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Preface

I am delighted to present this dissertation, which comprises an in-depth investigation of the 

immunopeptidome. The research presented in here draws on my passion for cancer research 

and my commitment to advancing our understanding of the mechanisms underlying tumor-

immune interactions. 

The presented work builds upon two previous publications of mine, which have been 

incorporated into Chapters 2 and 3, respectively. In accordance with the plagiarism check 

policies of the University of Gdansk, both chapters were embedded into the dissertation as is, 

and each has its own bibliographic references. 

Chapter 2, titled "The Immunopeptidome from a Genomic Perspective: Establishing the Non-

Canonical Landscape of MHC Class I-Associated Peptides" has been accepted for publication 

in Cancer Immunology Research. This chapter delves into the non-canonical landscape of 

MHC class I-associated peptides from a genomic perspective. 

Meanwhile, Chapter 3, titled "HLA-Glyco: A Large-Scale Interrogation of the Glycosylated 

Immunopeptidome" was previously published as a pre-print on bioRxiv (DOI: 

https://doi.org/10.1101/2022.12.05.519200). This chapter explores the glycosylation 

landscape of MHC class II-associated peptides, providing a comprehensive analysis of the 

glycosylated immunopeptidome. 

I am grateful to my supervisors, colleagues, and collaborators for their guidance and support 

throughout this research endeavor. I hope that this dissertation will contribute to the 

advancement of cancer immunology and inspire future research in this exciting field. 

Georges Bedran. 
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Abstract in English 

The identification of cancer neoantigens is propelling a new era of vaccines and antigen-

specific T cell therapies. Mass spectrometry has been the sole high-throughput approach for 

characterizing the physical presence of neoantigens in cancer. Early efforts to investigate 

antigen presentation focused on combining publicly available studies to query canonical MHC-

associated peptides (MAPs). However, the profiling of non-conventional antigens, such as 

non-canonical (i.e., translation of non-coding regions) and post-translationally modified MHC-

associated peptides, remains limited and is rarely clearly understood. 

In Chapter Two, I developed a proteogenomic pipeline based on deep learning de novo mass 

spectrometry to enable the discovery of non-canonical MHC-associated peptides (ncMAPs) 

from non-coding regions. Considering that the emergence of tumor antigens can also involve 

post-translational modifications, an open search component was included in the pipeline. 

Leveraging the wealth of mass spectrometry-based immunopeptidomics, I analyzed 26 MHC 

class I immunopeptidomic studies of eleven different cancer types. I validated the de novo 

identified ncMAPs, along with the most abundant post-translational modifications, using 

spectral matching and controlled their false discovery rate (FDR) to 1%. Interestingly, the non-

canonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a 

projected population coverage of 54.85%. I revealed an atlas of 8,601 ncMAPs with varying 

levels of cancer selectivity and suggested 17 cancer-selective ncMAPs as attractive targets 

according to a stringent cutoff. 

In Chapter Three, I developed a glyco-immunopeptidomics method using the ultrafast 

glycopeptide search of MSFragger and several layers of stringent control of false discovery 

rates. I performed a harmonized large-scale analysis of eight publicly available studies to 

produce a resource containing over 3,400 HLA class II glycopeptides from 1,049 distinct 
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protein-glycosylation sites. I revealed characteristics in HLA glycopeptides, including high 

levels of truncated glycans, conserved HLA-binding cores across the 72 studied HLA class II 

alleles, and a different glycosylation positional specificity between the classical allele groups. 

With the goal of supporting further development in the nascent field of glyco-

immunopeptidomics, I provided a reproducible glyco-immunopeptidomics pipeline within the 

fragpipe suite along with a web resource for ease of access. 

In Chapter Four, I conclude this thesis with a summary of my findings, a discussion of the 

unmet needs in the field, and my vision of the research to come. 

The establishment of both the non-canonical and glycosylated landscapes of MHC-associated 

peptides within the framework of my PhD represents a milestone towards understanding the 

complexity of the immunopeptidome and paves the way for broader therapeutic research 

against cancer. 
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Abstract in Polish 

Identyfikacja antygenów nowotworowych rozpoczyna nową erę szczepionek 

przeciwnowotworowych i terapii z wykorzystaniem antygenowo-specyficznych limfocytów T. 

Spektrometria mas jest natomiast obecnie jedyną metodą, która umożliwia 

scharakteryzowanie fizycznej obecności antygenów nowotworowych. 

Wczesne badania prezentacji antygenów wykorzystywały głównie publicznie dostępne dane 

w celu identyfikacji kanonicznych peptydów prezentowanych przez cząsteczki MHC (MAP). 

Jednakże profilowanie niekonwencjonalnych antygenów, takich jak peptydy niekanoniczne 

(np. będące produktem translacji regionów niekodujących) czy peptydy zmodyfikowane 

potranslacyjnie, pozostaje ograniczone i nie jest w pełni scharakeryzowane. 

W rozdziale drugim opisałem zaprojektowany przeze mnie proteogenomiczny system 

przetwarzania potokowego oparty na spektrometrii mas de novo z głębokim uczeniem, który 

umożliwia wykrycie niekanonicznych peptydów pochodzących z regionów niekodujących 

prezentowanych przez cząsteczki MHC (ncMAP). Biorąc pod uwagę, że antygeny 

nowotworowe mogą również powstawać w wyniku modyfikacji potranslacyjnych, w systemie 

tym uwzględniono element wyszukiwania otwartego. Wykorzystując szerokie zasoby 

publicznych baz danych , przeanalizowałem 26 badań, które z zastosowaniem spektrometrii 

mas identyfikowały peptydy prezentowane przez MHC klasy I w 9 różnych typach 

nowotworów. Zweryfikowałem zidentyfikowane de novo ncMAP, wraz z najliczniejszymi 

modyfikacjami potranslacyjnymi, używając dopasowania widmowego i ograniczając 

oczekiwaną proporcję błędów I rodzaju wśród wyników istotnych statystycznie (ang. false 

discovery rate; FDR) do 1%. Wartym podkreślenia jest fakt, że niekanoniczna prezentacja 

była 5-krotnie częstsza w przypadku HLA- A03, przy przewidywanym pokryciu w populacji na 

poziomie 54,85%. Ponadto, przedstawiłem zbiór 8601 ncMAP o różnych poziomach 

specyficzności dla nowotowrów i wskazałem, zgodnie z rygorystycznym punktem odcięcia, 17 

ncMAP specyficznych dla nowotworów, które stanowią potencjalne cele terapeutyczne.  
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W rozdziale trzecim przedstawiłem nową metodę glikoimmunopeptydomiczną wykorzystującą 

ultra szybkie wyszukiwanie glikopeptydów za pomocą narzędzia MSFragger oraz 

przedstawiłem kilka etapów zapewniających ścisłą kontrolę błędów I rodzaju wśród wyników 

istotnych statystycznie (FDR). Przeprowadziłem zharmonizowaną, zakrojoną na szeroką 

skalę analizę 8 publicznie dostępnych badań, aby utworzyć zasób zawierający ponad 3400 

glikopeptydów prezentowanych przez anygeny HLA klasy II wywodzących się z 1049 różnych 

regionów glikozylacji białek. Przedstawiłem ponadto cechy charakterystyczne dla 

glikopeptydów prezentowanych przez HLA, wśród których często obserwuje się skrócone 

glikany, peptydy z konserwatywnym rdzeniem wiążącym HLA ( zidentyfikowane w 72 

badanych allelach HLA klasy II) oraz różną swoistość pozycji glikozylacji. Mając na celu 

wspieranie dalszego rozwoju glikoimmunopeptydomiki, udostępniłem system włączony do 

pakietu fragpipe umożliwiający powtarzalną analizę glikoimmunopeptydomu. System jest 

połązony z zasobami internetowymi, co ułatwia dostęp.  

W rozdziale czwartym zakończyłem dysertację podsumowaniem wszystkich obserwacji, 

dyskusją na temat niezaspokojonych potrzeb medycznych w przedstawionej dziedzinie oraz 

wizją przyszłych badań.Jestem przekonany, że opracowana w ramach niniejszej pracy 

doktorskiej sygnatura niekanonicznych oraz glikozylowanych peptydów prezentowanych 

przez cząsteczki MHC stanowi kamień milowy w kierunku zrozumienia złożoności 

immunopeptydomu oraz toruje drogę do szerszych badań nad terapiami 

przeciwnowotworowymi.  
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Chapter 1: Introduction 

The major histocompatibility complex (MHC) 

The capacity of the immune system to differentiate between self and non-self is crucial owing to 

the continuous exposure of our bodies to diseases and pathogens. The ability to differentiate 

between the two is governed by the presentation of antigens and their recognition by the immune 

cells. The Major Histocompatibility Complex (MHC), also known as the Human Leukocyte 

Antigen (HLA) in humans, is a group of genes that when translated into proteins, bind 

intra/extracellular components for immune monitoring1. The MHC system is responsible for 

antigen presentation through two classical pathways, termed class I and II. 

MHC class I 

To begin with MHC class I, all nucleated cells present peptides derived from cytosolic protein 

turnover at the cell surface (see Figure 1a). Under healthy and diseased conditions, these 

proteins are degraded by the proteasome. The resultant peptides can be further trimmed by 

several cytoplasmic peptidases such as tripeptidyl peptidase II, leucine aminopeptidase, and 

bleomycin hydrolase. These peptides are then transported to the endoplasmic reticulum (ER) 

by a transporter associated with antigen processing (TAP). Through transient interactions with 

the chaperones calnexin, calreticulin, and tapasin, the peptides are further processed by ER-

resident aminopeptidase ERAP1 and ERAP2 and loaded onto the nascent HLA class I heavy 

chain. This MHC-I-peptide complex passes through the Golgi apparatus for glycosylation, 

enters a secretory vesicle, and fuses with the cell membrane. This process is referred to as 

MHC class I presentation and serves as immune monitoring of the self, where CD8+ T 

lymphocytes circulate and attack cells presenting foreign MHC-associated peptides, referred 

to as antigens2.  
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The MHC Class I system is composed of three classical genes (HLA-A, -B, and -C) and some 

non-classical genes such as HLA-E and -G. Unlike classical genes, HLA-E is an oligomorphic 

HLA molecule that has just few alleles3 (i.e., not polymorphic). HLA-G is primarily expressed 

in trophoblasts, which develop in the placenta during pregnancy. Particularly in pregnancy, 

HLA-G prevents the fetus from being identified as a foreign entity by the mother's immune 

system. HLA-G is also expressed in some cancers and has been associated with tumor 

immune escape4. In summary, both HLA-G and -E have a small peptide-binding repertoire 

and are involved in regulating the immune response. 

MHC class II 

In contrast, antigen-presenting cells (APC), such as monocytes, macrophages, and dendritic 

cells, incorporate extracellular proteins through phagocytosis or endocytosis of B cells (see 

Figure 1b). In the endosome, proteins are trimmed into peptides by either proteases or non-

enzymatic cleavage and interact with MHC II molecules. MHC class II molecules are initially 

Figure 1: Antigen processing and presentation pathways. a) MHC class I processing and 
presentation pathway within nucleated cells. b) MHC class II processing and presentation pathway 
within antigen processing cells such as monocytes, macrophages, and dendritic cells. Created with 
BioRender.com. 
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synthesized in the endoplasmic reticulum, where they assemble with the invariant chain. This 

chain is important for stability, appropriate folding, blocking cellular peptide binding, and export 

into specialized endosomes/lysosomes. The class II-associated invariant chain peptide (CLIP) 

is created by proteolytic degradation of the invariant chain by cathepsin and resides in the 

MHC groove as a replacement for the associated peptides. The interchange of CLIP with high-

affinity peptides is facilitated by several conditions such as low pH, endosomal proteases, and 

support from an unconventional MHC class II protein, HLA-DM. The HLA class II-peptide 

complex is then delivered to the cell surface by the trans-Golgi apparatus for presentation to 

the cognate CD4+ T lymphocytes5.  

The expression of MHC class II-associated antigens in various normal tissues has been 

examined with the help of specific monoclonal antibodies, demonstrating that these antigens 

are more widely distributed in normal tissues than previously thought. In addition to APC, 

various tissues can constitutively express MHC class II antigens, as evidenced by the weak 

to moderate expression of HLA class II antigens in skin, breast, lung, and renal tissues6–9. 

MHC molecules and MHC-associated peptides 

HLA class I and class II molecules are composed of two polypeptide chains that come together 

to form a structure that can accommodate short peptides. In class I, the immunoglobulin 

superfamily α-chain and β2-microglobulin form a heterodimer known as a class I molecular 

complex. The HLA molecule is composed of three extracellular domains (α1, α2, and α3) with 

a cytoplasmic anchor that traverses the cell membrane. These α chains are encoded by the 

highly polymorphic A, B, and C genes. In class II, two α-and two β-noncovalently linked and 

non-identical transmembrane glycoprotein chains make up the molecule. These chains are 

coded by the highly polymorphic DP, DQ, and DR genes1. 

MHC-associated peptides are set in the peptide-binding grooves on the top surface of HLA 

molecules. They range from 8 to 11 amino acids long for class I and 13 to 25 amino acids long 
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for class II. They are held within the grooves by conserved binding motifs that can vary 

between HLA molecules. The major structural variations between the two MHC classes reside 

in the peptide-binding groove being closed at both ends for class I compared to being open at 

both ends for class II. 

Cancer and the immune system 

Cancer is a disease characterized by adaptive evolutionary growth. As the human body 

contains trillions of cells, cancer can develop in nearly all tissues. Human cells typically 

proliferate and divide to create new cells as the body requires them. Cells die when they age 

or become damaged and are replaced by new ones. When this routine process fails, aberrant 

cells begin to proliferate and develop into tumors that can be either cancerous (malignant) or 

non-cancerous (benign). Cancer is a dynamic disease characterized by genetic and epigenetic 

mutations as well as hereditary changes in gene expression that are transmitted to subsequent 

generations of cells as the tumor progresses. The most well-understood changes involve 

alterations in the genes that control cellular behavior, particularly how they grow, divide, and 

survive in their local microenvironment. Cancer-causing genetic alterations can result from 

many different environmental factors including (I) cell division mistakes; (II) DNA damage from 

exogenous exposure to substances such as tobacco smoke, bile acid reflux, or UV light; and 

(III) pathogens such as Human Papilloma Virus, Epstein Barr Virus, and fungal infections.

Furthermore, cancer has a hereditary component, in which the passed-on alleles of certain 

genes can confer a predisposition to the disease.  

The eight hallmarks of cancer comprise the acquired capabilities for sustaining proliferative 

signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, 

inducing/accessing vasculature, activating invasion and metastasis, reprogramming cellular 

metabolism, unlocking phenotypic plasticity, non-mutational epigenetic reprogramming, 

polymorphic microbiomes, senescence, and avoiding immune destruction10–12. Cancer 
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treatment remains challenging owing to a variety of factors, such as the immune-dependent 

remodeling of cancer tissue into an adaptive state, significant heterogeneity, and numerous 

genetic alterations. In addition, cancer can affect a variety of organs and is not static. Instead, 

it develops and advances over time, accumulating additional mutations. Surgery, radiation, 

and chemotherapy are the three types of traditional cancer treatments. Despite their adverse 

effects on healthy tissues, radiation therapy and chemotherapy remain crucial parts of cancer 

treatment today. Several novel approaches have emerged that offer significant promise for 

cancer therapy. These include photodynamic therapy (destroying tumor cells using a 

photosensitizing drug activated by specific wavelengths of light), photothermal therapy (using 

a photothermal agent activated by light-producing heat to damage tumor cells), nanoparticle 

drug therapy (tumor-directed drug delivery), and gene therapy (immunotherapy and 

vaccines)13. 

Prior to the advent of immune checkpoint inhibitors (ICI), immunotherapy was based on very 

toxic and mostly ineffective immunocytokines such as interleukin-2 and alpha-interferon14. 

Immune checkpoints are essential for the preservation of self-tolerance (i.e., prevention of 

autoimmunity) and tissue protection, while the immune system responds to pathogenic 

infection under normal physiological conditions15. Malignancies found ways to evade antitumor 

immune responses by dysregulating immune checkpoint proteins forcing immune 

resistance16. The 2018 Nobel Prize in Medicine was awarded to James Allison and Tasuku 

Honjo, two immunologists who were responsible for drafting the idea of ICI-based 

immunotherapy, illustrating its major success17. Allison observed that cytotoxic T cell antigen 

4 (CTLA-4), a protein encoded on the surface of T lymphocytes, blocks T cell function, and 

that once it is blocked, cancer cells are successfully eliminated in mice18. Similarly, Honjo 

showed that programmed cell death protein 1 (PD-1), like CTLA-4, functions as a T cell down-

regulator, but operates via a different mechanism19. Unlike previous studies, this new principle 

targets the immune system, instead of cancer cells, by reactivating the immune response. The 
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first approved drug against CTLA-4 was released in 2011 (ipilimumab20) with very convincing 

outcomes. Next, anti PD-121 monoclonal antibodies (nivolumab and pembrolizumab) and anti-

PDL1 antibodies (atezolizumab and durvalumab) were developed, marking a major step in 

cancer treatment. 

ICI have made significant advancements in cancer treatment; however, few challenges 

continue to limit its development, since the response rate varies from 10% to 50% with certain 

solid tumor types. These challenges stem in part from the tumor microenvironment. As T cells 

are often the primary targets of immune checkpoint inhibitors, effector T cell infiltration in solid 

tumors is a unique characteristic of patients who respond well to therapy. As a result, only a 

small percentage of patients with solid tumors benefit from immune checkpoint inhibitors. The 

remaining cancer patients are unlikely to respond to single-agent therapy due to a scarcity of 

targets, as their tumors appear to be depleted of effector immune cells. Immunotherapy based 

on cancer vaccines may overcome the resistance of some malignancies to immune checkpoint 

inhibitors. With cancer vaccination enhancing effector T-cell infiltration into tumors and ICI 

releasing the brakes, combination immunotherapy unites the best qualities of each 

immunotherapy technique22,23. However, optimizing the set of ‘neoantigens’ to pursue vaccine 

development remains a challenge. 

Selection of neoantigen candidates 

Currently, antigenic peptides can be detected both indirectly through predictive genomics and 

directly through immunopeptidomics.  

Indirect identification of MHC-associated peptides by next-generation 

sequencing 

Owing to the significant decrease in cost and time required for next-generation sequencing 

(NGS), many studies focusing on cancer neoantigens have utilized in silico prediction tools. 
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The indirect identification of neoantigens can be succinctly described using the following steps: 

(I) NGS data comparison between normal and tumor samples to identify tumor-specific genetic

variants24,25 (i.e., mutation calling), (II) HLA typing26,27, (III) neoantigen prioritization based on 

HLA binding affinity28–30, and (IV) validation of immunogenicity31. Considering the highly 

polymorphic nature of the MHC system32, HLA typing is one of the most crucial steps for 

determining the mixture of HLA alleles present in a sample. Next, the identification and 

prioritization of neoantigens in silico heavily relies on predictive models to shortlist a 

presentable set of mutated peptides according to the HLA genotype of the sample. Lastly, in 

addition to MHC presentation, neoantigens need to be immunogenic, that is, effectively 

recognizable by T cells to trigger an immune response. These approaches are often validated 

using the ‘tetramer assay”, which can detect T cells present in the human body that can bind 

to such mutated peptides. Although fast and inexpensive, indirect methods lead to suboptimal 

neoantigen prioritization owing to the discrepancy between the theoretically possible MHC-

associated peptides and the experimentally presented ones33. Moreover, indirect methods do 

not allow going beyond translational events to monitor post-translational ones. 

Direct identification of MHC-associated peptides by mass spectrometry 

In addition to neoantigens resulting from DNA mutations, direct identification of MHC-

associated peptides by mass spectrometry allows the detection of neoantigens from 

alternative sources, such as peptides bearing post-translational modifications34–36 and 

peptides originating from regions beyond the boundary of the known coding genome37–42. 

Nevertheless, this method has not yet been widely adopted in vaccine development, for 

technical reasons. The fundamental idea behind MS is that by manipulating ions with electric 

and/or magnetic fields in vacuum, one may determine the masses of the analytes. The mass 

of an analyte can be determined in a variety of ways, such as by measuring the oscillating 

image current produced by ions orbiting in an electrostatic trap43 (for Orbitrap-type analyzers) 
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or the amount of time it takes for an ion to travel a specific distance (for time-of-flight mass 

analyzers), which depends only on the mass-to-charge ratio (m/z) of the ion44. However, m/z 

values are typically insufficient to identify an analyte. Tandem mass spectrometry (MS/MS or 

MS2) addresses this issue by carrying out numerous rounds of mass analysis to obtain more 

information regarding the analyte. Following the analysis of an intact analyte, the analyte is 

broken up most frequently by purposeful collisions with inert gas molecules, and the broken-

up molecules are then mass-measured. A molecular fingerprint, known as the MS/MS 

spectrum, can provide details regarding the substructures of a molecule. Tandem MS 

facilitates peptide identification by providing sequence information in an MS/MS spectrum. 

Peptides are broken down into fragment ions that reveal the amino acid sequence, thus 

creating complementary ions that appear as charged entities. This occurs repeatedly at 

varying locations on the peptide backbone, yielding varying ion m/z values corresponding to 

amino acid masses. These predictable fragmentation paths enable peptide sequence 

analysis. 

A technique that scans MS/MS spectra for peptide sequences is the foundation of peptide 

identification. These can be divided into two groups: de novo search algorithms and database 

search algorithms45; however, many methods combine aspects from both. De novo algorithms, 

such as PEAKS46 and DeepNovo47,48, analyze the peaks in the spectrum, determine how far 

apart the peaks are from one another (which might correspond to the masses of the amino 

acids), and then determine how closely the spectrum matches the theoretical peptide. Search 

methods for databases such as MS-GF+49 and MSFragger50 rely on a reference database of 

protein sequences that are anticipated to be in the sample. Regardless of the algorithm, the 

MS/MS spectra are scored against hypothetical ones with known peptide sequences to 

evaluate their closeness. The most evident method for generating such a set of labeled 

theoretical spectra is by non-specific cleavage of the proteome51,52, that is, non-specific 

cleavage of known proteins at every peptide bond. 

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 8



Figure 2: General workflow for purification of MHC-associated peptides through 
immunoprecipitation. Created with BioRender.com. 

Mass spectrometry is the most widely used technique for identifying MHC-associated peptides 

(MAPs) at the immunopeptidome level; that is, a subset of processed and presented 

subsequences of proteins at the cell surface53. MAPs are typically isolated using 

immunoprecipitation (IP) columns after cell lysis, as illustrated in Figure 2. IP columns are 

usually loaded with a pan MHC class I or II antibody to capture the MHC-peptide complexes. 

Next, peptides are eluted with acid and purified by HPLC from other molecules including Beta-

2-Microglobulin and α-chains, as the last step before tandem mass spectrometry profiling54.

Promising sources of antigens 

Antigens are the main components of cancer vaccines, with the aim of eliciting an immune 

response while limiting their toxicity to healthy tissues. A vital step in their development is to 

identify and focus on relevant epitopes or antigens that are present only in cancer cells. Tumor 

antigens can arise from multiple sources55, including (I) genomic variants such as SNVs, 

INDELs, gene fusions, and structural variants; (II) transcriptomic variants such as alternative 

splicing and non-coding regions; (III) and proteomic variants such as PTMs. 
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Genomic variants 

Single nucleotide variants (SNVs) are non-synonymous point mutations that arise from various 

causes, including errors in DNA replication, exposure to exogenous or endogenous mutagens, 

ineffective DNA repair, and errors in DNA replication. SNVs, which are the most widespread 

genomic level mutations, have been extensively studied, as they are thought to be the most 

promising source of tumor-specific antigens. However, it has been reported that (I) only a 

small fraction of SNVs in tumor cells can yield antigenic peptides, (II) they are mostly patient-

specific, and (III) their landscape is highly variable between cancer types and even cancer 

stages. 

INDELS refers to the insertion and/or deletion of nucleotides at the genomic DNA level, and 

can induce translation in alternative frames. Neoantigens derived from INDELs are more 

common in malignancies with high microsatellite instability (e.g., colorectal and gastric) owing 

to deficiencies in the DNA mismatch repair (MMR) processes56. In addition, they are excellent 

candidates for microsatellite unstable cancers because of their recurrency57. Gene fusions and 

structural variants are similar to INDELs but operate on much larger scales. However, they 

require more sophisticated pipelines and are less well studied.  

Transcriptomic variants 

Post-transcriptional events have the potential to expand the neoantigen space. The variety of 

tumor neoantigens is influenced by many messenger RNA processing mechanisms, such as 

alternative splicing events, RNA editing, and the translation of non-coding regions. 

Alternative splicing 

Neoantigens could originate from alternative splicing through mutations58 at either cis-acting 

elements in the precursor mRNA or tans-acting alterations in a splicing factor. This leads to 
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formation of sequences with alternative 5' and 3' splice site determination, intron retention, 

exon skipping, and mutually exclusive exons59. 

Non-coding regions 

Screening for neoantigens primarily resulting from mutations in exonic areas is restricted to 

2% of the complete human genome because 91% of tumor mutations occur in the non-coding 

regions of genes. Many regions previously classified as non-coding have been found to have 

coding functions. The majority of these non-canonical events result from atypical translation 

events, rather than mutations. These aberrantly expressed antigens can be shared between 

tumor patients and are more common than neoantigens derived from the coding regions. 

The translation of supposedly non-coding sequences or coding sequences into a non-

canonical reading frame is an example of a non-canonical translation event. These typically 

involve non-canonical initiation, elongation, and termination events. In summary, a non-

canonical initiation event occurs when the ribosome initiates translation at a codon other than 

the primary AUG codon, such as a non-primary AUG codon, or at a start codon that is close 

by (CUG, UUG, or GUG), as a result of a start codon scan-through60, translation re-initiation, 

or the presence of an internal ribosome entry site (IRES) on the messenger RNA61,62. When a 

frameshift occurs incidentally during elongation and results in the translation of a portion of 

the protein in a non-canonical reading frame, it is referred to as a non-canonical elongation 

event. It has already been noted that some slippage-prone regions found in transcripts can 

facilitate a process known as programmed ribosomal frameshift63,64. Although uncommon, 

non-canonical termination events are possible and include a stop codon read-through65 

(certain stop codons, such as UGA and UAG, seem to be leakier than UAA) or a ribosomal 

frameshift at the stop codon. These non-canonical translation products are have been 

detected to be presented by the MHC system and found to illicit immune response in tumors37–

42,66,67. 
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Proteomic variants 

Proteins can undergo significant co- and post-translational modifications (PTM) to control their 

activity. These PTMs are crucial for each phase of the protein lifetime and result in many 

possible proteoforms influencing the dynamic interactions of the proteome. MHC-associated 

peptides carrying PTMs, such as phosphorylation35,68, citrullination, ubiquitination69, and 

glycosylation70, have been reported to alter antigen presentation and recognition. The ability 

of T lymphocytes to distinguish between modified and unmodified epitopes may be due to T 

cell escape from central tolerance in the thymus71. PTMs may also modify proteolytic activity 

and, in turn, affect how the MHC system presents peptides36. 

Thesis outline 

One milestone in cancer vaccine development is the identification of effective tumor antigens 

that elicit tumor rejection in clinical settings. With this aim in mind, I implemented state-of-the-

art mass spectrometry pipelines for the characterization of alternative sources of tumor 

antigens. In Chapter 2, I present the computational development of a mass spectrometry-

based pipeline for characterizing non-canonical MHC-associated peptides (ncMAPs). This 

chapter introduces the importance of ncMAPs and the challenges hindering their large-scale 

assessment. Next, it describes the collected data from online available studies and, 

subsequently, the revealed characteristics of ncMAPs across cancer types along with their 

cancer selectivity. With the same aim in mind, I optimized a state-of-the-art mass spectrometry 

pipeline for the characterization of glycosylated MHC-associated peptides. In Chapter 3, I 

elaborate on the computational difficulties in analyzing glycosylated MHC-associated peptides 

and the bottlenecks in their large-scale assessment. Next, I describe the data collected from 

online-available studies and, subsequently, the characteristics of the revealed glycosylated 

peptides. 
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Chapters 2 and 3 serve the purpose of understanding different landscapes of MAPs across 

tissues and genomic origins. They shared a commonality of prerequiring few technical aims in 

the order below: 

Key technical aims 

Aim 1: Collect publicly available MS datasets and their metadata. 

Aim 2: Develop large-scale computational MS pipelines to enable the interrogation of 

many immunopeptidomic datasets. 

Aim 3: Benchmark the pipelines against publicly available datasets for quality control. 

Aim 4: Perform data exploration and visualization of the MS search results. 

Key biological aims 

With the technical aims achieved, this thesis fills a series of gaps in our knowledge of the 

immunopeptidome outlaid below: 

1. gap 1: Establishing the landscape of non-canonical MHC class I-associated peptides

(ncMAPs) in a plethora of cancer types and assessing their tumor selectivity.

I. What are the sources of ncMAPs in terms of their biological mechanisms and

genomic origin?

II. Are ncMAPs preferentially presented by specific HLA types or subtypes?

III. Are ncMAPs common or shared among different cancer types?

IV. To what degree are ncMAPs present in healthy tissues versus in tumors?

2. gap 2: Establishing the landscape of post-translationally modified MHC class I-

associated peptides (ptmMAPs) in various cancer types.

I. To what degree is the immunopeptidome post-translational modified?

II. Can PTMs be potential targets for cancer treatment?
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3. gap 3: Establishing the landscape of glycosylated MAPs.

I. What are the most common glycan types on MAPs?

II. Where are glycans located relative to the MHC peptide-binding pocket?

III. Are glycosylated MAPs preferentially presented by specific HLA types or

subtypes?

Chapter 4 concludes this thesis with a summary of the findings, discussion around the unmet 

needs in the field and my vision of the research course over the next decade. 
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Synopsis: Identification of tumor-specific antigens is crucial for developing effective cancer treatments. The authors use MS de 

novo and proteogenomics to generate an atlas of non-canonical MHC class I-associated peptides, providing potential targets 

for cancer T-cell therapies or vaccines. 
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Abstract 

Tumor antigens can emerge through multiple mechanisms, including translation of non-coding 

genomic regions. This non-canonical category of tumor antigens has recently gained attention; 

however, our understanding of how they recur within and between cancer types is still in its 

infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo 

mass spectrometry to enable the discovery of non-canonical MHC class I–associated peptides 

(ncMAPs) from non-coding regions. Considering that the emergence of tumor antigens can 

also involve post-translational modifications, we included an open search component in our 

pipeline. Leveraging the wealth of mass spectrometry–based immunopeptidomics, we 

analyzed data from 26 MHC class I immunopeptidomic studies across 11 different cancer 

types. We validated the de novo identified ncMAPs, along with the most abundant post-

translational modifications, using spectral matching and controlled their false discovery rate 

(FDR) to 1%. The non-canonical presentation appeared to be 5 times enriched for the A03 

HLA supertype, with a projected population coverage of 54.85%. The data reveal an atlas of 

8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective 

ncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the 

combination of the open-source pipeline and the atlas of ncMAPs reported herein could 

facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine 

development. 
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Introduction 

The accelerated adoption of mass spectrometry (MS) for high-throughput profiling of 

immunopeptidomes in cancer has led to several discoveries. Leveraging these studies to 

improve cancer immunotherapy involves connecting the wealth of immunopeptidomic data to 

immunogenomics, where the goal is to carefully choose effective targets for T-cell therapies 

or vaccine development. 

The discovery of cancer antigens has mainly focused on mutated tumor-specific antigens 

(neoantigens) arising from patient-specific somatic mutations. It has been shown that only a 

small percentage of the numerous non-synonymous mutations in a tumor actually produce 

neoantigens (1,2). The challenging task of identifying those that can evoke a suitable tumor 

rejection was addressed by Ebrahimi-Nik et al. (3). Using a combination of genomics, shotgun 

MS immunopeptidomics, and targeted MS, they found that (I) MS-identified neoepitopes are 

a rich source of tumor rejection–mediating antigens, (II) neoantigens derive from passenger 

mutations, and (III) binding affinity and CD8+ T-cell responses in tumor-bearing hosts are poor 

predictors of antitumor activity in vivo. Although neoantigens confer an advantage to patients 

undergoing immunotherapy (4), their patient-specific nature is a major bottleneck when 

producing off-the-shelf treatments for a large number of individuals. Alternatively, shared 

neoantigens (5) (i.e., recurrent mutations in cancer) could offer a new line of population-level 

immunotherapy. However, high-throughput experimental profiling of such broadly presented 

neoantigens across the human population is a long-term goal with many milestones to be 

achieved. 

Recently, tumor antigens that exceed the exome boundaries (i.e., non-canonical) have 

attracted attention as potential targets as a result of their immunogenicity and recurrence 

among cancer patients (6). These antigens find their way to the cell surface through rapid 

degradation (7) of “non-coding” translation products stemming from novel open reading frames 
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(nORF) (8). In addition, “non-coding” translation products can originate from other sources (9), 

including intron retention (IR) (10), ribosomal slippage (11), and frameshift mutations (12). In 

2016, Laumont et al. (13) demonstrated their association with MHC molecules using a 

reductionist approach based on 6-frame translation and subsequently their recurrence 

between patients (14). Ribo-Seq has proven to be an immensely valuable tool for identifying 

non-canonical MHC class I–associated peptides (ncMAPs) as it provides experimental 

evidence for their non-canonical translation and MHC class I presentation when combined 

with MS immunopeptidomics (6,15,16). Despite previous efforts to study non-canonical 

immunopeptidomes, the requirements of such multi-level experimental data (Ribo-seq and/or 

RNA-Seq) or computational struggles when dealing with large MS databases have hindered 

their large-scale profiling in a harmonized manner across multiple cancer types from hundreds 

of samples. 

With these considerations in mind, we developed COD-dipp (Closed Open De novo – deep 

immunopeptidomics pipeline), a pipeline based on deep learning de novo MS to enable the 

discovery of ncMAPs. Owing to the potential involvement of post-translational modifications 

(PTMs) in this process (1), we added an open search component for their discovery. We 

applied COD-dipp to a large-scale dataset using immunopeptidome profiles of over 772 

samples from 26 (1,13,14,17–40) published studies and 11 cancer types. We identified a 

range of PTMs of potential interest from a therapeutic standpoint and tackled the non-

canonical immunopeptidome. We validated the de novo identified ncMAPs and controlled their 

false discovery rate (FDR) to 1% using a second-round search with tuned PTM parameters, 

in addition to a series of quality-control steps. Our large-scale analysis revealed 8,601 

ncMAPs, accounting for 1.7% of immunopeptidomes. These peptides had varying levels of 

tumor selectivity, defined by their parent gene expression levels in normal tissues. We suggest 

17 ncMAPs as attractive therapeutic targets using a stringent tumor-selectivity cutoff. 
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Materials and methods 

Dataset selection 

Twenty-four studies were selected based on a list of keywords related to immunopeptidomics 

(Supplementary Method S1). Low-resolution analyses were eliminated, and MHC class I–

related datasets conducted with at least one of the following instruments were kept: Q 

Exactive, Q Exactive plus/HF/HFX, LTQ Orbitrap Velos, LTQ Orbitrap Elite, Orbitrap Fusion, 

and Orbitrap Fusion Lumos (Supplementary Table S1). An additional study was considered 

from the MassIVE (RRID:SCR_013665) database, as it incorporates 95 HLA-A, -B, -C, and -

G mono-allelic cell lines (28,40). An auxiliary immunopeptidomic dataset (39) covering 30 

healthy tissues from 21 healthy individuals was also used to partly assess cancer selectivity. 

Proteogenomic database generation 

Canonical protein database for MS database search 

A protein database was downloaded using ENSEMBL r94 BioMart (RRID:SCR_002344); 

decoy sequences were appended by reversing the target sequences, and 116 contaminant 

proteins were added (41).  

Non-canonical protein database for alignment using BLAST-like alignment tool (BLAT) 

A pre-mRNA 3-frame translation (3FT) database was generated from genes with a protein-

coding biotype based on ENSEMBL r94 (RRID:SCR_002344) using the AnnotationHub and 

Biostrings (RRID:SCR_016949) R packages. 
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COSMIC mutated protein database for BLAT alignment 

COSMIC (RRID:SCR_002260) coding Mutants (42) VCF v95 was downloaded along with 

ENSEMBL v94 CDS and GTF files. An in-house Python (RRID:SCR_008394) package was 

used along with the previously mentioned inputs to generate a FASTA file containing the 

corresponding mutated protein sequences. 

MS computational analysis 

Algorithms representing three main philosophies of peptide-spectrum matching including open 

search, de novo sequencing, and closed search were used. The open search approach 

allowed the identification of distantly related peptides and could identify PTMs and single 

amino acid variations. The de novo sequencing approach derived sequences from first-

principle analysis of the MS2 spectra. The closed search approach, used as a validation step, 

assumed a specific set of reference protein sequences and allowed for limited post-

translational modifications. Although each approach has its own limitations, our strategy 

addressed them by combining a closed search with a de novo sequencing approach and 

implementing multiple filtering steps for accuracy control and quality control checkpoints (see 

Supplementary Figure S1). 

Data conversion 

The proprietary RAW files acquired from the selected instruments were converted to mzML 

and MGF formats using msconvert (ProteoWizard version 3.0.19295. c8b8b470d, 

RRID:SCR_012056) with the peak-picking and TPP compatibility filters.  

Open search analysis 

The MSFragger (43) v2.2 search engine was used to conduct an open search analysis against 

the ENSEMBL r94 protein database in combination with PTMiner (44) v1.1.2, to apply a 

transfer FDR and a false localization rate of 1% (FLR, the rate of falsely localizing the site of 
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modification). Unspecific cleavage generating peptides 8 to 25 amino acids long with no 

fixed/variable PTMs was considered. Further analysis revealed that the frequent unexplained 

mass shifts observed during the open-search annotations were caused by non-specific 

cleavage. To address this issue, an open-search post-processing algorithm, PTMiner, was 

employed to effectively corrects for mass shifts introduced by in-source fragmentation, 

nonspecific digestion, or missed cleavage, by adding or deleting amino acids from the peptide 

N- or C-termini. For instance, a deviation of -128.1 to -128.08 Dalton on lysine residues was

frequently detected on the first 2 or last 2 amino acids of peptides. The deviation was caused 

by non-specific cleavage during the open search and resulted in an incorrect assignment of a 

negative mass shift of a lysine due to the presence of an additional lysine in the sequence. As 

these cases are not biologically meaningful, unexplained mass shifts were removed from the 

final results of the study.  

De novo analysis 

DeepNovoV2 (45) is a neural-network-based de novo peptide sequencing model that 

integrates convolutional neural networks (CNNs) and long short-term memory (LSTM) 

architectures. This deep-learning design extracts features from both the spectrum and the 

language of the presented peptides. DeepNovo has demonstrated improved performance 

compared to the state-of-the-art de novo sequencing algorithms by large margins (45). The 

model can be tuned on a restricted peptide space to improve its performance. The training, 

testing, and validation sets were derived from MS-GF+ (v2019.04.18, RRID:SCR_015646) 

database search results for each sample. The search used the ENSEMBL v94 protein 

database and 8 to 25 amino acid peptides with unspecific cleavage, no fixed/variable PTMs 

and an FDR of 1% applied by Scavager (46). The trained models were used to perform de 

novo (prediction) on the remaining unmatched spectra of each sample (from MS-GF+ after 

1% FDR control). Accuracy was calculated by comparing the de novo predicted sequences 

and MS-GF+ results on the validation set. A de novo score threshold that controlled the 
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accuracy at 90% within the validation set was applied to the predicted sequence in a sample-

specific manner. 

De novo peptide annotation 

De novo peptides from canonical human proteins were identified using BLAT (47) 

(RRID:SCR_011919) alignment against the target-decoy protein database. Sequences 

perfectly matching any protein sequence were considered exonic (one mismatch allowed for 

the isobaric amino acids leucine and isoleucine). All remaining sequences unexplained by 

proteins were considered potential non-canonical peptides and were aligned against the pre-

mRNA 3FT database. Stringently, peptides perfectly matching a 3FT sequence without any 

mismatch were required to have at least three mismatches with any known protein sequence 

before being considered non-canonical. Since peptide-spectrum matches (PSMs) can be 

assigned without complete sequencing accuracy, requiring a 3 amino acid difference 

alongside the 90% accuracy cutoff above increases the confidence that the peptides assigned 

fall far outside the standard human proteome. Remaining de novo peptides without any 

canonical or non-canonical annotation were labeled as ‘unmapped peptides’ and discarded. 

Second-round search 

A second-round search was performed using the FragPipe (41,43) headless pipeline, which 

includes MSFragger v3.4, MSBooster (bioRxiv 2022.10.19.512904), and Philosopher (41). 

Non-canonical peptides from all samples were concatenated with the ENSEMBL v94 protein 

into a custom database. Only four of the most abundant PTMs were considered to avoid a 

large search space complexity, inflated FDR, and decreased sensitivity. The following variable 

PTMs were included: methionine oxidation, N-terminal acetylation, cysteinylation, and 

cysteine carbamidomethylation (for samples treated with iodoacetamide). Unspecific cleavage 

generating peptides 7 to 15 amino acids long was considered. The ion, PSM, and peptide-

level FDR were maintained at 1%. 
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Alignment of immunopeptides to the genome 

Second-round search non-canonical peptide coordinates were retrieved from the 3FT 

database FASTA headers and stored in BED format. 

Open reading frame analysis 

Upstream genomic sequences of ncMAPs were scanned for start codons up to the first 

encounter with a stop codon. Sequences were centered around the detected start codons and 

stretches of 100 nucleotides from each side were extracted. Translation initiation site (TIS) 

scores were predicted for each sequence using TITER (48), a deep-learning-based framework 

for accurately predicting TIS on a genome-wide scale based on QTI-seq data. A TIS score 

greater than 0.5 was considered a positive prediction.  

Intron retention analysis 

For each intron in the UCSC hg38 KnownGene table (RRID:SCR_005780), the first codon 

coordinates of the corresponding upstream exon in-frame with the canonical translation were 

extracted and stored in BED format (see Pseudocode 1). Intronic coordinates from the 

generated BED file were intersected with the ncMAPs BED file using pybedtools (49) 

(RRID:SCR_021018). Intronic retention events were considered possible when ncMAPs 

within introns were in-frame with their upstream exons (see Pseudocode 2). 
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// Pseudo-code 1: extracts the start coordinate of the first in-frame codon for 
each exon (inframeCoordinate variable) 
for each transcript 
  remainderValue = 0 
  for each exon 
    if strand is positive 
      if downstream intron exists 
  leftoverBases = remainder of (ExonEndCoordinate - remainderValue - ExonStart + 
1) / 3

if remainderValue is equal to 0 
  inframeCoordinate = ExonStartCoordinate 
else 
  inframeCoordinate = ExonStartCoordinate – remainderValue 
if leftoverBases is greater than 0 
  remainderValue = 3 - leftoverBases 
addToTable(transcript, chromosome, ExonStart, ExonEnd, inframeCoordinate, 

IntronStart, IntronEnd) 
    if strand is negative 
      if downstream intron exists 

leftoverBases = remainder of (ExonSart - ExonEndCoordinate + 
remainderValue + 1) / 3 

if remainderValue is equal to 0 
  inframeCoordinate = ExonEndCoordinate 
else 
  inframeCoordinate = ExonEndCoordinate + remainderValue 
if leftoverBases is greater than 0 
  remainderValue = 3 - leftoverBases 
addToTable(transcript, chromosome, ExonStart, ExonEnd, inframeCoordinate, 

IntronStart, IntronEnd) 

// Pseudo-code 2: checks if each intronic ncMAP is in-frame with its upstream 
exon. 
  ncMAPIsInFrame = False 
  if strand is positive 
    // firstCoordinate = start coordinate of ncMAP 
    // secondCoordinate = start coordinate of the first inframe codon from 
previous exon 
    coordinateDifference = firstCoordinate – secondCoordinate 
    if remainder of (coordinateDifference / 3) is equal to 0 
      ncMAPIsInFrame = True 
  else: 
    // firstCoordinate = start coordinate of first inframe codon from previous 
exon 
    // secondCoordinate = end coordinate of ncMAP 
    coordinateDifference = firstCoordinate – secondCoordinate 
    if remainder of (coordinateDifference / 3) is equal to 0 
      ncMAPIsInFrame = True 

Frameshift mutation analysis 

The COSMIC (42) v95 coding mutations (RRID:SCR_002260) VCF file was downloaded and 

converted into a protein FASTA file using aVCF-to-Proteogenomics toolkit 

(https://github.com/immuno-informatics/VCFtoProteogenomics) ncMAPs were then aligned to 
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the resulting 16 GB FASTA using BLAT v35 (47). Only hits with exact matches to sequences 

from frameshift mutations were considered. 

Comparison of the identified non-canonical MHC class I–

associated peptides between studies 

ncMAPs from 4 different studies (6,13,16,50) were collected. First, sequences were aligned 

to the human proteome (ENSEMBL v94) using BLAT v35 (47). Sequences found in human 

proteins were discarded, and the remaining sequences were aligned to the 3FT database with 

one mismatch allowance for the isobaric amino acids leucine and isoleucine, as allowed for 

COD-dipp ncMAPs. Genomic coordinates of the sequences found in the 3FT database were 

extracted and overlapped between studies using the ChIPpeakAnno (51) R package 

(RRID:SCR_012828). A minimum overlap of 21 nucleotides (7 amino acids) between two 

sequences was required. 

Cancer selectivity of the non-canonical MHC class I–associated 

peptides 

Tumor specificity has been previously implied when peptide parent genes are either 

completely absent or present in trace amounts in healthy tissues (6,14,16) since MHC class I 

presentation is preferentially derived from highly abundant transcripts (28,30). While tumor 

specificity implies the expression of an antigen solely in tumor samples, the experimental 

design of this study cannot guarantee this constraint. Instead, cancer-selective ncMAPs were 

conservatively identified through three iterative steps: 

Step 1: Panel of normal immunopeptidomes 

In addition to the 88 healthy MS samples from the initial set of the 25 considered studies, the 

HLA Ligand Atlas (39) was used to extend the panel of normal immunopeptidomes and partly 
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assess the cancer selectivity of the 8,601 identified ncMAPs. The HLA Ligand Atlas is a pan-

tissue immunopeptidomic reference for 30 healthy tissue types obtained from 21 human 

subjects. The resulting 334 healthy samples (see Supplementary Table S1) were analyzed 

in the same manner as in the second-round search (see Second-round search above). 

ncMAPs identified in the panel of normal immunopeptidomes were labeled as non-cancer 

selective.  

Dimensionality reduction of the HLA-binding motif space 

Binding affinity prediction was employed to identify similarities and differences in HLA-binding 

motifs among the 65 healthy and 51 tumor-only HLA alleles. NetMHCpan-4.1 was utilized to 

evaluate the binding of 1,000,000 random peptides to each allele, which resulted in a binding 

matrix (BM) of 116 alleles and 1,000,000 peptides. A value of 1 was assigned to strong binders 

(EL rank ≤ 0.5%) in the BM; otherwise, a value of 0 was assigned. A pairwise cosine distance 

matrix (DM) was then calculated to assess the similarity of binding between alleles. The DM 

was then reduced using t-SNE to visualize the data in 2D with a perplexity of 20 and 500 

iterations. 

Step 2: Parental gene expression levels in healthy tissue 

The gene expression levels of the identified ncMAPs were retrieved from the GTEx v8 (52) 

dataset, consisting of 29 tissues from 948 healthy donors and 17,382 overall samples. 

Considering all individuals, the 90th percentile value of normalized expression was assigned 

to each gene per tissue as a strict step to guarantee the upper-end gene expression in healthy 

tissues. A stringent cutoff for cancer selectivity was used to shortlist ncMAPs whose parent 

genes fell below a 1 TPM expression cutoff (excluding the testis tissue given its immune-

privileged status). It is worth noting that this stringent threshold removes 92% of protein-coding 

genes that show expression above 1 TPM in any tissue within the GTEx v8. 
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Step 3: Protein expression levels in healthy tissue 

The protein expression levels of ncMAPs passing the 1 TPM cutoff were retrieved from the 

Human Protein Atlas V22.0 database (53). ncMAPs without parent protein expression in 

healthy tissues were labeled as cancer-selective (excluding the testis tissue given its immune-

privileged status). 

Code availability 

The COD-dipp code, intended for high-performance computing (HPC), is available on the 

GitHub repository: https://github.com/immuno-informatics/COD-dipp. 

Data availability 

The data analyzed in this study were obtained from PRIDE at PXD004746, PXD014017, 

PXD012308, PXD011628, PXD012083, PXD011766, PXD013057, PXD011723, PXD007203, 

PXD004233, PXD003790, PXD001898, PXD007860, PXD011257, PXD007935, PXD009749, 

PXD009753, PXD009750, PXD009751, PXD009752, PXD009754, PXD009755, PXD004023, 

PXD007596, PXD009531, PXD010808, PXD008937, PXD009738, PXD006939, PXD005231, 

PXD000394, PXD004894, PXD019643 and from massIVE at MSV000080527, 

MSV000084172, MSV000084442. The results of this study are available within the article and 

its supplementary data files and are accessible on the following figshare repository: 

https://doi.org/10.6084/m9.figshare.16538097. 

Results 

Immunopeptidomic MS datasets 

We selected 25 immunopeptidomic MS studies (see Supplementary Table S1) to create a 

cancer-centered dataset of MHC class I presentation. Data-dependent acquisition (DDA) 
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studies covered eleven cancer types distributed across the brain (Glioblastoma and 

Meningioma), lung, skin, liver, blood (Leukemia and Lymphoma), colon, ovaries, kidneys, and 

breast. Moreover, tumor and healthy samples were derived from either cell lines or patient 

tissues (Fig. 1a and Supplementary Method S1). We selected publicly available studies with 

data generated using high-resolution MS instruments (LTQ Orbitrap, Q Exactive Plus/HF/HFX, 

and Fusion Lumos) to minimize the bias associated with older tandem MS instrumentation 

(Fig. 1b). Within our dataset, the most commonly used monoclonal antibody for HLA class I 

immunoprecipitation (IP) was W6/32 in comparison to the other antibodies (BB7.2 and G46-

2.6) (Fig. 1c, see Supplementary Table S1). The selected studies covered five different HLA 

class I genes, with HLA-A, B, and C being the most studied compared to HLA-E and -G (Fig. 

1d). Furthermore, the included MS samples covered 114 HLA alleles (Fig. 1e). 

Closed Open De novo – deep immunopeptidomics pipeline 

(COD-dipp) 

We present COD-dipp, an open-source high-throughput pipeline with novel post-processing 

steps, to deeply interrogate immunopeptidomic datasets (Fig. 2). We used this pipeline to 

screen for ncMAPs in datasets utilizing DDA due to its widespread use. To identify post-

translationally modified MHC class I–associated peptides (ptmMAPs), we performed an open-

search analysis with MSFragger (43) and controlled both FDR and the FLR to 1% with 

PTMiner (44). To identify ncMAPs, we used DeepNovoV2 (45) for de novo analysis. In 

combination with the PSM level information of MS-GF+ (54), DeepNovoV2 was trained to 

interpret the raw MS data in a sample-specific manner. The training step for such a deep 

learning approach is crucial for learning the features of tandem mass spectra, fragment ions, 

and leveraging sequence patterns in the immunopeptidome to impute missing MS2 fragments. 

All high-quality de novo peptides (90% accuracy) were sequentially mapped (47) to (I) the 

human reference proteome to reveal the de novo-based canonical MHC class I–associated 

peptides, and (II) to a 3FT database to reveal the de novo-based ncMAPs. Finally, an 
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orthogonal validation step was performed by a second-round search to control a 1% FDR for 

the de novo identified ncMAPs while considering the most abundant PTMs found by the open-

search strategy. Applying the COD-dipp pipeline across the dataset revealed the breadth of 

(I) post-translationally modified MHC class I–associated peptides referred to as ptmMAPs,

and (II) non-canonical MHC class I–associated peptides referred to as ncMAPs. 

ptmMAPs 

The open search analysis reported 4.03% of the MS spectra showing post-translational 

modifications (Fig. 3a). Some identified PTMs were confirmatory, representing chemical 

modifications from sample preparation methods (cysteine carbamidomethylation) or common 

chemical derivatives (methionine oxidation and di-oxidation). We also observed PTMs that are 

extremely common in proteins, such as protein N-terminal acetylation, affecting multiple 

properties such as half-life time, folding, and interaction. On the other hand, some of the 

identified PTMs have been reported previously to increase immunogenicity against diseases 

(55) and protect against degradation (tri-oxidation of cysteine (56), cysteinylation (57), and N-

term serine acetylation, see Fig. 3b and Supplementary Table S2. Furthermore, 1.12% of 

spectra from open search showed unknown mass shifts, as illustrated in Fig. 3a (green and 

red). This category was partly populated by computational artifacts and was excluded from 

the final results. To validate these findings, we performed an independent post-search by 

crosschecking the identifications from our open search with those of the original studies. The 

results showed 96.1% agreement in peptide-spectrum matches, which are detailed in 

Supplementary Method S2: Validation 1 and Supplementary Figure S2. 

ncMAPs 

We explored the ncMAP landscape in cancer using our workflow (Fig. 2) and identified 10,413 

unique de novo-based ncMAPs from intragenic non-coding regions (before the second-round 

search validation), which accounted for 3.7% of the identified de novo sequences. We took 
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two additional validation steps, including checking the identification scores as well as the 

correlation between the experimental and theoretical liquid chromatography retention times, 

to guarantee the correctness of these identifications (see Supplementary Method S2: 

Validation 2 and 3, and Supplementary Figure S2). The de novo non-canonical peptides 

showed strong evidence of high-quality identification (i.e., correctly predicted complete peptide 

sequences). Even with this strong evidence, it was possible that chromatic behavior remained 

unchanged in certain instances where neighboring amino acids were in flipped positions, or 

that a 90% accuracy rate still led to an uncertain FDR percentage. Hence, we confirmed the 

identified 10,413 de novo-based ncMAPs by performing a second-round search for additional 

validation and controlling the FDR at 1%. Several PTMs were also considered in the 

parameters from the a priori knowledge provided by the open search strategy. Of the 516,382 

uniquely identified peptides in the second-round search, 1.7% (8,601) were non-canonical 

(Fig. 3c and Supplementary Table S3). The PTM profiles (Fig. 3d) of canonical (dark gray) 

and non-canonical (light gray) peptides appeared to be similar, with M oxidation being the 

most prevalent modification. The identified ncMAPs showed comparable spectra from patients 

within the same studies and from different studies (Supplementary Figures S3, S4, and S5 

provide examples of such similarities). The binding affinities of all 8,601 ncMAPs resulting 

from the second-round search were further investigated using NetMHCpan 4.1 (58). The 

binding prediction analysis showed a comparable binding rate for both the canonical (90%) 

and non-canonical (93%) MAPs, as depicted in Fig. 3e. We further took four additional 

independent post-search validation steps, including checking retention time shifts induced by 

PTMs, mass accuracy, and spectra comparison to those of the original studies, guaranteeing 

the correctness of the ncMAPs identified by the second-round search (see Supplementary 

Method S2: Validation 4, 5, 6, and 7, and Supplementary Figure S2). 

Comparison of COD-dipp ncMAPs with the literature 

To assess the performance of our COD-dipp method, we conducted a comparison with the 

results of peptide-PRISME by Erhard et al. 2020 (50). Our comparison was based on three 
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common studies (1,14,34) and resulted in 3,453 at 1% FDR from COD-dipp along with 4,576 

ncMAPs at 10% FDR from Erhard et al. We first aligned Erhard et al.’s ncMAPs to the human 

proteome and eliminated a small fraction (1.4%) that matched the canonical protein 

sequences (Fig. 4a, left-hand side). Since the COD-dipp ncMAPs were restricted to the 3FT 

of protein-coding genes, we aligned the remaining ncMAPs from Erhard et al. to the same 3FT 

database for comparison purposes. Fig. 4a (left-hand side) shows that 68.25% of ncMAPs 

were successfully mapped to the 3FT database. The rest (30.35%) that did not align to any of 

the human proteome or the 3FT database are shown in yellow on Fig. 4a left-hand side. This 

unmapped fraction consisted of ncMAPs from regions of the genome not studied herein, such 

as intergenic regions, anti-sense translation, etc. The successfully mapped fraction to the 3FT 

database (navy) of 3,123 ncMAPs along with 3,453 ncMAPs from COD-dipp were then 

compared, as shown in Fig. 4a right-hand side (see Supplementary Table S4). peptide-

PRISME shared 38% (1,197) of its ncMAPs (intersection) with COD-dipp (Fig. 4a right-hand 

side) and showed 62% (1,926) of exclusive ones. Adjusting the higher FDR used by peptide-

PRISME from 10% to 1% increased the shared fraction to 48.9% (Fig. 4b), along with a ~ 2.4-

fold decrease in total ncMAPs (from 4,576 to 1,916). At an FDR of 1%, COD-dipp identified 

2.34 times more exclusive ncMAPs (2,298 vs. 979) from the 3FT of protein-coding genes. 

To contextualize our findings from COD-dipp within the existing literature on ncMAPs, we 

compared our results with those of three previous studies: (I) Laumont et al. 2016 (13), (II) 

Chong et al. 2020 (6), and (III) Ouspenskaia et al. 2021 (16), as shown in Figure 4c. We used 

the same mapping procedure that was applied to peptide-PRISME results. We eliminated a 

fraction of sequences mapping to known proteins, which was 4%, 5%, and 3% of sequences 

for Chong et al. 2020, Laumont et al. 2016, and Ouspenskaia et al. 2021, respectively (see 

Fig. 4c left-hand side). Fig. 4c left-hand side shows in navy the fractions of ncMAPS that were 

successfully mapped to the 3FT database, which was 34.38% for Chong et al. 2020, 63.69% 

for Laumont et al. 2016, and 72.74% for Ouspenskaia et al. 2021. The remaining ncMAPs that 

did not align (Fig. 4c left-hand side in yellow) to any of the human proteome or the 3FT 
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database originate from sources not studied herein. For instance, Laumont et al. 2016 

included 6-frame translation in their MS search database, which accounts for intergenic 

regions, anti-sense translation, long non-coding RNA, and retroelement sources. Both Chong 

et al. 2020 and Ouspenskaia et al. 2021 added Ribo-Seq detected proteins to their MS 

database searches, accounting for all possible nORFs, even those outside of known genes. 

The fractions successfully mapped to the 3FT database (navy) from these three studies, along 

with the 8,601 ncMAPs from COD-dipp, were then compared, as shown in Fig. 4c right-hand 

side (Supplementary Table S4). Intersections with COD-dipp were 31.42% for Chong et al. 

2020, 38.3% for Ouspenskaia et al. 2021, and 45.8% for Laumont et al. 2016, respectively. In 

contrast, intersections with all other studies were 40% for Chong et al. 2020, 38.66% for 

Ouspenskaia et al. 2021, and 65.93% for Laumont et al. 2016. Hence, COD-dipp ncMAPs 

alone accounted for 78.55% of Chong et al. 2020’s intersection, 96.07% of Ouspenskaia et al. 

2021’s intersection, and 69.47% of Laumont et al. 2016’s intersection. COD-dipp ncMAPs 

accounted, on average, for 81.36% of the intersection when comparing three previously 

published ncMAP sets, thus validating our approach. With 2,168 ncMAPs (25%) shared with 

the literature and 6,433 new ncMAPs, we have revealed an atlas of non-canonical MHC class 

I presentation. 

Properties and origins of ncMAPs 

We compared the sequence lengths of canonical and non-canonical MAPs (Fig. 5a) and found 

them to be similar, with a slight skew of the non-canonical category toward longer lengths. 

This could be due either to an actual preference of ncMAPs toward longer sequence lengths 

or simply the consequence of requiring 3 amino acid differences from any known proteins 

favoring longer sequences. Next, we inspected ncMAPs according to their relative positions 

within protein-coding genes (Fig. 5b). Exonic regions translated in alternative frames were the 

main source of ncMAPs (19.2%). These events could arise from frameshift mutations, initiation 

codon readthrough (59), nORFs, or ribosomal slippage (11) during translation (i.e., ribosome 

frameshifting). Intronic regions were the second most abundant source of ncMAPs (12.2%). 
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These events can arise from frameshift mutations, nORFs, or IR. Interestingly, 5’-UTRs 

contributed to 10.2% of ncMAPs and have been shown to produce translation products 

through upstream ORFs along with a non-AUG start codon (60). Lastly, 3’-UTRs contributed 

the least toward ncMAPs (3.2%), potentially through stop codon read-through (61). It is 

important to note that these categorizations are not mutually exclusive and that an ncMAP 

sequence may have multiple assignments due to the overlapping nature of transcripts. We 

conducted three analyses to estimate how well the nORFs (I), IR (II), and frameshift mutations 

(III) could explain the detected ncMAPs. (I) ncMAPs with upstream start codons (AUG, CUG,

UUG, GUG, and ACG) accounted for 63.4%, and 41.5% were predicted to be TIS using TITER 

(48) (Fig. 5c left-hand side). The breakdown of the TIS start codon distribution (Fig. 5c, right-

hand side) showed CUG (L) as the most abundant nORF start codon, and 70% of the predicted 

TIS showed non-AUG start codons, in line with previous findings (15). (II) Translation frames 

of ncMAPs from intronic regions were checked for compatibility with upstream exons, and 

49.4% were found in-frame with upstream exons, making IR events a possible source (Fig. 

5d). (III) A total of 597 ncMAPs were found in aberrant proteins from frameshift mutations in 

cancer (42) (Fig. 5e and Supplementary Table S5). Eventually, 70.1% of ncMAPs were 

explicable by novel ORFs, IR, or frameshift mutations (Fig. 5f). ncMAPs were found to be 

presented by all 113 alleles in our dataset, except for the HLA-C*07:17 allele, mostly because 

of low sample coverage by MS for this allele (see Supplementary Figure S6). Furthermore, 

the average non-canonical presentation per HLA supertype (62) was 1%, except for A03, 

which was 5% (see Supplementary Figure S6). 

Cancer selectivity of ncMAPs 

Of the 8,601 identified ncMAPs, 2,758 were detected in the panel of normal healthy tissue by 

MS and were labeled as non-cancer-selective. The panel of normals originally consisted of 

healthy MS samples from all considered studies, which we extended by adding the HLA 

Ligand Atlas (39), a pan-tissue immunopeptidomic reference of 30 healthy tissue types 

obtained from 21 human subjects. Fig. 6a shows the ability of the extended panel of normals 
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to capture several more ncMAPs (12.85%) in healthy tissues that were not observed in our 

original panel of normals (19.22%). We assessed the coverage of tumor-only HLA alleles in 

healthy samples using the panel of normal samples. The 334 healthy samples covered 53% 

of the HLA alleles expressed in the tumor samples. Analysis of a subset of ncMAPs 

represented by the 57 shared alleles (i.e., present in both healthy and tumor samples) 

revealed a substantial overlap in HLA-binding motifs between the panel of normal samples 

and other samples. This was demonstrated by (I) the majority of identified ncMAPs being 

retained (7,513 out of 8,601) and (II) a comparable percentage of ncMAPs being detected in 

healthy samples through MS (36.46% with shared alleles versus 32% with all alleles) (see 

Supplementary Figure S7). To better understand the similarity between the HLA-binding 

motifs of the alleles represented in tumor-only samples and those represented in healthy 

samples, we generated a matrix of cosine distances of binding affinities and used t-SNE to 

reduce the dimensionality and visualize the data. Our results indicated a high level of similarity 

between the two, further supporting the notion that the 65 alleles in the panel of normal 

samples were representative of the tumor-only alleles (Supplementary Figure S7). 

However, the lack of ncMAP detection in the panel of normals does not confirm cancer 

selectivity owing to the sensitivity limitations of MS. Proper cancer selectivity assessment 

should be performed at the gene expression level in healthy tissues. Hence, we retrieved the 

parent gene expression values (in TPM) of the remaining ncMAPs from the Genotype-Tissue 

Expression project (GTEx v8) (52). We first compared the gene expression levels of the 

following two groups: (I) ncMAPs detected in the panel of normals by MS (blue), and (II) 

remaining ncMAPs without detection in the panel of normals (red). Fig. 6b shows significantly 

higher gene expression for ncMAPs detected in healthy tissues (blue) than for those that were 

left undetected (red). Moreover, to ensure low toxicity levels in normal tissues, we filtered 

ncMAPs to retain those with parent genes expressed below 1 TPM and without evidence of 

protein expression in any healthy tissue except the testis (immune-privileged site) (Fig. 6c). 

By applying this stringent filter, we identified 24 ncMAPs derived from genes not expressed or 
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expressed only in trace amounts in healthy tissues. Of these, 17 were associated with proteins 

not detected in healthy tissues. Table 1 provides a summary of these 17 cancer-selective 

ncMAPs, which we suggest as promising targets for clinical applications (see Supplementary 

Table S3 for more details). 

Discussion 

The cartography of non-canonical antigen presentation revealed in our study arose from a 

harmonized large-scale analysis of immunopeptidomic data mapped to the human genome. 

Our innovations over the most recent trends in computational MS identified a diversity of 

peptides mapping to canonical and non-canonical translation products. We mapped deviations 

away from the reference proteome as mass shifts (PTMs) and applied a sequential approach 

to tackle the non-canonical immunopeptidome. Our proteogenomic pipeline allowed the 

identification of thousands of ncMAPs (8,601) derived from non-coding regions of protein-

coding genes with an FDR of 1%. This was accomplished by analyzing a large collection of 

publicly available studies using COD-dipp, a highly modular large-scale pipeline that bypasses 

the challenge of multi-omics requirements and large MS databases when identifying ncMAPs. 

Recent studies have suggested that the immunopeptidome is rich in PTMs (63), which can 

have profound effects on immune tolerance. T cells can discriminate between modified and 

non-modified epitopes, which has been demonstrated in the case of ubiquitination (64), 

glycosylation (65), phosphorylation (1,66). T-cell reactivity to PTMs is an effect of their central 

tolerance escape from the thymus (67). PTMs may also alter proteolytic activity, and 

consequently, peptide presentation by the MHC system (68). The open-search component 

sheds light on several PTMs implicated in immunogenicity (serine N-terminal acetylation, 

cysteinylation, and cysteine tri-oxidation) and could provide insights for future studies on PTM-

based epitopes. For instance, tri-oxidation of cysteine has the potential to alter the immune 

response (56); however, its mechanism of interaction with HLA molecules and T cells is still in 

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 43



its infancy. Additionally, T cells can discriminate between cysteinylated and unmodified 

cysteine residues (57). Likewise, N-terminal serine acetylation is known for multifunctional 

regulation, acting as a protein degradation signal, inhibitor of endoplasmic reticulum (ER) 

translocation, and mediator of protein complex formation. Methionine sulfone (methionine 

dioxidation) has been found to occur in vivo in Proteus mirabilis (69), a Gram-negative 

bacterium present in malignant cancers (70), although it can result from the use of a strong 

oxidizing agent.  

The validity of ncMAPs was rigorously tested using retention time correlation (experimental 

vs. theoretical), orthogonal second-round search, mass accuracy, PTM retention time shifts, 

HLA binding prediction, and PSM comparison with previously published results. Twenty-five 

percent of the identified ncMAPs accounted, on average, for 81.36% of intersections when 

compared with three other high-profile studies (6,13,16). In addition, COD-dipp revealed 6,433 

new ncMAPs from protein-coding genes. Considering the high-quality and rigorous 

computational validation, the identification rate discrepancy is partly due to the performance 

of COD-dipp and the size of our dataset collection, making it the most exhaustive non-

canonical library of MHC class I–associated peptides. 

Our survey of the possible sources of ncMAPs revealed that 70.1% could be attributed to 

nORFs, IR, or frameshift mutations. We identified 597 ncMAPs downstream of known 

frameshift mutations in COSMIC, an understudied source of antigens in immunopeptidomic 

studies. Certainly, other biological processes not accounted for in this study could generate 

ncMAPs. For instance, mechanisms such as ribosomal slippage (11) and stop codon 

readthrough could explain some of the remaining ncMAPs (29.9%). 

This study focuses on peptides from non-coding regions of the genome, referred to as non-

canonical peptides. Unlike neoantigens, which derive from patient-specific mutations in 

cancer, these non-canonical peptides are not mutated and are present in both cancer and 
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healthy individuals. Although their presence in healthy samples makes their tumor specificity 

less clear, non-canonical peptides tend to be more abundant in cancer cells than in healthy 

cells. Over two decades ago, Ishii et al. (71) purified an octamer non-canonical antigen 

(IPGLPLSL or pRL1a) associated with heat shock proteins (HSPs) and validated their findings 

using MS. The isolated octamer non-canonical antigen pRL1a was derived from the 5’-

untranslated region of the AKT gene in leukemia and induced tumor rejection. To the best of 

our knowledge, this was the first demonstration of a non-canonical antigen that confers 

immunity. Subsequent studies have shown that HSPs are beneficial for anticancer vaccines 

(72) because they bind canonical/non-canonical antigens with tumor rejection properties that 

end up being presented by MHC I and II molecules (73).  

Numerous studies have suggested various possible candidates for cancer vaccines over the 

past 2–3 decades, and each has failed, at least partly, due to the issue of specificity. We used 

a conservative definition of cancer selectivity that follows three iterative steps. We searched 

for the identified ncMAPs over a panel of 334 normal MS samples and confirmed a fraction 

(32%) of non-cancer-selective ncMAPs. The remaining fraction (5,843, 68%) contained both 

cancer-selective ncMAPs and non-cancer-selective ncMAPs that were not detected by MS. 

We used the expression levels of the ncMAPs’ parent genes across 29 healthy tissues as a 

means of prioritization (6,14,16). ncMAPs whose parent genes were expressed in any normal 

tissue above a threshold of 1 TPM were not considered cancer selective. However, we caution 

that this definition excludes the consideration of 92% of protein-coding genes. We revealed 

17 rigidly defined candidates as cancer-selective ncMAPs, originating from genes and proteins 

that were completely absent or available in trace amounts in healthy tissues. We hope that 

this offers a sufficiently stringent approach to reducing toxicity in clinical applications. We 

provide a complete breakdown of all detected ncMAPs in Supplementary Table S3. We 

report the parent gene and protein expression values across healthy tissue types from the 

GTEx cohort and Human Protein Atlas, respectively. Moreover, we report their cancer-

selectivity status conditioned on a gene expression cutoff (1 TPM) and lack of protein 
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expression in healthy tissues. This will allow the research community to make decisions 

regarding the peptides that should be retained or removed from their analyses. It is particularly 

important that we do not filter all peptides, as aberrant intron-retention and frame-shift 

mutations that are certainly cancer-specific may lie within these results and would not need 

this stringent filtering if found in subsequent studies. 

Here, we provide a free and open-source informatics pipeline to study non-canonical peptides, 

along with a reservoir of potential targets that could be used in combination with T-cell 

therapies or cancer vaccines. We anticipate that this will help pave the way for future research 

on antigens from non-canonical sources and engage further oncology research on alternative 

sources of antigens.  

We acknowledge that our study presents several limitations. First, our approach relies on a 

DDA MS, which is known for its dynamic range limitations. Thus, only the most abundant 

ncMAPs were identified. Moreover, owing to the technical limitations of MS, we require that 

our ncMAPs be at least 3 amino acids different from any known human protein. Thus, a 

substantial fraction could be eliminated, leading to underestimation of the non-canonical 

fraction. Second, because immunogenicity prediction is still in its infancy, the identified 

ncMAPs require further validation to qualify as tumor rejection–mediating antigens for clinical 

applications. Despite our efforts to identify cancer-selective targets, the toxicity of these 

peptides in healthy tissues requires further investigation. 
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Tables 

ID Peptide Gene name 
Mean expression 

in healthy 
tissues  
(TPM) 

Number of 
healthy tissues 

with protein 
expression 

Annotation 

1 AFAPFPTQF CXorf49B 0.01 0 of 56 Cancer selective 
1 AFAPFPTQF CXorf49 0.01 0 of 56 Cancer selective 
1 AFAPFPTQF RP11-402P6.15 0.10 0 of 56 Cancer selective 
2 DYIHFVHHF RP11-325B23.2 0.00 0 of 56 Cancer selective 
3 EALSASQALYTR HIST1H4L 0.04 43 of 56 
4 ELIKAFSK GNGT1 0.05 1 of 56 
5 ESAGLFQVPR SUN3 0.13 3 of 56 
6 EVEKILIQY KCNU1 0.05 0 of 56 Cancer selective 
7 EVPGAQGQQGPR CTAG2 0.15 0 of 56 Cancer selective 
7 EVPGAQGQQGPR CTAG1B 0.03 0 of 56 Cancer selective 
7 EVPGAQGQQGPR CTAG1A 0.06 0 of 56 Cancer selective 
8 FPVDVDHAVL CTAG2 0.15 0 of 56 Cancer selective 
8 FPVDVDHAVL CTAG1B 0.03 0 of 56 Cancer selective 
8 FPVDVDHAVL CTAG1A 0.06 0 of 56 Cancer selective 
9 ILSDNIRNL C1orf94 0.14 0 of 56 Cancer selective 
10 IPKDKSKNK C2orf83 0.02 0 of 56 Cancer selective 
11 KLLELIKAFSK GNGT1 0.05 1 of 56 
12 KNNIYAFKI RP11-231I13.2 0.01 0 of 56 Cancer selective 
13 KTLHLTIVK C12orf50 0.07 0 of 56 Cancer selective 
14 KYLSRFRPK TRPC5 0.08 0 of 56 Cancer selective 
15 MVRSPEEGSLR TEX19 0.13 0 of 56 Cancer selective 
16 MVRSVSAAAR HIST1H2BB 0.26 44 of 56 
17 MVRSVSAAARR HIST1H2BB 0.26 44 of 56 
18 REEAPRGVRM CTAG2 0.15 0 of 56 Cancer selective 
18 REEAPRGVRM CTAG1B 0.03 0 of 56 Cancer selective 
18 REEAPRGVRM CTAG1A 0.06 0 of 56 Cancer selective 
19 SAGLFQVPR SUN3 0.13 3 of 56 
20 SQVHKFFLL OR9Q1 0.04 0 of 56 Cancer selective 
21 SYGIYIYTY SLC15A5 0.06 0 of 56 Cancer selective 
22 TVSHQIIFY EXD1 0.06 0 of 56 Cancer selective 
23 VIQKVILVV MGAT4D 0.03 0 of 56 Cancer selective 
24 YYFILEHAKY SOX30 0.29 0 of 56 Cancer selective 

Table 1: List of cancer-selective non-canonical MHC-associated peptides. The mean parent gene expression in 
TPM was derived from 29 healthy tissues from the GTEx v8 dataset. The number of healthy tissues with protein 
expression was obtained from the Human Protein Atlas v22.0. 
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Figures 

Figure 1: Infographics of immunopeptidomic datasets included in this study. a) Different types of 
cancer considered in this study with the number of samples and sample types per cancer type. b) 
Proportions of different mass spectrometry instruments used in this study. c) Antibodies used for 
immunoprecipitation (IP) d) Overall count of HLA alleles per HLA gene. e) Overall count of mass 
spectrometry immunopeptidomic samples per HLA allele. 
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Figure 2: COD-dipp: A new high-throughput pipeline for a deep interrogation of 
immunopeptidomic datasets. Samples are first analyzed with an open search strategy to detect the 
landscape of post-translational modifications (PTMs). A false localization rate (FLR) for the PTMs and 
false discovery rate (FDR) of 1% are applied. Simultaneously, the samples are analyzed using a novel 
de novo approach to identify non-canonical peptides. The de novo strategy trains a model per sample 
using quality-controlled peptide-spectrum matches from the MS-GF+ search engine to learn the direct 
interpretation of sample-specific mass spectra. The MS-GF+ results are split into three groups: training 
and testing to tune the hyperparameters and account for overfitting, and a validation group to 
approximate the accuracy per sample. De novo predicted peptides with an accuracy of at least 90% 
are sequentially mapped against the Human proteome (HP) then a 3-frame translation (3FT) database 
of protein-coding genes (1 mismatch allowed between leucine/isoleucine, i.e., Xle). Predicted de novo 
peptides matching any known protein are labeled “canonical”. Peptides mapping to the 3FT database 
with at least 3 amino acids mismatches from any known protein sequence are labeled “non-canonical”. 
Lastly, a second-round search is performed as a validation approach. Four of the most abundantly 
identified PTMs and a custom database consisting of ENSEMBL proteins and non-canonical peptides 
are considered. The resulting canonical and non-canonical peptides are controlled to an FDR of 1% 
and aligned to the hg38 human genome. 
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Figure 3: Landscape of post-translationally modified and non-canonical MHC class I–associated 
peptides (ncMAPs). Open search: a) Overview of post-translational modifications (PTMs) identified 
by open search (blue: spectra without PTMs, orange: spectra with a known UNIMOD PTM localized on 
a specific amino acid on the peptide. Green: The mass shift is localized, however the known PTM 
options do not fit the modified residue. Red: Otherwise). b) Most abundant “annotated PTMs” grouped 
by type. Second-round search: c) Fraction of canonical (dark gray) and non-canonical (light gray) 
MAPs in the immunopeptidome. d) Proportion of canonical (dark gray) and non-canonical (light gray) 
MAPs with/without post-translational modifications. e) Fraction of binders versus non-binders for both 
canonical and non-canonical MAPs using NetMHCpan 4.1. 

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 56



Figure 4: Comparison of COD-dipp non-canonical MHC class I–associated peptides (ncMAPs) 
with other studies. Since the COD-dipp ncMAPs are restricted to the 3-frame translation (3FT) of 
protein-coding genes, sequences from the literature were aligned to the same 3FT database for 
comparison purposes. The intersection is based on genomic coordinates to deal with sequences that 
partially match (i.e., longer, shorter, or partially overlapping). Since the Venn is generated by 
overlapping genomic coordinates of the ncMAPs, the original counts for each study are listed from left 
to right (i.e., on the right-hand side of panel c, the notation 29/41 refers to 29 instances for Chong et al. 
2020 and 41 for COD-dipp). a) Comparison with peptide-PRISM published ncMAPs at a 10% FDR. 
COD-dipp ncMAPs were restricted to 3 studies in common with Erhard et al. 2020. b) Comparison with 
Peptide-PRISM published ncMAPs at a 1% FDR. COD-dipp ncMAPs were restricted to 3 studies in 
common with Erhard et al. 2020. c) Comparison of the atlas of ncMAPs revealed by COD-dipp to 3 
previous studies. 
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Figure 5: Origins of non-canonical MHC class I–associated peptides (ncMAPs). a) Peptide length 
distribution of canonical (dark gray) and non-canonical (light gray) MAPs. b) Annotation of ncMAPs 
across gene features. c) Analysis of ncMAPs that could originate from novel open reading frames 
(ORF). Upstream start codons of non-canonical MAPs are analyzed for their potential to initiate 
translation and produce ORFs (left-hand side) as a source of ncMAPs. The frequencies of different start 
codons for positively predicted translation initiation sites (TIS) are shown on the right-hand side. d) 
Analysis of ncMAPs from intronic regions that may originate from intron retention (IR) events. 
Translation of MAPs from IR sources should be in-frame with the corresponding upstream exons. e) 
Analysis of ncMAPs that could originate from frameshift mutations in cancer. ncMAPs are aligned to an 
in-silico translated protein database of COSMIC somatic frameshift mutations. f) Summary indicating 
whether the ncMAPs can be accounted for by any of the analyses conducted in panels c, d, or e. 
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Figure 6: Cancer selectivity of non-canonical MHC class I–associated peptides (ncMAPs). (a) 
Percentage of ncMAPs that were solely in healthy and/or tumor samples by MS (blue) and ncMAPs 
undetected in healthy samples by MS (red). b) Parent gene expression of ncMAPs in TPM in 29 healthy 
tissues from 17,382 samples (GTEx v8 dataset). ncMAPs are distributed over two groups: (I) ncMAPs 
detected in healthy samples by MS in blue, (II) ncMAPs undetected in healthy samples by MS in red. 
c) Parent gene expression of ncMAPs in TPM in 29 healthy tissues from 17,382 samples (GTEx v8
dataset). A limit on the gene expression (y-axis) of 1.2 TPM was set to visualize cancer-selective
ncMAPs in black.
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Figure S1 

Fig. S1: The mass spectrometry strategies used in this study. a) A closed search approach 
(supervised approach) requires a reference protein sequence database that contains the expected 
proteins within the sample. These protein databases are in silico digested and peptides falling within a 
certain error tolerance are chosen as candidate peptide assignments. Each candidate peptide is then 
scored against the spectrum using an algorithm-specific methodology, and the highest scoring one is 
assigned as the sequence of the MS2 spectrum. b) Open search strategy (semi-supervised approach) 
widens the MS1 search error tolerance to identify peptides that would have been missed due to the 
mass shifts caused by mutations or post-translational modifications. c) de novo strategy (unsupervised 
approach) attempts to annotate spectra without a reference proteome by predicting a peptide sequence 
by directly reading the MS2 spectra. 
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Figure S2 

Fig. S2: Additional quality control for the mass spectrometry peptide-spectrum matches (PSMs) 
of non-canonical and post-translationally modified MHC-associated peptides. a) Comparison of 
PSMs identified by our open search with PSMs of the original studies. b) Percentage of 
carbamidomethylation within the subset of post-translationally modified peptide-spectrum matches for 
iodoacetamide-treated and untreated samples. c) De novo identified spectra from canonical (dark gray) 
and non-canonical (light gray) sources. d) De novo score distributions of canonical and non-canonical 
spectra. e) Correlation between predicted and experimental retention times for MS-GF+ and de novo 
peptides. f) Median retention time (RT) difference between peptides with and without a specific post-
translational modification (PTM). Deviations between PTM-modified and unmodified canonical peptides 
are shown in red, and deviations between non-canonical peptides are shown in blue. Median RT refers 
to the retention time median value of multiple PSMs of the same peptides in a specific mass 
spectrometry run. The median RT difference refers to the difference between the median RT of the 
unmodified peptide and its modified counterpart. g) Boxplot of the mass differences between the 
observed mass over charge (M/Z) and the calculated M/Z of the non-canonical peptides identified using 
de novo (red) and second-round search (blue). 
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Figure S3 

Fig.S3: Spectra of the non-canonical MHC-associated peptide KTYQDLKHK from the PXD014017 
dataset of a colorectal cancer patient (CRC-4). Panels a and e show spectra from a replicate treated 
with trametinib. Panels b, c, d, and f show the spectra from four different replicates of the same patient 
(CRC-4) that were left untreated. 
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Figure S4 

Fig. S4: Spectra for the non-canonical MHC-associated peptide HLLDNKTLFQL from multiple 
datasets. Panel a shows a spectrum from the PXD012083 dataset of an acute myeloid leukemia 
patient. Panels b, c, and e show spectra from the PXD003790 dataset of a brain glioblastoma cell line 
(T98G). Panel d shows a spectrum from the PXD003790 dataset of a brain glioblastoma cell line (U87). 
Panel (f) shows the spectrum from the PXD007596 dataset of a breast cancer cell line (MCF-7). 
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Figure S5 

Fig. S5: Spectra for the non-canonical MHC-associated peptide AAVPVHSPM(oxidation) from 
multiple datasets. Panels a and b show the spectra from dataset PXD014017 of a colon cancer 
patient treated with IFN-γ. Panel c shows a spectrum from dataset PXD014017 of the same colon 
cancer patient who was left untreated. Panels d, e, and f show spectra from the PXD006939 dataset 
of an ovarian carcinoma cell line (UWB1289) for three different biological replicates. 
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Figure S6 

Figure S6: HLA supertypes and non-canonical MHC-associated peptides (ncMAPs) expression. 
The percentages of unique ncMAPs are shown for all 114 HLA alleles grouped into supertypes to 
reduce the complexity. 
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Figure S7 

Fig.S7: Comprehensiveness of the panel of normals in term of HLA-binding motifs. a) HLA allele 
coverage intersection between tumor and healthy samples. b) Percentage of ncMAPs that are detected 
in healthy samples (red) versus those undetected in healthy samples (blue) for the subset of peptides 
presented by the shared allele i.e., 57 HLA alleles common between tumor and healthy samples. c) 
HLA-binding landscape of all alleles colored by HLA gene type. d) HLA-binding landscape of all HLA 
alleles colored in blue for tumor-only alleles and in orange for shared or healthy-only alleles. Panels c 
and d show the similarity in HLA-binding motifs between all alleles in our dataset. As different HLA 
genes should present dissimilar binding motifs, panel c shows that different HLA genes map to distinct 
areas of the plot, supporting the idea that dissimilar HLA-binding motifs would appear in separate areas. 
Panel d shows a high similarity in the HLA-binding motifs between alleles covered by tumor-only 
samples (blue dots) and alleles covered by healthy samples (orange dots). In agreement with the 
findings of panel b, it is apparent that the 65 alleles in our panel of normals are representative of the 
tumor-only alleles in terms of HLA-binding motifs. 
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Supplementary Notes 

Note 1: Dataset selection 
List of keywords used for selecting datasets from PRIDE: Immunoprecipitation, 

Immunopeptidome, Peptidomics, Affinity purification, Mhc, Peptidome, Hla, 

Immunopeptidomics, Mhc class i, Ip, Hla peptidome, Hla-b*27, Hla class ii, Neoantigens, 

Immunoinformatics, Hla-c, Mhc class 1 ligands, Proteogenomic cryptic mhc lc-msms maps, 

Mhc class i antigen presentation pathway, Mhc-i peptides, Mhc i, Immunopeptidome; hla; lc-

ms/ms; netmhcpan; binding prediction, Mhc ii, Mhc-i peptide-loading complex, Mhc affinity 

prediction, Mhc-ii peptidomics, Mhc ligandome, Mhc i-associated peptides, Mhc-i, Mhc class 

ii, Antigen presentation/ mhc class ii/ immunopeptidome/ peptide editing/ polymorphism, Mhc-

i peptidomics, Shotgun proteomics; immunoprecipitation; meiosis; conserved proteins; meioc; 

, Anti-hla immunopurification, Immunopeptidome; hla; lc-ms/ms; netmhcpan; binding 

prediction, Personalized immunotherapy, Immunoprecipation, Immunoprecipiation, 

Immunoaffinity purification, Immunoprepicipitations, Immunopurification, Antigen 

presentation/ mhc class ii/ immunopeptidome/ peptide editing/ polymorphism, Hla-ii, Hla 

peptides, Hla-e, Hla-b*51, Hla class i peptides, Ducaf; hla-drb1*03:01, Hla typing, Hla-g, 'Hla 

class ι ligandome; hla class ι peptide ligands; high ph reversed phase; strong cation exchange; 

pre-fractionation', Hla-b40, Hla binding motifs, Hla-dm, Hla-b27, Immunopeptidome; hla; lc-

ms/ms; netmhcpan; binding prediction, Hla-b*58:01, Hla-b*40:02 peptidome, Hla-dr peptides, 

Hla-dr, Hla-a, Hla-b57, Hla class i, Hla-i, Hla-a2, Hla-b, Interferon gamma; proteomic analysis; 

hla class i; apm, Hla-i peptides, Hla-ligand, Hla-b*57:03, Hla-ligandomics, Hla-a*29:02, Hla-

dr15, Hla-class i, Hla-restricted peptide  
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Note 2: Correctness of the identified peptides 
The most definite validation metric of correctness is shown by a high similarity between the 

MS/MS spectra of the endogenous and synthetic peptides, as well as the co-elution of the light 

and heavy peptide pairs. Considering the impossibility of performing such an analysis due to 

the reliance of this study on publicly available data. We have assessed the correctness of the 

identified peptides in a series of quality control experiments. 

Open-search quality control 

Validation 1: We compared the identifications obtained with open search in this study with 

the identifications in the original studies at the peptide-spectrum match (PSM) level (i.e., for 

each MS/MS spectrum). We successfully collected PSM information from 19 of the 25 

analyzed datasets. The remaining 6 datasets presented some challenges. Three of these 

datasets (PXD004233, PXD008937, and PXD009531) reported PSM-level data but without 

FDR control, and three (PXD012083, PXD004746, and PXD010808) reported PSM in a format 

that prevented us from recovering the MS/MS scan numbers from the raw files. We compared 

the PSMs identified by our open search to those reported in the original studies and considered 

an agreement when the same mass spectrometry scan showed (I) an identical peptide 

sequence and (II) an identical mass shift introduced by the PTM. We found that 96.1% of the 

modified PSMs were identical in both sources (49,918 out of 51,945). To expand on the 

remaining 3.9% of the PSMs that were in conflict, we inspected the discrepancies and 

determined that they consisted of PTMs with monoisotopic masses close to those of some 

amino acids. For example, N-term glycidamide (87.03203 Da) can be misinterpreted as serine 

(87.0782 Da), carbamidomethyl (57.02146 Da) as glycine (57.02146 Da), N-term 

Propionamide (71.03711 Da) as alanine (71.03711 Da), phenethyl isothiocyanate (163.04557 

Da) as tyrosine (163.1760 Da), N-term dicarbamidomethyl (114.04293 Da) as asparagine 

(114.04293 Da), and 4-hydroxynonenal (156.115030 Da) as arginine (156.10111 Da). In these 

cases, the open-search identified peptides were one amino acid shorter on the N-termini while 

bearing a PTM with a monoisotopic mass close to the missing amino acid. We believe that 

this conflict stems from an incomplete fragmentation pattern, in which the missing b1 and/or 

y(n) ions in the MS/MS spectrum leave the search engine with an equally fit decision to match 

it with the PTM- or non-PTM-bearing sequence.  

To further validate our results and assess error rates, we employed a confirmatory procedure 

by evaluating the identification rate of cysteine carbamidomethylation in samples that were 

not treated with iodoacetamide. It is important to note that carbamidomethylation is a 
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deliberate PTM introduced to cysteine residues through a reaction with iodoacetamide; thus, 

samples that have not undergone iodoacetamide treatment should not exhibit cysteine 

carbamidomethylation. To minimize false identifications, we applied stringent filters, including 

a global false discovery rate (FDR) and false localization rate (FLR) of 1%. This means that 

one would expect a 1% false identification rate, and approximately 1% for each group of PTMs. 

Our findings revealed that the samples lacking iodoacetamide treatment incorporated 1.75% 

of peptide-spectrum matches with cysteine carbamidomethylation, which we consider 

reasonable. It is important to note that this percentage represents a group FDR rather than a 

global FDR. As such, each PTM group would theoretically have a group FDR of approximately 

1%, which would balance out to a global FDR value of 1% when considering all PTM groups 

together. 

De novo quality control 

Our sequential de novo strategy showed that 96.3% of the MS spectra were canonical (i.e., 

within known proteins) and a minority (3.7%) were non-canonical (i.e., mapping to the 3-frame 

translation database). 

Validation 2: We assessed the quality of the de novo sequences by examining their 

DeepNovoV2 scores. Canonical and non-canonical peptides had similar de novo score 

distributions, with a slight shift toward higher scores for non-canonical peptides.  

Validation 3: We assessed the quality of the de novo sequences by examining the correlation 

between their experimental and theoretical liquid chromatography retention times. Canonical 

and non-canonical de novo sequences had a high correlation, with an R2 score of 0.9 for de 

novo canonical and 0.863 for de novo non-canonical peptides in a melanoma sample (mel-15 

from PXD004894), and an overall de novo non-canonical R2 score of 0.88 among all samples. 

Second-round search quality control 

Validation 4: The results of the second and third validations showed strong evidence that the 

de novo non-canonical peptides were of high quality (i.e., correctly predicted complete peptide 

sequences). Even with this strong evidence, it is possible that chromatic behavior remains 

unchanged in certain instances where neighboring amino acids are in flipped positions, or that 

a 90% accuracy rate still leads to an uncertain false discovery rate percentage. Hence, we 

confirmed the identified 10,413 de novo-based ncMAPs by performing a second-round search 

for additional validation and controlling the FDR at 1%. The second-round search recovered 

7,029 of the 10,413 de novo-based ncMAPs, with 76.52% (5,379) recovered from the same 
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spectra (at least one spectrum per peptide). Overall, the second-round search identified 8,601 

ncMAPs with a subset of 1,572 ladder sequences (subsequences) after cleavage of the 

10,413 de novo-based ncMAPs by the search engine. As for post-translationally modified 

peptides, the second-round search recovered 51.85% of N-terminal acetylated peptides, 

27.96% of peptides with cysteine carbamidomethylation, 74.75% of peptides with 

cysteinylation, and 71.02% of peptides with oxidized methionine from the same spectra (at 

least one spectrum per peptide). The low recovery of carbamidomethylation was mostly due 

to incorrect open-search assignments in iodoacetamide-untreated samples, considering that 

81.01% was recovered by the second-round search in iodoacetamide-treated samples. 

Validation 5: We confirmed that post-translationally modified peptides from the second-round 

search exhibited a shift in retention time that was consistent with that of their unmodified 

counterparts. Furthermore, we observed that for a specific PTM, there was a similar shift in 

retention time between non-canonical and canonical MHC-associated peptides. In each case, 

the modification caused the retention times of PTM-bearing non-canonical MHC-associated 

peptides to deviate in the same direction relative to the unmodified peptides. We found a high 

degree of agreement in retention time shifts between canonical and non-canonical peptides 

for three PTMs: carbamidomethylation, cysteinylation, and methionine oxidation. For N-

terminal acetylation, the quantile ranges (Q1-Q3) were shifted between the two categories. 

However, it is important to note that the non-canonical category still fell within the standard 

range of the canonical category, which was mostly due to the low number of identified non-

canonical N-terminal acetylated peptides with unmodified counterparts (9) compared to the 

large number in the canonical group (426). 

Validation 6: We checked the mass difference between the observed and calculated masses 

(i.e., theoretical mass) of the peptide-spectrum matches (PSMs). We isolated the PSMs 

identified by the de novo strategy as well as those validated by second-round search. A similar 

distribution of mass differences between the de novo identified peptides (from -0.0014 to 

0.0013 mass (M) / charge (Z)) and the second-round search validated from -0.0012 to 0.0012 

M/Z) was observed. 

Validation 7: We performed a comprehensive comparison between the PSMs obtained from 

our second-round search and those reported in the original studies. We hypothesized that if 

the non-canonical peptides were correctly identified, they would not have been recognized by 

the original studies that focused on detecting only canonical peptides originating from the 

proteome. Our analysis showed a remarkable correlation with our hypothesis, as 98.87% 

(9,495,747 of 9,508,165) of non-canonical PSMs were not detected in the original studies. 
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Abstract 

MHC-associated peptides (MAPs) bearing post-translational modifications (PTMs) have 

raised intriguing questions regarding their attractiveness for targeted therapies. Here, we 

developed a novel computational glyco-immunopeptidomics workflow that integrates the 

ultrafast glycopeptide search of MSFragger with a glycopeptide-focused false discovery rate 

(FDR) control. We performed a harmonized analysis of 8 large-scale publicly available studies 

and found that glycosylated MAPs are predominantly presented by the MHC class II.  We 

created HLA-Glyco, a resource containing over 3,400 human leukocyte antigen (HLA) class II 

N-glycopeptides from 1,049 distinct protein glycosylation sites. Our comprehensive resource

reveals high levels of truncated glycans, conserved HLA-binding cores, and differences in 

glycosylation positional specificity between classical HLA class II allele groups. To support the 

nascent field of glyco-immunopeptidomics, we include the optimized workflow in the FragPipe 

suite and provide HLA-Glyco as a free web resource.  
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Introduction 

Protein glycosylation has been extensively studied and found to play a variety of biological 

roles, including antigen recognition, host-pathogen interactions, and immune modulation1. 

Glycosylation causes dramatic alterations in response to cancer and has been suggested as 

a potential biomarker2–5. Moreover, glycosylation could be an attractive source of tumor-

specific antigens, considering the viability of post-translational modifications (PTMs) on MHC-

associated peptides6–9 (MAPs). Critically, glycosylation has been reported to have a significant 

impact on the immunogenic properties of MAPs in terms of T-cell recognition10–12 and epitope 

generation due to interference with the proteolytic cleavage13.  

High-throughput identification of glycosylated MAPs from mass spectrometry (MS) data 

involves combining two notoriously challenging problems in computational proteomics. First, 

the proteolytic processing of MAPs requires non-enzymatic searches (i.e., non-specific 

cleavage of proteins at every peptide bond). Considering all possible cleavages of reference 

proteins results in an enormous search space of candidate sequences. Second, the non-

templated nature of the glycosylation process results in hundreds of distinct glycans that can 

be detected across the proteome14. A combinatorial explosion thus takes place when 

considering all possible non-enzymatic peptide sequences with many possible glycans. As a 

result, a non-specific glycopeptide search is not feasible with many search engines due to 

prohibitively long run times and/or insufficient sensitivity. To the best of our knowledge, very 

few glycosylation analyses of MAPs have been performed. One of the earliest successful 

identifications of glycosylated class II MAPs was made in 200515 with 2 N-linked 

glycopeptides found in an EBV-transformed human B-lymphoblastoid cell line. In 2017, 

Malaker et al. successfully identified 26 glycosites in 3 different melanoma cell lines9. Both 

studies required identification of glycopeptides by manual annotation of the spectra. More 

recently, a third effort from 2021 captured 209 unique human leukocyte antigen (HLA) II-bound 

peptide sequences from the SARS-CoV-2 virus16 using an automated glycopeptide search 

method assisted with a manual verification of all glycopeptide spectra.  
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Large-scale analysis of glycosylated MAPs requires automated methods with exceptional 

speed and accuracy to handle the enormous search space of glycosylated non-specific 

peptides. The above-mentioned challenges have been tackled by our recent developments to 

improve the search speed17 (MSFragger) and address the complexity of glycosylation18 

(MSFragger-Glyco). Building on these advances, we developed an optimized workflow for 

HLA glyco searches with a focus on optimizing the false discovery rate (FDR) control of 

glycosylated MAPs. We assembled, carefully annotated, and analyzed 8 publicly available 

immunopeptidomic datasets for N-glycosylation using our workflow and investigated the 

glycosylated MAPs binding properties. From nearly 2,000 LC-MS/MS runs, we found 3409 

class II N-glycosylated MAPs on 1049 distinct protein glycosylation sites of 677 unique 

proteins. We revealed characteristics of HLA glycopeptides, including high levels of truncated 

glycans, conserved HLA-binding cores across the 72 studied HLA class II alleles, and a 

different glycosylation positional specificity between the classical allele groups. 

Induced expression and antigen-presentation by the MHC class II on tumor cells is 

increasingly being recognized as a mediator of anti-tumor immunity and neoantigen efficacy19–

24. Our results, made readily accessible as a free web resource, significantly expand our

understanding of glyco-MAPs in cancer; and together with our novel optimized workflow, are 

expected to further the development and discoveries in the nascent field of glyco-

immunopeptidomics. 

Results 

Computational glyco-immunopeptidomics workflow 

The computational workflow developed in this work for the analysis of glycosylated MAPs is 

illustrated in Fig. 1. While O-glycosylated MAPs are also of potential interest25, O-glycopeptide 

analysis typically requires electron-based activation to locate the glycosite(s) within the 
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peptide. As the vast majority of available immunopeptidomics data lacks such activation, we 

focused exclusively on N-glycosylated MAPs for this analysis. Briefly, MSFragger-Glyco 

performs N-glycosylation motif checks for the N-X-S/T consensus sequence, which serves as 

the attachment site for polysaccharides (i.e., sequon). Simultaneously, spectra are checked 

for the presence of fragmentation products of peptide-conjugated glycans (i.e., oxonium ions). 

The glycan search is only performed for peptides with a sequon and for spectra containing 

oxonium ions above a relative intensity threshold (10% in this case). A regular search is 

performed for all other spectra. Next, we use PeptideProphet26 and ProteinProphet27 within 

the Philosopher28 toolkit to model and filter false discovery rates (FDR) to 1% for peptide-

spectrum matches (PSMs), peptides, and proteins, respectively. As in previous glycopeptide 

analyses, we applied the extended mass model of PeptideProphet to simultaneously model 

the score and mass-shift distributions of the database search17. This provides a separate 

probability model for different glycan masses (i.e., mass shifts) to account for the varying 

frequencies of the different glycans18. 

Initially, we assessed the standard FDR procedures used for enzymatically digested and 

enriched glycopeptides on non-enzymatic unenriched immuno-glycopeptides. We observed 

that while 91% of the glycoPSMs corresponded to known glycosylation sites, less than half of 

the observed glycosites (46%) were previously known (Supplementary Fig. 1a). Thus, known 

sites tended to have many supporting spectra, while unknown sites had few and notably lower 

scores, likely indicating an unacceptable increase in false discoveries. Since glycoPSMs 

represent a small fraction of the identified spectra, the score thresholds used in our initial FDR 

filtering were mostly influenced by non-glycosylated peptides. As glycopeptides have a much 

larger search space, this results in an enrichment of false discoveries in the glycopeptide 

fraction when all PSMs are filtered together. To counter this, we applied a separate 

PeptideProphet probability (i.e., score) filter for glycosylated and non-glycosylated PSMs to 

control FDR in each category despite the differences in search space, using a modified version 

of Philosopher (see Methods and Supplementary Fig. 1b). We further filtered glyco-PSMs 
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by glycan q-value (q ≤ 0.05) to remove glycopeptides lacking sufficient evidence supporting 

the glycan composition assignment29 by PTM-Shepherd30. With this improved filtering method, 

the proportion of PSMs corresponding to known glycosites increased to 96%, and the 

proportion of identified glycosites corresponding to known glycoproteins increased to 95%, 

with 79% of sites previously identified in other glycoproteomic analyses (Supplementary Fig. 

1c). These stringent glycopeptide-specific filters provide effective FDR control in a challenging 

search, allowing for confident construction of the HLA glycopeptide resources. 

Large multi-tissue MHC immunopeptidome dataset 

We selected 8 immunopeptidomic studies31–38, prioritizing studies with a large amount of high-

resolution mass spectrometry data and included a variety of instruments as a means to reduce 

instrumental bias (see Methods). Based on our careful curation and annotation of these data, 

our collection of 732 different HLA class II mass spectrometry samples incorporated 90.8% of 

HLA-typed data (Fig. 2a), 80.3% of patient tissues, 16.7% of cell lines, and 2.9% of tumor-

infiltrating lymphocytes (Fig. 2b). The previously mentioned sample types covered up to 6 

different cancers (Fig. 2c) located in the brain (meningioma and glioblastoma), skin 

(melanoma), colon (colorectal), and lung (adenocarcinoma and squamous carcinoma). In 

addition, 59% of the samples are non-cancerous and come from disease-free individuals. In 

terms of HLA diversity, up to 72 HLA class II alleles of the 3 classic genes (DP, DQ, and DR) 

are covered by varying numbers of mass spectrometry samples (Fig. 2d). 

Leveraging the wealth of proteomic data, we queried the glycosites identified in our study 

against previously reported glycosylation sites in GlyGen39. PSM level information showed 

96.4% of previously reported glycosylation sites (Fig. 2e), 1.8% of glycosylation sites within 

previously reported glycosylated proteins, and 1.8% of new glycosylation sites. On the other 

hand, at the peptide level, 90% of glycopeptides mapped to previously reported glycosylation 

sites, 6.7% of glycopeptides were within previously reported glycosylated proteins, and 3.3% 

contained new glycosylation sites. A similar trend was observed at the glycosylation site level, 
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with 78.8% of previously reported glycosylation sites, 15.6% of glycosylation sites within 

previously reported glycosylated proteins, and 5.5% of new glycosylation sites. It appears that 

peptides containing previously reported glycosylation sites are abundant species, considering 

the high spectral count (Fig. 2f in gray) in comparison with the previously unreported ones 

(Fig. 2f in blue and black). We then benchmarked our findings against previous work by 

Malaker et al. 20179 on glycosylated MAPs in 3 melanoma and 1 EBV-transformed B-cell lines. 

The original manuscript reported 93 glycosylated peptides corresponding to 26 glycosylation 

sites, split between N-glycosylation (23) and O-glycosylation (3). Our workflow recovered 20 

of the 23 identified N-glycosylation sites, of which 4 did not pass the FDR filter. With a 45-fold 

increase in glycosylation sites, we identified 1033 new sites (see Fig. 2g). 

Enrichment of N-glycosylation in the class II immunopeptidome 

Several of the datasets we searched contained both HLA class I and II peptides from the same 

samples and, in one case, whole proteome data, allowing us to compare the frequency and 

characteristics of glycosylation across these categories. Fragmentation of glycopeptides by 

tandem MS (MS/MS) produces highly abundant oxonium ions resulting from the fragmentation 

of conjugated glycan(s), which can provide an estimate of the fraction of glycopeptides in a 

sample prior to a database search. To understand the abundance of glycosylation at different 

molecular levels, we compared the percentage of oxonium-containing MS/MS scans for the 4 

datasets containing multiple HLA classes (Fig. 3a). Interestingly, datasets A31 (Bassani-

Sternberg et al. 2016), B34 (Chong et al. 2020), and D37 (Forlani et al. 2021) showed, on 

average, an approximate 5-fold enrichment in potential HLA class II glycosylation events 

compared with HLA class I data. In dataset C32 (Marcu et al. 2021), the only dataset containing 

samples derived from healthy tissue, a similar proportion of oxonium-containing scans was 

observed in the HLA class II data as in the other datasets, but there were essentially no 

oxonium-containing scans in the HLA class I data. As expected, the percentage of 

glycosylated PSMs obtained from database searches of these datasets followed a similar 

trend, with 0.5 to 3% of observed PSMs glycosylated in HLA class II data versus less than 
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0.1% glycosylated in HLA class I data (datasets A, B, and C). Strikingly, glycosylated PSMs 

were also enriched approximately 7-fold in HLA class II compared with the whole proteome 

data in dataset D (Fig. 3b), a dramatic increase given the abundance of glycosylation in the 

proteome. 

We also noticed that the composition of glycans observed in the immunopeptidomic datasets 

was different from that of their proteome counterparts. (Fig. 3c). The average glycan mass 

detected in the immunopeptidome was approximately 1000 Da, which was significantly lower 

than that observed in the proteome (1400 Da average). To further explore the nature of this 

compositional discrepancy, we compared glycan types between the two groups (Fig. 3d). A 

higher percentage of truncated glycans (68%) was observed in the HLA class II 

immunopeptidome compared to the more typical high-mannose and complex/hybrid 

categories in the proteome, as noted in a previous analysis9. This trend of truncated glycans 

on HLA peptides was preserved when only glycans from the same protein were considered. 

For example, LRP1, a highly glycosylated protein, was observed with a mix of high-mannose 

and complex glycans in the proteome sample, but with a mix of truncated and high-mannose 

glycans in the HLA-II sample with almost no mature complex glycans detected (Fig. 3e). There 

was very little overlap between the glycosylated proteins and sites in each category, with only 

22.8% of HLA-II glycoproteins observed in the whole proteome data and even lower overlap 

(16.3%) when considering the specific glycosylation sites within proteins. (Fig. 3f). The whole 

proteome glyco search likely captures glycopeptides from the most abundant glycoproteins, 

as the experiment was performed without any glycopeptide enrichment, whereas the 

immunopeptide datasets presumably capture MAPs with much less dependence on overall 

protein abundance. 

Overall, the data showed a remarkable enrichment of glycosylation in HLA class II-associated 

peptides relative to HLA class I and the whole proteome, leading us to focus the remainder of 

our efforts on HLA class II-associated and glycosylated peptides.  
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Glycosylation of MAPs does not influence the HLA binding motif 

To explore glycosylation in the context of HLA class II presentation, we focused on the HLA-

binding core, a 9-mer sequence that interacts with the HLA molecule. In most mass 

spectrometry experiments, samples express multiple HLA alleles, leading to an ambiguous 

association between the identified peptides and the pool of available HLA molecules. Hence, 

a deconvolution step to find the HLA motifs and the corresponding binding core offsets of each 

peptide was deemed necessary for further experimentation (see Methods).  

Deconvolution of peptides using a semi-supervised approach 

We first chose to use MoDec38 for deconvolution, a fully probabilistic framework that learns 

both the motifs and preferred binding core position offsets from the sequences themselves. 

The fact that MoDec does not rely on a pre-trained model is crucial when exploring HLA-bound 

peptides with post-translational modifications (i.e., glycosylation) to avoid the removal of all 

peptides that were not well modeled. Such a deconvolution strategy requires manual 

intervention to choose the number of HLA motifs (i.e., number of clusters) and assign each 

discovered motif to one of the expressed HLA alleles of a given sample. We carefully selected 

a case study on a human B lymphoblastoid cell line (C1R) from Ramarathinam et al. 202136. 

The purification protocol of the HLA-bound peptides in this study was performed sequentially 

with pan anti-class I, followed by class II anti-DP (Fig. 4a), class II anti-DQ (Fig. 4b), and class 

II anti-DR antibodies (Fig. 4c and d). Hence, the resulting mass spectrometry samples were 

mono-allelic (i.e., presenting one allele at a time), except for the DR samples with the 

DRB1*12:01 and DRB3*02:02 alleles eluting together. Fig. 4 presents 4 sections a, b, c, and 

d standing for the HLA class II alleles DPA1*02:01/02-DPB1*04:01, DQA1*05:05-

DQB1*03:01, DRB1*12:01, and DRB3*02:02, respectively. All alleles showed a similar 

percentage of glycosylated and non-glycosylated peptides with the corresponding HLA motifs 

after deconvolution (Fig. 4, panel I). All 25 replicates showed an unaltered HLA-binding core 

with glycosylation (two-sided Fisher’s exact test, 25 P-values > 0.05). 
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Considering the concordance of glycopeptide sequences with the HLA-binding cores, we 

checked the absolute glycosylation position per peptide length (i.e., glycosylation offset within 

the peptide). Fig. 4 panel II shows a glycosylation tendency towards the N- and C-termini for 

both DQ and DR alleles (Fig. 4 sections b, c, and d at panel II) and only the C-terminal 

tendency for the DP allele (Fig. 4 section a at panel II). To further decipher glycosylation in 

the context of the HLA-binding cores, we looked at the relative position shown in Fig. 4 panel 

III (i.e., glycosylation offset from the HLA-binding core start). Negative values indicate sites 

upstream of the HLA-binding motif start, 0 to 8 values reference positions within the HLA-

binding core, and values greater than 8 denote glycosylation sites downstream of the HLA-

binding core. For the DPA1*02:01/02-DPB1*04:01 allele, glycosylation occured 91% of the 

time within the HLA motif at position 8 (Fig. 4 section a at panel III). In contrast, for the other 

3 alleles, glycosylation was more likely (86% of the time) to take place up- or downstream of 

the HLA-binding core. 

Deconvolution of peptides using a fully unsupervised approach 

Despite the usefulness of MoDec for a previously unexplored category of peptides, such a tool 

suffers from several limitations40,41: (I) the need for manual intervention to associate the 

identified motifs with known allele specificities present in the sample; (II) the difficulty of 

assigning peptides to MHC molecules when alleles with overlapping motifs are co-expressed; 

(III) low sensitivity with low expression of MHC molecules; and (IV) the complexity of HLA

class II specificities due to the involvement of the variable alpha and beta chains for the HLA-

DQ and HLA-DP groups. All these, render motif-allele assignment a daunting task, especially 

with up to 87 subjects in our dataset. Thus, we used the state-of-the-art binding model 

NetMHCIIpan 4.141,42 to perform MHC motif deconvolution and assign glycopeptide sequences 

to their most likely HLA alleles without the need for manual intervention (see Methods). 

Consistently, glycosylated and non-glycosylated peptides from Ramarathinam et al. 2021 

showed similar binding properties, indicating that the detected glycosylation fit within the 

known HLA-binding cores (two-tailed Fisher’s exact test, P-value: 0.48). Interestingly, 
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NetMHCIIpan 4.1 confirmed most peptides with glycosylation located at P8 within the HLA-

binding core (97% for DPA1*0201 and 100% for DPA1*0202) for the C1R DP allele (Fig. 5a). 

Overall, 95%, 83%, 76%, and 87% of glycopeptides were found to bind to C1R DP (Fig. 5a), 

DQ (Fig. 5b), DRB1*12:01 (Fig. 5c), and DRB3*02:02 (Fig.5d), respectively. Hence, we 

carried out the NetMHCIIpan 4.1 deconvolution for the 83 remaining subjects in our dataset. 

The HLA class II N-glycosylation characteristics 

We noticed a high tendency of glycosylation within the HLA-binding core for HLA DP alleles, 

followed by a lower tendency for HLA DQ, and even lower one for HLA DR alleles. Hence, we 

checked for the occurrence of such events for each of the 3 HLA groups (DP, DQ, and DR). 

Fig. 6a shows that up to 57% of HLA DP associated peptides have glycosylation inside the 

HLA-binding core, 30% for HLA DP, and 13% for HLA DR. In terms of glycan types, Fig. 6b 

shows that HLA DP associated peptides showed the highest fraction (0.67) of truncated 

glycans compared to DQ (0.55) and DR (0.41). High-mannose glycans showed a reverse trend 

for DR, DQ, and DP alleles, with fractions of 0.37, 0.27, 0.21, respectively. All DP, DQ, and 

DR associated peptides showed a depletion in complex/hybrid glycans in accordance with 

previous findings9,16. 
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Discussion 

Post-translational modifications increase the diversity of the immunopeptidome and may 

provide new targets for the immune system to recognize tumor cells or respond to pathogens.  

With PTM-driven antigenicity being continuously highlighted9,31,43,44, glycosylation is a key 

PTM that, despite its long history of research, remains understudied in the context of MHC 

presentation due to computational related challenges. In this work, we have developed a 

workflow for glyco-immunopeptidomics that combines the speed and sensitivity of MSFragger-

Glyco, with the inclusion of glycopeptide-specific FDR control in Philosopher, which is critical 

for filtering out low-confidence identifications. We used this workflow to produce a resource of 

HLA class II N-glycosylated MAPs arising from a harmonized analysis of 8 publicly available 

studies. Overall, we identified 1049 glycosylation sites from 3409 different glycopeptides, an 

order of magnitude greater than any previous effort in this area. Leveraging this large-scale 

resource, we explored the properties of glycosylated MAPs, including the types of glycans 

conjugated, MHC binding affinity predictions, and the positioning of glycosylation relative to 

the HLA binding core. Interestingly, we observed no difference in binding motif predictions with 

glycopeptides compared to non-glycopeptides, despite some peptides containing glycans 

within the binding core. HLA DP alleles presented a majority of glycans within the binding core 

(57%) compared with HLA DQ alleles (30%) and HLA DR alleles (13%). Moreover, we found 

a difference in the glycan types between HLA groups (DP, DR, and DQ), with truncated 

glycans enriched for DP alleles and a higher mannose content for DR alleles. 

A study by Malaker et al.9 on HLA class II N-glycosylation covered 5 DR alleles (DRB1*0101, 

DRB1*0401, DRB1*0404, DRB1*1502, DRB4*0103) and showed that 3 out of 23 peptides 

had glycosylated residues within the binding core. In combination with molecular modeling, 

this allowed the authors to postulate that glycan residues are most likely to protrude out of the 

HLA-binding pocket and interact with the complementary determinant region of the T-cell 

receptor. Our findings expand the coverage to 28 DR alleles, along with multiple DP and DQ 

alleles, adding up to 87 HLA molecules overall, when considering the combination of alpha 
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and beta chains. In addition to the preference of terminal glycosylation for peptides associated 

with DR and DQ alleles, we observed an HLA-binding core glycosylation tendency for peptides 

associated with DP alleles. Future studies should explore whether the correlation between 

smaller glycans and presence within the HLA-binding core is related simply to size restrictions 

preventing larger glycans from occupying the core or is a reflection of other processing of 

MAPs for presentation.  

The enrichment of glycosylated peptides on the MHC-II, while preserving canonical binding 

motifs, offers the tantalizing possibility of designing and developing glycosylated neoantigen 

vaccines with improved affinity over wild-type peptides22,23. Which is further notable, in light 

that most of the known anti-tumor CD4+ T cells are specific for highly immunogenic self-

derived MHC-II antigens, demonstrating that self-antigen CD4+ T cells can mount anti-tumor 

responses. Cancer-specific glycosylation of MAPs may further contribute to the restriction of 

those mechanisms to the tumor microenvironment. We made our findings readily available as 

a web resource to query pertinent information about the identified glycosylated MAPs. Users 

can search for a specific glycan and/or MAP sequence, protein, or glycosylation site 

associated with a specific HLA allele. In addition, we included deconvolution information 

allowing further interpretation of the data within the HLA haplotype context. We are planning 

to grow this initiative, introduce more studies, and increase the HLA allele coverage. Moreover, 

by providing the optimized computational workflow file, which can be loaded directly into 

FragPipe to reproduce the method described here, we make it easy for others to carry out 

challenging glyco-immunopeptidomics analyses on new datasets. It is our hope that the 

method and findings presented here will expand the field of tumor-specific antigen discovery, 

broaden the scope of possible antigens to target, and improve strategies for vaccine design. 

O-glycosylated MAPs, for example, represent another potential class of antigens that can, in

principle, be studied by our method for further exploration45. Finally, given the promising nature 

of glycosylated MAPs, we anticipate the attraction of glycosylation-oriented research towards 

the immunopeptidomics field. 
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Methods 

Dataset selection 

Studies from the PRIDE46 database were first screened based on a list of keywords related to 

immunopeptidomics. Next, low-resolution analyses were eliminated, and MHC-related 

datasets conducted with at least one of the following instruments were kept: Orbitrap 

Lumos/Fusion, Q Exactive, LTQ Orbitrap, Orbitrap Exploris 480, TripleTOF, impact II, and 

maXis. Then, manual curation of the resulting 312 studies was performed to filter non-relevant 

datasets, resulting in 140 HLA Class I, II, or I & II datasets. The number of identified proteins 

per study was retrieved from gpmDB47 and datasets with a high number of protein groups 

were prioritized. A final manual curation step resulted in the selection of the 8 datasets 

included in this study. 

Mass spectrometry N-glycan search 

Raw and wiff files were first downloaded from PRIDE and converted to mzML format using 

msconvert48 with peak picking, FragPipe (TPP) compatibility, and removal of zero values 

filters. The analysis was executed within the FragPipe suite v18.1-build5 using headless 

mode. Glyco-searches were performed using MSFragger v3.5 with methionine oxidation, N-

terminal acetylation, and cysteinylation as variable modifications, and a list of 198 glycans. A 

list of contaminants was added to the UniProt Swiss-Prot (UP000005640) proteins49, along 

with their corresponding reversed decoy sequences. Enzymatic cleavage was set to non-

specific with peptide lengths from 7 to 25 amino acids for the 8 HLA class II datasets, from 7 

to 12 amino acids for HLA class I datasets (A, B, C, D), and fully enzymatic cleavage with 

peptide lengths from 7 to 50 amino acids for the whole proteome dataset D. Peptides 

containing the consensus sequon (N-X-S/T) and decoy (reversed) peptides containing the 

reversed sequon were considered as potential glycopeptides to ensure the that same number 

of potential glycopeptides was searched in both target and decoy databases. Only spectra 

containing oxonium ion peaks with summed intensity of at least 10% of the base peak were 
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considered for glycan searches, while all others were searched without considering 

glycosylation. Data were deisotoped50 and decharged in MSFragger-Glyco, calibrated, and 

searched with 20 ppm mass tolerances for precursors and 15 ppm for products with 

MSFragger’s built-in parameter optimization performed for each study51. Errors in 

monoisotopic peak detection by the instrument were allowed (+1 and +2 Da). 

FDR control 

Filtering was performed using Philosopher28 (v4.5.1-RC10), including PeptideProphet 

modeling of peptide probabilities, ProteinProphet protein inference, and Philosopher’s internal 

filter for FDR control. The semi-parametric modeling of PeptideProphet was used with the 

expectation value as the only contributor to the f-value. The number of tolerable termini (ntt) 

model was disabled, as it is not applicable to non-enzymatic searches. Filtering was performed 

in Philosopher using a modified, group-specific FDR procedure. Non-glycosylated and 

glycosylated PSMs were filtered separately, using a delta mass cutoff of 145 Da (the size of 

the smallest glycan considered in the search) to distinguish glycosylated PSMs from non-

glycosylated PSMs. This allowed different score thresholds to be used to filter glycosylated 

and non-glycosylated PSMs to 1% FDR. This is essential as the large search space for 

glycosylated PSMs results in higher scoring false matches, requiring a higher score threshold 

for effective filtering than for non-glycosylated PSMs. Since non-glycosylated PSMs make up 

the majority of the results, filtering all PSMs together would yield an insufficiently low score 

threshold for glycosylated PSMs. After the group-specific 1% FDR filter was applied to 

glycosylated and non-glycosylated PSMs, 1% peptide- and protein-level FDR filters were 

applied. A sequential filtering step was then applied to remove any PSMs matched to proteins 

that did not pass the 1% protein-level FDR. Glycan assignment was subsequently performed 

in PTM-Shepherd using the default N-glycan database29 and parameters along with a 0.05 

glycan q-value threshold. 
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Deconvolution of the MHC associated peptides 

Motif deconvolution is the process of finding HLA-binding motifs and their corresponding 

binding core offsets for a set of peptides. A first deconvolution that required manual inspection 

was performed using MoDec38. The peptides were grouped by subject (i.e., instances of the 

same replicates). A maximum of 10 clusters, 20 runs, and a minimum peptide length of 12 

amino acids were considered. Since HLA-II ligands from the same subject come from different 

alleles, MoDec provides a direct interpretation and assigns peptides with similar binding cores 

to clusters (i.e., HLA motifs). However, manual inspection is still required to (I) the number 

HLA motifs MoDec detected per subject and (II) annotate these motifs (i.e., clusters) to their 

respective HLA II alleles. Hence, the MoDec-identified HLA motifs were assigned to the correct 

HLA class II alleles by manual inspection for each analyzed subject. A second deconvolution 

that didn’t require manual inspection, inspired from Kaabinejadian et al. 202241, was performed 

using NetMHCIIpan 4.142. Briefly, all unique peptides were predicted for MHC presentation 

towards all the MHC alleles expressed in the given subject. The likelihood of peptides being 

presented by a given MHC molecule is given by the percentile rank score, which ranges from 

0 to 100, with 0 being the strongest binding score. Peptides with a percentile rank score > 20 

were considered MS co-immunoprecipitated contaminants and labeled as trash. Peptides with 

a percentile rank score ≤ 20 were assigned to the lowest scoring allele of a given subject. We 

applied the second deconvolution method using NetMHCIIpan 4.1 to the entirety of the 

subjects in this study, considering the similarity of the results to the first deconvolution method 

(i.e., MoDec). 

Figure generation 

Motif plots were generated using the Python library Logomaker52, heatmaps using seaborn53 

and other plots using matplotlib54. 
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Figures 

Figure 1: The HLA-Glyco workflow for the detection of glycosylated MHC associated peptides. 

The FragPipe suite was used to (I) perform a search for glycosylated peptides (glyco search) with the 

MSFragger search engine; (II) control the FDR with PeptideProphet in combination with a modified 

version of Philosopher; and (III) assign a glycan composition for each glycopeptide-spectrum match 

using PTM-shepherd. 
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Figure 2: HLA class II infographics of the 8 collected datasets in this study. a) Percentage of 

samples with HLA class II typing information. b) Sample types of the collected mass spectrometry 

samples (i.e., patient tissues, cell lines, and tumor-infiltrating lymphocytes/TILs). c) Cancer types across 

the collected mass spectrometry samples. d) HLA class II alleles (DR, DB, and DQ) across the collected 

mass spectrometry samples. e) Percentage of glyco-PSMs, glycopeptides, and glycosylation sites 

found in GlyGen. f) Abundance of the 3 categories from panel (a) by spectral count. g) Comparison of 

the identified glycosylation sites with Malaker et al. 2017 findings. 
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Figure 3: A comparison of the glycosylation on the proteome, HLA I, and HLA II peptidome 
levels. a) Levels of oxonium ions for HLA class I and II in 3 datasets (A: Bassani-Sternberg et al. 2016, 

B: Chong et al. 2020, C: Marcu et al. 2021), along with the whole proteome in dataset D: Forlani et al. 

2021. b) Percentage of Glycosylated PSMs for the HLA class I and II immunopeptidome in 3 datasets 

(A, B, C), along with the whole proteome in dataset D. c) Average glycan mass in Dalton (Da) for the 

HLA class II immunopeptidome versus the whole proteome in dataset D. d) Glycan types for the class 

II immunopeptidome versus whole proteome in dataset D. e) Glycan types found in the low-density 

lipoprotein receptor-related protein 1 (LRP1) for the class II immunopeptidome versus the whole 

proteome in dataset D. f) Comparison of glycoproteins (top) and glycosites (bottom) found in the HLA 

class I, II immunopeptidome, and whole proteome of dataset D. 
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Figure 4: Semi-supervised deconvolution of glycosylated HLA peptides from Ramarathinam et

al. 2021 using MoDec. Panels I show the percentage of peptides and glycopeptides presenting the 

HLA binding motif. Panels II display the glycosylation absolute position within the peptidic sequence (x-

axis) and the peptide length (y-axis). Gray and black lines indicate the N-term and C-term respectively 

while the white to blue gradient represents the number of peptides with a specific glycosylation position 

at a specific peptide length. Panels III present the HLA binding motif after deconvolution with MODEC 

(top) and the number of glycopeptides per relative glycosylation position (bottom). Negative values refer 

to glycosylation position upstream the HLA-binding core, values between 0 and 8 represent positions 

within the HLA-binding core, and values ≥ 9 refer to positions downstream the HLA-binding core. a) 
Peptides associated with the HLA allele DPA1*02:01/02-DPB1*04:01 of the C1R cell line. b) Peptides 

associated with the HLA allele DQA1*05:05-DQB1*03:01 of the C1R cell line. c) Peptides associated 

with the HLA allele DRB1*12:01 of the C1R cell line. d) Peptides associated with the HLA allele 

DRB3*02:02 of the C1R cell line. 
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Figure 5: Fully unsupervised deconvolution of glycosylated HLA peptides from Ramarathinam 
et al. 2021 with NetMHCIIpan 4.1. Each panel illustrates 2 levels of information: the top level shows 

the HLA-binding motif of peptides passing a NetMHCIIpan 4.1 percentile rank threshold of 20 after 

binding affinity prediction. The bottom level shows glycopeptides that are predicted to bind to a given 

allele in green (%rank ≤ 20), otherwise non-binder peptides (i.e., trash) are shown in red (%rank > 20). 

Positions are shown relatively to the HLA binding core with negative values referring to glycosylation 

position upstream the HLA-binding core, values between 0 and 8 represent positions within the HLA-

binding core, and values ≥ 9 refer to positions downstream the HLA-binding core. a) Deconvolution of 

glycosylated peptides associated with the HLA-DPA1*02:01/02-DPB1*04:01 alleles. b) Deconvolution 

of glycosylated peptides associated with the HLA-DQA1*05:05-DQB1*03:01 alleles. c) Deconvolution 

of glycosylated peptides associated with the HLA-DRB1*12:01 allele. d) Deconvolution of glycosylated 

peptides associated with the HLA-DRB3*02:02 allele. 
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Figure 6: Glycan characteristics of the glycosylated HLA class II associated peptides. a) 
Percentage of glycosylation inside (red) and outside (blue) the HLA binding motif per HLA group (DP, 

DQ, and DR). b) Distribution of glycan types among the studied HLA class II group (DP, DQ, and DR). 
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Supplementary materials 

Supplementary Figure 1 

Supplementary Figure 1: Comparison of 3 different FDR control strategies for HLA glycosylated 
peptides. Strategy I referred to as “sequential FDR” is typically used with enzymatic (i.e., trypsin) 
glycoproteomic searches. Strategy II referred to as “sequential glyco-specific FDR” has been 
developed in this study to handle non-specific (i.e., non-specific cleavage of proteins at every peptide 
bond) glyco searches. Strategy III is the one being used in this study and consists of applying the 
sequential glyco-specific FDR with an additional glycan q-value threshold of 0.05. a) Percentage of 
glyco-PSMs, glycopeptides and glycosylation sites found in GlyGen. Peptides with glycosylation sites 
reported in GlyGen are shown in gray, within glycosylated protein are shown in blue, and unreported 
are shown in black. b) Abundance of the 3 categories from panel (a) by spectral count. c) The glycan 
q-value range of the 3 categories from panel (a). d) Comparison of the identified glycosylation sites
identified in this study with Malaker et al. 2017 findings.
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Chapter 4: Summary, milestones, and future directions 
Previous chapters have paved the way for exploring nonconventional sources of antigens. In 

this chapter, I go beyond antigen presentation to discuss the underdeveloped aspects of 

antigen recognition. The first section provides a summary of my findings and highlights the 

novelty of the research. The second section outlines ongoing work that moves beyond MHC 

presentation to improve neoantigen prioritization. 

Summary and highlights of the presented work 

The new age of T-cell therapeutics is ushered in by the characterization of cancer neoantigens 

using both mass spectrometry and in silico approaches. The work presented in this thesis 

paves the way for exploring alternative sources of cancer antigens through two computational 

pipelines: COD-dipp and HLA-Glyco. 

The development of COD-dipp allowed us to study the landscape of non-canonical MHC class 

I-associated peptides (ncMAPs), that is, peptides from non-coding regions of the genome. We

designed a workflow for a large-scale analysis to explore the intricacies of ncMAPs. COD-dipp 

is completely free, open source, and does not require any paid or licensed software. The 772 

collected immunopeptidomics samples spanned 11 cancer types, provided a pan-healthy 

panel of normals, and covered 114 HLA class I alleles. The analysis revealed a repertoire of 

8,601 ncMAPs that proved to be shared not only between patients with the same cancer but 

also between different cancer types. Moreover, the panel of normals served to detect and filter 

ncMAPs expressed in healthy tissues. This is particularly important for clinical applications 

where off-target toxicities can pose an issue. To ensure minimal levels of toxicity, we evaluated 

the repertoire in the context of parental gene expression from 29 healthy tissues of 17,382 

individuals, to stringently shortlist 17 cancer-selective ncMAPs according to our definition of 

‘cancer selectivity’.  
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The development of HLA-Glyco has allowed us to study the landscape of glycosylated MHC-

associated peptides. The ultrafast search engine MSFragger combined with several layers of 

stringent False Discovery Rate (FDR) control enabled the large-scale study of the glyco-

immunopeptiome for the first time. Glyco-searches on their own are not new; however, none 

of the existing free tools offer immunopeptidomic-oriented analysis owing to limitations in 

speed, sensitivity and lack of glycosylation-enrichment. We optimized the workflow using an 

iterative approach that included comparing the detected glycosylation sites with the proteome, 

and assessing the consistency of HLA motifs between glycosylated and non-glycosylated 

peptides. As we explored these two features, we achieved the best sensitivity by applying (I) 

a 1% global FDR, (II) a 1% group-specific FDR, and (III) a 5% cutoff for the glycan FDR (i.e., 

glycan q-value, which is a specific feature of MSFragger-Glyco). We created a library of over 

3,400 HLA class II glycopeptides from 1,049 different protein-glycosylation sites from eight 

publicly available studies. The analysis revealed high levels of truncated glycans, conserved 

HLA-binding cores among the 72 HLA class II alleles under study, and distinct glycosylation 

positional specificity across classical allele groups. To assist further development in the field 

of glyco-immunopeptidomics, we (I) added the HLA-Glyco pipeline to the fragpipe suite, a tool 

used by thousands of scientists, and (II) provided the library as an online website for ease of 

access. 

Over the past two to three decades, numerous studies have proposed various potential 

candidates for cancer vaccines, but some have failed, at least in part, due to a lack of tumor 

specificity. Laumont et al.1,2 addressed this issue using an elegant approach based on the 

elimination of genes expressed in the medullary thymic epithelial cells (mTECs). mTECs are 

found in the thymus and should represent the full antigenic repertoire of normal tissues in the 

body. The process of central tolerance depends on the presentation of self-antigens by 

mTECs to eliminate self-reactive T cells before entering circulation. Our work interrogates 

publicly available studies to explore ncMAPs in a large number of patients, cell lines, and 
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cancer types. However, most of these datasets do not contain mTECs gene expression data; 

hence, we addressed this issue by labeling non-tumor-selective non-canonical MHC class I-

associated peptides (ncMAPs) when detected in a panel of normals (see Chapter 2). Although 

mass spectrometry made a long way in terms of improved accuracy and throughput, it still 

lags behind next-generation sequencing technologies in terms of sensitivity. Hence, the lack 

of MHC class I-associated peptides detection by mass-spectrometry does not guarantee their 

absence from a particular sample. In other words, the lack of detection in normal samples 

does not inherently qualify an ncMAP as tumor specific. Therefore, we introduced a filter based 

on parental gene expression in healthy tissues, referred to as cancer selectivity, to shortlist 17 

non-canonical peptides with minimum healthy tissue toxicity for further clinical applications. 

From a post-translational perspective, assessing the tumor specificity or association of 

glycosylated MHC class I-associated peptides (see Chapter 3) is less straightforward. This is 

due to the inadequacy of next-generation sequencing technologies for measuring these 

events. All sources of antigens could benefit from a deeper understanding of the recognition 

process that I expand on in the next section.  

Beyond antigen presentation, towards antigen recognition 

Effective neoantigen selection begins with an accurate direct measurement (MS) or prediction 

of MHC presentation for a set of genomic, transcriptomic, or proteomic aberrations. MHC 

binding predictors have reached a decent level of accuracy for MHC class I. While early 

prediction tools relied solely on affinity data3, recent advances in MS immunopeptidomics have 

provided extensive ligand elution training data and helped boost accuracy. However, most 

predicted neoantigens do not end up being presented by the MHC system because available 

models partly model the processing and presentation of MHC-associated peptides. A plethora 

of conditions within the cell can influence the presentation of a particular peptide via the MHC 

system. For instance, recent developments have shown that performance can be improved 
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by incorporating antigen abundance data from RNA-Seq experiments4–8. Moreover, even 

when presented most identified neoantigens do not activate the immune system. It is clear 

that, in addition to MHC presentation, neoantigens must be recognized by T cell receptors 

(TCR) to illicit T cell activation. The surface receptor, known as the TCR, is a unique feature 

of T cells that mediates epitope identification through interactions with the peptide-MHC 

(pMHC) complex. TCRs are produced through a genomic rearrangement process that results 

in an astounding level of diversity. It is now widely acknowledged that TCRs exhibit high levels 

of cross-reactivity, that is, the ability to identify more than one pMHC complex9. According to 

certain theories10, a single TCR may be able to distinguish between 104 and 107 distinct MHC-

associated epitopes. However, it has also been demonstrated that the likelihood of a TCR 

interacting with a different randomly chosen peptide drops to 10-4 once it interacts with a 

particular pMHC complex11. Thus, TCR recognition is both cross-reactive and highly specific 

at the same time.  

T-cell assays offer the most accurate assessment of immunogenicity when selecting antigens.

For instance, the enzyme-linked immunosorbent spot (ELISpot) assay can be used to assess 

T cell reactivity by priming them with neoantigens and measuring activation markers like IFN-

γ12,13. Although these assays are clinically robust predictors, they are time-consuming, 

expensive, and have a low throughput. Instead, in silico pipelines routinely associate strong 

binding with immunogenic potential14, however this practice is debatable since Ebrahimi-Nik 

et al.15,16 showed CD8+ T cell activation by low affinity pMHC complexes. 

Modeling T-cell recognition is much more complex than MHC binding for many reasons, 

including the scarcity of training data, low binding affinity between the pMHC complexes and 

the TCRs (pMHC:TCR), and the large diversity of TCRs17,18. Many attempts to predict TCR 

binding based on various hypotheses have been proposed and elegantly summarized by 

Gfeller et al. 202319, Xie et al. 202320, Lee et al.21, Szeto et al.22, and Sim et al.23. Here, I 

recapitulate the general knowledge around the pMHC:TCR recognition organized into three 
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discipline-based groups. Group I — approaches based on biochemical characteristics of MHC-

I ligands; group II — approaches based on structural information; and group III — approaches 

based on machine learning or deep learning. 

Group I — Approaches based on biochemical characteristics of MHC-I ligands — Calis et al. 

201324 were the first to show that large and aromatic amino acid residues increase the 

likelihood of MAPs being immunogenic, and positions 4–6 have a significant impact on 

immunogenicity. Two years later, Chowel et al.25 observed hydrophobic amino acid residues 

are enriched in immunogenic epitopes. Other features that predict peptide immunogenicity 

and hence neoantigen quality have been discovered. Quality metrics, such as the (I) 

differential agretopicity index26,27 (DAI), that is, the ratio of MHC affinity of the mutant peptide 

to that of its non-mutated counterpart; (II) dissimilarity to self28,29 (non-mutated proteome), 

have been shown to have some predictive power for immunogenicity; and (III) relative and 

absolute binding affinities with respect to the position of the mutation within the presented 

peptide30. Several tools, such as PRIME31,32, NeoScore33, INeo-Epp34, and pTuneos35, rely on 

these ligand characteristics. Gfeller et al.31,32 suggested PRIME as an immunogenicity 

predictor and produced results consistent with the aforementioned characteristics. Likewise, 

NeoScore33 predicts immunotherapy outcomes in melanoma patients, and INeo-Epp34 

incorporates the position information of the mutation along with amino acid-related 

characteristics. pTuneos35 uses multiple features, including similarity between normal and 

mutant peptides, similarity with known immunogenic peptides, and hydrophobicity. However, 

these characteristics and metrics are sought as tendencies rather than rules. For instance, the 

impact of hydrophobicity on immunogenicity is suspected to be HLA allele dependent33.  

Group II — approaches based on structural information — TCRs are composed of two distinct 

protein chains qualifying them as heterodimers. Most Human T cells are composed of alpha 

(α) and beta (β) chains encoded by TRA and TRB loci, respectively. Each TCR chain is 

composed of two extracellular domains, a variable region (V) and a constant region (C). The 
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variable regions of each chain have three hypervariable or complementarity-determining 

regions (CDR1, CDR2, and CDR3). These six flexible CDR loops (3 α and 3 β) are generated 

through VDJ recombination, a process by which T and B cells randomly combine various gene 

segments, that is variable (V), diversity (D), and joining (J) genes, to create unique receptors. 

Structural analysis of TCR:pMHC complexes revealed certain general principles. The 

hypervariable CDR3 loops are the primary drivers of peptide recognition, whereas germline-

encoded CDR1 and CDR2 loops are primarily focused on the recognition of MHC molecules. 

The co-contribution from both α and β TCR chains is a common occurrence, with a roughly 

shared and balanced contribution. All currently available TCR:pMHC-I structures demonstrate 

that the TCR contacts both the peptide antigen and MHC. Despite the small size of the 

peptides relative to the MHC molecule, they might nonetheless contribute significantly to the 

pMHC:TCR interaction. This feature is not shared with lipid- or metabolite-derived specific 

TCRs, for which the recognition of both MHC/MHC-like molecules and the bound antigen is 

not required36. Despite the wide range of docking orientations, the structures that have been 

solved thus far demonstrate that MHC-I-restricted TCRs must sit on top of the cleft to contact 

both the peptide and MHC-I helices. This is a specific feature of peptide-MHC-I recognition, 

for which no exception has been observed, even with a large number of solved structures. 

Moreover, Peptide length is associated with successful TCR engagement according to recent 

findings. Ekeruche-Makindeet et al.37 demonstrated that TCR cross-reactivity was dependent 

on the length of the presented peptide, and that TCRs were unable to react to peptides of 

different lengths. On the same note, structural dissimilarity from the self, that is, structural and 

dynamic changes induced by point mutations at non-anchor sites, can influence TCR 

recognition and transmit effective T-cell activation38. 

There have been a few instances of reversed docking topology, in which the TCR chain is 

docked over the MHC-I α1-helix and the TCR chain is in contact with the MHC-I α2-helix39. 

Interestingly, these TCRs were very weakly activated upon pMHC-I identification, while being 
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able to bind to pMHC-I with moderate affinities compared to the range in other TCR:pMHC-I 

complexes. This demonstrates that T cell activation is not only determined by the affinity of 

TCR:pMHC-I. Furthermore, it is possible that conventional docking topology is a prerequisite 

for T-cell activation. In addition to binding in a reversed orientation, some pMHC complexes 

interact with TCR with a C-terminal shift where the CDR3 Loop does not interact with the 

peptide39,40. 

In terms of computational development, recent studies have combined structural information 

to build a generalized TCR scoring system. Riley et al.41 designed an approach to capture 

both peptide-MHC and TCR-pMHC binding, based on six structural and physicochemical 

features. Aranha et al.42 showed that adding three-dimensional modeling to NetMHCPan 

increases specificity and precision and reduces the number of false positives when predicting 

neoantigens. Borrman et al.43 suggested a scoring method and modeling approach that uses 

the structural characteristics of TCR-pMHC complexes to predict the binding of cross-reactive 

peptides. It should be noted that these models began to reveal the TCR:pMHC complex and 

are not yet able to execute ab initio prediction based on biophysical and structural data.  

Group III — approaches based on machine learning or deep learning — Despite the potential 

variability of T-cell TCRs, there is evidence that they recognize the same pMHC epitopes 

frequently and possess similar sequence characteristics. For instance, DeWitt et al.44 showed 

the existence of common patterns in the TCR repertoire across individuals exposed to the 

same disease. These findings suggest that the TCR epitope specificity can be predicted. 

Identifying TCRs specificity to given antigens requires sorting, sequencing, and clustering of 

both naïve and antigen-experienced T-cell repertoires. Recent advances in bulk- and single-

cell sequencing technologies have enabled the generation of high-throughput datasets. 

Consequently, software development has allowed computational biologists to further examine 

and profile TCR repertoires using specialized algorithms45,46. Furthermore, efforts to catalog 
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such information have resulted in the creation of multiple databases such as McPAS-TCR47 

and VDJdb48. McPAS-TCR is a manually curated database TCR sequences identified in 

human and mouse T cells linked to diverse clinical disorders. VDJdb is a database of TCR 

sequences with known antigen specificities.  

Researchers have attempted to identify common features among antigen-specific TCRs by 

studying a collection of sequences. Based on the known interaction of the CDR3 loop with 

MHC-associated peptides, methods for clustering the recurrent short stretches of amino acids 

of these loops (i.e., CDR3 motifs) have emerged. Several techniques use distance metrics to 

assign previously unobserved TCRs to characterized repertoires or rely on clustering TCRs 

with comparable levels of specificity, such as pMTnet49, GLIPH50, TCRDist51, TCRnet52, ERGO 

II53, and NetTCR-2.054. 

An investigation was conducted by Grazioli et al.55 to determine how well state-of-the-art deep 

learning models53,54,56–63 can predict TCR:pMHC binding and generalize to unknown peptides 

by evaluating ERGO II53 and NetTCR-2.054. ERGO II relies on Long short-term memory 

(LSTM) networks and autoencoders to compute representations of peptides and CDR3s. 

NetTCR-2.0 uses a straightforward 1D convolutional neural network (CNN) model that 

integrates information from CDR3 and peptide sequences to predict TCR peptide specificity. 

The models did not generalize well to unseen peptides when using a hard split, a simple 

heuristic for training/test splits, which ensures that test samples exclusively present peptides 

that do not belong to the training set. The authors showed that this is largely due to suboptimal 

training/testing splits causing models to simply memorize the CDR3 sequences and ignore 

the peptides. To better predict the interactions between T-cell receptors (TCRs) and peptides, 

Grazioli et al.64 proposed a new model called Attentive Variational Information Bottleneck 

(AVIB). The authors' benchmark shows that AVIB significantly outperforms cutting-edge 

techniques in predicting TCR-peptide interactions. However, the authors stated that 
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generalization to unseen sequences remains difficult because of the sparsity of the available 

training data.  

Despite these efforts, it is still not possible to predict the set of TCRs that recognizes a certain 

antigen or the set of antigens that are recognizable by a certain TCR. This is due to several 

factors, including sparsity of training data relative to the size of the TRC repertoire, lack of 

alpha and beta pairing when performing TCR sequencing, excessive focus on the CDR3 β 

loops, lack of training data, and lack of structural modeling integration in the architecture of 

machine/deep-learning models.  

When naïve T cells are activated by a pMHC complex, extensive proliferation and 

differentiation events occur. Qualitative differences arise when responding to antigens, 

including a less stringent requirement for activation with the ability to respond to lower 

concentrations of antigens than naïve T cells. This interplay between the low and high avidities 

of naïve and trained T cells, along with the large number of recognition patterns, poses 

challenges when it comes to the comprehensiveness of training data.  

While TCR sequencing provides a high-throughput way to characterize repertoires, the 

majority of studies have focused on the β chain of the CDR3 loop due to its known interaction 

with the peptide and high combinatorial potential. However, both the α and β chains of CDR3 

loops, and occasionally CDR 1 and 2 loops, contribute to antigen recognition. 

Another key challenge in training accurate machine/deep-learning models is the cross-

reactive nature of the TCRs. This implies that a comprehensive training dataset would require 

screening of the cross-reactivity spectrum for each unique group of TCRs. Regardless of the 

technical feasibility of this goal using wet-lab techniques, it is evident that such requirements 

are both labor- and cost-inefficient. Hence, there is an urgent need to better understand cross-

reactivity for the rational simulation of data to supplement the true training data. 
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Finally, sequence-based deep-learning models could benefit from estimating the chemical 

interactions between TCR:pMHC complexes as well as the 3D structures in subsequent 

iterations. 
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Appendix 1: A technical guide for the COD-dipp pipeline 

General description 

The COD-dipp workflow is based on Snakemake, a workflow manager responsible for 

bundling and integrating multiple tools. One major advantage of this setup is the breakdown 

of complex bioinformatic workflows into several small jobs that can be run in parallel. In 

addition, it automatically identifies the already completed tasks and avoids re-running them in 

the case of a re-launch. On top of that, the execution is modular, allowing the user to choose 

specific parts of the analysis. The tight integration with conda, a package and environment 

management system, simplifies the first deployment on new clusters. This means that users 

do not have to spend any time coordinating the installation of the dependencies. Another major 

strength of COD-dipp is the intelligent use of high-performance computing (HPC) resources. 

The setup relies on a configuration file in YAML format to specify the resource allocation in 

terms of CPU, GPU, memory, and time requirements. This allows the analysis of a large 

number of samples in a short amount of time using just one command. 

COD-dipp integrates two orthogonal mass spectrometry DDA data analysis strategies. The 

first strategy is called open search and utilizes MSFragger, one of the fastest search engines, 

to identify peptides with or without post-translational modifications (i.e., chemical 

modifications). de novo is the second strategy and is key for finding peptides from unannotated 

proteins holding great promise for the identification of neoantigens. COD-dipp uses 

DeepNovoV2 as the de novo engine, which leverages a deep learning architecture to extract 

features from the mass spectrometry spectra themselves and uses natural language 

processing. These two aspects of deep learning help in interpreting the noisy nature of mass 

spectrometry data and imputing missing values by learning the amino acid sequences from 

proteins themselves. Since deep learning models require a training step based on previously 
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available data examples, we used spectral matching results from the MS-GF+ search engine 

to train on-the-go de novo models in a personalized manner to each sample. 

COD-dipp uses a multitude of quality control measures to ensure that the reported 

immunopeptidomes are not the result of computational errors or are simply false positives. To 

begin, the MS-GF+ results go through a rigorous post processing validation implemented by 

scavager, a versatile post-search validation algorithm. Scavager relies on gradient boosting, 

a machine learning technique that leverages up to 31 mass spectrometry features to 

differentiate between target (correct) and decoy (incorrect) identifications. This procedure is 

well established under the name of False Discovery Rate (FDR) control. De novo derived 

peptides are required to go through a stringent accuracy filter (90%) along with a first of a kind 

approach to map these sequences to the proteome as a first step then to the 3-frame 

translated transcriptome as a second step. This step is responsible for identifying non-

canonical MHC class I-associated peptides (i.e., peptides from non-coding regions). First, de 

novo peptides are aligned to a set of known proteins (i.e., proteome). Peptides with at most 

one mismatch are labeled canonical peptides, and all other sequences are mapped to a 3-

frame translation (3FT) database provided by the COD-dipp suite. A peptide labeled non-

canonical would have at most one mismatch with the 3FT database and at least 3 amino acid 

differences from any known protein sequence. When it comes to open search, extra care 

needs to be taken due to the wide error tolerance of the strategy. The concept here is to allow 

a certain error tolerance when attributing peptides to mass spectrometry spectra as a first 

step, followed by an attempt to identify a chemical modification on one of the constituent amino 

acids explaining the mass shift. Thus, an extra control step is required to quality control the 

mass shift and its localization. For this, COD-dipp relies on PTMiner to control both the FDR 

and False Localization Rate (FLR) using a robust Bayesian method. 

As a Final step COD-dipp tracks back all immuno-peptides to the genome by using PoGo for 

canonical peptides and pysam-based scripts for the non-canonical peptides. 
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Applications of the method 

COD-dip was originally developed to deal with mass spectrometry-based immunopeptidomics 

in human samples. However, with flexibility in mind, all integrated tools are fully compatible 

with proteomics, making this pipeline easily applicable to standard proteomic mass 

spectrometry studies. This modification requires minor edits to the search engine parameter 

files (FileMSGFPlus_Params.txt and Fragger_Params.txt). Similarly, it can be adapted to 

other species with minor modifications to the below scripts in order to change the organism: 

1. scripts/prepare_annotation/generate_annotation.py

2. scripts/prepare_annotation/genes3FT_generator.R

Experimental design 

The analysis setup is relatively simple and requires pooling all the mass spectrometry files in 

a folder. First, each sample requires its own folder with the naming convention ‘sample_*’, 

where * is any chosen string. The sample folder must contain the MS files in mzML format. In 

addition, the sample folder must contain a sub folder named ‘denovo’ containing the MS files 

in MGF format. COD-dipp automatically detects all samples along with their corresponding 

mass spectrometry files.  

Expertise needed to implement the protocol 

COD-dipp requires basic knowledge of the bash syntax to execute commands over the 

command line. Familiarity with the workload manager SLURM is appreciated in very specific 

cases where the HPC has an unusual setup or lacks GPU availability. 

Hardware requirements 

COD-dipp was designed to run on HPC clusters to leverage parallel computation. The 

minimum requirements include 64 GB of RAM and 12 cores. The recommended requirements 

are 120 GB of ram, 24 cores, and 1 GPGPU (General-Purpose Graphics Processing Unit).  
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Software requirements 

COD-dipp can be found at https://github.com/immuno-informatics/COD-dipp and has been 

tested on a Centos 7 linux system. It requires SLURM to be installed, Python 3, Snakemake 

v5.4.5, Anaconda, Singularity, and MSFragger. 

PROCEDURE 

Annotation generation step 

1. For a human immunopeptidomics analysis, it is sufficient to download the pre-

generated data on this figshare link (https://doi.org/10.6084/m9.figshare.16538097)

under the file name “pipeline_annotation_files.zip” and skip the next step.

2. For non-human immunopeptidomics analysis, additional steps are required:

a. Download the pre-generated data on this figshare link

(https://doi.org/10.6084/m9.figshare.16538097) under the file name

“pipeline_annotation_files.zip”.

b. Download the protein database for the organism in question from ENSEMBL

BioMart.

i. Go to www.ensembl.org and click on biomart in the tools section.

Choose the ‘Ensembl Genes’ database. Then choose the desired

organism dataset. Click on ‘Sequences’, select ‘Peptides’ in the

‘sequences’ section. Expand the ‘header information’ section and

unselect everything, then select the following attributes in the exact

order: Protein stable ID, Transcript stable ID, Gene stable ID. Gene

name, Gene description. then click on ‘Results’ on the top left corner.

At this point click on ‘results’ in the top left corner and retrieve the fasta

file. Then use Philosopher (https://philosopher.nesvilab.org) to add a list

of contaminants and the decoys.
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ii. Edit the script

scripts/prepare_annotation/1_generate_annotation.py at g =

Genome(db="hg38") to the genome of the organism of interest. Then

execute the script to generate a

‘UCSC_knownGene_hg38_features.tsv’ like file.

iii. Go to https://genome.ucsc.edu head to ‘tools’ then table browser.

Choose the organism of interest in ‘genome’ and select ‘ENSEMBL

genes’ in track and click ‘get output’ to download the file. Feed this file

to the scripts/prepare_annotation/genes3FT_generator.R to

generate the equivalent of ‘df_features_inframes.tsv’.

iv. Edit the script

scripts/prepare_annotation/genes3FT_generator.R at 

ens94_human_dna and txdbENS to your own organism of interest

and execute the script to generate the 3FT database like file 

‘3FTgenes_coding.fasta’. 

Raw data conversion 

3. Ensure that your raw files are correctly converted to mzML and MGF formats. The

msconvert gui or command-line tool can be used. Please ensure that the peak

picking filter is the first filter and that TPP compatibility option is checked. Please

check the example below for command line conversion:

msconvert fraction1.raw --mgf --filter "peakPicking true 1-" --
filter 'titleMaker <RunId>.<ScanNumber>.<ScanNumber>.<ChargeState> 
File:"<SourcePath>", NativeID:"<Id>"' 
msconvert fraction1.raw --mzML --filter "peakPicking true 1-" --
filter 'titleMaker <RunId>.<ScanNumber>.<ScanNumber>.<ChargeState> 
File:"<SourcePath>", NativeID:"<Id>"' 
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Environment setup 

4. Please ensure that MS files follow the below organization:

COD-dipp
│
└── sample_NameOfSample
     │ 
     ├── denovo 
     │    │ 
     │    ├── fraction1.mgf 
     │    │ 
     │    └── fraction2.mgf 
     │ 
     ├── fraction1.mzML 
     │ 
     └── fraction2.mzML 

5. Create the conda environments required for the workflow to run:

a. Edit conda_prefix path in prepare_envs.sbatch to a desired location on the

cluster.

b. Edit the prepare_envs.sbatch SLURM -A parameter to specify an active

SLURM account.

c. Launch this command sbatch prepare_envs.sbatch to create the conda

environments at the specified conda_prefix.

6. Downloading COD-dipp can be performed using a few simple lines of code:

# create a directory for your study 
study_id="Example_Study" 
# go to the directory for your study 
mkdir $study_id && cd $study_id 

# clone the git environment (workflow code) 
git clone https://github.com/immuno-informatics/COD-dipp.git 
cd cod-dipp 

# clean up test data 
rm -rf sample_test database.fasta 
mv $(ls -A) ../ 
cd .. 
rmdir cod-dipp 
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# download link: https://doi.org/10.6084/m9.figshare.16538097 
unzip pipeline_annotation_files.zip 
resource_files_dir="/PATH/TO/pipeline_annotation_files/folder" 

# copy your database to your study working dir, if you are 
analysis human samples 
cp $resource_files_dir/2019-04-30-td-
Homo_sapiens_GRCh38_biomart.fasta ./database.fasta 

7. Edit the HPC cluster job settings:

a. Edit the integrated-pipeline-profile/config.yml configuration file.

i. In the PATH section, add the full path to each of the required files.

ii. In the SEARCH ENGINE params section edit the amount of memory to

be allocated in MB in case the existing values exceed your HPC

capacity. Setting the memory requirement too low will raise an

OutOfMemory error for either of the search engines.

b. Edit integrated-pipeline-profile/cluster-config.json to adapt it to

your own setup. Here, we describe the list of parameters and how to tune them

for the best compatibility:

i. Cluster-specific parameters that requires tuning:

1. "Account": assigns resources used by the pipeline to a specified

account on the HPC. Equivalent of --account when using

SLURM. Reverts to ‘normal’ if not specified.

2. "partition": Requests a specific partition for the resource

allocation. Reverts to ‘Long’ if not specified. Equivalent of --

partition when using SLURM.

ii. Pipeline-specific parameters that in most cases do not need to be

modified:

1. "cpus": number of cores to allocate. Equivalent of --account

when using SLURM.
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2. "memory": amount of RAM to allocate in MB. Equivalent of --

mem when using SLURM.

3. "time": "HH:MM:SS" Sets a limit on the total run time of the job

allocation. Equivalent of --time when using SLURM.

4. "name": the default assigned name, will automatically get

modified by the launch.sh script to ‘dir_name.job_name’.

5. "nodes": the minimum requested number of nodes for resource

allocation. Equivalent of --nodes when using SLURM.

6. "ntasks": in all cases should have a value of 1. Except for the

rule ‘denovo_annotation’ where the Message Passing Interface

(MPI) is used. Equivalent of --ntasks when using SLURM.

7. "gres": Specifies a comma-delimited list of generic consumable

resources. Should have a value of 0 in all cases except for the

denovo rule where 1 GPU is requested with the following value

"gpu:1". Equivalent of --gres when using SLURM.

Launching the analysis 

We made it easy to execute the pipeline with a bash wrapper script under the name 

launch_pipeline.sh. This script assumes that the sample folder names start with 'sample_'. 

The value of the variable ‘type’ in the launch_pipeline.sh script could take the values 

"cluster", "local", or "dry-run". If ‘type’ is given the value ‘cluster’ the pipeline will execute the 

step as SLURM jobs on the HPC. However, before running the actual jobs, it is always helpful 

to launch a ‘dry-run’ to ensure all the requirements are satisfied. ‘dry-run’ will only display what 

would be done without executing the commands. The ‘local’ option is particularly useful for 

debugging since it will launch the commands directly on the machine without the use of 

SLURM.  
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TROUBLESHOOTING 
● The pipeline generates the following logs when launched:

○ slurm-logs directory containing all the launched jobs:

■ Rulename-date-time_cmd.log containing the command used to launch
the job in question.

■ Rulename-date-time_err.log as the standard error output when
something goes wrong.

■ Rulename-date-time_out.log as the standard output, where all printed
information from the executed commands within the job in question are
printed.

○ Snakemake-dry-run.log when a dry-run launch is executed by the user. This
file contains the Snakemake log of all planned jobs, along with the expected
output files.

○ Snakemake.log when a ‘dry-run’ launch is executed by the user. This file
contains the Snakemake log of the executed jobs. In the case of a
communication error with the clusters, this file contains useful information on
how to fix it.

working_dir

│ 
└── sample/slurm-logs 

│ 
├── rulename-date-time_cmd.log 
│ 
├── rulename-date-time_err.log 
│ 
├── rulename-date-time_out.log 
│ 
├── snakemake-dry-run.log 
│ 
└── snakemake.log

Troubleshooting advice can be obtained from the COD-dipp help forum, which can be found 

at https://groups.google.com/g/cod-dipp. In case you encounter a bug please raise an issue 

at https://github.com/immuno-informatics/COD-dipp/issues. 

TIMING 

A study with multiple patients would still take 10 to 12 hours to complete on a cluster owing 

to the parallel computations. For instance, the analysis of the pride dataset PXD004894 (i.e., 

25 patients) comprising 140 MS files took over 12 hours (real time) and approximately 

28892 
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computational hours (~5000 GPU hours for DeepNovoV2, ~7000 CPU hours for MS-GF+, 

~16800 CPU hours for MSFragger, and ~92 CPU hours for Scavager). 

ANTICIPATED RESULTS 

File name Description 

Folder: reports/denovo_annotation 

3ft_coords_3m.tsv 

3ft_coords_4m.tsv 

Non-canonical immunopeptides genomic coordinates. 

This table reports the alignment of the non-canonical 
peptides on the genome including the chromosome, star 
end and number of mismatches. 

3ft_coords_annotation_3m_framecheck.tsv 

Non-canonical immunopeptides frame analysis. 

This table reports if the non-canonical peptides from 
introns follow the upstream exon frame. 

3ft_coords_annotation_3m.tsv 

3ft_coords_annotation_4m.tsv 

Non-canonical immunopeptides annotation. 

This table reports the type of feature the non-canonical 
peptides align to: Exon, intron, Exon out of frame, 5UTR, 
3UTR. 

3ft_features_3m.tsv 

3ft_features_4m.tsv 

Non-canonical immunopeptides annotation. 

Simplified table that reports the type of feature the non-
canonical peptides align to: Exon, intron, Exon out of 
frame, 5UTR, 3UTR. 

Denovo_exon_spectra_3m.tsv 

denovo_exon_spectra_4m.tsv 

De novo peptides that map to known proteins. 

De novo peptide spectrum matches for sequences coming 
from protein (i.e., exons) 

Denovo_nonexons_spectra_3m.tsv 

denovo_nonexons_spectra_4m.tsv 

De novo peptides that map to non-canonical sequences. 

De novo peptide spectrum matches for sequences coming 
from Itrons, out of frame exons, 5 and 3’ UTRs. 

Stats_3mismatches.pdf 

Stats_4mismatches.pdf 

denovo_plots.pdf 

Descriptive analysis of the results. 

PDF files with bar plots and pie charts of comparison 
between canonical and non-canonical de novo peptides. 

Folder: reports/denovo_annotation/TITER 
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TIS_analysis.pdf 

Descriptive analysis of the results. 

Bar plots to describe the intronic peptides coming from 
upstream Translation Initiation Sites (TIS). 

df_titer_pos.tsv 

De novo intronic peptides resulting from an upstream 
Translation Initiation Site. 

This Table reports de novo peptides coming from introns 
and that TITER predicts an upstream Translation Initiation 
Site (TIS) for. 

Folder: Reports 

denovo_data_prep.tsv 

De novo peptide spectrum matches with 90% accuracy. 

The output of DeepNovoV2 after applying a 90% accuracy 
filter. These results have not been mapped to a gene 
source and must be used with caution. 

Folder: reports/PTMiner 

filtered_result_processed.tsv 

Open search validation results. 

This table contains the open search PSM results after 
applying a 1% False Discovery Rate by PTMiner. 

loc_result_pocessed.tsv 

Open search Localization results. 

This table contains the open search PSMs results after 
applying a 1% False Localization Rate for spectra 
identified with a mass shift. 

anno_result_processed.tsv 

Open search annotation results. 

This table contains the open search results for PSMs that 

passed the 1% FLR filter and went through mass shift 

annotation with UNIMOD. 

Folder: reports/frs_msgfplus 

Model.pdf 

Descriptive analysis of MS-GF+ results validation model. 

This pdf offers a peek at the model that used to validate 

MS-GF+ results. 
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scavager_PSMs_full.tsv 

scavager_PSMs.tsv 

Peptide spectrum matches of MS-GF+ results. 

These 2 tables are the output of Scavager after False 

Discovery Rate control to 1% of MS-Gf+ PSMs. 

scavager_peptides.tsv 

Peptide summary level of MS-GF+ results. 

This table is the output of Scavager after False Discovery 

Rate control to 1% of MS-GF+ peptides. 

scavager_proteins.tsv 

Protein summary level of MS-GF+ results. 

This table is the output of Scavager after False Discovery 

Rate control to 1% of MS-GF+ proteins. This table might 

sometimes be omitted due to the nature of HLA 

associated peptides hindering the protein inference. 
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