In contrast, multidrug resistance (MDR) is currently one of the main problems in the treatment 

of bacterial infections, as the number of MDR bacteria resistant to antibacterial drugs is 

constantly increasing, leading to a higher probability of treatment failure. In this context, a new 

drug with new active ingredients with improved efficacy is urgently needed to combat the 

MDR problem. Based on this need, Hassan et al. (2019)11 showed, for example, that Schiff-

based (SB) functionalized compounds of 5-(benzylideneamino)-3-(4-methoxyphenylamino)-

N-phenyl-1H-pyrazole-4-carboxamide outperform ciprofloxacin at minimal inhibitory 

concentrations (MIC) and are effective against multidrug-resistant bacteria (MDRB). 

Following Guemues et al. (2020)12, the compounds were synthesized from SB derivatives with 

two different basic units, such as anthracene and pyrene units, and their antibacterial activity 

against Gram-negative Bacillus cereus, Pseudomonas aeruginosa, and E. coli was investigated. 

Similarly, two SBs, such as 4-(((8-hydroxyquinolin-2-yl)methylene)amino)-1,5-dimethyl-2-

phenyl-1,2-dihydro-3H-pyrazol-3-one and 4-(((10-chloroanthracen-9-yl)methylene)amino)-

1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one were synthesized by Erturk et al. 

(2020)13 and exhibited higher antibacterial activity against S. aureus. Mishra et al. (2020)14 

synthesized two SB ligands with benzothiazole derivatives tested against S. aureus, causing 

skin infections, food poisoning, and pimple-causing bacteria from propionicum acnes. This SB 

ligand has more antibacterial properties than free SB compounds. Subsequently, Srinivasan et 

al. (2021)15 described the synthesis and evaluation of two SBs based on pyrene, such as 4-[(5-

pyren-1-yl-thiophen-2-ylmethylene)-amino]-phenol and 4-[(4-pyren-1-yl-benzylidene)-

amino]-phenol, which is active against two different types of bacterial strains. Prasad et al. 

(2022)16 recently described SB-functionalized piperazine compounds with excellent activity 

against methicillin-resistant Staphylococcus aureus (MRSA) bacteria, validated by 

experimental and in silico modeling methods. Based on the above importance of SB-
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functionalized compounds, pyrene-based SB-functionalized compounds of KB-1 (4-[(pyren-1-

ylmethylene) amino] phenol) were synthesized in a report17 and validated with theoretical DFT 

studies, indicating that the versatile applications have both antibacterial (Gram (+) and Gram 

(-)) and antifungal properties; thus, the KB-1 compound acts as an excellent antimicrobial agent 

and photolabeling agent. However, the above studies on the binding of compounds to proteins 

are limited, and the mechanism of binding is still unknown. Therefore, our goal is to solve this 

problem by developing compounds that are more antibacterial than existing ones, which is the 

main challenge. In this context, the Schiff base functionalized pyrene derivatives PS1 (N'-

pyrene-1-ylmethylene-hydrazine-carbodithioic acid methyl ester) and PS2 (N'-pyrene-1-

ylmethylene-hydrazine-carbodithioic acid benzyl ester) have been developed and studied with 

BSA protein using our various computational methods, which are supported by experimental 

methods and can help improve their antibacterial properties and applications. To address this 

problem, a computational framework allows for the integration of experimental and 

computational data using a variety of selected models. Therefore, a computational algorithm is 

useful to guide design optimization. A recent study indicated that efficiency for drug delivery 

can be improved by new agents/active compounds functionalized with nanoscale compounds18. 

In this context, the organic compound of methotrexate (MTX) is an anticancer drug commonly 

used to treat osteosarcomas. Primarily, it inhibits dihydrofolate reductase and inhibits tumor 

cell production, growth, and division19,20. However, problems occur with regular 

administration of chemotherapeutic agents, such as low efficacy, poor targeting, and significant 

toxic side effects21-24. The secret to increasing efficacy lies in how to effectively deliver the 

drug to tumor tissue25,26. Therefore, in recent years, various nanocarriers, such as functionalized 

groups of nanoparticles, such as liposomes, vesicles, and micelles, have been used to penetrate 

tumor tissue in large numbers and achieve a unique high permeability and retention (EPR) 

effect27-52. The EPR effect enables nanoparticles to passively penetrate tumor tissues by 

permeating the vascular endothelium of tumor tissues32-34. In this regard, nanotechnology has 

recently taken drug therapy to a new level and transformed medicine and drug delivery42-50. 

Nanodrug systems ranging in size from 1 to 100 nm in at least one dimension have been used 

as vehicles for drug delivery and offer several advantages, such as: For example, improved and 

prolonged targeting, reduced off-site targeting, reduced side effects and toxicity, improved 

drug solubility, improved pharmacokinetic parameters, overcoming drug resistance, 

continuous drug release, etc.51,52. Various carriers, including polymeric nanoparticles, lipid 
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nanocarrier liposomes, transferosomes, etc., and amphiphilic surfactant carriers, niosomes53-57, 

are used for nanodrug delivery to achieve therapeutic goals. In this case, drug-loaded 

functionalized nanoparticles with water-soluble drugs were suboptimally anchored to the 

micelles by nanochemical processes. They are preserved by a hydrophilic micelle molecule 

fragment in the external environment, which increases the solubility of the drug in relation to 

water solubility. This type of drug-loaded nanoparticle depends on the external environment, 

which can precisely control the release of the drug58. To effectively address this problem, smart 

nanoparticles are currently being developed for measurement. Therefore, drug-loaded 

functionalized nanoparticles are crucial for the development of potential therapeutic sensors 

and medical imaging. On the other hand, the selection of functional groups/materials is another 

task, as each group behaves differently, resulting in different properties that affect different 

functions and applications. In this context, the use of functionalized polymer nanoparticles is a 

crucial strategy for improving drug bioavailability or precise distribution to the site of action. 

Polymers are unique materials that have characteristic properties and offer great synthetic 

versatility, allowing researchers to tailor them to specific needs or targets. However, when 

nanoparticles are used as drug carriers, the hydrophobic drugs can be grafted onto hydrophilic 

materials through chemical bonding to improve the solubility and bioavailability of the drug 

and increase the stability of the nanoparticles in the body.59-63 Because of the importance of 

this relationship, poly-γ-glutamic acid (γ-PGA)-based micro/nanoparticles have attracted much 

attention in the last 10 years as antibacterial agents and for drug delivery because of their 

controlled and sustained release, low toxicity, and biocompatibility with tissues and cells. Due 

to their biodegradable, non-toxic, and non-immunogenic properties, they are also successfully 

used in wastewater, food, and medical industries. Research on chemotherapy and drug delivery 

systems is based on mechanisms of cell uptake. In addition, the conjugated scaffold of 

hydrophobic and hydrophilic models can penetrate the lipid membrane due to its dual 

properties. Although numerous studies have shown the pH-dependent effect of nanoparticle 

behavior on the mechanisms of cellular uptake through coarse-grained simulations,64 cellular 

uptake mainly depends on size, shape and surface area,65 and further variations in colloidal 

stability are also important factors in distinguishing the cellular uptake of nanoparticles in 

biological media rather than size, surface area and surface charge66 (ζ). However, few studies67 

have been conducted that amount to full atomistic simulation studies that do not lack degrees 
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of freedom, charge, and structure. This is due to the complexity of the system one has to deal 

with in molecular modeling studies.  

However, systematic knowledge of the factors affecting the physicochemical properties of 

drug-loaded nanoparticles and influencing the mechanism of cellular uptake at different pH 

values is very limited. To overcome this obstacle, the models I have designed to form MTX-

SS-PGA from simulation studies (MD) are suitable for developing models that describe the 

cellular uptake of drug-loaded nanoparticles in a safe and sustainable manner and enable 

efficient drug delivery to cancer cells. Therefore, our computer simulation studies can support 

testing and aid in the logical development of novel formulations with increased efficacy. 

However, many other factors play a role in nanoparticle uptake, including the physicochemical 

properties of nanoparticles, protein–particle interactions, and subsequent agglomeration, 

diffusion, and sedimentation. The process of agglomeration mainly depends on the surface 

charge (zeta potential (ζ)) of the nanoparticle, which can stabilize the dispersed nanoparticle 

and prevent the process. Therefore, to control stability in a biological medium, many factors 

that affect the zeta potential (ζ) of the nanoparticles must be considered, including the complex 

interactions between the nanoparticles and the biological medium (PC). The dynamic and 

complex structure of this biological corona ensures that the host cell responds to the 

nanoparticles. To study the protein environment, many researchers distinguish between two 

protein layers: the "hard" and the "soft" corona68,69. The hard corona is responsible for the fate 

of biological nanoparticles, while the soft corona is usually responsible for irrelevant proteins 

that can easily be exchanged between the hard corona and the intermediate corona70. The 

composition of the protein corona changes with the surface area of the nanosystem. Therefore, 

changes in the intrinsic properties, such as size, charge, and surface geometry of the PNP, 

change the nature of the protein corona, which in turn affects the fate of the biological system. 

In this case, the proteins play a crucial role together with the coatings, which almost completely 

determine the stability and agglomeration of the nanomaterials. These two phenomena—

stability and agglomeration—are essentially directly related to the cytotoxicity of the entire 

nanomaterial71. This is directly related to the degree of cellular absorptivity of the nanoparticle, 

which leads to the measurement of the risk assessment of the materials so that the development 

of new nanomaterials is always based on a comprehensive risk factor72. In general, a change in 

pH or ion concentration affects the surface charge and stability of nanoparticles in the 

medium73, so it is extremely important to determine the zeta potential value of all 
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toxicologically evaluated nanoparticles. Numerous studies in the literature have attempted to 

experimentally characterize the zeta potential of NPs74. However, the relationship between the 

zeta potential, nanostructure properties, and toxicity of new untested NPs remains unclear. 

Therefore, computational methods have been developed to predict the quantitative relationship 

between the structure of NP75(a) and the zeta potential value. According to theoretical 

models75(b),76 the zeta potential is influenced by the structure of intrinsic and extrinsic particle 

properties, such as size, concentration, and biological environment. However, in recent studies, 

little is known about how different surface modifications affect the quantitative and qualitative 

composition of the corona, how these modifications influence the zeta potential that controls 

stability, and how aggregation/agglomeration of functionalized NPs is limited in a given 

medium. To address this challenge, the integration of machine learning techniques based on 

the Genetic Algorithm – Partial Least Square (GA-PLS) and novel nanodescriptors that identify 

both intrinsic and extrinsic properties of NPs was used to significantly increase the potential of 

in silico methods to predict the zeta potential of NPs in a given biological medium and to 

achieve good correlation with experimental predictions77. Moreover, when these nanoparticles 

come into contact with biological fluids in the blood, a "corona" is formed on the surface of 

the nanoparticles, mainly proteins, as a result of the dynamic adsorption of biomolecules. The 

"corona" formed by the adsorbed NPs can drastically change the surface properties of the NPs 

and affect their biological behavior, leading to changes in the functionality of the NPs and the 

stability of the dispersion. Sometimes, these changes result in a loss or increase in NP 

functionality, which can also affect its toxicity, for example, biological distribution, uptake, 

opsonization, and kinetics75(a)(b) of NP. When an organism or cell ingests 

aggregated/agglomerated NPs, the NPs may break down into smaller particles depending on 

the environment, such as pH, concentration, and protein corona. The surface area may increase 

as the size of the NPs shrinks. As a result, scattered NPs can act like a "Trojan horse" (more 

like toxic ions) that becomes increasingly dangerous to humans and the environment76. To help 

this process be efficient, the design of chemicals that should be safe and sustainable is another 

challenge in detecting toxic ions at an early stage. To address this similar kind of issue 

efficiently, our computational framework plays a crucial role in the design of the appropriate 

chemical. Moreover, the detection of toxic ions (CN- anions) in various samples, including 

water samples, is another difficult task, which is to develop a suitable functionalized organic 

functionalized material that has unique properties for the detection of CN-, F-, and so on. Since 
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anions, such as cyanide (CN-), are among the most dangerous ions known to mankind and act 

as Trojan horses in the natural environment, it is also critical to detect them at very low 

concentrations78. In recent years, the search for hazardous cyanides in food and water has 

become an important challenge for the early compensation of this process in the natural 

environment. To protect human health, it is critical to develop rapid and effective methods for 

the detection of cyanides in real-time and in the environment. To meet this challenge, 

malononitrile-functionalized compounds have been widely used in recent decades for the 

detection of CN- ions and many industrial applications, e.g., in the chemical, medical, and 

agricultural industries, due to the versatile and unique reactivity of the weak cyanocarboxylic 

acid of malononitrile. Gholamzadeh et al.79 published a simple sensor, S29 (1,4-2,2-

dicyanovinylbenzene), functionalized with malononitrile for the selective detection of CN- ions 

versus various anions in DMSO/EtOH. The detection mechanism shows that CN- can be 

detected by a nucleophilic attack on the carbon atom of the C=C group of S29, as shown by 

spectroscopic studies. For the detection of various ions, a simple 2-(4-(bis-(4-(5-methyl-2,4-

dioxo-3,4-dihydropyrimidin-1(2H)-yl) oxy) phenyl)amino)benzylidene-malononitrile (BCTT) 

sensor (S31)80 was described for the very sensitive and selective detection of Hg2+ and CN- 

ions. Moreover, the color of the solution changed from colorless to yellow when CN- ions were 

added to the sensor because they served as a base that abstracted hydrogen from the phenolic 

component of the molecule to produce the corresponding dye. A.D.S. Schramm et al.81 

proposed a chemosensor for the dye 2-(4-hydroxybenzylidene) malononitrile in which 2-

[4(dimethylamino)benzylidene] malononitrile served as a ratiometric fluorescent chemosensor 

for CN- ions in the sensor. The yellow dye solution turns from yellow to colorless in the 

presence of CN- ions. This is because CN- attacks the double bond CH=C in the molecule and 

breaks the electronic conjugation between the electron-donating and electron-accepting parts 

of the dye. Li et al.82 designed and synthesized for 2-((2-phenyl-2H-1,2,3-triazol-4-

yl)methylene)malononitrile to develop a new highly selective fluorescent chemosensor for the 

detection of CN- ions compared to other anions in DMSO. During the development of the 

probe, colorimetric detection83 gained popularity due to its high sensitivity and rapid detection 

by the naked eye compared to conventional methods. However, there is a great demand for 

colorimetrically detected organic sensing molecule probes84 to detect CN- ions, even at low 

concentrations in samples. To meet this demand, a suitable model of an organic functionalized 

material could have chemical properties for the detection of hazardous anions in samples, 



 

 
 19 

which could have potential applications in human life. Furthermore, the conjugated 

functionalized material has sensing capability due to the mechanical effect of charge transfer 

from donor–acceptor units, and requirements have been developed to utilize the properties of 

an organic molecule as needed for a sensor85-89. In this context, the malononitrile-

functionalized model developed for the rapid colorimetric detection of cyanide ion (CN-) in the 

presence of a malononitrile-functionalized DMN probe ((2-[[7-[5-[bis(4-methylphenyl) 

amino]-2-thienyl]-2,1,3-benzothiadiazol-4-yl] methylene] propanenitrile) is based on blocking 

the intramolecular charge transfer mechanism in various samples, including water. In this 

communication, the ICT-based functionalized probe (sensor) of DMN exhibits a kind of donor-

acceptor-acceptor (D-A'-A) characteristic, in which the conjugated parts of the ditolyl-

aminothienyl group act as the electron-donating group, and the electron-withdrawing 

dicyanovinylene is bridged by the 2,1,3-benzothiadiazole part (BT) of another electron-

withdrawing block with structural analogs. The stronger electron-donating group of the 

ditolylaminothienyl moiety confers a small band-energy gap90 to the functionalized DMN 

probe due to the enhanced quinoid character and ubiquitous acceptor character of the BT 

moiety, which is used in optoelectronic materials due to the intriguing properties of the low-

lying band gap, high absorption coefficient, and desired energy levels. This photophysical 

property allows the functionalized probe, commonly used in industry to detect cyanide-

containing wastewater, to potentially detect ions. In this case, the malononitrile-functionalized 

DMN probe acts as a fast colorimetric detection with properties that allow the detection of 

cyanide in real samples, even at a lower concentration. Our specified computational framework 

will be useful for designing the functionalized probe at an early stage to detect toxic ions in 

various environmental samples, as described. 

In the past, the development of new materials was based on experimentation and intuition. 

However, due to the high cost, long research time, and manual labor associated with 

experimental studies, there have always been significant obstacles to this method. There are 

many combinations of organic molecules, and the structural features of nanoparticles present 

significant difficulties in the development of functional materials, so it is not unreasonable to 

study them all experimentally to find the most efficient, safe, and sustainable functional 

materials with the desired properties. However, advances in theory, computer power, and 

numerical algorithms in recent years have enabled new simulation-based approaches to 

materials analysis that can be quickly and inexpensively applied to millions of materials. 
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Today, researchers are often able to analyze hundreds or even millions of materials on 

supercomputers in 'high-throughput' mode91, which allows them to evaluate density functional 

theory calculations (DFT) that resolve the electronic structure of a material with few modifiable 

parameters. Several examples of new functional materials have been discovered using these 

computational methods and subsequently verified experimentally.92 In addition, there is a 

difficulty that can be solved by applying appropriate computational frameworks that could 

prove useful in developing new functional materials with specific properties and finding new 

applications. In this context, the integration of different computer models of our specific 

computational framework for each case study is useful for the development and improvement 

of the properties of functional materials, which is why they are so important. 

1.2. From Atomistic Approaches to Nano-QSPR Modeling: 

A Computational Framework  
A computational framework allows for the fusion of experimental and computer-assisted 

data, a set of user-defined models, and a computer algorithm to control design optimization. 

However, the methods for modeling systems on different scales vary depending on the 

application. The literature data indicate that atomistic modeling and integrated models of nano-

QSPR with machine learning may support the design process of safe and sustainable materials 

design before synthesis (at the virtual stage). 

1.2.1. Atomistic approaches 

Electronic Structure Modeling 

The development of numerous physical models to derive the fundamental interactions of 

atoms and molecules was made possible in the 20th century by quantum mechanics. 

Spectroscopy, bonding, electronic motion, and nuclear motion all have properties that can be 

explained by these basic laws. Direct applications of large molecular or material systems are 

hampered by the complexity of physics caused by multi-body interactions. Approaches based 

on the Density Functional Theory (DFT) have been very popular in the industry because of 

their low computational costs, easy adaptation and considerable accuracy in predicting 

properties. These techniques have disadvantages in the calculation of excited states, which have 

been overcome by the time-dependent DFT methodology (TD-DFT)93. The exchange-

correlation functionalities chosen to define the system have an impact on the accuracy of DFT 
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applications. In this context, the QM method is based on quantum-mechanical methods to show 

the chemical system. To solve the Schrodinger equation, numerous approximation values were 

calculated using this technique. QM Based on the above tools, which are very useful for our 

project with different functionalized materials, the Schiff-based functionalized pyrene 

derivatives of PS1 and PS2 were optimized with the B3LYP/6-31G* level theory to be possible 

in an energy-minimized structure without imaginary frequency. In addition, a HOMO-LUMO 

orbital analysis of the delocalized orbital orientation of the PS1 and PS2 compounds was 

performed to calculate numerous properties, such as energy gap, hardness, softness, 

electronegativity, electrophilicity index, chemical potential, and cytotoxicity. In the case of the 

malononitrile-functionalized DMN probe with and without CN- ions, I have used TD-DFT 

theory to calculate the absorption spectra in the presence of the solvent tetrahydrofuran; our 

results are well in line with experimental methods. In particular, the properties of many 

different chemicals, biological systems, and physical systems have been successfully 

calculated using TD-DFT theory. In spectroscopy, where TD-DFT generates reaction 

characteristics and excitation of atoms, molecules, and solids, this technique is most frequently 

used to optimize the geometries of molecules, such as DMN or DMN-CN- probes. During 

optimization, I used many different theoretical layers to predict how strong the influence of 

structure-property is, e.g., B3LYP, BP86, CAM-B3LYP, M06-2X, B3P86, and PBE 

functionals. Computer models are used in all research areas to evaluate property calculations 

and their impact on the environment. From the perspective of nanoscale materials, I used QM 

methods to calculate the descriptors for the core (polymer) and coating (functional) groups, 

and the properties were determined using the nano-QSPR method. The geometry of the MTX-

loaded functionalized nanoparticles was then optimized using the B3LYP/6-31G* theory to 

obtain an energy-minimized structure that could generate force field parameters and start 

classical MD simulations. 

1.2.2. Molecular Modeling: Docking and Molecular Dynamics 

Although quantum-mechanics-based simulations, such as DFT, are very well suited to 

characterizing molecular systems, they are limited to a few hundred atoms due to the 

complexity of electronic interactions94. The main objective of molecular docking research is to 

mathematically simulate the molecular recognition process in order to understand it. 

Accordingly, molecular mechanics research must find an ideal conformation for the protein 
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and ligand, as well as their relative orientation, to reduce the free energy of the entire system. 

Systems with longer lengths and longer time scales must be simulated to understand the 

dynamics of complicated processes. From the outset, I dispense with methods of 

approximation, such as empirical parameterization of force-field models, which are models of 

atomic-atomic interactions, and follow the method of classical mechanics used to calculate the 

model system using Newtonian mechanics. It is possible to simulate systems with length scales 

of the order of ~10-1000 nm and time scales of up to ~100 ns using methods such as classical 

molecular dynamics (MD) and Monte Carlo (MC). These techniques use DFT calculations or 

experimental data to derive the parameters of the force field model. These computer techniques 

are often used to determine the properties of materials and transport of materials in 

environments where experimentation is difficult. Based on this application, I performed in-

depth analyzes with computer techniques and supplemented them with experimental studies. 

The MD study illustrates the dynamic behaviour of proteins as a result of binding to 

ligands/drugs at different time intervals95. Molecular mechanics and the continuum solvent 

technique of MMPBSA are combined to further evaluate the binding energies of protein 

ligands/drug complexes96. Consequently, the results of these MD simulations are crucial for 

improving drug discovery and development methods. In this context, docking studies were 

conducted to investigate how well PS1 and PS2 bind to the BSA proteins. MD was used to 

analyze the interaction between the BSA protein and two different compounds, PS1 and PS2, 

using a computer simulation method to study protein–ligand interactions that take into account 

the stability and energetics of the system at all times. I then attempted to generate the PMF 

curve using two separate drug-functionalized nanoparticle models, MTX-SS-PGA and fully 

atomistic MD simulations at different organ sites, to determine the free energy barrier using 

MD-based umbrella samples and WHAM analysis approaches. 

1.2.3. Machine Learning-Based Nano-QSPR Method 

QSPR models are molecular-based prediction techniques that allow the prediction of 

quantifiable macroscopic properties "P" of compounds based solely on the molecular structure 

of this information and can therefore be used before compounds are synthesized. Following the 

principle of similarity, these models are based on the assumption that compounds with similar 

molecular structures have comparable properties. Links between the target property and several 

molecular structure descriptors were searched from a collection of molecules comparable to 
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those in the final model. The generic form in the equation provides a summary of the QSPR 

models (Eq. 1). 

P = f (di) (1) 

The molecular structures of chemical compounds and their properties at the molecular level 

are described by molecular descriptors. Over time, thousands of descriptors (di) have been 

created to encode a wide range of compounds and their molecular properties. There are several 

types of descriptors, usually determined by quantum chemical calculations. They can be 

obtained from simple elementary formulas and 2- or 3-dimensional structures. I then used the 

most efficient genetic algorithm (GA) based on machine learning, which optimizes the 

descriptors based on the R2 value to select the best result in the selection to select the most 

relevant molecular descriptors for the PLS method.  GA was proposed by John Holland97 to 

find a more comprehensive explanation and is a random search method to achieve optimized 

results. Based on these tools, I made the first attempt at a machine-learning model that 

quantifies the relationship between the structure and properties of NPs defined by the so-called 

core and coating descriptors, their PC fingerprints in the biological medium defined by the so-

called corona descriptors, and their influences on the zeta potential value of the nano-QSPR 

model. The genetic algorithm and partial least squares (GA-PLS) were used to build the nano-

QSPR model. 

However, despite the numerous possibilities and advances made in the field of computer 

modeling to compensate for experiments, there are still problems that need to be solved. Unlike 

industrial aspects, where complex structures and compositions are commonly used, modeling 

usually uses pure/pristine materials, which leads to problems with accuracy. In this situation, 

the three most important challenges—predictability, realistic complexity, and material 

information systems—must be improved to take into account large-scale features and solve 

these problems. Wave function theories have been the basis for much quantum chemistry but 

improving them can be expensive and time-consuming. The opposite perspective of relying on 

approximate energy functions, which are mathematically cheap but have qualitative 

deficiencies, has proven very advantageous for material simulations. These qualitative 

deficiencies are particularly evident in some of the most useful functional materials, such as 

mixed valence transition metal oxides. In the future, more advanced functional theories will be 

developed that can address some of the fundamental qualitative deficiencies of current 
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approximations. In addition, there will be a stronger interaction between spectral theories that 

focus on the precise description of excitations and basic state formulations. Most of the 

developments in the field of material simulation over the past 30 years have been in the realm 

of realistic complexity and are not limited to static calculations. The effects of pressure, pH, 

chemical potentials, and electrochemical potentials, to name just a few, can now be added to 

the effects of temperature on the environment. From infrared and Raman spectra to nuclear 

magnetic resonance, electronic paramagnetic resonance, or angular-resolved photoemission 

spectroscopy, we can predict spectroscopic and microscopic data. By providing input to 

mesoscopic or macroscopic theories that relate directly to coarser formulations or by providing 

large training datasets of microscopic data for machine learning of atomic interactions, first-

principle calculations can exceed length scales. Time constraints in the modeling of rare events 

can be solved by effective approaches that accelerate configuration sampling from 

metadynamics to replica exchange. Last but not least, the ability to automatically perform tens 

to hundreds of thousands of calculations gives us a comprehensive overview of the material 

landscape so that we can use systematic database-based, database-filling protocols to explore 

unexplored areas of material space, apply data analysis to find new insights or correlations, and 

formulate systematic collaborative efforts to curate and verify material properties. 

Furthermore, there are no automated models to study variations in the composition or structure 

of complex systems, and there is no consistent method to predict the properties of coated 

functionalized materials. Although many computational challenges need to be compared with 

reality, they will be very useful for characterizing and designing functional materials with 

suitable properties and obtaining useful applications. Therefore, new approaches, such as 

machine learning, big data, and soft computing, are needed as tools to compensate for the 

limitations of classical experiments, which entail high costs, short test times, and other difficult 

conditions. In addition to experimental characterization techniques, which only provide the 

average/integral properties, computer models can capture the missing properties of 

nano/microstructures in complex materials. Therefore, computer methods will function as a 

creative center between science and technology by evaluating, understanding, and ultimately 

converting these phenomena into materials. 
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2. Statement of Research Problems 
Organic compounds play an important role in human functioning, including carbohydrates, 

proteins, lipids, and nucleotides. In this context, organic compounds functionalized with Schiff 

bases are widely used for dyes, pigments, catalysts, luminescence, chemosensors98, polymer 

stabilizers99, and organic synthesis intermediates100. SBs are also used as corrosion inhibitors 

in various metal electrolyte systems, as biolubricant additives in tribology101-104, as CO2 

fixation catalysts for environmental protection105, in carbohydrate research106, in photoactive 

solar energy107,108 and as vitrimers109. Currently, SBs contribute more to biological chemistry 

than pharmaceutical applications with antibacterial properties. However, many of the drugs on 

the market for bacterial infections rarely reach the efficiency factor, as multidrug-resistant 

bacteria (MDRBs) are likely to cause the failure of treatment. One of the most promising 

compounds is related to SB-functionalized pyrene derivatives. The number of research 

publications on pyrene and its derivatives is increasing. For example, in recent studies by 

Srinivasan et al.15, functionalized Schiff-based pyrene compounds were synthesized. The 

developed pyrene compounds were tested for their antibacterial activity against various 

bacterial strains. However, to date, knowledge of the binding mechanism with proteins, such 

as BSA, is very limited. To overcome this problem, I applied a framework of numerous 

computational programs, such as QM, DOCKING, MD, and MMPBSA, to design new SB-

functionalized pyrene derivatives that showed improved antibacterial activity compared to 

previous compounds. The application of computational methods may provide information on 

the conformational state of the binding of the drug (compound), the binding affinity of the drug, 

and the native-state of the chemical reactivity of pyrene compounds, which may help improve 

the antibacterial activity of newly synthesized SB-functionalized pyrene derivative compounds 

when they interact with protein albumin. The efficacy of drugs (organic compounds) can be 

improved if they are loaded with nanoscale compounds. Recent studies on nanomedicine110 

play an important role in the field of drug delivery, as nanomedicine can deliver the drug 

efficiently and without greater side effects than conventional delivery methods.  

However, in nanomedicine, it is difficult to determine the mechanisms of cellular drug 

uptake and delivery. The problem could be overcome by the application of proper theoretical 

models that determine the mechanism in three different organs of the human body to 

understand the cell uptake mechanism. The determination of how the structure, charge, and 

energy of NP affect the different pH values (e.g., from the neutral pH to the medium pH in the 
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tumor, and the pH in the stomach) could help to understand the relationship between the cell-

uptake mechanism and nanoparticle structure. The data available in the literature suggest that 

coarse-grained MD simulations could support this process. For example, Zhang et al.111 have 

demonstrated that cellular uptake depends mainly on the parameters of size, shape, and 

elasticity of NPs, but the full atomistic approach to the interaction of drug-loaded nanoparticles 

with the cell membrane is very limited. Lei Zhang et al.112 have shown the effective role of 

anticancer drugs in the presence of cholesterol lipid bilayer uptake mechanisms. However, until 

now, no studies and molecular models have applied full-atomistic MD simulations to predict 

the mechanism of cellular uptake, starting from neutral pH to pH in the tumor and pH in the 

stomach. However, we should keep in mind that the mechanism of cell uptake may be 

influenced by many other factors, not only the physicochemical properties of nanoparticles, 

but also protein–particle interactions and subsequent agglomeration, diffusion, and 

sedimentation. The agglomeration process depends mainly on the zeta potential (ζ) (surface 

charge) of the system. In recent decades, the important factor for predicting the zeta potential 

(ζ) of unmodified NPs has played a crucial role in determining the stability, toxicity, and 

aggregation/agglomeration process of NPs75(a). In this context, previous work by Mikolajczyk 

et al.75(a) used the quantitative nanostructure-property-relationship (nano-QSPR) method and 

nanostructural descriptors to estimate the zeta potential of various metal oxide nanoparticles. 

To predict the zeta potential of various metal oxide nanoparticles affected by the action of an 

ionic solution (KCl), Wyrzykowska et al.75(b) used a developed nano-QSPR technology. The 

authors113 also presented a structure-property relationship model (nano-SAR) to predict the 

zeta potential values of nanoparticles evaluated in different environments, such as pH, the 

presence of ions (Na+, K+), and under different culture conditions. However, little is known 

about how different surface modifications affect the quantitative and qualitative composition 

of the corona and how they affect the zeta potential that controls the stability and 

aggregation/agglomeration of functionalized NPs in a given medium. Furthermore, no 

information is known about how a particular corona composition affects the uptake of NP and 

its associated toxicological profile.  

Therefore, one of the most difficult and important problems for computational toxicologists 

is developing new methods for conventional computational models that can link the zeta 

potential (ζ) and the core, coating, and corona of NP. To overcome this obstacle, we 

hypothesized that combining machine learning techniques based on the partial least squares 
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(GA-PLS) genetic algorithm with novel nanodescriptors that identify both the intrinsic and 

extrinsic properties of NPs would greatly improve the ability of in silico methods to predict the 

zeta potential of NPs in a given biological medium. Through these applications, I learned how 

the surrounding protein corona affects the zeta potential in terms of the quantitative relative 

relationship between the coated NP structure and the biological medium. The main goal of the 

project was to demonstrate the importance of considering how PC can affect the 

physicochemical properties of functionalized (coated) polymeric nanoparticles. For the 

development of safe and sustainable materials, our modeling method could be very useful 

because as NP enter the cell, adsorption leads to the formation of an agglomeration of NPs. 

The scattered NPs are like Trojan horses for toxic ions due to the surface area-to-volume ratio, 

which is even more harmful to humans. To assist this similar kind of process, there is a space 

for designing functional materials that are urgently needed and treating similar types of 

problems for humanity. In this context, toxic ions, such as CN-, are found in food and water 

samples. To solve this problem, organic functionalized probe molecules have been widely used 

in recent decades to capture toxic ions in various samples114. However, the rapid detection of 

CN- ions at lower concentrations using selective detection colorimetric methods is very limited. 

Therefore, an ICT-based malononitrile-functionalized DMN probe was modeled for easy and 

rapid detection of CN- ions in samples using a naked-eye colorimetric probe supported by 

experimentalists. Recently, the detection of CN- ions in the probe has been proposed in 

solutions covering major practical applications, such as agricultural products, cassava powder, 

bitter almonds, smartphones, test strips, and sensors. Based on these facts, I worked on a project 

for the rapid detection of CN- ions in a malononitrile-functionalized DMN probe with and 

without housing using a colorimetric method. To model the probe and find the mechanism of 

the interaction of the DMN probe with CN- ions via an intermolecular interaction process, I 

calculated absorption spectra using QM/TD-DFT calculations that correlated well with 

experimental data, along with HOMO-LUMO orbital analysis and found the behavior of the 

probe with and without CN- ions. In addition, an open-source application for Android and a 

portable 3D-printed smartphone accessory was developed to work with the DMN probe in the 

field. Finally, the migration of organic functional materials to nanofunctional materials will be 

useful for various potential applications because of the unique physicochemical properties and 

the different environmental systems that affect the various functional properties. Based on the 

fact that applications are possible, our goal was to investigate the behavior of organic and 



 

 
 28 

nanofunctionalized materials under different environmental conditions and to design safe and 

sustainable materials for many different applications. 

The objectives of the research conducted in my dissertation were: 

(i) The development of a computational framework based on various 

computational tools such as QM, DOCKING, MD, and MD- supported by 

MMPBSA to design new functional materials PS1 and PS2 with the 

properties of improved free energy binding and low energy gap, which can 

be used as a material with improved antibacterial properties, and 

(ii) The application of computational models based on MD and MD, which are 

based on the umbrella sampling methods, to gain systematic knowledge 

about the influence of drug-loaded functional nanoparticles on cell uptake 

at different pH values to develop an efficient drug delivery medium.  

(iii) The development of a new type of descriptor for describing the core, 

coating, and corona of functionalized NPs, together with the development 

of a nano-QSPR model describing the relationship between the 

physicochemical properties and the zeta potential value of functionalized 

NPs in a biological medium, which may be crucial to enhance the stability 

of functionalized NP-based drug delivery. 

(iv) The application of the theoretical framework based on the QM/TD-DFT 

method to control the functionalized probe of DMN with the features of 

rapid colorimetric detection of CN- ions with the possible elimination of 

toxic ions in humans in the environment.  
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3. Main Hypotheses  

Hypothesis 1 

I hypothesize that the interaction of bovine serum albumin with the newly synthesized 

Schiff-based functionalized pyrene derivatives PS1 and PS2 will have a superior antibacterial 

character compared to similar previous studies. I hypothesize that a framework of computer 

tools can be used to design a better antibacterial character of Schiff-base functionalized pyrene 

derivative compounds by predicting the binding affinity, chemical reactivity, and cytotoxic 

activity of the compounds, as well as the potential efficacy of all compounds, on the basis of 

experimental evidence.  

Hypothesis 2 

The cell membrane itself is a major barrier that drug molecules cannot easily penetrate, 

which is why many drugs fail in the clinical trial phase. Overcoming this challenge is a major 

burden for science. MTX (methotrexate), an anticancer drug-enhanced grafted with γ-

polyglutamic acid (PGA), acts as a hydrophilic nanocarrier that is passively taken up by cells 

at neutral pH, as experimental observations have shown, with lower concentrations and 

toxicity. Cellular uptake mainly depends on pH and structure, charge, and energy properties, 

and the insights found from MD suggest important factors for understanding drug delivery. I 

hypothesize that the computational models of MD studies can predict the cell uptake 

mechanism of drug-loaded polymer-functionalized nanoparticles for neutral, tumor, and 

stomach pH models.  MD studies for various analogies may help to understand how the charge, 

geometry, and energetics of drug-loaded functionalized nanoparticles affect cellular uptake at 

three different pH levels: neutral pH, tumor pH, and stomach pH of 7.0, 6.4, and 2.0, 

respectively. 

Hypothesis 3 

Characterization of the zeta potential (ζ) is one of the most important challenges in 

understanding how the stability of NP and the formation of the protein corona affect the 

biological reactions of cells and organisms. In this context, we hypothesized that the integration 
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of machine learning methods based on the genetic algorithm of partial least squares (GA-PLS) 

and novel nanodescriptors that determine both the intrinsic and extrinsic properties of NPs 

would significantly increase the potential of in silico methods for predicting the zeta potential 

of functionalized (coating) NPs in a given biological medium. Furthermore, a predictive nano-

QSPR model may help describe the relationship between the structure of polymer NPs, 

represented by the core, coating, and corona properties, and the zeta potential in a biological 

medium. 

Hypothesis 4 

I hypothesize that the presence of cyanide ions in the functionalized DMN probe blocks 

intramolecular charge transfer between the dicyanovinyl group and the ditolylaminothienyl 

group, since a Michael adduct of the β-conjugated position of the dicyanovinyl group with 

cyanide forms. I hypothesize that a computer-aided and spectroscopic method may support the 

rapid colorimetric detection of hazardous ions from the sample and may be applied to the 

intermolecular interaction of an intramolecular charge-based malononitrile-functionalized 

DMN probe with cyanide ions (CN-) from many samples or water samples in the naked-eye 

scenario. 
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4. Case Studies 
4.1.  Case Study 1 

The first part of my dissertation is presented in the paper "Integrated Approach to Interaction 

Studies of Pyrene Derivatives with Bovine Serum Albumin: Insights from Theory and 

Experiment" (attached as publication [A]). In this article, I propose investigating the 

relationship between bovine serum albumin and recently synthesized very potent Schiff-based 

functionalized pyrene derivatives PS1 and PS2, which may have the advantage of having a 

superior antibacterial character, as reported in a previous report on related compounds115. The 

interaction and dynamic behaviour and conformational orientation of the two compounds in 

the BSA complex, PS1 and PS2, were predicted under physiological conditions of pH = 7.1 

using molecular docking and molecular dynamics simulations. Furthermore, the molecular 

surface mechanics (MMPBSA) of Poisson-Boltzmann was used with Gromacs software to 

determine the free binding energies of the BSA-PS1 and BSA-PS2 complexes at 300 K. Our 

expected results and the experimental data showed a good correlation. Therefore, our modeled 

methodology can confirm the usefulness of our developed compounds for future research. 

Methodology  

The initial structures of the compounds PS1 and PS2 were created using Avogadro 1.1.1116 

and then geometrically optimized using the Gaussian 09 package117 using DFT theory with the 

exchange-correlation of the functional functions B3LYP with the base set 6-31+G*. Energy-

minimized optimized structures confirm the absence of imaginary frequencies using vibration 

frequency techniques. The Kohn–Shan diagram is a useful derivative of functional density 

theory to find a solution for several functions of the one-electron wave that depend only on 

three spatial variables and are non-interacting systems. The Hamiltonian of the single-electron 

system is as follows. 

[-ℏ/2me ▽2 + V (r) + VH (r) + VXC (r)] = ɸi (r) = €i (r) ɸi    (2) 

Here, the sum of the three potentials V, VH, and VXC is shown on the left side, and the total 

energy is shown on the right side (€i (r) ɸi). The first potential describes how an electron 

interacts with a group of atomic nuclei. The second potential is known as the Hartree potential, 

which defines the Coulomb repulsion between the electrons that are being taken into account 

in one of the Kohn-Sham equations and the overall electron density that is determined by all 
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the problem’s electrons. The third potential is known as the exchange-correlation potential 

(XC), and it incorporates all interactions, including all the implications of quantum mechanics 

that are not taken into account in the other potentials.  

To obtain the molecular dynamics simulations of the BSA–PS complex, the first 

confirmation was extracted from the docking studies. In this context, the geometrically 

optimized structures of the PS compounds were docked to the BSA protein. A combined 

protocol with the binding mechanism for flexible drugs and rigid protein structures was 

performed using Auto Dock 4.0. Since the torsion bonds moved freely and the BSA was in the 

rigid mode, docking calculations were performed with Lamarck’s genetic algorithm (LGA)118. 

Fifty independent runs with a population size of 150 and a maximum energy point of 25,000 

Before the docking calculation, Auto Grid 4.0 developed energy network maps for each type 

of ligand atom. 

To describe the docking studies, the force field contains an explanation of the free energy 

scoring function with six pair-wise scores (V) and an estimate of the conformation entropy lost 

when binding (Sconf). 

∆G = (VL-Lbound - VL-Lunbound) + (VP-Pbound – VP-Punbound ) + (VP-Lbound - VP-Lunbound +  ∆Sconf ) (3) 

Here, L and P are in a ligand-protein docking calculation for "ligand" and “protein,” 

respectively. 

The values for dispersion/repulsion, hydrogen bonding, electrostatic, and desolvation are all 

contained in pair-wise energetic terms: 

V = Wvdw ∑ "!!"
"!"
#$ −

#!"
"!"
% $$,& + Whbond  ∑ 𝐸(𝑡) " '!"

"!"
#$	
−	)!"

"!"
% $$,&  + Welec ∑

*!*"
+,"!"-"!"$,&  + Wsol  

∑ (𝑆$𝑉& + 𝑆&𝑉$)𝑒
.
&!"
$

$'$$,&	     (4) 

The first term has a standard dispersion/repulsion potential of 6/12. The second term is a 

directed H-bond term with a potential of 10/12. The third term is the Coulomb potential for 

electrostatics. The last term is the desolvation potential, which is weighted by a solution 

parameter (S) and an exponential term with a distance rating factor of 3.5. 
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For the classical MD simulations, conformists of the complex form of the BSA-PS 

compounds from the docking studies were used. For all MD simulations and trajectory analysis, 

the Gromacs 2020.2119 software package was used, which combines the AMBER99SB force 

field with the TIP3P water model.120 To reduce the energy of the conjugated gradient, the BSA-

PS complex was initially energetically reduced with 3000 steps of the steepest descent method 

and then with 2000 steps. For the system without position restriction, the equilibrium runs after 

1 ns to enable stabilization of the system. The water molecule was investigated with RMSD 

(root mean square deviation), the dielectric permittivity of ε =1 in the 2-fs time step, the 

Maxwellian distribution for the initial velocity at the initial temperature, the Ewald algorithm 

for the particle network, the LINCS121 algorithm for the limitation of all heavy atoms except 

hydrogen, the SETTLE122 algorithm for the water molecule, and the Maxwellian algorithm for 

the electrostatic term. VMD and Gromacs were used to perform the trajectory analysis. 

The formation of the macromolecular AMBER force field is described in the following for 

classical MD simulations. 

 

 

 

 

 

 

 

The sum indices run in the first three terms over all bonds, angles, and dihedral angles of 

rotation, defined by the covalent structure of the system, but in the last two terms, over all pairs 

of atoms that are not chemically bound and are instead separated by the distances rij = | ri - rj | 

or by the point charges qi. 

From a physical point of view, the first two terms describe the energy of the deformations 

of the bond length "r" and the bond angle "θ" about their respective equilibrium values "r0" and 

"θ0". The harmonious form of these variables, together with the force constants Kb and Kθ 

ensures the correct chemical structure, but modeling chemical changes, such as bond breaks, 

is not possible. ‘K’ defines the height of the rotation barriers, ‘n’ is the periodicity, and the 

third term refers to the rotations around the chemical bond. The electrostatic Coulomb potential 

Bonds angles dihedrals improper 

Vdw Columbic term 

(5) 
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is the last term, and the fourth term describes the interatomic van der Waals repulsion and 

attraction forces in the sense of the Lennard–Jones-12-6 potential. The van der Waals 

parameters ε and rm, together with correctly set partial charges of Qi and an effective value of 

the constant k, can explain some behaviours resulting from a certain environment. 

We then used the g_mmpbsa123 tools from Gromacs to calculate the free binding energy 

using molecular mechanics/Poisson-Boltzmann surface124. Each snapshot was selected from 

all 200 ps in a total of 4000 configurations. 

Based on formula (6), the binding free energies are calculated as follows: 

∆Gcomplex= Gcomplex - (GBSA + Gcompound) (6) 

The binding free energies of the complex BSA and PS compounds are represented by:  

Gcomplex, GBSA and Gcompound, respectively. Formulas 8 and 10 can be used to express each term: 

GTotal = EMM + Gsol - TS       (7) 

EMM stands for "molecular mechanics," Gsol stands for "soluble free energy,” and TS stands 

for "conformational entropy on ligand binding". High computing costs and limited 

predictability125 have led to this being ignored. 

The parameters of the molecular mechanical force field (MM)126 were used to calculate the 

energy values, and the potential energy for the vacuum, EMM, is composed of the energy of the 

bond and the non-bonded interactions. 

EMM = Ebonded + Enonbonded = Ebonded + (EvdW + Eelec)      (8) 

In this case, the energy conditions for bonding, angles, dihedral, and inappropriate 

interactions are contained in Ebonded. Enonbonded determines the conditions of Coulomb and 

Lennard-Jones’s potential functions for obtaining electrostatic (Eelec) and van der Waals (EvdW) 

interactions. The single-trajectory approach assumes that the bound and unbound 

conformations of the protein and the ligand are identical. Therefore, the Ebonded bond is always 

zero127.  

Equation (9) describes the molecular mechanism: 

EMM = Gvdw + Gelec            (9) 
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In this case, the polar and nonpolar conditions of the contribution conditions were used to 

determine the solvent energy, as indicated in Eq. 10. 

Gsol = Gelec,sol+ Gnonpol,sol     (10) 

Results and Discussion 

According to our analogy, I have used many different tools to achieve many useful results, 

such as optimizing the structures using the QM method in the Gaussian package. Since the 

dihedral angle of the atoms was measured as 180° for PS1 and 90° for S33-C34-C37-C38 in 

PS2, the geometry-optimized structure of PS1 has planar geometry and PS2, a nonplanar 

geometry, as shown in Figure 2. A phenyl ring perpendicular to the pyrene ring replaces the 

terminal methyl group of the hydrogen atom in PS1 to PS2. The FMO representations of PS1 

and PS2 show several organic molecules with known electronic transitions, including п→п*, 

n→п*, and п(donor)→п*(acceptor). Using this notation, I can see that the electronic transitions 

for both compounds obey the HOMO-LUMO and HOMO-1-LUMO+1 transitions and are 

represented by the п→п* and n→п* transitions to distribute the LUMO orbitals of n→п* 

throughout the π-ring, for the HOMO-1-LUMO+1 transitions, only the nonbonding orbitals (n) 

are located on the π-ring side of the molecule, while for the п→п* transitions; the charge 

moieties of PS1 are only on the π-ring of the HOMO. The same behavior was observed with 

PS2. According to the report,128 in this case, there is also increased chemical reactivity, which 

is related to the fact that its HOMO-LUMO energy gap is smaller than that of the Schiff bases 

(2.43 eV), which highlights the properties of compounds being developed for a variety of 

applications. It can be argued that PS1 and PS2 have similar reaction-promoting media in 

chemical reactions. 
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Figure 2. shows the compounds PS1 (top) and PS2 (bottom) with optimized geometry and HOMO/LUMO 

levels. Reprinted (modified) with permission from source129; Copyright 2022 American Chemical Society. 

According to the QM calculations, I performed docking calculations to determine the 

possible orientation and binding of the free-energy values of the two compounds. According 

to the calculations, PS1 and PS2 have binding energies of -7.44 and -8.64 kcal/mol, 

respectively. Compared to PS1, the binding energy of PS2 is lower. The reason for the 

difference in the binding energy may be the presence of the dominant force of the interactive 

term vdW + hydrogen bond + desolve energy in PS2 compared to PS1 (-10.37 and -8.50 

kcal/mol respectively). Although PS1 has two hydrogen bonds, resulting in a stronger binding 

affinity in the binding pocket, PS2 has a hydrophobic (benzene ring) than PS1. This leads to a 

greater hydrophobic interaction potential in PS2 compared to PS1, which leads to a higher 

binding affinity and lower free-energy binding values. Residues Arg256, Tyr149, and Arg198 

form hydrogen bonds that bind BSA to PS1 and PS2. In addition to hydrogen bonds, 

hydrophobic and cation-π interactions are also possible in the BSA-PS1 complex, and π-π 

interactions are present in the BSA–PS2 complex (see Figure 3). Although many interactions 

were possible in both complexes, a stronger hydrophobic interaction was observed in the BSA–

PS2 complex, which led to a higher binding affinity than in the BSA–PS1 complex, which was 

also confirmed in the experimental report. 
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Figure 3. The docking sites for the two compounds, PS1 and PS2, are shown. Reprinted (modified) with 

permission from source129; Copyright 2022 American Chemical Society. 

In the study of protein–ligand interactions using molecular dynamics (MD), a popular 

computer simulation technique, the stability and energetics of the system are taken into account 

at all times. In the present work with MD, the interaction between the BSA protein and two 

different compounds, such as PS1 and PS2, was investigated. For the two compounds, I 

performed a simulation with a duration of up to 40 ns at 300 K and considered the trajectories 

to determine the stability of the system and the binding site (see Figure 4). 

Figure 4. Conformational orientation of (a) PS1 and (b) PS2 in a complex with BSA. Reprinted (modified) with 

permission from source129; Copyright 2022 American Chemical Society. 
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Using MD simulation studies, I analyzed the binding mode behavior of both complexes at 

different time intervals, such as 15, 20, 30, and 40 ns, for both compounds. The results are 

based on the RMSD and RMSF analyses of the two complexes. The system approaches 

equilibrium at 1 ns for both complexes, which corresponds to the root mean square deviation 

(RMSD) between the Cα atoms of the coordinated complexes of PS1 and PS2 at 300 K 

compared to the reference structure of the original coordinates. Due to the stronger interactions 

between BSA and PS2 than PS1, the presence of more hydrocarbon (benzene) as a sterile factor 

in the PS2 compound, and the RMSD deviations of 3.0 for PS1 and 4.0 for PS2, the BSA-PS2 

complex is comparatively more stable than the PS1 complex, and the RMSF analysis of the 

complex and fluctuating residues is equally effective up to a path profile of 40 ns for the BSA-

PS1 and BSA-PS2 complex residues. 

In this example, BSA-PS2 has the lowest free-binding energy of -138.50 kJ/mol, while 

BSA-PS1 has only -99.30 kJ/mol, indicating that the binding affinity of BSA-PS2 is greater 

than that of BSA-PS1; the values are shown in Table 1. Thus, the results show that MD and 

docking follow the same path.  

Table 1. Binding free energies for BSA–PS complexes 

    
*States the standard mean error. With permission from source129; Copyright 2022 American Chemical Society. 

In summary, I investigated the binding affinity of PS1 and PS2 to intrinsically fluorescent 

plasma proteins using computer-assisted methods. To better understand the binding mechanism 

and the interaction of PS1 and PS2 with the BSA protein, molecular docking studies were 

conducted for these complexes, BSA-PS1 and BSA-PS2. The structural alignment of the two 

compounds within the BSA protein was investigated using molecular dynamics, and the 

binding energies of PS2 and PS1 calculated from computer simulations were -138.50 and -

99.30 kJ/mol, respectively. Consequently, PS2 exhibited a higher affinity compared to PS1. 

Compared to BSA-PS1, the calculated free energy values of BSA-PS2 were more stable: the 

orbital orientation of the two compounds following the same orbitals п→п* and n→п* such 

as HOMO-LUMO and HOMO-1-LUMO+1 was investigated using FMO analysis, and finally, 

cytotoxicity studies were performed to determine the relative cytotoxicity of these compounds 

PS2 > PS1. 

 

Complex Binding free energy (∆G) in KJ/mol 
BSA_PS1 -99.30 (1.6435)* 
BSA_PS2 -138.50 (1.1804)* 
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4.2. Case Study 2 

The second part of my doctoral thesis is presented in the paper "How does the study MD of 

pH-dependent exposure of nanoparticles affect cellular uptake of anticancer drugs?", which is 

attached as publication [B]. In this project, I proposed how the charge, structural geometry, 

and energetics of drug-loaded NPs influence the cellular uptake mechanism with different pH 

levels and influence the drug delivery process. Based on the research question, I have used 

three different pH models, namely 7.0, 6.4, and 2.0, and the open-source program dimorphite- 

DL130, to generate the molecular structure. The cellular uptake mechanism was proposed by 

analyzing the free energy barrier using classical MD- and MD-based umbrella sampling 

methods supported by the WHAM tool. Our primary research objective is to determine the 

extent to which different structural analogies, geometries, charges and energetics influence 

cellular uptake at different pH values. This is the first study with these models because, 

although many studies have been conducted on nanoparticles of size, shape, and surface and 

their influence65 on the cellular uptake mechanism, I chose this problem because of the way 

the charge, structure, and energy of drug-charged nanoparticles affect cellular uptake by these 

parameters, as these studies have been very limited recently. 

Methodology 

All two models were created using the Dimorphite-DL130 program. After the SMILE 

program has obtained a molecular geometry optimized with the B3LYP exchange-correlation 

function of the 6-31G* basic theorem using the DFT theory of the Gaussian 09 package117, it 

provides formatted structural information with the corresponding pH values and then searches 

the pKa values from the database to generate, with the help of this optimized functionalized 

nanoparticle geometry, all possible conformations of the structural analogues in the form of a 

SMILE-formatted pH file. With energy-minimized conformations, vibration analysis without 

imaginary frequency was used to confirm the optimized geometries of the three pH models. 

Using the CHARMM GUI131 membrane and the CHARMM36 FF132 force field for lipids, three 

models of MD simulation were performed: 1. pH 7.0 of drug-loaded functionalized 

nanoparticles; 2. pH 6.4 and 3. pH 2.0 models consisting of a traditional POPC membrane with 

64 lipids per leaflet. A TIP3P water model with additional CHARMM36 force-field parameters 

was used for all passes. The use of TIP3P133 water molecules to solve the created model reduced 
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the total charge that replaced the counterions in the model. For each simulation box, the 

neutrality of POT+ and Cl- was added to the membrane composition. Each structural model was 

placed in the dissolved membrane simulation box and subjected to133 different equilibrium 

processes using a multi-stage protocol. To keep the membrane stable and allow the water 

molecules to balance, seven different types of short-term equilibrium steps were performed 

using different thermostat conditions, force constants with different position limitation values, 

and others. For the periodic condition, the isothermal-isobar ensemble (NPT) was used, in 

which all h-bonds with atoms were subjected to the limitation technique LINCS134. During a 

spatial cut-off of 12 Å, the Ewald particle network method Ewald (PME)135 was used for the 

extraction of all electrostatic interactions with a wide range. A cut-off value of 10 Å	was used 

for the application of the Lennard–Jones interactions, which was then reduced to 12 Å. To 

detect all covalent bonds associated with hydrogen atoms, a holonomic restriction was 

implemented in conjunction with the SHAKE136 algorithm. Gromacs 2020.2 software was used 

for MD simulations and analyzes137. 

Another possibility is to calculate the division of the three models between the membrane 

and the water in the vicinity. Above the aqueous phase of the water, the three models were 

positioned. In the semi-isotropic NPT ensemble, the drug-loaded nanoparticles were pulled 

toward the membrane centre with a tensile force of 1000 kJ/mol.nm2 and a tensile velocity of 

-0.2 nm/s. A total of 30 windows were used to generate the PMF curve, taking snapshots at an 

interval of 1 Å from the upper (z = 30) to the centre (z = 0) of the simulation. The same is 

reflected in the remaining half of the track due to the symmetry of the double layer. The 

reflection measurements for the windows at 30 and 29 in the centre of the double layer are 

identical throughout the distance from this point on. Using a force constant of 1000 kJ/mol.nm2 

and a total sample of 1 μs nanoparticles entering the membrane, a production run of up to 1 ns 

was performed in each window. Configurations were recorded every 1 ps during the simulation, 

and at the end, biased, distributed, and reweighted analyses were combined with the WHAM138 

analysis to generate the PMF curve. Area analysis per lipid was used to obtain the molecular 

packaging of the lipid bilayer from the MD simulations. The APL value information provides 

information on the organization of lipids and the dynamic and structural properties of the 

membrane. The normal double layer is taken into account when calculating the APL along the 

z-axis. Equation 11 calculates the APL. 
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APL =
L/	L0
	N12324

																											(11) 

The lengths of the box direction in x and y are represented here by Lx and Ly, the lipid 

content of a package by the number Nlipid.     

The order parameter SCD can identify the lipid acyl chains present in the lipid bilayer to 

determine how C-D is oriented relative to the typical bilayer. Equation 12 can be used for the 

calculation. 

              SCD = 0.5 <3cos2𝛉 – 1 > (12) 

Here, < > determines an average ensemble, and “𝛉” indicates the angle between the normal 

double layer and the vector that connects C-D (C-H in our simulation example). 

 

The diffusion coefficient resulting from Equation 13 is used to characterize and measure 

lateral diffusion, which is a crucial dynamic attribute for measuring the ability of lipids to flow 

through leaflets. 

    D(τ) = limτ→∞ (MSD(τ)/4τ)           (13) 

where "t" is the elapsed time and MSD is the average of the number of lipids and the mean 

square displacement (MSD) of the selected lipids in the mass centre of the XY plane. 

Results and Discussion 

The cellular uptake mechanism was determined by geometrically optimized MTX-loaded 

functionalized nanocarrier molecules with three alternative models of structural analogies. The 

geometry of the three models is almost cage-like, corresponding to their structural equivalents, 

as size65 is a critical factor in cellular uptake. Our models are cage-shaped, spherically 

symmetric nanoparticles that are more easily absorbed because, according to this report,139 

spherical nanoparticles are more clearly and better uptake by cells than rod-shaped particles. 

According to these data,140 the pterin portion of the methotrexate drug is crucially important 

for antimetabolite activity because it has a high affinity for the cellular enzyme dihydrofolate 

reductase, which changes when the activity of the drug is reduced. Because the hydrophobic 

core of the pterin moiety easily penetrates the hydrophobic tail of the lipid membrane and thus 
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influences drug activity, we hypothesize that the variation in the dihedral angle affects cell 

absorption. According to Figure 5 and Table 2, the pterin ring has a dihedral angle of ɸ1= 82.16 

for the neutral model (C39-N42-C44-C45), a dihedral angle of ɸ2 = 96.42 for the tumor model 

(C22-N1-C15-C16), and a narrow linear angle of ɸ3 = 153.20 for the stomach pH model (C15-N1-

C20-C21). This discovery leads us to conclude that the drug transport mechanism begins when 

the dihedral angle (ɸ) of the pterin ring becomes linear, while cell uptake is more favorable 

when it is perpendicular to the drug molecule. 

  

 

Figure 5: Geometry-optimized structural models of drug-loaded nanoparticles: (a) pH 7.0, (b) 6.4, and (c) 2.0. 

Reprinted (modified) with permission from source141; Copyright 2023 International Journal of Chemical 

Science. 

 

 Table 2. Charge and dihedral angles of the models (drug-loaded nanoparticles). With 

permission from source141; Copyright 2023 International Journal of Chemical Science.  

For the two complex structures from the simulation studies, POPC/MTX-SS-PGA (pH = 7) 

and POPC/MTX-SS-PGA (pH = 6.4), the coordinates were compared with the original 

reference structure. The RMSD deviation between the phosphate groups (PO43-) of the 

membrane complexes at 303.15 K shows that both systems achieved an equilibrium of 1 ns to 

30 ns in the simulation shown in Figure 6(a). In this case, the tumor model interacts 

pH Charge Dihedral angle (ɸ) 
7.0 0 82.16 
6.4 -3 96.42 
2.0 +2 153.2 
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substantially with the lipid bilayer, which is proven by the fact that it is more stable than the 

neutral model. The RMSF analysis of the two complexes showed similar trends up to 30 ns 

(see Figure 6(b). 

 

Figure 6(a). RMSD plot for both nanoparticles. Figure 6(b) shows the RMSF variation for the two 

nanoparticles. Reprinted (modified) with permission from source141; Copyright 2023 International Journal of 

Chemical Science. 

The compactness of the lipid bilayer is measured by the area per lipid parameter, which is also 

used to assess whether the membrane is affected by an increase in penetration density. Report142 

states that the calculated APL of the pure membrane is 65.82 Å2 and varies with temperature: 

66Å2at 310 K143 and 62Å2 at 310 K144. In our situation, I found that APL does not have much 

influence when comparing APL for the experimental POPC for two models of MTX-SS-PGA 

with pH values of 7.0 and 6.4 at 313.15 K and 63.94Å2 and 63.89Å2, respectively. For the third 

model, which has a pH of 2.0 and causes the system to become unstable145, I was unable to 

determine the area per lipid, indicating that the drug delivery mechanism had begun. Compared 

to the POPC control, the density in both models was only slightly impaired, suggesting that our 

models had no significant effect on membrane density when they passed through the cell 

membrane. Quantifying the electron density profile by X-ray scattering of a liquid crystalline 

lipid membrane146 can determine the thickness of the membrane. To calculate the electron 

density profile, the following formula is used: atomic number – the partial charge of electrons 

in the centre of an atom = electron charge. The density profile for POPC (1-palmitoyl-2-oleoyl-

sn-glycerol-3-phosphocholine), phosphate (PO43-), glycerol, water, MTX and the acyl chain. 

When comparing these two models, although both show a similar trend behaviour, in contrast 

to the tumor pH model, the density of the neutral phosphate group (PO43-) is lower than 100 
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kg/ m3. This is because the nanoparticles in the neutral model have less interaction with the cell 

membrane at the top, while in the model with a tumor pH (475 kg/m3), this is because the pH 

range changes from neutral to turmeric (0 and -3 charge). In the other areas, such as MTX, acyl 

chain, POPC, and water, a fairly similar distribution was observed in both models. 

Although this is a critical calculation of the PMF curve directly related to relative solubility, 

the membrane can be calculated from drug permeation studies in the solubility–diffusion 

compound. In our situation, I used two models of MTX-SS-PGA nanoparticles with different 

pH values; our goal was to estimate the permeation/cell uptake of drug-loading nanoparticles 

from the water phase to the membrane phase for the neutral and tumor model, as shown in 

Figure 7. When using the neutral model, the free energy barrier from the surface of the water 

through the polar head groups to the membrane was greater than the free energy barrier of the 

tumor model, as shown in Figure 7. Therefore, a pH of 7.0 is preferable to a pH of 6.4. 

Therefore, the tumor model favors penetration over the neutral model. Based on the 

inhomogeneous solubility diffusion147 model developed with the help of the MD study, the 

permeation/cellular uptake of drug-loaded nanoparticles is one of the factors for the solubility 

of the molecule with water, hydrophobic lipid environment, free energy values, etc. Based on 

this assumption, the energy profile shows the concepts of a tumor model with depth energy 

minima compared to the neutral model. Although both drug-loaded nanoparticles have a depth 

energy profile at the lipid–bilayer interface, the passive transport mechanism appears to be a 

simpler inhomogeneous solubility diffusion model. I consider our quantitative comparison of 

our model with the experimental results to be a probable trend. I encountered several problems 

in the calculation of the barrier, particularly for the neutral pH model, because of the slow 

diffusivity of permeation through the lipid bilayer. Figure 7 clearly shows that both 

nanoparticles on the left side of the curve have a greater energy barrier due to the 

characterization of the permeation of nanoparticles into the hydrophobic tail of the bilayer core. 

Consequently, the energy of both nanoparticles decreased in the mass of the water phase. ΔG-

free energy rises from the surface of the water into the interior of the membrane of the 

hydrophobic tail of the double-layer centre of mass (COM). The free energy profile indicates 

that neutral nanoparticles have a harder time penetrating the double layer than those with a pH 

value of the tumor. The increase in the density profile could be due to the difference in free 

energy. How does the density profile of different regions change as a result of different domains 

in different places? The density map of the head groups was not well reduced; this indicates 
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that the stronger interaction with the tumor model was easily taken by the cell membrane. As 

the model has a charge of -3, the density of the phosphate groups is not affected by the attraction 

of opposing charges (NH4+), which may explain why there is a stronger interaction with the 

lipid head groups. Instead, the amphiphilic properties of the nanoparticles caused the neural 

group to interact with the head groups. Consequently, the head groups of the density-energy 

profile of the neural form were significantly less affected than those of the tumor form. 

Furthermore, the geometry of the structure influences cell uptake, and as in our models, a more 

cage-like structure can penetrate the models without much resistance of the bilayer. Therefore, 

in the case of energy criteria, the penetration mechanism of nanoparticles from the aqueous 

phase into the interior of the membrane is also determined by energy. In this context, cell uptake 

can influence the charge, structure, and energy requirements of NPs for the drug or 

nanoparticles of bulk water to reach the interior of the membrane. 

       

 

 

 

 

 

 

 

Figure 7. The free energy profile for the movement of a drug-loaded nanoparticle from the aqueous phase to the 

centre of the lipid bilayer. The interface of the lipid bilayer is represented together with the reaction coordinates 

from the centre-of-mass of the drug-loaded nanoparticle to the centre-of-mass of the lipid bilayer in the z-

direction. Reprinted (modified) with permission from source141; Copyright 2023 International Journal of 

Chemical Science. 

The tumor pH model penetrates the cell membrane significantly more quickly than the 

neutral model, although both models (neutral and tumor) have cage-shaped shapes. This is due 

to the distinct structure, charge, and energetics of the NP system. Due to this, the tumor model’s 

hydrogen bond is higher than the neutral model’s, indicating that this model has a greater 

solubility ratio. On the time axis, the average number of hydrogen bonds for tumor model was 

four, however, at a maximum of 8 h bonds at 300 ps. For the neutral model, the average number 
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of hydrogen bonds was three, with peaks of five occurring at 100 and 250 ps. The solubility 

and distance criteria for the phosphate and nitrogen atoms of a lipid bilayer with oxygen atoms 

of the nanoparticle describe the probability of finding one particle to another with a distance 

between r and r + dr, where the bond distance is deeper at the transition of the nanoparticle 

from the aqueous phase to the interior of the membrane. This RDF provides a singular 

description of the distance between two atoms, such as the "O" atom of the nanoparticle and 

the "P" and "N" atoms at the membrane interface. From these results, it is clear why there is a 

higher solubility and nanoparticle distance ratio with the head groups of the membrane (P and 

N atoms). This means that pH 6.4 (tumor) nanoparticles interact more strongly with the top 

layer of the head groups of the membrane than pH-neutral (7.0) nanoparticles. The enhanced 

penetrating power at the membrane interface is confirmed by the solubility ratio of the tumor 

pH nanoparticle, which is higher than the neutral one. In general, the solvation-free energy of 

an aqueous medium is significantly influenced by the magnitude of the dipole moment148. In 

our example, all three models have a significantly different magnitude of dipole moments on 

the basis of this supposition. For instance, the neutral and stomach pH models in Table 3 have 

dipole moments (Debye) of 5.3 D and 28.8 D, respectively, but the model for tumor pH has a 

dipole moment (Debye) that is substantially higher at 32.5 D. As a result of the interaction of 

high preferential dipole moments with the environment, larger dipole moments may have the 

potential for stronger free solvation energy in the aqueous phase. Because this solubility 

criterion is also a crucial element in determining cell uptake, it is assumed that the tumor pH 

model may have larger free solvation energies with water and thus be more stable when the 

cell membrane is. The stomach pH model, which is unstable due to the excessive acidity of 

medium145, comes second, and the neutral model comes last.  

 Table 3. Lists the energy gap and dipole moment parameters for different models with 

permission from source141; Copyright 2023 International Journal of Chemical Science. 

In this study, I addressed the problem of drug-loaded functionalized nanoparticles being 

taken into cells, as predicted by MD simulations, and found that the neutral pH model made 

uptake more difficult than the tumor pH model. Based on the system, the charge, structure, and 

pH Dipole moment (Debye) Energy gap (∆EH-L) 
7.0 5.3 0.13 eV 
6.4 32.5 0.06 eV 
2.0 28.8 0.09V 
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energy of NP affect cellular uptake. However, the drug may be released in an acidic 

environment145 according to the stomach pH model.   

4.3.  Case Study 3 

  The third part of my dissertation is presented in the publication "Core, coating, or corona? 

The importance of considering protein coronas in nano-QSPR modeling of zeta potential,” 

which is attached as publication [C]. In this paper, I propose a machine learning-based model 

that describes the quantitative relationship between the structure of NPs defined by the so-

called core and coating descriptors, their PC fingerprints in the biological medium defined by 

the so-called corona descriptors, and the nano-QSPR model with a value of zeta potential (ζ)-

value nano-QSPR model. The Nano-QSPR model is based on partial regression of the least 

squares using a GA-PLS genetic algorithm characterized by high external predictive power 

Q2EXT = 0.89. The GA-PLS model was developed with descriptors that describe (i) the core 

structure determined by seven different types of polymer-based NM in the range of 20 different 

sizes, (ii) the coating structure with seven different functional groups, and (iii) 80 different 

protein compositions adsorbed on the surface of the NPs. The presented study is proof of the 

concept that the zeta potential of NPs can not only be modeled from the original structure of 

the NPs themselves but should be developed as both a function of the structural properties 

determined by the core and coating of the NPs and as a biological medium determined by the 

formation of the protein corona. 

 Methodology 

For this model, 7 different types of polymers were used: polystyrene (PS), polylactic acid 

(PLA), polylactic acid-co-glycolic acid (PLGA), poly-ɛ-caprolactone (PCL), polyisobutyl-

cyanoacrylate (PIBCA), poly-hexadecyl-cyanoacrylate (PHDCA), poly-glycidyl methacrylate 

(PGMA), and 7 different coatings with functional groups, such as carboxyl functions, amine 

functions, polyglycerol, PEG, dido-decyl-dimethyl-ammonium, dextran, and heparin. 

Surrounded by 80 different protein compositions, mainly fibrinogen, albumin, etc. Based on 

adsorption, proteins are considered binary values, where 1 means that adsorption is present, 

and 0 means that there is no adsorption. The data I obtained from the literature149 focused on 

the variation of the zeta potential (ζ) [endpoint] to affect the data of the core, the coatings, and 
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the different protein compositions that play a crucial role in the system. For example, the 

protein adsorption ratio in the core and coatings was present at different nanoparticle particle 

sizes (nm) when the respective proteins were present or absent. The molecular structures of the 

polymer (core) and functional group (coating) were produced using the MOLDEN150 software. 

Since I first produced all the polymers in dimer form, and the coatings (functionalization) are 

monomers, the remaining proteins are available in the form of protein fingerprints. Geometry 

optimization was performed for all collected molecular structures using the Gaussian 09 

package117 with the functionality of B3LYP using a 6-31G base set. The optimized molecular 

structures were confirmed by vibration analysis to ensure an energy-minimized structure 

without an imaginary frequency. Geometry optimization is useful for extracting the energy-

minimized equilibrium conformation that allows full 3D parameters, such as WHIM, for 

descriptor calculations. To calculate the molecular descriptors for the nanomaterial consisting 

of cores, coatings, and proteins, I used the DRAGON151 software. These comprise 148 

descriptors, including 33 cores, 35 coatings and 80 different proteins. The data set was divided 

by increasing the order of the 20 endpoints (ζ) for the selected nanoparticle samples. 

Subsequently, the data set was divided into two types: the training set n = 14, the data for the 

development of the QSPR model, and the validation set k = 6, the data for external 

validation152,153. In this case, I used the most useful and least random method to divide our 

model into such a small data set that every third sample was included in the validation set (V). 

Furthermore, the first and last samples were randomly selected for the training set (T), while 

the second and penultimate samples were included in the validation set. This is because 

experience has shown that the first and last samples at this level have the greatest impact on 

the results of our model. Therefore, it is possible to maximize the scale of the model, which 

better predicts the prediction error of the most influential sample of compounds. 

The QSPR model is based on a mathematical description of the physicochemical properties 

of molecular compounds (y), which always depend on variations in the molecular structure (X) 

of the given compounds. In this case, with the experimental data for only a few chemicals (y). 

It is always possible to predict the properties of unknown chemicals. The information obtained 

from the molecular descriptors (X) was calculated using a suitable regression approach for the 

entire group154. The PLS method is the standard algorithm used in many QSPR perspectives. 

The main advantage of this method is that it converts the original descriptor into latent vectors 

of LVs and uses latent vectors that are multicollinear with dependent and independent variables 
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for regression.155 In this scenario, it is possible to compress the structural information into a 

smaller number of variables.155 I used the most efficient genetic algorithm method (GA) to 

select the most relevant molecular descriptors for the PLS method. The GA was proposed by 

John Holland156 to find a more comprehensive explanation and is a random search method to 

achieve optimized results. On the one hand, experimental data Y and, on the other hand, the 

matrix of molecular descriptors X were developed and validated: a QSPR model associated 

with the valuable gold standard principles of the Organization for Economic Cooperation and 

Development (OECD). In this study, the PLS approach was developed around 1975 using 

Herman Ward’s QSPR model to model complex datasets157. The basic principle of the PLS 

study can be used by combining principal component analysis (PCA), correlation analysis 

(CA), and multiple linear regression MLR158. Unlike MLR, PLS can be used to analyze data 

that are highly collinear, noisy, and independently numerous X159. In our study, the relatively 

numerous collinear descriptors with different descriptors were difficult to describe. In PLS, the 

endpoint yi of the zeta potential is described with various combinations of the previously 

automatically scaled main descriptors as independent variables x1, x2, x3..., xn, as indicated in 

Eq. 14. 

yi = b0 + b1x1 + b2x2 + … + bnxn        (14)        

Based on the best values (R2) of the main descriptors extracted from the GA. To measure 

the goodness of fit of each model, the correlation coefficient (R2, Eq. 15) and the root mean 

square calibration error (RMSEC, Eq. 16) were determined. 

   (15) 

 

Where yiobs is the i-th compound of the observed experimental value of the property of the 

training set, yipred is the i-th compound of the predicted value of the property of the training set, 

ỹobs is the mean experimental value of the property of the training set, and n is the number of 
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connections in the training set. To test this model, I checked the stability of sensitivity to the 

composition of the training set, for which I calculated the cross-validated coefficient Q2LOO 

(leave-one-out) method or the root mean square error of cross-validation (RMSECV). Both 

statistics were calculated according to Equations 17 and 18, which are presented below. 

 

  (17) 

 

where yiobs is the i-th member of the observed experimental value of the characteristic of the 

training set, yipredcv is the predicted i-th member of the cross-validated value of the characteristic 

of the training set, ỹobs is the mean experimental value of the characteristic of the training set, 

and n is the number of members present in the training set. External cross-validation was 

expressed about the (Q2EXT) external cross-validation, and the root mean square error of 

prediction (RMSEP), as shown in Equations 19 and 20. 

  (19) 

 

While yiobs is the i-th compound of the observed experimental value of the property from 
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validation set, ŷobs is the mean experimental value of the property from the validation set, and 

k is the number of connections in the validation set. The Williams plot consists of standardised 

residuals versus levers used to verify and visualise the scope AD of the QSPR models. 

According to this formula: hi = XiT (XTX), the levered value “h” for the i-th compound 

represents the distance of the chemical structure of this compound from the model. If the 

compound is included in the training set, a high leverage value (h) can strengthen the model. 

The leverage value of the new predicted compound indicates whether the compound has been 

interpolated or whether the results have been extrapolated. If the chemical value h > h* is 

critical, where h* = 3 p n-1, where p is the number of variables plus one and n is the number of 

compounds in the training set. This means that the model is extrapolated when the predicted Y 

outcomes are out of range, i.e., in the case of interpolation, when h < h*, if the model of the 

chemical's predicted Y outcomes is less reliable than other predictions160. This approach makes 

it easy to visualize both the outliers and/or compounds with high leverage and to standardize 

the remaining units that are greater than 3 standard deviation units.   

Results and Discussion 

The application of GA-PLS is to find the best combination of descriptors based on the R2 

Score. Descriptors, such as average molecular weight (core), nCsp2 (coatings), complementary 

subcomponent C1r, Apo A-I, and kininogen-1 (proteins), were determined. The final PLS 

model Eq. 21 was developed based on the 5 descriptors consisting of two latent vectors LVs. 

 

ζ = -7.857 + [16.228] AMW-PCore_desc + [- 9.559] nCsp2 – CCoating_desc + [21.720] 

CC1rsCorona_desc + [17.520] AA-ICorona_desc + [-5.392] kininogen-1Corona_desc  (21) 

 

The R2 for the training set was 0.957 (LV1 = 83%, LV2 = 12.5%) of the total variance in the 

X matrix and the Y vector, the Q2 value for the validation set was 0.894 (LV1 = 53.1%, LV2 

= 36.1%) of the covariance, and the root-means square error calibration was RMSEC = 6.832. 

The cross-validated (leave-one-out) correlation coefficient was Q2cv = 0.442, with RMSECV = 

24.509. These values are indicative of the robustness of our model. The predictive power of 

the value was also satisfied by the value of Q2EXT = 0.894, RMSEP = 7.331; there was a good 

correlation between the observed and predicted values (cross-validated values over a training 

set) in Figure 8. 
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Figure 8. A plot of experimentally observed versus predicted values of zeta potential for training and validation 

compounds for QSPR models. Reprinted (modified) with permission from source[c]; Copyright 2023 American 

Chemical Society. 

Looking at the Williams plot (Figure 9).), there were no values greater than the residual 

value of 2.5 in the training and validation sets of the compounds, with a leverage value of h* 

=1.07, and all leverage values of the compounds are lower than the critical value (h*). This 

shows that the values are within the common range of application (AD). 

 

 

 

 

 

 

 

Figure 9. Williams diagrams for the QSPR model. Reprinted (modified) with permission from source[c]; 

Copyright 2023 American Chemical Society. 

If we consider the latent distribution of LV1 values under normal load, I get a value range 

of -0.348, -0.108, and 0.578, such as the complement C1r subcomponent, Apo A-I, and 

kininogen-1 (proteins), nCsp2 (coatings) for 0.656, and AMW (core) for -0.379. The values 

clearly show that LV1 has a positive (+ve) and negative (-ve) distribution of latent vectors 
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among the 148 descriptors, 3 of which are only for proteins and the remaining 2 for the core 

and coatings. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Loading values of individual latent vectors (LVs). Reprinted (modified) with permission from 

source[c]; Copyright 2023 American Chemical Society. 

The distribution of LV1 shows that proteins and coatings are more distributed in latent space 

than in the core, but in LV2 in Figure 10, there is a positive side distribution (+ve) only in latent 

space; the higher distribution is 0.529, 0.630, and 0.340 only for proteins, 0.474 for coatings, 

and 0.127 for the core. Furthermore, the model equation shows higher coefficient values of 

21,720 cC1r, 17,520 AA-I, and -5,392 k-1, which are available only for proteins. In this 

context, all indications indicate that the zeta potential is influenced not only by the core and 

coatings, but also by the fact that proteins play an important role in the mechanisms that 

influence the zeta potential, which confirms our model161. 

According to the usual criteria, solutions with a zeta potential are very stable in the range ζ 

< -30 mV or > +30 mV162. If the values of the zeta potential (ζ) tend toward 0, the possibility 

of dispersion is very limited, which leads to the phenomenon of agglomeration/aggregation 

occurring easily. In our case, of the 20 samples, 15 were PS_CF_2, PS_Pol, PCL_D_5, 

PHDCA_PEG, PIBCA_DC, PS_CF_3, PCL_PEG, PCL_D_40, PS_CF_1, PS_AF_1, 

PS_AF_4, PS_AF_3, PS_AF_5, PLGA_DA_2, and PGMA_PEG, with values close to ζ > ±30 

mV from the obtained zeta potentials  (ζ) from -70 mV to + 50 mV. However, in the case of 
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the sample, the combination PS-NH2 has the most positive zeta potential ζ= + 50 mV. Similarly, 

PLGA-dido-decyl-dimethylammonium has a zeta potential of ζ = +45 mV. I hypothesize that 

these two compounds are likely to absorb cells due to the stronger cationic surface charge of 

NP than the anionic surface charge NP, which has the electron-donating property of the amino 

group (NH2) due to the combination of PS-NH2, which is a positively charged NP (+ve). In this 

scenario, cells would absorb more cationally charged NP than others, similar to this 

combination of PLGA-Dido-Decyl-Dimethylammonium; this phenomenon is strongly 

correlated with experimental data163. Based on the value of ζ, I can speculate that the functional 

group of coatings plays an important role in influencing the structure and properties of NPs, 

among other things. This influences the ζ164 based on these values; nanoparticles coated with 

acidic functional groups are in the range of negative zeta potential, and vice versa, those with 

basic functional groups in the range of positive zeta potential. In our case, the combination of 

PS_CF1 (150 nm) nanoparticles has a higher mode than others in terms of protein adsorption, 

while a similar combination of PS_CF2 (130 nm) and PS_CF2 (140 nm) compounds has lower 

surface adsorption because this combination of nanoparticles (PS_CF1) has a larger surface 

area relative to the volume of higher order, according to a recent report165. However, the idea 

of a negative zeta potential (-4 for PS_CF1), which can adsorb proteins that occasionally have 

very little or no absorption and are still a mystery166 in our situation, is controversial. Due to 

their charge167 and numerous interactions, the combination of PS_AF-functionalized 

nanoparticles contributes to the second-and third-largest protein adsorption. PCL_D_40 and 

PGMA_PEG nanoparticles cause protein adsorption backward due to their more complicated 

structure. 

The FPs in the study encode the structural data contained in the molecules as a bit vector. 

They consist of a series of bits, with a bit with a value of 0, indicating the absence of a structural 

protein property at this point. A bit with a value of 1 indicates the presence of a protein in a 

particular molecular property. CC1rs, the original descriptor specified in the constructed model 

as serine protease (Eq. 21), showed that the presence of serine protease influenced the zeta 

potential of the investigated PNP. Data 168(d) show that CC1r describes the stability of coated 

NPs. Furthermore, the experimental results of Donald et al169 clearly show that the presence of 

lipase and protease treatment did not restore the reactivity of coated NP. Corona-coated NPs 

are stable when functionalized in the presence of lipase and protease and prevent hemolytic 

activity and membrane deterioration when intact168(d). In the constructed nano-QSPR model 
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(Eq. 21), the second corona descriptor was associated with the alpha-amylase inhibitor (AA-I). 

Interestingly, a previous study by Sreeram et al.168(a) showed that the kinetic analysis showed 

that the presence of protease in an enzyme medium influences the biological activity of 

amylase, as evidenced by the decrease in the amylase values of Km and Vmax. Amylase is not 

denatured when the enzyme is immobilized in CuO-NP and has a high affinity for CuO168(a) 

NP. In other words, the stability of the NPs resulted from the biofunctionalization of the CuO-

NPs with the protease-amylase complex. Kininogen-1 expresses the third corona descriptor 

used in the Nano-QSPR model. Superparamagnetic iron oxide nanoparticles (SPION) with two 

different polyvinyl alcohol polymers (PVA) and dextran (DX) were used in the study by 

Sakulkhu et al.170, which showed that proteins such as kininogen-1 were positively, negatively, 

and neutrally adsorbed in NP regardless of the type of material and surface charge. However, 

the authors discovered that PVA-coated SPIONs with negative and neutral surface charges 

absorbed more serum proteins than DX-coated SPIONs, resulting in a longer blood circulation 

time for PVA-coated NPs than for DX-coated Ones171. Finally, the core and coating descriptors 

of the constructed nano-QSPR model in Equation 21 clearly show a correlation between the 

zeta potential and the size of the PNPs. Their results are consistent with those published in the 

literature77,172. Therefore, the results of Yallapu et al173 showed that there was no discernible 

change in the particle size of the NPs after incubation of the investigated NPs with human 

serum (HS). Due to human serum174, the zeta potential of NP changed simultaneously. 

Furthermore, C4-2B and Panic-1 cancer cells showed increased internalization and uptake of 

NP after incubation with human serum (HS). 

In summary, the study presented here shows that not only the functionalized NP itself but 

also the original structure can be used to simulate the zeta potential of PNP. From the 

engineered nano-QSPR model (Eq. 21), it is clear that the zeta potential should be represented 

both as a function of the structural features determined by the core and coating and as a 

biological medium formed by the corona formation of the protein (Eq. 21). Machine learning 

models are expected to control and/or shape the stability of NPs in a particular medium. 

4.4.  Case Study 4 

The fourth part of my dissertation is presented in the paper "Rapid colorimetric 

discrimination of cyanide ions - mechanistic insights and applications" (attached as 
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publication [D]). In this paper, I propose how the colorimetric response of the transition to the 

malononitrile-functionalized DMN probe prevents intramolecular charge transfer when 

cyanide ions are added, leading to the development of a Michael adduct at the site where the 

dicyanovinyl group is cyanide β-conjugated. Rapid colorimetric detection of dangerous ions 

from samples is another difficult task; based on the problem of interest, we have worked with 

an intramolecular charge-based functionalized DMN probe with cyanide ion (CN-) detection 

from many samples or water samples using the naked eye. In this context, computational and 

spectroscopic methods were used for the intermolecular interaction of the functionalized DMN 

probe with cyanide ions in the investigated solutions. In this case, we used a TD-DFT 

calculation to calculate the absorption spectra for these probes, and our results correlated well 

with the experimental data using an additional molecular electrostatic potential (MESP) map 

to understand the mechanism of charge variation of the nucleophilic addition of cyanide ions 

inside and outside the detector. Accordingly, the colorimetric detection mechanism of 

functionalized DMN in cyanide ions was established, which was validated with a paper-based 

microfluidic device that could easily detect cyanide ions in a lower-concentration solution. In 

addition, an open-source Android application and a portable 3D-printed smartphone accessory 

that can be used with the malononitrile-functionalized DMN probe for fieldwork have been 

developed. In addition, we have developed a paper-based microfluidic analyzer with a 

colorimetric functionalized DMN probe that can selectively detect cyanide ions at very low 

concentrations. 

Methodology 

The Truhlar functional approach M06-2X/6-31G and the Gaussian 09 package were used to 

calculate the geometry optimization of the malononitrile-functionalized DMN probe and the 

cyanide.117 The frequency calculations, which did not correspond to a negative imaginary 

frequency, allowed confirmation of the ultimately optimized geometry. To calculate the 

absorption spectra of the probe using the TD-DFT method, I used a variety of functionals, 

B3LYP, BP86, CAM-B3LYP, M06-2X, B3P86, and PBE, as well as the basis sets 6-31G, 6-

31+G, 6-31+G* and 6-311+G.  λmax value with empirical data for DMN, as the absorption 

spectrum produced has a large overlap with the experimental absorption spectrum in THF 

solvents. To account for the solvent environment around the molecules, SCRF-PCM-based 

M06-2X was functionally integrated with a 6-31G base set used for TD-DFT calculations. 



 

 
 57 

The time-dependent density functional theory is expressed in the Kohn-Sham diagram and 

states that only the originally occupied "N" orbitals are multiplied. How can this be sufficient 

to take into account all possible excitation processes? Here is a brief explanation: 

Complete extension of TDKS orbitals in the context of KS orbitals in Equation 22. 

 

ɸj (r, t) = ∑ 𝑎&5(𝑡)	6
578 ɸk(0) (r) (22) 

 
                

finite for k > N 
 

Due to its time-dependent potential, TDKS orbitals receive admixtures from originally 

unoccupied orbitals. 

Results and Discussion   
Calculations of density functional theory (DFT) for DMN and cyanide anions at the M06-

2X/6-31G level were carried out using the Gaussian 09 program. The dihedral angles of the 

atoms in the DMN structures that have been optimized are C8-N7-C27-C32 and C8-N7-C2-C1, 

where ɸ1 = -50ᵒ and ɸ2 = 50ᵒ respectively. Accordingly, the malononitrile-functionalized DMN 

is a non-planar structure, and the two phenyl rings are twisted out of the plane. However, after 

interaction with the cyanide ion, the dihedral angles ɸ1 and ɸ2 were changed to -44.4° and -

46.5°, respectively. In contrast, the planar character of the acceptor is also cancelled (ɸ3 = -

126.45ᵒ and ɸ4 = 55.53ᵒ). This perturbation weakens the strength of the ICT character of DMN, 

resulting in a significant blue shift in the absorption spectrum. In the ditolyl aminothienyl 

group, the electron density of DMN is centred at HOMO. However, LUMO is mainly 

concentrated in the dicyanovinyl group, indicating an ICT from the ditolyl-aminothienyl group 

to the dicyanovinyl group (Figure 11). In the presence of cyanide anions, the LUMO is 

restricted to the benzothiadiazole groups because the ICT process is slowed down. As a result, 

a blue shift was observed in the absorption spectra, confirming the calculation results and 

experimental findings. 
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Figure 11. HOMO-LUMO diagram of (a) the DMN probe and (b) the cyanide ion. Reprinted (modified) with 

permission from source175; Copyright 2022 by the Royal Chemical Society. 

How the charges are distributed in a molecular assembly can be better understood using the 

example of the molecular electrostatic potential (MESP). In this case, it is much more helpful 

to visualize the charge distribution when a foreign molecule is present. MESP analyses were 

performed to determine how the malononitrile-functionalized DMN probe and cyanide ions 

interacted under these circumstances. The MESP color diagram for DMN and DMN+CN- is 

shown. Red and blue are often used to indicate whether an electron is present in a molecule. 

However, the functionalized DMN probe in Figure 12 shows that the acceptor moiety is 

essentially neutral. This study shows that nucleophilic addition, when the cyanide ion is bound 

to the dicyanovinyl moiety, prevents conjugation of triphenylamine and the dicyanovinyl 

moiety. The experimental results confirm this conclusion. 

 

Figure 12. Map of the molecular electrostatic potential of DMN and cyanide ions (right). Reprinted (modified) 

with permission from source175; Copyright 2022 by the Royal Chemical Society. 
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When the properties of the malononitrile-functionalized DMN probe are calculated, a 

different functional set and a different basis set are used to calculate the absorption spectra. 

The absorption spectra calculated by us correspond well to the experimental spectral studies; 

the values are listed in Table 4. 

Table 4. λmax values calculated for the functionalized DMN probe based on different functional 

and basis sets at 645 nm are the experimental λmax value. With permission from source175; 

Copyright 2022, Royal Chemical Society. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, an ICT-based malononitrile-functionalized DMN probe was used for the fast 

colorimetric detection of cyanide ions in solution with the help of computer studies. Because 

the functionalized DMN probe is based on the ICT channel, its special properties enable fast 

and accurate detection. Ditolylaminothienyl and dicyanovinylene were separated by a 

 
Functional Basis set lmax 

(nm) 

 

 

 

B3LYP 

6-31G 663 

6-31+G 681 

6-31+G* 622 

6-311G 661 

6-311+G 673 

BP86 6-31G 874 

CAM-

B3LYP 
6-311G 618 

M06-2X 6-31G 635 

B3P86 6-31G 740 

PBE 6-31G 870 
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nucleophilic attack of the cyanide ion, which closed the ICT channel and caused colorimetric 

changes. DFT studies were able to locate the cyanide ion sensor mechanism. To understand 

how the malononitrile-functionalized DMN probe and cyanide ions interact, I conducted an 

MESP study. 
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5. Conclusions and future perspectives  

In my dissertation, I describe the application of newly functionalized material preparations 

in real life. Our strategic modeling approach will help to design new compounds. The ultimate 

goal of our study was to improve the functions and properties of our compounds compared to 

those of previous compounds in their applications. In conclusion, I modeled newly effective 

Schiff-based functionalized pyrene derivatives that were mainly effective against antibacterial 

infections compared to similar compounds. I also developed a functionalized probe that could 

easily detect cyanide CN- from a variety of water samples. Our modeling method could be 

useful for extracting toxic ions very quickly. Later, I turned to nanoscale projects that focused 

mainly on characterizing the physicochemical properties of functionalized nanoparticles with 

our nano-QSPR method, as in the case of nanoparticles in the blood, where the proteins on the 

surface of the nanoparticles are adsorbed, especially the albumins and globulins, as shown in 

the experimental report. Therefore, we focused on the proteins covered by the nanoparticles, 

which led to the formation of a protein corona. This protein corona influences the 

physicochemical properties of the zeta potential, which vary for different types of 

nanoparticles, as this surface charge or zeta potential is a very influential factor in the cell 

uptake and toxicity of the materials. Furthermore, I have worked on the drug delivery 

mechanism of drug-loaded functionalized nanoparticles with variable criteria that influence 

cell uptake mechanisms at different pH levels, such as neutral, tumor, and stomach pH ranges 

of 7.0, 6.4, and 2.0. In this work, I explain how the effects of the charge, geometry, and 

energetics of functionalized NPs affect cell uptake at different pH values. Based on these facts, 

I observed that the pH range of the stomach of nanoparticles, which destabilized the system by 

a more acidic medium, led to the delivery of the drug through the mechanism of glutathione 

attacking the disulfide bond and releasing the drug at the exact site, based on the experimental 

evidence and the short uptake of the tumor than the neutral pH model. 

Based on the above conclusion, we hypothesized that our studies could help to develop new 

compounds with different perspectives when they interact with plasma proteins and that the 

developed material would be able to detect harmful ions with the naked eye. Our Nano-QSPR 

method is the first attempt to test the zeta potential of untested chemicals. Based on the 

mechanism of drug delivery, our method could help to develop new drug-loaded functionalized 

nanoparticles to improve drug development and delivery. 
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I hope that my study will be useful in the search for new functional materials, from organic 

molecules to nanoscale materials, by using different and reliable computer tools to predict new 

properties with improved efficiency factors in both organic and nanoscale materials. 

In summary, I have developed a sequential approach to computer tools, that predicts new 

functional materials that are useful for the most important human applications in daily life, 

including the fact that the nano-QSPR method based on machine learning helps predict the zeta 

potential of untested compounds. 

As an extension of our work, there is the possibility of establishing a valuable protocol for 

screening drug molecules based on free-energy binding values to proteins and the analysis of 

energy gaps, leading to the discovery of potential drug molecules that more strongly influence 

our expected properties. 

Second, I have developed new materials using a cost-effective method that can detect not 

only ions but also toxic metal ions, which helps remove heavy metal ions from the sample from 

an ecological point of view. 

Third, my next goal is to work on PC influences on the physicochemical characterization of 

nanomaterials. In particular, I will focus on pH and how pH is affected when functionalized 

nanomaterials are present in the human body. Finally, I will develop new drug-loaded 

functionalized nanoparticles that are less toxic and have lower concentrations to increase the 

effectiveness of the drug and use our model to improve drug delivery based on various criteria, 

along with the methodology of drug development.  
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