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Preface

I am delighted to present this dissertation, which comprises an in-depth investigation of the
immunopeptidome. The research presented in here draws on my passion for cancer research
and my commitment to advancing our understanding of the mechanisms underlying tumor-

immune interactions.

The presented work builds upon two previous publications of mine, which have been
incorporated into Chapters 2 and 3, respectively. In accordance with the plagiarism check
policies of the University of Gdansk, both chapters were embedded into the dissertation as is,

and each has its own bibliographic references.

Chapter 2, titled "The Immunopeptidome from a Genomic Perspective: Establishing the Non-
Canonical Landscape of MHC Class I-Associated Peptides" has been accepted for publication
in Cancer Immunology Research. This chapter delves into the non-canonical landscape of

MHC class I-associated peptides from a genomic perspective.

Meanwhile, Chapter 3, titled "HLA-Glyco: A Large-Scale Interrogation of the Glycosylated
Immunopeptidome” was previously published as a pre-print on bioRxiv (DOI:

https://doi.org/10.1101/2022.12.05.519200). This chapter explores the glycosylation

landscape of MHC class ll-associated peptides, providing a comprehensive analysis of the

glycosylated immunopeptidome.

| am grateful to my supervisors, colleagues, and collaborators for their guidance and support
throughout this research endeavor. | hope that this dissertation will contribute to the

advancement of cancer immunology and inspire future research in this exciting field.

Georges Bedran.
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Abstract in English

The identification of cancer neoantigens is propelling a new era of vaccines and antigen-
specific T cell therapies. Mass spectrometry has been the sole high-throughput approach for
characterizing the physical presence of neoantigens in cancer. Early efforts to investigate
antigen presentation focused on combining publicly available studies to query canonical MHC-
associated peptides (MAPs). However, the profiling of non-conventional antigens, such as
non-canonical (i.e., translation of non-coding regions) and post-translationally modified MHC-

associated peptides, remains limited and is rarely clearly understood.

In Chapter Two, | developed a proteogenomic pipeline based on deep learning de novo mass
spectrometry to enable the discovery of non-canonical MHC-associated peptides (ncMAPs)
from non-coding regions. Considering that the emergence of tumor antigens can also involve
post-translational modifications, an open search component was included in the pipeline.
Leveraging the wealth of mass spectrometry-based immunopeptidomics, | analyzed 26 MHC
class | immunopeptidomic studies of eleven different cancer types. | validated the de novo
identified ncMAPs, along with the most abundant post-translational modifications, using
spectral matching and controlled their false discovery rate (FDR) to 1%. Interestingly, the non-
canonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a
projected population coverage of 54.85%. | revealed an atlas of 8,601 ncMAPs with varying
levels of cancer selectivity and suggested 17 cancer-selective ncMAPs as attractive targets

according to a stringent cutoff.

In Chapter Three, | developed a glyco-immunopeptidomics method using the ultrafast
glycopeptide search of MSFragger and several layers of stringent control of false discovery
rates. | performed a harmonized large-scale analysis of eight publicly available studies to

produce a resource containing over 3,400 HLA class Il glycopeptides from 1,049 distinct

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics I



protein-glycosylation sites. | revealed characteristics in HLA glycopeptides, including high
levels of truncated glycans, conserved HLA-binding cores across the 72 studied HLA class Il
alleles, and a different glycosylation positional specificity between the classical allele groups.
With the goal of supporting further development in the nascent field of glyco-
immunopeptidomics, | provided a reproducible glyco-immunopeptidomics pipeline within the

fragpipe suite along with a web resource for ease of access.

In Chapter Four, | conclude this thesis with a summary of my findings, a discussion of the

unmet needs in the field, and my vision of the research to come.

The establishment of both the non-canonical and glycosylated landscapes of MHC-associated
peptides within the framework of my PhD represents a milestone towards understanding the
complexity of the immunopeptidome and paves the way for broader therapeutic research

against cancer.
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Abstract in Polish

Identyfikacja antygenéw  nowotworowych rozpoczyna nowg ere szczepionek
przeciwnowotworowych i terapii z wykorzystaniem antygenowo-specyficznych limfocytéw T.
Spektrometria mas jest natomiast obecnie jedyng metoda, ktéra umozliwia

scharakteryzowanie fizycznej obecnosci antygenéw nowotworowych.

Wczesne badania prezentacji antygendw wykorzystywaty gtdéwnie publicznie dostepne dane
w celu identyfikacji kanonicznych peptydéw prezentowanych przez czasteczki MHC (MAP).
Jednakze profilowanie niekonwencjonalnych antygendw, takich jak peptydy niekanoniczne
(np. bedace produktem translacji regionéw niekodujgcych) czy peptydy zmodyfikowane

potranslacyjnie, pozostaje ograniczone i nie jest w petni scharakeryzowane.

W rozdziale drugim opisatem zaprojektowany przeze mnie proteogenomiczny system
przetwarzania potokowego oparty na spektrometrii mas de novo z gtebokim uczeniem, ktéry
umozliwia wykrycie niekanonicznych peptydéw pochodzacych z regiondw niekodujgcych
prezentowanych przez czagsteczki MHC (ncMAP). Biorgc pod uwage, ze antygeny
nowotworowe mogg réwniez powstawa¢ w wyniku modyfikacji potranslacyjnych, w systemie
tym uwzgledniono element wyszukiwania otwartego. Wykorzystujgc szerokie zasoby
publicznych baz danych , przeanalizowatem 26 badan, ktore z zastosowaniem spektrometrii
mas identyfikowaty peptydy prezentowane przez MHC klasy | w 9 réznych typach
nowotworow. Zweryfikowatem zidentyfikowane de novo ncMAP, wraz z najliczniejszymi
modyfikacjami potranslacyjnymi, uzywajgc dopasowania widmowego i ograniczajgc
oczekiwang proporcje bteddw | rodzaju wsrdéd wynikéw istotnych statystycznie (ang. false
discovery rate; FDR) do 1%. Wartym podkreslenia jest fakt, ze niekanoniczna prezentacja
byta 5-krotnie czestsza w przypadku HLA- AO3, przy przewidywanym pokryciu w populacji na
poziomie 54,85%. Ponadto, przedstawitem zbiér 8601 ncMAP o réznych poziomach
specyficznosci dla nowotowrdéw i wskazatem, zgodnie z rygorystycznym punktem odciecia, 17

ncMAP specyficznych dla nowotwordw, ktére stanowig potencjalne cele terapeutyczne.
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W rozdziale trzecim przedstawitem nowg metode glikoimmunopeptydomiczng wykorzystujgca
ultra szybkie wyszukiwanie glikopeptydow za pomocg narzedzia MSFragger oraz
przedstawitem kilka etapow zapewniajgcych $cistg kontrole btedéw | rodzaju wsréd wynikow
istotnych statystycznie (FDR). Przeprowadzitem zharmonizowang, zakrojong na szerokg
skale analize 8 publicznie dostepnych badan, aby utworzy¢ zasob zawierajgcy ponad 3400
glikopeptydow prezentowanych przez anygeny HLA klasy || wywodzgcych sie z 1049 réznych
regiondbw glikozylacji biatek. Przedstawitem ponadto cechy charakterystyczne dla
glikopeptydow prezentowanych przez HLA, ws$rdd ktérych czesto obserwuje sie skrécone
glikany, peptydy z konserwatywnym rdzeniem wigzgcym HLA ( zidentyfikowane w 72
badanych allelach HLA klasy Il) oraz r6zng swoistos¢ pozycji glikozylacji. Majac na celu
wspieranie dalszego rozwoju glikoimmunopeptydomiki, udostepnitem system wigczony do
pakietu fragpipe umozliwiajgcy powtarzalng analize glikoimmunopeptydomu. System jest

potgzony z zasobami internetowymi, co utatwia dostep.

W rozdziale czwartym zakonczytem dysertacje podsumowaniem wszystkich obserwaciji,
dyskusjg na temat niezaspokojonych potrzeb medycznych w przedstawionej dziedzinie oraz
wizjg przysztych badan.Jestem przekonany, ze opracowana w ramach niniejszej pracy
doktorskiej sygnatura niekanonicznych oraz glikozylowanych peptyddéw prezentowanych
przez czasteczki MHC stanowi kamien milowy w kierunku zrozumienia ztozonosci
immunopeptydomu  oraz toruje droge do szerszych badan nad terapiami

przeciwnowotworowymi.
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Chapter 1. Introduction

The major histocompatibility complex (MHC)

The capacity of the immune system to differentiate between self and non-self is crucial owing to
the continuous exposure of our bodies to diseases and pathogens. The ability to differentiate
between the two is governed by the presentation of antigens and their recognition by the immune
cells. The Major Histocompatibility Complex (MHC), also known as the Human Leukocyte
Antigen (HLA) in humans, is a group of genes that when translated into proteins, bind
intra/extracellular components for immune monitoring:. The MHC system is responsible for

antigen presentation through two classical pathways, termed class | and II.
MHC class |

To begin with MHC class |, all nucleated cells present peptides derived from cytosolic protein
turnover at the cell surface (see Figure 1a). Under healthy and diseased conditions, these
proteins are degraded by the proteasome. The resultant peptides can be further trimmed by
several cytoplasmic peptidases such as tripeptidyl peptidase Il, leucine aminopeptidase, and
bleomycin hydrolase. These peptides are then transported to the endoplasmic reticulum (ER)
by a transporter associated with antigen processing (TAP). Through transient interactions with
the chaperones calnexin, calreticulin, and tapasin, the peptides are further processed by ER-
resident aminopeptidase ERAP1 and ERAP2 and loaded onto the nascent HLA class | heavy
chain. This MHC-I-peptide complex passes through the Golgi apparatus for glycosylation,
enters a secretory vesicle, and fuses with the cell membrane. This process is referred to as
MHC class | presentation and serves as immune monitoring of the self, where CD8+ T
lymphocytes circulate and attack cells presenting foreign MHC-associated peptides, referred

to as antigens?.
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The MHC Class | system is composed of three classical genes (HLA-A, -B, and -C) and some
non-classical genes such as HLA-E and -G. Unlike classical genes, HLA-E is an oligomorphic
HLA molecule that has just few alleles? (i.e., not polymorphic). HLA-G is primarily expressed
in trophoblasts, which develop in the placenta during pregnancy. Particularly in pregnancy,
HLA-G prevents the fetus from being identified as a foreign entity by the mother's immune
system. HLA-G is also expressed in some cancers and has been associated with tumor
immune escape®. In summary, both HLA-G and -E have a small peptide-binding repertoire

and are involved in regulating the immune response.

MHC-Associated Peptide

a) MHC class | presentation b) MHC class Il presentation

MAP gt~
; Extra-cellular Endosome/phagosome
Cytosolic Arotal
Protein
Proteasome Lysosome
U MHC Vesicle
2 % ,
S P TR\ ,,}l{
L /" ) MHCHI
Peptides TAP Endoplasmic 2 5-»- -
Reticul . &
eticulum /7%,/( Peptldesl "-__-_Q
;/ Nucleus
Glogi

Nucleus

Figure 1: Antigen processing and presentation pathways. a) MHC class | processing and
presentation pathway within nucleated cells. b) MHC class Il processing and presentation pathway
within antigen processing cells such as monocytes, macrophages, and dendritic cells. Created with
BioRender.com.

MHC class Il

In contrast, antigen-presenting cells (APC), such as monocytes, macrophages, and dendritic
cells, incorporate extracellular proteins through phagocytosis or endocytosis of B cells (see
Figure 1b). In the endosome, proteins are trimmed into peptides by either proteases or non-

enzymatic cleavage and interact with MHC Il molecules. MHC class Il molecules are initially
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synthesized in the endoplasmic reticulum, where they assemble with the invariant chain. This
chain is important for stability, appropriate folding, blocking cellular peptide binding, and export
into specialized endosomes/lysosomes. The class ll-associated invariant chain peptide (CLIP)
is created by proteolytic degradation of the invariant chain by cathepsin and resides in the
MHC groove as a replacement for the associated peptides. The interchange of CLIP with high-
affinity peptides is facilitated by several conditions such as low pH, endosomal proteases, and
support from an unconventional MHC class Il protein, HLA-DM. The HLA class ll-peptide
complex is then delivered to the cell surface by the trans-Golgi apparatus for presentation to

the cognate CD4+ T lymphocytes®.

The expression of MHC class ll-associated antigens in various normal tissues has been
examined with the help of specific monoclonal antibodies, demonstrating that these antigens
are more widely distributed in normal tissues than previously thought. In addition to APC,
various tissues can constitutively express MHC class Il antigens, as evidenced by the weak

to moderate expression of HLA class Il antigens in skin, breast, lung, and renal tissues®=.

MHC molecules and MHC-associated peptides

HLA class | and class Il molecules are composed of two polypeptide chains that come together
to form a structure that can accommodate short peptides. In class |, the immunoglobulin
superfamily a-chain and 32-microglobulin form a heterodimer known as a class | molecular
complex. The HLA molecule is composed of three extracellular domains (al, a2, and a3) with
a cytoplasmic anchor that traverses the cell membrane. These a chains are encoded by the
highly polymorphic A, B, and C genes. In class Il, two a-and two -noncovalently linked and
non-identical transmembrane glycoprotein chains make up the molecule. These chains are

coded by the highly polymorphic DP, DQ, and DR genes®.

MHC-associated peptides are set in the peptide-binding grooves on the top surface of HLA

molecules. They range from 8 to 11 amino acids long for class | and 13 to 25 amino acids long
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for class Il. They are held within the grooves by conserved binding motifs that can vary
between HLA molecules. The major structural variations between the two MHC classes reside
in the peptide-binding groove being closed at both ends for class | compared to being open at

both ends for class II.

Cancer and the immune system

Cancer is a disease characterized by adaptive evolutionary growth. As the human body
contains trillions of cells, cancer can develop in nearly all tissues. Human cells typically
proliferate and divide to create new cells as the body requires them. Cells die when they age
or become damaged and are replaced by new ones. When this routine process fails, aberrant
cells begin to proliferate and develop into tumors that can be either cancerous (malignant) or
non-cancerous (benign). Cancer is a dynamic disease characterized by genetic and epigenetic
mutations as well as hereditary changes in gene expression that are transmitted to subsequent
generations of cells as the tumor progresses. The most well-understood changes involve
alterations in the genes that control cellular behavior, particularly how they grow, divide, and
survive in their local microenvironment. Cancer-causing genetic alterations can result from
many different environmental factors including (1) cell division mistakes; (1) DNA damage from
exogenous exposure to substances such as tobacco smoke, bile acid reflux, or UV light; and
(1) pathogens such as Human Papilloma Virus, Epstein Barr Virus, and fungal infections.
Furthermore, cancer has a hereditary component, in which the passed-on alleles of certain

genes can confer a predisposition to the disease.

The eight hallmarks of cancer comprise the acquired capabilities for sustaining proliferative
signaling, evading growth suppressors, resisting cell death, enabling replicative immortality,
inducing/accessing vasculature, activating invasion and metastasis, reprogramming cellular
metabolism, unlocking phenotypic plasticity, non-mutational epigenetic reprogramming,

polymorphic microbiomes, senescence, and avoiding immune destruction®'2, Cancer
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treatment remains challenging owing to a variety of factors, such as the immune-dependent
remodeling of cancer tissue into an adaptive state, significant heterogeneity, and numerous
genetic alterations. In addition, cancer can affect a variety of organs and is not static. Instead,
it develops and advances over time, accumulating additional mutations. Surgery, radiation,
and chemotherapy are the three types of traditional cancer treatments. Despite their adverse
effects on healthy tissues, radiation therapy and chemotherapy remain crucial parts of cancer
treatment today. Several novel approaches have emerged that offer significant promise for
cancer therapy. These include photodynamic therapy (destroying tumor cells using a
photosensitizing drug activated by specific wavelengths of light), photothermal therapy (using
a photothermal agent activated by light-producing heat to damage tumor cells), nanoparticle
drug therapy (tumor-directed drug delivery), and gene therapy (immunotherapy and

vaccines)®3.

Prior to the advent of immune checkpoint inhibitors (ICI), immunotherapy was based on very
toxic and mostly ineffective immunocytokines such as interleukin-2 and alpha-interferon!4.
Immune checkpoints are essential for the preservation of self-tolerance (i.e., prevention of
autoimmunity) and tissue protection, while the immune system responds to pathogenic
infection under normal physiological conditions®. Malignancies found ways to evade antitumor
immune responses by dysregulating immune checkpoint proteins forcing immune
resistance!®. The 2018 Nobel Prize in Medicine was awarded to James Allison and Tasuku
Honjo, two immunologists who were responsible for drafting the idea of ICl-based
immunotherapy, illustrating its major success'’. Allison observed that cytotoxic T cell antigen
4 (CTLA-4), a protein encoded on the surface of T lymphocytes, blocks T cell function, and
that once it is blocked, cancer cells are successfully eliminated in mice!®. Similarly, Honjo
showed that programmed cell death protein 1 (PD-1), like CTLA-4, functions as a T cell down-
regulator, but operates via a different mechanism?®. Unlike previous studies, this new principle

targets the immune system, instead of cancer cells, by reactivating the immune response. The
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first approved drug against CTLA-4 was released in 2011 (ipilimumab?°) with very convincing
outcomes. Next, anti PD-1?* monoclonal antibodies (nivolumab and pembrolizumab) and anti-
PDL1 antibodies (atezolizumab and durvalumab) were developed, marking a major step in

cancer treatment.

ICI have made significant advancements in cancer treatment; however, few challenges
continue to limit its development, since the response rate varies from 10% to 50% with certain
solid tumor types. These challenges stem in part from the tumor microenvironment. As T cells
are often the primary targets of immune checkpoint inhibitors, effector T cell infiltration in solid
tumors is a unique characteristic of patients who respond well to therapy. As a result, only a
small percentage of patients with solid tumors benefit from immune checkpoint inhibitors. The
remaining cancer patients are unlikely to respond to single-agent therapy due to a scarcity of
targets, as their tumors appear to be depleted of effector immune cells. Immunotherapy based
on cancer vaccines may overcome the resistance of some malignancies to immune checkpoint
inhibitors. With cancer vaccination enhancing effector T-cell infiltration into tumors and ICI
releasing the brakes, combination immunotherapy unites the best qualities of each
immunotherapy technique?223. However, optimizing the set of ‘neoantigens’ to pursue vaccine

development remains a challenge.

Selection of neoantigen candidates

Currently, antigenic peptides can be detected both indirectly through predictive genomics and

directly through immunopeptidomics.

Indirect identification of MHC-associated peptides by next-generation

sequencing

Owing to the significant decrease in cost and time required for next-generation sequencing

(NGS), many studies focusing on cancer neoantigens have utilized in silico prediction tools.
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The indirect identification of neoantigens can be succinctly described using the following steps:
() NGS data comparison between normal and tumor samples to identify tumor-specific genetic
variants?+% (i.e., mutation calling), (1) HLA typing?®?’, (lll) neoantigen prioritization based on
HLA binding affinity?®=2°, and (IV) validation of immunogenicity®!. Considering the highly
polymorphic nature of the MHC system?®?, HLA typing is one of the most crucial steps for
determining the mixture of HLA alleles present in a sample. Next, the identification and
prioritization of neoantigens in silico heavily relies on predictive models to shortlist a
presentable set of mutated peptides according to the HLA genotype of the sample. Lastly, in
addition to MHC presentation, neoantigens need to be immunogenic, that is, effectively
recognizable by T cells to trigger an immune response. These approaches are often validated
using the ‘tetramer assay”, which can detect T cells present in the human body that can bind
to such mutated peptides. Although fast and inexpensive, indirect methods lead to suboptimal
neoantigen prioritization owing to the discrepancy between the theoretically possible MHC-
associated peptides and the experimentally presented ones®. Moreover, indirect methods do

not allow going beyond translational events to monitor post-translational ones.

Direct identification of MHC-associated peptides by mass spectrometry

In addition to neoantigens resulting from DNA mutations, direct identification of MHC-
associated peptides by mass spectrometry allows the detection of neoantigens from
alternative sources, such as peptides bearing post-translational modifications®-¢ and
peptides originating from regions beyond the boundary of the known coding genome?® 2,
Nevertheless, this method has not yet been widely adopted in vaccine development, for
technical reasons. The fundamental idea behind MS is that by manipulating ions with electric
and/or magnetic fields in vacuum, one may determine the masses of the analytes. The mass
of an analyte can be determined in a variety of ways, such as by measuring the oscillating

image current produced by ions orbiting in an electrostatic trap*® (for Orbitrap-type analyzers)
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or the amount of time it takes for an ion to travel a specific distance (for time-of-flight mass
analyzers), which depends only on the mass-to-charge ratio (m/z) of the ion**. However, m/z
values are typically insufficient to identify an analyte. Tandem mass spectrometry (MS/MS or
MS?) addresses this issue by carrying out numerous rounds of mass analysis to obtain more
information regarding the analyte. Following the analysis of an intact analyte, the analyte is
broken up most frequently by purposeful collisions with inert gas molecules, and the broken-
up molecules are then mass-measured. A molecular fingerprint, known as the MS/MS
spectrum, can provide details regarding the substructures of a molecule. Tandem MS
facilitates peptide identification by providing sequence information in an MS/MS spectrum.
Peptides are broken down into fragment ions that reveal the amino acid sequence, thus
creating complementary ions that appear as charged entities. This occurs repeatedly at
varying locations on the peptide backbone, yielding varying ion m/z values corresponding to
amino acid masses. These predictable fragmentation paths enable peptide sequence

analysis.

A technique that scans MS/MS spectra for peptide sequences is the foundation of peptide
identification. These can be divided into two groups: de novo search algorithms and database
search algorithms?*; however, many methods combine aspects from both. De novo algorithms,
such as PEAKS*® and DeepNovo*'“8, analyze the peaks in the spectrum, determine how far
apart the peaks are from one another (which might correspond to the masses of the amino
acids), and then determine how closely the spectrum matches the theoretical peptide. Search
methods for databases such as MS-GF+*° and MSFragger®° rely on a reference database of
protein sequences that are anticipated to be in the sample. Regardless of the algorithm, the
MS/MS spectra are scored against hypothetical ones with known peptide sequences to
evaluate their closeness. The most evident method for generating such a set of labeled
theoretical spectra is by non-specific cleavage of the proteome®®?, that is, non-specific

cleavage of known proteins at every peptide bond.
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Figure 2: General workflow for purification of MHC-associated peptides through
immunoprecipitation. Created with BioRender.com.

Mass spectrometry is the most widely used technique for identifying MHC-associated peptides
(MAPs) at the immunopeptidome level; that is, a subset of processed and presented
subsequences of proteins at the cell surface®. MAPs are typically isolated using
immunoprecipitation (IP) columns after cell lysis, as illustrated in Figure 2. IP columns are
usually loaded with a pan MHC class | or Il antibody to capture the MHC-peptide complexes.
Next, peptides are eluted with acid and purified by HPLC from other molecules including Beta-

2-Microglobulin and a-chains, as the last step before tandem mass spectrometry profiling>.
Promising sources of antigens

Antigens are the main components of cancer vaccines, with the aim of eliciting an immune
response while limiting their toxicity to healthy tissues. A vital step in their development is to
identify and focus on relevant epitopes or antigens that are present only in cancer cells. Tumor
antigens can arise from multiple sources®, including (I) genomic variants such as SNVs,
INDELSs, gene fusions, and structural variants; (Il) transcriptomic variants such as alternative

splicing and non-coding regions; (lll) and proteomic variants such as PTMs.
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Genomic variants

Single nucleotide variants (SNVs) are non-synonymous point mutations that arise from various
causes, including errors in DNA replication, exposure to exogenous or endogenous mutagens,
ineffective DNA repair, and errors in DNA replication. SNVs, which are the most widespread
genomic level mutations, have been extensively studied, as they are thought to be the most
promising source of tumor-specific antigens. However, it has been reported that (I) only a
small fraction of SNVs in tumor cells can yield antigenic peptides, (ll) they are mostly patient-
specific, and (lll) their landscape is highly variable between cancer types and even cancer

stages.

INDELS refers to the insertion and/or deletion of nucleotides at the genomic DNA level, and
can induce translation in alternative frames. Neoantigens derived from INDELs are more
common in malignancies with high microsatellite instability (e.g., colorectal and gastric) owing
to deficiencies in the DNA mismatch repair (MMR) processes®. In addition, they are excellent
candidates for microsatellite unstable cancers because of their recurrency®’. Gene fusions and
structural variants are similar to INDELs but operate on much larger scales. However, they

require more sophisticated pipelines and are less well studied.

Transcriptomic variants

Post-transcriptional events have the potential to expand the neoantigen space. The variety of
tumor neoantigens is influenced by many messenger RNA processing mechanisms, such as

alternative splicing events, RNA editing, and the translation of non-coding regions.

Alternative splicing

Neoantigens could originate from alternative splicing through mutations® at either cis-acting

elements in the precursor mMRNA or tans-acting alterations in a splicing factor. This leads to

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 10



formation of sequences with alternative 5' and 3' splice site determination, intron retention,

exon skipping, and mutually exclusive exons®®.

Non-coding regions

Screening for neoantigens primarily resulting from mutations in exonic areas is restricted to
2% of the complete human genome because 91% of tumor mutations occur in the non-coding
regions of genes. Many regions previously classified as non-coding have been found to have
coding functions. The majority of these non-canonical events result from atypical translation
events, rather than mutations. These aberrantly expressed antigens can be shared between

tumor patients and are more common than neoantigens derived from the coding regions.

The translation of supposedly non-coding sequences or coding sequences into a non-
canonical reading frame is an example of a non-canonical translation event. These typically
involve non-canonical initiation, elongation, and termination events. In summary, a non-
canonical initiation event occurs when the ribosome initiates translation at a codon other than
the primary AUG codon, such as a non-primary AUG codon, or at a start codon that is close
by (CUG, UUG, or GUG), as a result of a start codon scan-through®®, translation re-initiation,
or the presence of an internal ribosome entry site (IRES) on the messenger RNA%62, When a
frameshift occurs incidentally during elongation and results in the translation of a portion of
the protein in a non-canonical reading frame, it is referred to as a non-canonical elongation
event. It has already been noted that some slippage-prone regions found in transcripts can
facilitate a process known as programmed ribosomal frameshift®354, Although uncommon,
non-canonical termination events are possible and include a stop codon read-through®
(certain stop codons, such as UGA and UAG, seem to be leakier than UAA) or a ribosomal
frameshift at the stop codon. These non-canonical translation products are have been

detected to be presented by the MHC system and found to illicit immune response in tumors®’-

42,66,67
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Proteomic variants

Proteins can undergo significant co- and post-translational modifications (PTM) to control their
activity. These PTMs are crucial for each phase of the protein lifetime and result in many
possible proteoforms influencing the dynamic interactions of the proteome. MHC-associated
peptides carrying PTMs, such as phosphorylation®%8, citrullination, ubiquitination®, and
glycosylation™, have been reported to alter antigen presentation and recognition. The ability
of T lymphocytes to distinguish between modified and unmodified epitopes may be due to T
cell escape from central tolerance in the thymus’. PTMs may also modify proteolytic activity

and, in turn, affect how the MHC system presents peptides®®.

Thesis outline

One milestone in cancer vaccine development is the identification of effective tumor antigens
that elicit tumor rejection in clinical settings. With this aim in mind, | implemented state-of-the-
art mass spectrometry pipelines for the characterization of alternative sources of tumor
antigens. In Chapter 2, | present the computational development of a mass spectrometry-
based pipeline for characterizing non-canonical MHC-associated peptides (ncMAPS). This
chapter introduces the importance of ncMAPs and the challenges hindering their large-scale
assessment. Next, it describes the collected data from online available studies and,
subsequently, the revealed characteristics of ncMAPs across cancer types along with their
cancer selectivity. With the same aim in mind, | optimized a state-of-the-art mass spectrometry
pipeline for the characterization of glycosylated MHC-associated peptides. In Chapter 3, |
elaborate on the computational difficulties in analyzing glycosylated MHC-associated peptides
and the bottlenecks in their large-scale assessment. Next, | describe the data collected from
online-available studies and, subsequently, the characteristics of the revealed glycosylated

peptides.
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Chapters 2 and 3 serve the purpose of understanding different landscapes of MAPs across
tissues and genomic origins. They shared a commonality of prerequiring few technical aims in

the order below:
Key technical aims
Aim 1: Collect publicly available MS datasets and their metadata.

Aim 2: Develop large-scale computational MS pipelines to enable the interrogation of

many immunopeptidomic datasets.
Aim 3: Benchmark the pipelines against publicly available datasets for quality control.

Aim 4: Perform data exploration and visualization of the MS search results.

Key biological aims

With the technical aims achieved, this thesis fills a series of gaps in our knowledge of the

immunopeptidome outlaid below:

1. gap 1: Establishing the landscape of non-canonical MHC class I-associated peptides
(ncMAPSs) in a plethora of cancer types and assessing their tumor selectivity.
I.  What are the sources of ncMAPs in terms of their biological mechanisms and
genomic origin?
II.  Are ncMAPs preferentially presented by specific HLA types or subtypes?
lll.  Are ncMAPs common or shared among different cancer types?
IV.  To what degree are ncMAPs present in healthy tissues versus in tumors?
2. gap 2: Establishing the landscape of post-translationally modified MHC class I-
associated peptides (ptmMAPS) in various cancer types.
I.  To what degree is the immunopeptidome post-translational modified?

.  Can PTMs be potential targets for cancer treatment?
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3. gap 3: Establishing the landscape of glycosylated MAPs.
I.  What are the most common glycan types on MAPS?
.  Where are glycans located relative to the MHC peptide-binding pocket?
lll.  Are glycosylated MAPs preferentially presented by specific HLA types or

subtypes?

Chapter 4 concludes this thesis with a summary of the findings, discussion around the unmet

needs in the field and my vision of the research course over the next decade.
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Synopsis: Identification of tumor-specific antigens is crucial for developing effective cancer treatments. The authors use MS de
novo and proteogenomics to generate an atlas of non-canonical MHC class I-associated peptides, providing potential targets

for cancer T-cell therapies or vaccines.
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Abstract

Tumor antigens can emerge through multiple mechanisms, including translation of non-coding
genomic regions. This hon-canonical category of tumor antigens has recently gained attention;
however, our understanding of how they recur within and between cancer types is still in its
infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo
mass spectrometry to enable the discovery of hon-canonical MHC class I-associated peptides
(ncMAPs) from non-coding regions. Considering that the emergence of tumor antigens can
also involve post-translational modifications, we included an open search component in our
pipeline. Leveraging the wealth of mass spectrometry—based immunopeptidomics, we
analyzed data from 26 MHC class | immunopeptidomic studies across 11 different cancer
types. We validated the de novo identified ncMAPs, along with the most abundant post-
translational modifications, using spectral matching and controlled their false discovery rate
(FDR) to 1%. The non-canonical presentation appeared to be 5 times enriched for the A03
HLA supertype, with a projected population coverage of 54.85%. The data reveal an atlas of
8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective
NncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the
combination of the open-source pipeline and the atlas of ncMAPs reported herein could
facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine

development.
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Introduction

The accelerated adoption of mass spectrometry (MS) for high-throughput profiling of
immunopeptidomes in cancer has led to several discoveries. Leveraging these studies to
improve cancer immunotherapy involves connecting the wealth of immunopeptidomic data to
immunogenomics, where the goal is to carefully choose effective targets for T-cell therapies

or vaccine development.

The discovery of cancer antigens has mainly focused on mutated tumor-specific antigens
(neoantigens) arising from patient-specific somatic mutations. It has been shown that only a
small percentage of the humerous non-synonymous mutations in a tumor actually produce
neoantigens (1,2). The challenging task of identifying those that can evoke a suitable tumor
rejection was addressed by Ebrahimi-Nik et al. (3). Using a combination of genomics, shotgun
MS immunopeptidomics, and targeted MS, they found that (I) MS-identified neoepitopes are
a rich source of tumor rejection—mediating antigens, (Il) neoantigens derive from passenger
mutations, and (Ill) binding affinity and CD8" T-cell responses in tumor-bearing hosts are poor
predictors of antitumor activity in vivo. Although neoantigens confer an advantage to patients
undergoing immunotherapy (4), their patient-specific nature is a major bottleneck when
producing off-the-shelf treatments for a large number of individuals. Alternatively, shared
neoantigens (5) (i.e., recurrent mutations in cancer) could offer a new line of population-level
immunotherapy. However, high-throughput experimental profiling of such broadly presented
neoantigens across the human population is a long-term goal with many milestones to be

achieved.

Recently, tumor antigens that exceed the exome boundaries (i.e., non-canonical) have
attracted attention as potential targets as a result of their immunogenicity and recurrence
among cancer patients (6). These antigens find their way to the cell surface through rapid

degradation (7) of “non-coding” translation products stemming from novel open reading frames
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(nORF) (8). In addition, “non-coding” translation products can originate from other sources (9),
including intron retention (IR) (10), ribosomal slippage (11), and frameshift mutations (12). In
2016, Laumont et al. (13) demonstrated their association with MHC molecules using a
reductionist approach based on 6-frame translation and subsequently their recurrence
between patients (14). Ribo-Seq has proven to be an immensely valuable tool for identifying
non-canonical MHC class |-associated peptides (ncMAPs) as it provides experimental
evidence for their non-canonical translation and MHC class | presentation when combined
with MS immunopeptidomics (6,15,16). Despite previous efforts to study non-canonical
immunopeptidomes, the requirements of such multi-level experimental data (Ribo-seq and/or
RNA-Seq) or computational struggles when dealing with large MS databases have hindered
their large-scale profiling in a harmonized manner across multiple cancer types from hundreds

of samples.

With these considerations in mind, we developed COD-dipp (Closed Open De novo — deep
immunopeptidomics pipeline), a pipeline based on deep learning de novo MS to enable the
discovery of ncMAPs. Owing to the potential involvement of post-translational modifications
(PTMs) in this process (1), we added an open search component for their discovery. We
applied COD-dipp to a large-scale dataset using immunopeptidome profiles of over 772
samples from 26 (1,13,14,17-40) published studies and 11 cancer types. We identified a
range of PTMs of potential interest from a therapeutic standpoint and tackled the non-
canonical immunopeptidome. We validated the de novo identified ncMAPs and controlled their
false discovery rate (FDR) to 1% using a second-round search with tuned PTM parameters,
in addition to a series of quality-control steps. Our large-scale analysis revealed 8,601
ncMAPs, accounting for 1.7% of immunopeptidomes. These peptides had varying levels of
tumor selectivity, defined by their parent gene expression levels in normal tissues. We suggest

17 ncMAPs as attractive therapeutic targets using a stringent tumor-selectivity cutoff.
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Materials and methods

Dataset selection

Twenty-four studies were selected based on a list of keywords related to immunopeptidomics
(Supplementary Method S1). Low-resolution analyses were eliminated, and MHC class |-
related datasets conducted with at least one of the following instruments were kept: Q
Exactive, Q Exactive plus/HF/HFX, LTQ Orbitrap Velos, LTQ Orbitrap Elite, Orbitrap Fusion,
and Orbitrap Fusion Lumos (Supplementary Table S1). An additional study was considered
from the MassIVE (RRID:SCR_013665) database, as it incorporates 95 HLA-A, -B, -C, and -
G mono-allelic cell lines (28,40). An auxiliary immunopeptidomic dataset (39) covering 30

healthy tissues from 21 healthy individuals was also used to partly assess cancer selectivity.

Proteogenomic database generation

Canonical protein database for MS database search

A protein database was downloaded using ENSEMBL r94 BioMart (RRID:SCR_002344);
decoy sequences were appended by reversing the target sequences, and 116 contaminant

proteins were added (41).

Non-canonical protein database for alignment using BLAST-like alignment tool (BLAT)

A pre-mRNA 3-frame translation (3FT) database was generated from genes with a protein-
coding biotype based on ENSEMBL r94 (RRID:SCR_002344) using the AnnotationHub and

Biostrings (RRID:SCR_016949) R packages.
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COSMIC mutated protein database for BLAT alignment

COSMIC (RRID:SCR_002260) coding Mutants (42) VCF v95 was downloaded along with
ENSEMBL v94 CDS and GTF files. An in-house Python (RRID:SCR_008394) package was
used along with the previously mentioned inputs to generate a FASTA file containing the

corresponding mutated protein sequences.

MS computational analysis

Algorithms representing three main philosophies of peptide-spectrum matching including open
search, de novo sequencing, and closed search were used. The open search approach
allowed the identification of distantly related peptides and could identify PTMs and single
amino acid variations. The de novo sequencing approach derived sequences from first-
principle analysis of the MS? spectra. The closed search approach, used as a validation step,
assumed a specific set of reference protein sequences and allowed for limited post-
translational modifications. Although each approach has its own limitations, our strategy
addressed them by combining a closed search with a de novo sequencing approach and
implementing multiple filtering steps for accuracy control and quality control checkpoints (see

Supplementary Figure S1).

Data conversion

The proprietary RAW files acquired from the selected instruments were converted to mzML
and MGF formats using msconvert (ProteoWizard version 3.0.19295. c8b8b470d,

RRID:SCR_012056) with the peak-picking and TPP compatibility filters.

Open search analysis

The MSFragger (43) v2.2 search engine was used to conduct an open search analysis against
the ENSEMBL r94 protein database in combination with PTMiner (44) v1.1.2, to apply a

transfer FDR and a false localization rate of 1% (FLR, the rate of falsely localizing the site of
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modification). Unspecific cleavage generating peptides 8 to 25 amino acids long with no
fixed/variable PTMs was considered. Further analysis revealed that the frequent unexplained
mass shifts observed during the open-search annotations were caused by non-specific
cleavage. To address this issue, an open-search post-processing algorithm, PTMiner, was
employed to effectively corrects for mass shifts introduced by in-source fragmentation,
nonspecific digestion, or missed cleavage, by adding or deleting amino acids from the peptide
N- or C-termini. For instance, a deviation of -128.1 to -128.08 Dalton on lysine residues was
frequently detected on the first 2 or last 2 amino acids of peptides. The deviation was caused
by non-specific cleavage during the open search and resulted in an incorrect assignment of a
negative mass shift of a lysine due to the presence of an additional lysine in the sequence. As
these cases are not biologically meaningful, unexplained mass shifts were removed from the

final results of the study.

De novo analysis

DeepNovoV2 (45) is a neural-network-based de novo peptide sequencing model that
integrates convolutional neural networks (CNNs) and long short-term memory (LSTM)
architectures. This deep-learning design extracts features from both the spectrum and the
language of the presented peptides. DeepNovo has demonstrated improved performance
compared to the state-of-the-art de novo sequencing algorithms by large margins (45). The
model can be tuned on a restricted peptide space to improve its performance. The training,
testing, and validation sets were derived from MS-GF+ (v2019.04.18, RRID:SCR_015646)
database search results for each sample. The search used the ENSEMBL v94 protein
database and 8 to 25 amino acid peptides with unspecific cleavage, no fixed/variable PTMs
and an FDR of 1% applied by Scavager (46). The trained models were used to perform de
novo (prediction) on the remaining unmatched spectra of each sample (from MS-GF+ after
1% FDR control). Accuracy was calculated by comparing the de novo predicted sequences

and MS-GF+ results on the validation set. A de novo score threshold that controlled the
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accuracy at 90% within the validation set was applied to the predicted sequence in a sample-

specific manner.

De novo peptide annotation

De novo peptides from canonical human proteins were identified using BLAT (47)
(RRID:SCR_011919) alignment against the target-decoy protein database. Sequences
perfectly matching any protein sequence were considered exonic (one mismatch allowed for
the isobaric amino acids leucine and isoleucine). All remaining sequences unexplained by
proteins were considered potential non-canonical peptides and were aligned against the pre-
MRNA 3FT database. Stringently, peptides perfectly matching a 3FT sequence without any
mismatch were required to have at least three mismatches with any known protein sequence
before being considered non-canonical. Since peptide-spectrum matches (PSMs) can be
assigned without complete sequencing accuracy, requiring a 3 amino acid difference
alongside the 90% accuracy cutoff above increases the confidence that the peptides assigned
fall far outside the standard human proteome. Remaining de novo peptides without any

canonical or non-canonical annotation were labeled as ‘unmapped peptides’ and discarded.

Second-round search

A second-round search was performed using the FragPipe (41,43) headless pipeline, which
includes MSFragger v3.4, MSBooster (bioRxiv 2022.10.19.512904), and Philosopher (41).
Non-canonical peptides from all samples were concatenated with the ENSEMBL v94 protein
into a custom database. Only four of the most abundant PTMs were considered to avoid a
large search space complexity, inflated FDR, and decreased sensitivity. The following variable
PTMs were included: methionine oxidation, N-terminal acetylation, cysteinylation, and
cysteine carbamidomethylation (for samples treated with iodoacetamide). Unspecific cleavage
generating peptides 7 to 15 amino acids long was considered. The ion, PSM, and peptide-

level FDR were maintained at 1%.
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Alignment of immunopeptides to the genome

Second-round search non-canonical peptide coordinates were retrieved from the 3FT

database FASTA headers and stored in BED format.

Open reading frame analysis

Upstream genomic sequences of ncMAPs were scanned for start codons up to the first
encounter with a stop codon. Sequences were centered around the detected start codons and
stretches of 100 nucleotides from each side were extracted. Translation initiation site (TIS)
scores were predicted for each sequence using TITER (48), a deep-learning-based framework
for accurately predicting TIS on a genome-wide scale based on QTI-seq data. A TIS score

greater than 0.5 was considered a positive prediction.

Intron retention analysis

For each intron in the UCSC hg38 KnownGene table (RRID:SCR_005780), the first codon
coordinates of the corresponding upstream exon in-frame with the canonical translation were
extracted and stored in BED format (see Pseudocode 1). Intronic coordinates from the
generated BED file were intersected with the ncMAPs BED file using pybedtools (49)
(RRID:SCR_021018). Intronic retention events were considered possible when ncMAPs

within introns were in-frame with their upstream exons (see Pseudocode 2).
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// Pseudo-code 1: extracts the start coordinate of the first in-frame codon for
each exon (inframeCoordinate variable)
for each transcript
remainderValue = ©
for each exon
if strand is positive
if downstream intron exists
leftoverBases = remainder of (ExonEndCoordinate - remainderValue - ExonStart +
1) / 3
if remainderValue is equal to ©
inframeCoordinate = ExonStartCoordinate
else
inframeCoordinate = ExonStartCoordinate - remainderValue
if leftoverBases is greater than ©
remainderValue = 3 - leftoverBases
addToTable(transcript, chromosome, ExonStart, ExonEnd, inframeCoordinate,
IntronStart, Intronknd)
if strand is negative
if downstream intron exists
leftoverBases = remainder of (ExonSart - ExonEndCoordinate +
remainderValue + 1) / 3
if remainderValue is equal to ©
inframeCoordinate = ExonEndCoordinate
else
inframeCoordinate = ExonEndCoordinate + remainderValue
if leftoverBases is greater than ©
remainderValue = 3 - leftoverBases
addToTable(transcript, chromosome, ExonStart, ExonEnd, inframeCoordinate,
IntronStart, Intronknd)

// Pseudo-code 2: checks if each intronic ncMAP is in-frame with its upstream
exon.
ncMAPIsInFrame = False
if strand is positive
// firstCoordinate = start coordinate of ncMAP
// secondCoordinate = start coordinate of the first inframe codon from
previous exon
coordinateDifference = firstCoordinate - secondCoordinate
if remainder of (coordinateDifference / 3) is equal to @
NcMAPIsInFrame = True
else:
// firstCoordinate = start coordinate of first inframe codon from previous
exon
// secondCoordinate = end coordinate of ncMAP
coordinateDifference = firstCoordinate - secondCoordinate
if remainder of (coordinateDifference / 3) is equal to ©
NcMAPIsInFrame = True

Frameshift mutation analysis

The COSMIC (42) v95 coding mutations (RRID:SCR_002260) VCF file was downloaded and
converted into a protein FASTA file using aVCF-to-Proteogenomics toolkit

(https://github.com/immuno-informatics/VCFtoProteogenomics) ncMAPs were then aligned to
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the resulting 16 GB FASTA using BLAT v35 (47). Only hits with exact matches to sequences

from frameshift mutations were considered.

Comparison of the identified non-canonical MHC class |-

associated peptides between studies

ncMAPs from 4 different studies (6,13,16,50) were collected. First, sequences were aligned
to the human proteome (ENSEMBL v94) using BLAT v35 (47). Sequences found in human
proteins were discarded, and the remaining sequences were aligned to the 3FT database with
one mismatch allowance for the isobaric amino acids leucine and isoleucine, as allowed for
COD-dipp ncMAPs. Genomic coordinates of the sequences found in the 3FT database were
extracted and overlapped between studies using the ChiPpeakAnno (51) R package
(RRID:SCR_012828). A minimum overlap of 21 nucleotides (7 amino acids) between two

sequences was required.

Cancer selectivity of the non-canonical MHC class |-associated
peptides

Tumor specificity has been previously implied when peptide parent genes are either
completely absent or present in trace amounts in healthy tissues (6,14,16) since MHC class |
presentation is preferentially derived from highly abundant transcripts (28,30). While tumor
specificity implies the expression of an antigen solely in tumor samples, the experimental
design of this study cannot guarantee this constraint. Instead, cancer-selective ncMAPs were

conservatively identified through three iterative steps:

Step 1: Panel of normal immunopeptidomes

In addition to the 88 healthy MS samples from the initial set of the 25 considered studies, the

HLA Ligand Atlas (39) was used to extend the panel of normal immunopeptidomes and partly
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assess the cancer selectivity of the 8,601 identified ncMAPs. The HLA Ligand Atlas is a pan-
tissue immunopeptidomic reference for 30 healthy tissue types obtained from 21 human
subjects. The resulting 334 healthy samples (see Supplementary Table S1) were analyzed
in the same manner as in the second-round search (see Second-round search above).
ncMAPs identified in the panel of normal immunopeptidomes were labeled as non-cancer

selective.

Dimensionality reduction of the HLA-binding motif space

Binding affinity prediction was employed to identify similarities and differences in HLA-binding
motifs among the 65 healthy and 51 tumor-only HLA alleles. NetMHCpan-4.1 was utilized to
evaluate the binding of 1,000,000 random peptides to each allele, which resulted in a binding
matrix (BM) of 116 alleles and 1,000,000 peptides. A value of 1 was assigned to strong binders
(EL rank < 0.5%) in the BM; otherwise, a value of 0 was assigned. A pairwise cosine distance
matrix (DM) was then calculated to assess the similarity of binding between alleles. The DM
was then reduced using t-SNE to visualize the data in 2D with a perplexity of 20 and 500

iterations.

Step 2: Parental gene expression levels in healthy tissue

The gene expression levels of the identified ncMAPs were retrieved from the GTEx v8 (52)
dataset, consisting of 29 tissues from 948 healthy donors and 17,382 overall samples.
Considering all individuals, the 90th percentile value of normalized expression was assigned
to each gene per tissue as a strict step to guarantee the upper-end gene expression in healthy
tissues. A stringent cutoff for cancer selectivity was used to shortlist ncMAPs whose parent
genes fell below a 1 TPM expression cutoff (excluding the testis tissue given its immune-
privileged status). It is worth noting that this stringent threshold removes 92% of protein-coding

genes that show expression above 1 TPM in any tissue within the GTEX v8.
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Step 3: Protein expression levels in healthy tissue

The protein expression levels of ncMAPs passing the 1 TPM cutoff were retrieved from the
Human Protein Atlas V22.0 database (53). ncMAPs without parent protein expression in
healthy tissues were labeled as cancer-selective (excluding the testis tissue given its immune-

privileged status).

Code availability

The COD-dipp code, intended for high-performance computing (HPC), is available on the

GitHub repository: https://github.com/immuno-informatics/COD-dipp.

Data availability

The data analyzed in this study were obtained from PRIDE at PXD004746, PXD014017,
PXD012308, PXD011628, PXD012083, PXD011766, PXD013057, PXD011723, PXD007203,
PXD004233, PXD003790, PXD001898, PXD007860, PXD011257, PXD007935, PXD009749,
PXD009753, PXD009750, PXD009751, PXD009752, PXD009754, PXD009755, PXD004023,
PXDO007596, PXD009531, PXD010808, PXD008937, PXD009738, PXD006939, PXD005231,
PXD000394, PXD004894, PXD019643 and from massIVE at MSV000080527,
MSV000084172, MSV000084442. The results of this study are available within the article and
its supplementary data files and are accessible on the following figshare repository:

https://doi.org/10.6084/m9.figshare.16538097.

Results

Immunopeptidomic MS datasets

We selected 25 immunopeptidomic MS studies (see Supplementary Table S1) to create a

cancer-centered dataset of MHC class | presentation. Data-dependent acquisition (DDA)
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studies covered eleven cancer types distributed across the brain (Glioblastoma and
Meningioma), lung, skin, liver, blood (Leukemia and Lymphoma), colon, ovaries, kidneys, and
breast. Moreover, tumor and healthy samples were derived from either cell lines or patient
tissues (Fig. 1a and Supplementary Method S1). We selected publicly available studies with
data generated using high-resolution MS instruments (LTQ Orbitrap, Q Exactive Plus/HF/HFX,
and Fusion Lumos) to minimize the bias associated with older tandem MS instrumentation
(Fig. 1b). Within our dataset, the most commonly used monoclonal antibody for HLA class |
immunoprecipitation (IP) was W6/32 in comparison to the other antibodies (BB7.2 and G46-
2.6) (Fig. 1c, see Supplementary Table S1). The selected studies covered five different HLA
class | genes, with HLA-A, B, and C being the most studied compared to HLA-E and -G (Fig.

1d). Furthermore, the included MS samples covered 114 HLA alleles (Fig. 1e).

Closed Open De novo — deep immunopeptidomics pipeline

(COD-dipp)

We present COD-dipp, an open-source high-throughput pipeline with novel post-processing
steps, to deeply interrogate immunopeptidomic datasets (Fig. 2). We used this pipeline to
screen for ncMAPs in datasets utilizing DDA due to its widespread use. To identify post-
translationally modified MHC class I-associated peptides (ptmMAPS), we performed an open-
search analysis with MSFragger (43) and controlled both FDR and the FLR to 1% with
PTMiner (44). To identify ncMAPs, we used DeepNovoV2 (45) for de novo analysis. In
combination with the PSM level information of MS-GF+ (54), DeepNovoV2 was trained to
interpret the raw MS data in a sample-specific manner. The training step for such a deep
learning approach is crucial for learning the features of tandem mass spectra, fragment ions,
and leveraging sequence patterns in the immunopeptidome to impute missing MS? fragments.
All high-quality de novo peptides (90% accuracy) were sequentially mapped (47) to (I) the
human reference proteome to reveal the de novo-based canonical MHC class |-associated

peptides, and (Il) to a 3FT database to reveal the de novo-based ncMAPs. Finally, an
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orthogonal validation step was performed by a second-round search to control a 1% FDR for
the de novo identified ncMAPs while considering the most abundant PTMs found by the open-
search strategy. Applying the COD-dipp pipeline across the dataset revealed the breadth of
() post-translationally modified MHC class I-associated peptides referred to as ptmMAPSs,

and (I1) non-canonical MHC class I-associated peptides referred to as ncMAPs.

ptmMAPS

The open search analysis reported 4.03% of the MS spectra showing post-translational
modifications (Fig. 3a). Some identified PTMs were confirmatory, representing chemical
modifications from sample preparation methods (cysteine carbamidomethylation) or common
chemical derivatives (methionine oxidation and di-oxidation). We also observed PTMs that are
extremely common in proteins, such as protein N-terminal acetylation, affecting multiple
properties such as half-life time, folding, and interaction. On the other hand, some of the
identified PTMs have been reported previously to increase immunogenicity against diseases
(55) and protect against degradation (tri-oxidation of cysteine (56), cysteinylation (57), and N-
term serine acetylation, see Fig. 3b and Supplementary Table S2. Furthermore, 1.12% of
spectra from open search showed unknown mass shifts, as illustrated in Fig. 3a (green and
red). This category was partly populated by computational artifacts and was excluded from
the final results. To validate these findings, we performed an independent post-search by
crosschecking the identifications from our open search with those of the original studies. The
results showed 96.1% agreement in peptide-spectrum matches, which are detailed in

Supplementary Method S2: Validation 1 and Supplementary Figure S2.

NncMAPs

We explored the ncMAP landscape in cancer using our workflow (Fig. 2) and identified 10,413
unique de novo-based ncMAPs from intragenic non-coding regions (before the second-round

search validation), which accounted for 3.7% of the identified de novo sequences. We took
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two additional validation steps, including checking the identification scores as well as the
correlation between the experimental and theoretical liquid chromatography retention times,
to guarantee the correctness of these identifications (see Supplementary Method S2:
Validation 2 and 3, and Supplementary Figure S2). The de novo non-canonical peptides
showed strong evidence of high-quality identification (i.e., correctly predicted complete peptide
sequences). Even with this strong evidence, it was possible that chromatic behavior remained
unchanged in certain instances where neighboring amino acids were in flipped positions, or
that a 90% accuracy rate still led to an uncertain FDR percentage. Hence, we confirmed the
identified 10,413 de novo-based ncMAPs by performing a second-round search for additional
validation and controlling the FDR at 1%. Several PTMs were also considered in the
parameters from the a priori knowledge provided by the open search strategy. Of the 516,382
uniquely identified peptides in the second-round search, 1.7% (8,601) were non-canonical
(Fig. 3c and Supplementary Table S3). The PTM profiles (Fig. 3d) of canonical (dark gray)
and non-canonical (light gray) peptides appeared to be similar, with M oxidation being the
most prevalent modification. The identified ncMAPs showed comparable spectra from patients
within the same studies and from different studies (Supplementary Figures S3, S4, and S5
provide examples of such similarities). The binding affinities of all 8,601 ncMAPs resulting
from the second-round search were further investigated using NetMHCpan 4.1 (58). The
binding prediction analysis showed a comparable binding rate for both the canonical (90%)
and non-canonical (93%) MAPs, as depicted in Fig. 3e. We further took four additional
independent post-search validation steps, including checking retention time shifts induced by
PTMs, mass accuracy, and spectra comparison to those of the original studies, guaranteeing
the correctness of the ncMAPs identified by the second-round search (see Supplementary

Method S2: Validation 4, 5, 6, and 7, and Supplementary Figure S2).

Comparison of COD-dipp hcMAPs with the literature

To assess the performance of our COD-dipp method, we conducted a comparison with the

results of peptide-PRISME by Erhard et al. 2020 (50). Our comparison was based on three
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common studies (1,14,34) and resulted in 3,453 at 1% FDR from COD-dipp along with 4,576
NncMAPs at 10% FDR from Erhard et al. We first aligned Erhard et al.’s ncMAPs to the human
proteome and eliminated a small fraction (1.4%) that matched the canonical protein
sequences (Fig. 4a, left-hand side). Since the COD-dipp ncMAPs were restricted to the 3FT
of protein-coding genes, we aligned the remaining ncMAPs from Erhard et al. to the same 3FT
database for comparison purposes. Fig. 4a (left-hand side) shows that 68.25% of ncMAPs
were successfully mapped to the 3FT database. The rest (30.35%) that did not align to any of
the human proteome or the 3FT database are shown in yellow on Fig. 4a left-hand side. This
unmapped fraction consisted of ncMAPs from regions of the genome not studied herein, such
as intergenic regions, anti-sense translation, etc. The successfully mapped fraction to the 3FT
database (navy) of 3,123 ncMAPs along with 3,453 ncMAPs from COD-dipp were then
compared, as shown in Fig. 4a right-hand side (see Supplementary Table S4). peptide-
PRISME shared 38% (1,197) of its ncMAPs (intersection) with COD-dipp (Fig. 4a right-hand
side) and showed 62% (1,926) of exclusive ones. Adjusting the higher FDR used by peptide-
PRISME from 10% to 1% increased the shared fraction to 48.9% (Fig. 4b), along with a ~ 2.4-
fold decrease in total ncMAPs (from 4,576 to 1,916). At an FDR of 1%, COD-dipp identified

2.34 times more exclusive ncMAPs (2,298 vs. 979) from the 3FT of protein-coding genes.

To contextualize our findings from COD-dipp within the existing literature on ncMAPs, we
compared our results with those of three previous studies: (I) Laumont et al. 2016 (13), (I1)
Chong et al. 2020 (6), and (IIl) Ouspenskaia et al. 2021 (16), as shown in Figure 4c. We used
the same mapping procedure that was applied to peptide-PRISME results. We eliminated a
fraction of sequences mapping to known proteins, which was 4%, 5%, and 3% of sequences
for Chong et al. 2020, Laumont et al. 2016, and Ouspenskaia et al. 2021, respectively (see
Fig. 4c left-hand side). Fig. 4c left-hand side shows in navy the fractions of ncMAPS that were
successfully mapped to the 3FT database, which was 34.38% for Chong et al. 2020, 63.69%
for Laumont et al. 2016, and 72.74% for Ouspenskaia et al. 2021. The remaining ncMAPSs that

did not align (Fig. 4c left-hand side in yellow) to any of the human proteome or the 3FT
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database originate from sources not studied herein. For instance, Laumont et al. 2016
included 6-frame translation in their MS search database, which accounts for intergenic
regions, anti-sense translation, long non-coding RNA, and retroelement sources. Both Chong
et al. 2020 and Ouspenskaia et al. 2021 added Ribo-Seq detected proteins to their MS
database searches, accounting for all possible nORFs, even those outside of known genes.
The fractions successfully mapped to the 3FT database (navy) from these three studies, along
with the 8,601 ncMAPs from COD-dipp, were then compared, as shown in Fig. 4c right-hand
side (Supplementary Table S4). Intersections with COD-dipp were 31.42% for Chong et al.
2020, 38.3% for Ouspenskaia et al. 2021, and 45.8% for Laumont et al. 2016, respectively. In
contrast, intersections with all other studies were 40% for Chong et al. 2020, 38.66% for
Ouspenskaia et al. 2021, and 65.93% for Laumont et al. 2016. Hence, COD-dipp ncMAPs
alone accounted for 78.55% of Chong et al. 2020’s intersection, 96.07% of Ouspenskaia et al.
2021’s intersection, and 69.47% of Laumont et al. 2016’s intersection. COD-dipp ncMAPs
accounted, on average, for 81.36% of the intersection when comparing three previously
published ncMAP sets, thus validating our approach. With 2,168 ncMAPs (25%) shared with
the literature and 6,433 new ncMAPs, we have revealed an atlas of non-canonical MHC class

| presentation.

Properties and origins of ncMAPs

We compared the sequence lengths of canonical and non-canonical MAPs (Fig. 5a) and found
them to be similar, with a slight skew of the non-canonical category toward longer lengths.
This could be due either to an actual preference of ncMAPs toward longer sequence lengths
or simply the consequence of requiring 3 amino acid differences from any known proteins
favoring longer sequences. Next, we inspected ncMAPs according to their relative positions
within protein-coding genes (Fig. 5b). Exonic regions translated in alternative frames were the
main source of NCMAPs (19.2%). These events could arise from frameshift mutations, initiation
codon readthrough (59), nORFs, or ribosomal slippage (11) during translation (i.e., ribosome

frameshifting). Intronic regions were the second most abundant source of ncMAPs (12.2%).
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These events can arise from frameshift mutations, nORFs, or IR. Interestingly, 5-UTRs
contributed to 10.2% of ncMAPs and have been shown to produce translation products
through upstream ORFs along with a non-AUG start codon (60). Lastly, 3'-UTRs contributed
the least toward ncMAPs (3.2%), potentially through stop codon read-through (61). It is
important to note that these categorizations are not mutually exclusive and that an ncMAP
sequence may have multiple assignments due to the overlapping nature of transcripts. We
conducted three analyses to estimate how well the nORFs (1), IR (Il), and frameshift mutations
(1) could explain the detected ncMAPs. (I) ncMAPs with upstream start codons (AUG, CUG,
UUG, GUG, and ACG) accounted for 63.4%, and 41.5% were predicted to be TIS using TITER
(48) (Fig. 5c left-hand side). The breakdown of the TIS start codon distribution (Fig. 5c¢, right-
hand side) showed CUG (L) as the most abundant nORF start codon, and 70% of the predicted
TIS showed non-AUG start codons, in line with previous findings (15). (Il) Translation frames
of ncMAPs from intronic regions were checked for compatibility with upstream exons, and
49.4% were found in-frame with upstream exons, making IR events a possible source (Fig.
5d). (Ill) A total of 597 ncMAPs were found in aberrant proteins from frameshift mutations in
cancer (42) (Fig. 5e and Supplementary Table S5). Eventually, 70.1% of ncMAPs were
explicable by novel ORFs, IR, or frameshift mutations (Fig. 5f). ncMAPs were found to be
presented by all 113 alleles in our dataset, except for the HLA-C*07:17 allele, mostly because
of low sample coverage by MS for this allele (see Supplementary Figure S6). Furthermore,
the average non-canonical presentation per HLA supertype (62) was 1%, except for A03,

which was 5% (see Supplementary Figure S6).

Cancer selectivity of ncMAPs

Of the 8,601 identified ncMAPs, 2,758 were detected in the panel of normal healthy tissue by
MS and were labeled as non-cancer-selective. The panel of normals originally consisted of
healthy MS samples from all considered studies, which we extended by adding the HLA
Ligand Atlas (39), a pan-tissue immunopeptidomic reference of 30 healthy tissue types

obtained from 21 human subjects. Fig. 6a shows the ability of the extended panel of normals
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to capture several more ncMAPs (12.85%) in healthy tissues that were not observed in our
original panel of normals (19.22%). We assessed the coverage of tumor-only HLA alleles in
healthy samples using the panel of normal samples. The 334 healthy samples covered 53%
of the HLA alleles expressed in the tumor samples. Analysis of a subset of ncMAPs
represented by the 57 shared alleles (i.e., present in both healthy and tumor samples)
revealed a substantial overlap in HLA-binding motifs between the panel of normal samples
and other samples. This was demonstrated by (I) the majority of identified ncMAPs being
retained (7,513 out of 8,601) and (ll) a comparable percentage of ncMAPs being detected in
healthy samples through MS (36.46% with shared alleles versus 32% with all alleles) (see
Supplementary Figure S7). To better understand the similarity between the HLA-binding
motifs of the alleles represented in tumor-only samples and those represented in healthy
samples, we generated a matrix of cosine distances of binding affinities and used t-SNE to
reduce the dimensionality and visualize the data. Our results indicated a high level of similarity
between the two, further supporting the notion that the 65 alleles in the panel of normal

samples were representative of the tumor-only alleles (Supplementary Figure S7).

However, the lack of ncMAP detection in the panel of normals does not confirm cancer
selectivity owing to the sensitivity limitations of MS. Proper cancer selectivity assessment
should be performed at the gene expression level in healthy tissues. Hence, we retrieved the
parent gene expression values (in TPM) of the remaining ncMAPs from the Genotype-Tissue
Expression project (GTEx v8) (52). We first compared the gene expression levels of the
following two groups: (I) ncMAPs detected in the panel of normals by MS (blue), and (Il)
remaining ncMAPSs without detection in the panel of normals (red). Fig. 6b shows significantly
higher gene expression for ncMAPs detected in healthy tissues (blue) than for those that were
left undetected (red). Moreover, to ensure low toxicity levels in normal tissues, we filtered
NcMAPs to retain those with parent genes expressed below 1 TPM and without evidence of
protein expression in any healthy tissue except the testis (immune-privileged site) (Fig. 6c).

By applying this stringent filter, we identified 24 ncMAPs derived from genes not expressed or
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expressed only in trace amounts in healthy tissues. Of these, 17 were associated with proteins
not detected in healthy tissues. Table 1 provides a summary of these 17 cancer-selective
NncMAPSs, which we suggest as promising targets for clinical applications (see Supplementary

Table S3 for more details).

Discussion

The cartography of non-canonical antigen presentation revealed in our study arose from a
harmonized large-scale analysis of immunopeptidomic data mapped to the human genome.
Our innovations over the most recent trends in computational MS identified a diversity of
peptides mapping to canonical and non-canonical translation products. We mapped deviations
away from the reference proteome as mass shifts (PTMs) and applied a sequential approach
to tackle the non-canonical immunopeptidome. Our proteogenomic pipeline allowed the
identification of thousands of ncMAPs (8,601) derived from non-coding regions of protein-
coding genes with an FDR of 1%. This was accomplished by analyzing a large collection of
publicly available studies using COD-dipp, a highly modular large-scale pipeline that bypasses

the challenge of multi-omics requirements and large MS databases when identifying ncMAPs.

Recent studies have suggested that the immunopeptidome is rich in PTMs (63), which can
have profound effects on immune tolerance. T cells can discriminate between modified and
non-modified epitopes, which has been demonstrated in the case of ubiquitination (64),
glycosylation (65), phosphorylation (1,66). T-cell reactivity to PTMs is an effect of their central
tolerance escape from the thymus (67). PTMs may also alter proteolytic activity, and
consequently, peptide presentation by the MHC system (68). The open-search component
sheds light on several PTMs implicated in immunogenicity (serine N-terminal acetylation,
cysteinylation, and cysteine tri-oxidation) and could provide insights for future studies on PTM-
based epitopes. For instance, tri-oxidation of cysteine has the potential to alter the immune

response (56); however, its mechanism of interaction with HLA molecules and T cells is still in
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its infancy. Additionally, T cells can discriminate between cysteinylated and unmodified
cysteine residues (57). Likewise, N-terminal serine acetylation is known for multifunctional
regulation, acting as a protein degradation signal, inhibitor of endoplasmic reticulum (ER)
translocation, and mediator of protein complex formation. Methionine sulfone (methionine
dioxidation) has been found to occur in vivo in Proteus mirabilis (69), a Gram-negative
bacterium present in malignant cancers (70), although it can result from the use of a strong

oxidizing agent.

The validity of ncMAPs was rigorously tested using retention time correlation (experimental
vs. theoretical), orthogonal second-round search, mass accuracy, PTM retention time shifts,
HLA binding prediction, and PSM comparison with previously published results. Twenty-five
percent of the identified ncMAPs accounted, on average, for 81.36% of intersections when
compared with three other high-profile studies (6,13,16). In addition, COD-dipp revealed 6,433
new ncMAPs from protein-coding genes. Considering the high-quality and rigorous
computational validation, the identification rate discrepancy is partly due to the performance
of COD-dipp and the size of our dataset collection, making it the most exhaustive non-

canonical library of MHC class |-associated peptides.

Our survey of the possible sources of ncMAPs revealed that 70.1% could be attributed to
NnORFs, IR, or frameshift mutations. We identified 597 ncMAPs downstream of known
frameshift mutations in COSMIC, an understudied source of antigens in immunopeptidomic
studies. Certainly, other biological processes not accounted for in this study could generate
ncMAPs. For instance, mechanisms such as ribosomal slippage (11) and stop codon

readthrough could explain some of the remaining ncMAPs (29.9%).

This study focuses on peptides from non-coding regions of the genome, referred to as non-
canonical peptides. Unlike neoantigens, which derive from patient-specific mutations in

cancer, these non-canonical peptides are not mutated and are present in both cancer and
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healthy individuals. Although their presence in healthy samples makes their tumor specificity
less clear, non-canonical peptides tend to be more abundant in cancer cells than in healthy
cells. Over two decades ago, Ishii et al. (71) purified an octamer non-canonical antigen
(IPGLPLSL or pRL1a) associated with heat shock proteins (HSPs) and validated their findings
using MS. The isolated octamer non-canonical antigen pRL1a was derived from the 5'-
untranslated region of the AKT gene in leukemia and induced tumor rejection. To the best of
our knowledge, this was the first demonstration of a non-canonical antigen that confers
immunity. Subsequent studies have shown that HSPs are beneficial for anticancer vaccines
(72) because they bind canonical/non-canonical antigens with tumor rejection properties that

end up being presented by MHC | and Il molecules (73).

Numerous studies have suggested various possible candidates for cancer vaccines over the
past 2—-3 decades, and each has failed, at least partly, due to the issue of specificity. We used
a conservative definition of cancer selectivity that follows three iterative steps. We searched
for the identified ncMAPs over a panel of 334 normal MS samples and confirmed a fraction
(32%) of non-cancer-selective ncMAPs. The remaining fraction (5,843, 68%) contained both
cancer-selective ncMAPs and non-cancer-selective ncMAPs that were not detected by MS.
We used the expression levels of the ncMAPS’ parent genes across 29 healthy tissues as a
means of prioritization (6,14,16). ncMAPs whose parent genes were expressed in any normal
tissue above athreshold of 1 TPM were not considered cancer selective. However, we caution
that this definition excludes the consideration of 92% of protein-coding genes. We revealed
17 rigidly defined candidates as cancer-selective ncMAPSs, originating from genes and proteins
that were completely absent or available in trace amounts in healthy tissues. We hope that
this offers a sufficiently stringent approach to reducing toxicity in clinical applications. We
provide a complete breakdown of all detected ncMAPs in Supplementary Table S3. We
report the parent gene and protein expression values across healthy tissue types from the
GTEx cohort and Human Protein Atlas, respectively. Moreover, we report their cancer-

selectivity status conditioned on a gene expression cutoff (1 TPM) and lack of protein
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expression in healthy tissues. This will allow the research community to make decisions
regarding the peptides that should be retained or removed from their analyses. It is particularly
important that we do not filter all peptides, as aberrant intron-retention and frame-shift
mutations that are certainly cancer-specific may lie within these results and would not need

this stringent filtering if found in subsequent studies.

Here, we provide a free and open-source informatics pipeline to study non-canonical peptides,
along with a reservoir of potential targets that could be used in combination with T-cell
therapies or cancer vaccines. We anticipate that this will help pave the way for future research
on antigens from non-canonical sources and engage further oncology research on alternative

sources of antigens.

We acknowledge that our study presents several limitations. First, our approach relies on a
DDA MS, which is known for its dynamic range limitations. Thus, only the most abundant
NncMAPs were identified. Moreover, owing to the technical limitations of MS, we require that
our ncMAPs be at least 3 amino acids different from any known human protein. Thus, a
substantial fraction could be eliminated, leading to underestimation of the non-canonical
fraction. Second, because immunogenicity prediction is still in its infancy, the identified
NcMAPSs require further validation to qualify as tumor rejection—mediating antigens for clinical
applications. Despite our efforts to identify cancer-selective targets, the toxicity of these

peptides in healthy tissues requires further investigation.
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Tables

Mean expression

Number of

ID Peptide Gene name mtizgﬁletzy h?/\?ilttrrl“[/art'l)stse?nes Annotation
(TPM) expression

1 AFAPFPTQF CXorf49B 0.01 0 of 56 Cancer selective
1 AFAPFPTQF CXorf49 0.01 0 of 56 Cancer selective
1 AFAPFPTQF RP11-402P6.15 0.10 0 of 56 Cancer selective
2 DYIHFVHHF RP11-325B23.2 0.00 0 of 56 Cancer selective
3 EALSASQALYTR HIST1HA4L 0.04 43 of 56

4 ELIKAFSK GNGT1 0.05 1 of 56

5 ESAGLFQVPR SUN3 0.13 3 of 56

6 EVEKILIQY KCNU1 0.05 0 of 56 Cancer selective
7 EVPGAQGQQGPR CTAG2 0.15 0 of 56 Cancer selective
7 EVPGAQGQQGPR CTAG1B 0.03 0 of 56 Cancer selective
7 EVPGAQGQQGPR CTAG1A 0.06 0 of 56 Cancer selective
8 FPVDVDHAVL CTAG2 0.15 0 of 56 Cancer selective
8 FPVDVDHAVL CTAG1B 0.03 0 of 56 Cancer selective
8 FPVDVDHAVL CTAG1A 0.06 0 of 56 Cancer selective
9 ILSDNIRNL Clorfo4 0.14 0 of 56 Cancer selective
10 IPKDKSKNK C20rf83 0.02 0 of 56 Cancer selective
11 KLLELIKAFSK GNGT1 0.05 1 of 56

12 KNNIYAFKI RP11-231113.2 0.01 0 of 56 Cancer selective
13 KTLHLTIVK C120rf50 0.07 0 of 56 Cancer selective
14 KYLSRFRPK TRPC5 0.08 0 of 56 Cancer selective
15 MVRSPEEGSLR TEX19 0.13 0 of 56 Cancer selective
16 MVRSVSAAAR HIST1H2BB 0.26 44 of 56

17 MVRSVSAAARR HIST1H2BB 0.26 44 of 56

18 REEAPRGVRM CTAG2 0.15 0 of 56 Cancer selective
18 REEAPRGVRM CTAG1B 0.03 0 of 56 Cancer selective
18 REEAPRGVRM CTAG1A 0.06 0 of 56 Cancer selective
19 SAGLFQVPR SUN3 0.13 3 of 56

20 SQVHKFFLL OR9Q1 0.04 0 of 56 Cancer selective
21 SYGIYIYTY SLC15A5 0.06 0 of 56 Cancer selective
22 TVSHOQIIFY EXD1 0.06 0 of 56 Cancer selective
23 VIQKVILVV MGAT4D 0.03 0 of 56 Cancer selective
24 YYFILEHAKY SOX30 0.29 0 of 56 Cancer selective

Table 1: List of cancer-selective non-canonical MHC-associated peptides. The mean parent gene expression in
TPM was derived from 29 healthy tissues from the GTEx v8 dataset. The number of healthy tissues with protein
expression was obtained from the Human Protein Atlas v22.0.
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Figure 1: Infographics of immunopeptidomic datasets included in this study. a) Different types of
cancer considered in this study with the number of samples and sample types per cancer type. b)
Proportions of different mass spectrometry instruments used in this study. ¢) Antibodies used for
immunoprecipitation (IP) d) Overall count of HLA alleles per HLA gene. e) Overall count of mass
spectrometry immunopeptidomic samples per HLA allele.
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Figure 2: COD-dipp: A new high-throughput pipeline for a deep interrogation of
immunopeptidomic datasets. Samples are first analyzed with an open search strategy to detect the
landscape of post-translational modifications (PTMs). A false localization rate (FLR) for the PTMs and
false discovery rate (FDR) of 1% are applied. Simultaneously, the samples are analyzed using a novel
de novo approach to identify non-canonical peptides. The de novo strategy trains a model per sample
using quality-controlled peptide-spectrum matches from the MS-GF+ search engine to learn the direct
interpretation of sample-specific mass spectra. The MS-GF+ results are split into three groups: training
and testing to tune the hyperparameters and account for overfitting, and a validation group to
approximate the accuracy per sample. De novo predicted peptides with an accuracy of at least 90%
are sequentially mapped against the Human proteome (HP) then a 3-frame translation (3FT) database
of protein-coding genes (1 mismatch allowed between leucine/isoleucine, i.e., Xle). Predicted de novo
peptides matching any known protein are labeled “canonical”. Peptides mapping to the 3FT database
with at least 3 amino acids mismatches from any known protein sequence are labeled “non-canonical”.
Lastly, a second-round search is performed as a validation approach. Four of the most abundantly
identified PTMs and a custom database consisting of ENSEMBL proteins and non-canonical peptides
are considered. The resulting canonical and non-canonical peptides are controlled to an FDR of 1%
and aligned to the hg38 human genome.
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Figure 3: Landscape of post-translationally modified and non-canonical MHC class l-associated
peptides (ncMAPs). Open search: a) Overview of post-translational modifications (PTMs) identified
by open search (blue: spectra without PTMs, orange: spectra with a known UNIMOD PTM localized on
a specific amino acid on the peptide. Green: The mass shift is localized, however the known PTM
options do not fit the modified residue. Red: Otherwise). b) Most abundant “annotated PTMs” grouped
by type. Second-round search: c) Fraction of canonical (dark gray) and non-canonical (light gray)
MAPs in the immunopeptidome. d) Proportion of canonical (dark gray) and non-canonical (light gray)
MAPs with/without post-translational modifications. e€) Fraction of binders versus non-binders for both
canonical and non-canonical MAPs using NetMHCpan 4.1.
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comparison purposes. The intersection is based on genomic coordinates to deal with sequences that
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2020 and 41 for COD-dipp). a) Comparison with peptide-PRISM published ncMAPs at a 10% FDR.
COD-dipp ncMAPs were restricted to 3 studies in common with Erhard et al. 2020. b) Comparison with
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Figure 5: Origins of non-canonical MHC class I-associated peptides (ncMAPSs). a) Peptide length
distribution of canonical (dark gray) and non-canonical (light gray) MAPs. b) Annotation of ncMAPs
across gene features. c) Analysis of ncMAPs that could originate from novel open reading frames
(ORF). Upstream start codons of non-canonical MAPs are analyzed for their potential to initiate
translation and produce ORFs (left-hand side) as a source of ncMAPs. The frequencies of different start
codons for positively predicted translation initiation sites (TIS) are shown on the right-hand side. d)
Analysis of ncMAPs from intronic regions that may originate from intron retention (IR) events.
Translation of MAPs from IR sources should be in-frame with the corresponding upstream exons. €)
Analysis of ncMAPs that could originate from frameshift mutations in cancer. ncMAPs are aligned to an
in-silico translated protein database of COSMIC somatic frameshift mutations. f) Summary indicating
whether the ncMAPs can be accounted for by any of the analyses conducted in panels c, d, or e.
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Figure 6: Cancer selectivity of non-canonical MHC class |-associated peptides (ncMAPs). (a)
Percentage of ncMAPs that were solely in healthy and/or tumor samples by MS (blue) and ncMAPs
undetected in healthy samples by MS (red). b) Parent gene expression of ncMAPs in TPM in 29 healthy
tissues from 17,382 samples (GTEx v8 dataset). ncMAPs are distributed over two groups: (I) ncMAPs
detected in healthy samples by MS in blue, (II) ncMAPs undetected in healthy samples by MS in red.
c) Parent gene expression of ncMAPs in TPM in 29 healthy tissues from 17,382 samples (GTEx v8
dataset). A limit on the gene expression (y-axis) of 1.2 TPM was set to visualize cancer-selective
ncMAPs in black.
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Fig. S1: The mass spectrometry strategies used in this study. a) A closed search approach
(supervised approach) requires a reference protein sequence database that contains the expected
proteins within the sample. These protein databases are in silico digested and peptides falling within a
certain error tolerance are chosen as candidate peptide assignments. Each candidate peptide is then
scored against the spectrum using an algorithm-specific methodology, and the highest scoring one is
assigned as the sequence of the MS2 spectrum. b) Open search strategy (semi-supervised approach)
widens the MS1 search error tolerance to identify peptides that would have been missed due to the
mass shifts caused by mutations or post-translational modifications. ¢) de novo strategy (unsupervised
approach) attempts to annotate spectra without a reference proteome by predicting a peptide sequence

by directly reading the MS2 specitra.
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Fig. S2: Additional quality control for the mass spectrometry peptide-spectrum matches (PSMs)
of non-canonical and post-translationally modified MHC-associated peptides. a) Comparison of
PSMs identified by our open search with PSMs of the original studies. b) Percentage of
carbamidomethylation within the subset of post-translationally modified peptide-spectrum matches for
iodoacetamide-treated and untreated samples. ¢) De novo identified spectra from canonical (dark gray)
and non-canonical (light gray) sources. d) De novo score distributions of canonical and non-canonical
spectra. e) Correlation between predicted and experimental retention times for MS-GF+ and de novo
peptides. f) Median retention time (RT) difference between peptides with and without a specific post-
translational modification (PTM). Deviations between PTM-modified and unmodified canonical peptides
are shown in red, and deviations between non-canonical peptides are shown in blue. Median RT refers
to the retention time median value of multiple PSMs of the same peptides in a specific mass
spectrometry run. The median RT difference refers to the difference between the median RT of the
unmodified peptide and its modified counterpart. g) Boxplot of the mass differences between the
observed mass over charge (M/Z) and the calculated M/Z of the non-canonical peptides identified using
de novo (red) and second-round search (blue).
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Figure S3
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Fig.S3: Spectra of the non-canonical MHC-associated peptide KTYQDLKHK from the PXD014017
dataset of a colorectal cancer patient (CRC-4). Panels a and e show spectra from a replicate treated
with trametinib. Panels b, ¢, d, and f show the spectra from four different replicates of the same patient
(CRC-4) that were left untreated.
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Figure S4
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Fig. S4: Spectra for the non-canonical MHC-associated peptide HLLDNKTLFQL from multiple
datasets. Panel a shows a spectrum from the PXD012083 dataset of an acute myeloid leukemia
patient. Panels b, ¢, and e show spectra from the PXD003790 dataset of a brain glioblastoma cell line
(T98G). Panel d shows a spectrum from the PXD003790 dataset of a brain glioblastoma cell line (U87).
Panel (f) shows the spectrum from the PXD007596 dataset of a breast cancer cell line (MCF-7).
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Figure S5
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Fig. S5: Spectra for the non-canonical MHC-associated peptide AAVPVHSPM(oxidation) from
multiple datasets. Panels a and b show the spectra from dataset PXD014017 of a colon cancer
patient treated with IFN-y. Panel ¢ shows a spectrum from dataset PXD014017 of the same colon
cancer patient who was left untreated. Panels d, e, and f show spectra from the PXD006939 dataset
of an ovarian carcinoma cell line (UWB1289) for three different biological replicates.
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Figure S6
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Figure S6: HLA supertypes and non-canonical MHC-associated peptides (ncMAPs) expression.
The percentages of unique ncMAPs are shown for all 114 HLA alleles grouped into supertypes to
reduce the complexity.
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Figure S7
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Fig.S7: Comprehensiveness of the panel of normals in term of HLA-binding motifs. a) HLA allele
coverage intersection between tumor and healthy samples. b) Percentage of ncMAPs that are detected
in healthy samples (red) versus those undetected in healthy samples (blue) for the subset of peptides
presented by the shared allele i.e., 57 HLA alleles common between tumor and healthy samples. c)
HLA-binding landscape of all alleles colored by HLA gene type. d) HLA-binding landscape of all HLA
alleles colored in blue for tumor-only alleles and in orange for shared or healthy-only alleles. Panels ¢
and d show the similarity in HLA-binding motifs between all alleles in our dataset. As different HLA
genes should present dissimilar binding motifs, panel ¢ shows that different HLA genes map to distinct
areas of the plot, supporting the idea that dissimilar HLA-binding motifs would appear in separate areas.
Panel d shows a high similarity in the HLA-binding motifs between alleles covered by tumor-only
samples (blue dots) and alleles covered by healthy samples (orange dots). In agreement with the
findings of panel b, it is apparent that the 65 alleles in our panel of normals are representative of the
tumor-only alleles in terms of HLA-binding motifs.
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Supplementary Notes

Note 1: Dataset selection

List of keywords used for selecting datasets from PRIDE: Immunoprecipitation,
Immunopeptidome, Peptidomics, Affinity  purification, Mhc, Peptidome, Hla,
Immunopeptidomics, Mhc class i, Ip, Hla peptidome, Hla-b*27, Hla class ii, Neoantigens,
Immunoinformatics, Hla-c, Mhc class 1 ligands, Proteogenomic cryptic mhc Ic-msms maps,
Mhc class i antigen presentation pathway, Mhc-i peptides, Mhc i, Immunopeptidome; hla; Ic-
ms/ms; netmhcpan; binding prediction, Mhc ii, Mhc-i peptide-loading complex, Mhc affinity
prediction, Mhc-ii peptidomics, Mhc ligandome, Mhc i-associated peptides, Mhc-i, Mhc class
ii, Antigen presentation/ mhc class ii/ immunopeptidome/ peptide editing/ polymorphism, Mhc-
i peptidomics, Shotgun proteomics; immunoprecipitation; meiosis; conserved proteins; meioc;
, Anti-hla immunopurification, Immunopeptidome; hla; Ic-ms/ms; netmhcpan; binding
prediction, Personalized immunotherapy, Immunoprecipation, Immunoprecipiation,
Immunoaffinity  purification,  Immunoprepicipitations,  Immunopurification,  Antigen
presentation/ mhc class ii/ immunopeptidome/ peptide editing/ polymorphism, Hla-ii, Hla
peptides, Hla-e, Hla-b*51, Hla class i peptides, Ducaf; hla-drb1*03:01, Hla typing, Hla-g, 'Hla
class |1 ligandome; hla class | peptide ligands; high ph reversed phase; strong cation exchange;
pre-fractionation’, Hla-b40, Hla binding motifs, Hla-dm, Hla-b27, Immunopeptidome; hla; Ic-
ms/ms; netmhcpan; binding prediction, Hla-b*58:01, Hla-b*40:02 peptidome, Hla-dr peptides,
Hla-dr, Hla-a, Hla-b57, Hla class i, Hla-i, Hla-a2, Hla-b, Interferon gamma,; proteomic analysis;
hla class i; apm, Hla-i peptides, Hla-ligand, Hla-b*57:03, Hla-ligandomics, Hla-a*29:02, Hla-
drl5, Hla-class i, Hla-restricted peptide
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Note 2: Correctness of the identified peptides

The most definite validation metric of correctness is shown by a high similarity between the
MS/MS spectra of the endogenous and synthetic peptides, as well as the co-elution of the light
and heavy peptide pairs. Considering the impossibility of performing such an analysis due to
the reliance of this study on publicly available data. We have assessed the correctness of the

identified peptides in a series of quality control experiments.

Open-search quality control

Validation 1: We compared the identifications obtained with open search in this study with
the identifications in the original studies at the peptide-spectrum match (PSM) level (i.e., for
each MS/MS spectrum). We successfully collected PSM information from 19 of the 25
analyzed datasets. The remaining 6 datasets presented some challenges. Three of these
datasets (PXD004233, PXD008937, and PXD009531) reported PSM-level data but without
FDR control, and three (PXD012083, PXD004746, and PXD010808) reported PSM in a format
that prevented us from recovering the MS/MS scan numbers from the raw files. We compared
the PSMs identified by our open search to those reported in the original studies and considered
an agreement when the same mass spectrometry scan showed (I) an identical peptide
sequence and (I) an identical mass shift introduced by the PTM. We found that 96.1% of the
modified PSMs were identical in both sources (49,918 out of 51,945). To expand on the
remaining 3.9% of the PSMs that were in conflict, we inspected the discrepancies and
determined that they consisted of PTMs with monoisotopic masses close to those of some
amino acids. For example, N-term glycidamide (87.03203 Da) can be misinterpreted as serine
(87.0782 Da), carbamidomethyl (57.02146 Da) as glycine (57.02146 Da), N-term
Propionamide (71.03711 Da) as alanine (71.03711 Da), phenethyl isothiocyanate (163.04557
Da) as tyrosine (163.1760 Da), N-term dicarbamidomethyl (114.04293 Da) as asparagine
(114.04293 Da), and 4-hydroxynonenal (156.115030 Da) as arginine (156.10111 Da). In these
cases, the open-search identified peptides were one amino acid shorter on the N-termini while
bearing a PTM with a monoisotopic mass close to the missing amino acid. We believe that
this conflict stems from an incomplete fragmentation pattern, in which the missing b1l and/or
y(n) ions in the MS/MS spectrum leave the search engine with an equally fit decision to match

it with the PTM- or non-PTM-bearing sequence.

To further validate our results and assess error rates, we employed a confirmatory procedure
by evaluating the identification rate of cysteine carbamidomethylation in samples that were
not treated with iodoacetamide. It is important to note that carbamidomethylation is a

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 68



deliberate PTM introduced to cysteine residues through a reaction with iodoacetamide; thus,
samples that have not undergone iodoacetamide treatment should not exhibit cysteine
carbamidomethylation. To minimize false identifications, we applied stringent filters, including
a global false discovery rate (FDR) and false localization rate (FLR) of 1%. This means that
one would expect a 1% false identification rate, and approximately 1% for each group of PTMs.
Our findings revealed that the samples lacking iodoacetamide treatment incorporated 1.75%
of peptide-spectrum matches with cysteine carbamidomethylation, which we consider
reasonable. It is important to note that this percentage represents a group FDR rather than a
global FDR. As such, each PTM group would theoretically have a group FDR of approximately
1%, which would balance out to a global FDR value of 1% when considering all PTM groups

together.

De novo quality control

Our sequential de novo strategy showed that 96.3% of the MS spectra were canonical (i.e.,
within known proteins) and a minority (3.7%) were non-canonical (i.e., mapping to the 3-frame

translation database).

Validation 2: We assessed the quality of the de novo sequences by examining their
DeepNovoV2 scores. Canonical and non-canonical peptides had similar de novo score

distributions, with a slight shift toward higher scores for non-canonical peptides.

Validation 3: We assessed the quality of the de novo sequences by examining the correlation
between their experimental and theoretical liquid chromatography retention times. Canonical
and non-canonical de novo sequences had a high correlation, with an R? score of 0.9 for de
novo canonical and 0.863 for de novo non-canonical peptides in a melanoma sample (mel-15

from PXD004894), and an overall de novo non-canonical R? score of 0.88 among all samples.

Second-round search quality control

Validation 4: The results of the second and third validations showed strong evidence that the
de novo non-canonical peptides were of high quality (i.e., correctly predicted complete peptide
sequences). Even with this strong evidence, it is possible that chromatic behavior remains
unchanged in certain instances where neighboring amino acids are in flipped positions, or that
a 90% accuracy rate still leads to an uncertain false discovery rate percentage. Hence, we
confirmed the identified 10,413 de novo-based ncMAPs by performing a second-round search
for additional validation and controlling the FDR at 1%. The second-round search recovered
7,029 of the 10,413 de novo-based ncMAPs, with 76.52% (5,379) recovered from the same
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spectra (at least one spectrum per peptide). Overall, the second-round search identified 8,601
ncMAPs with a subset of 1,572 ladder sequences (subsequences) after cleavage of the
10,413 de novo-based ncMAPs by the search engine. As for post-translationally modified
peptides, the second-round search recovered 51.85% of N-terminal acetylated peptides,
27.96% of peptides with cysteine carbamidomethylation, 74.75% of peptides with
cysteinylation, and 71.02% of peptides with oxidized methionine from the same spectra (at
least one spectrum per peptide). The low recovery of carbamidomethylation was mostly due
to incorrect open-search assignments in iodoacetamide-untreated samples, considering that

81.01% was recovered by the second-round search in iodoacetamide-treated samples.

Validation 5: We confirmed that post-translationally modified peptides from the second-round
search exhibited a shift in retention time that was consistent with that of their unmodified
counterparts. Furthermore, we observed that for a specific PTM, there was a similar shift in
retention time between non-canonical and canonical MHC-associated peptides. In each case,
the modification caused the retention times of PTM-bearing non-canonical MHC-associated
peptides to deviate in the same direction relative to the unmodified peptides. We found a high
degree of agreement in retention time shifts between canonical and non-canonical peptides
for three PTMs: carbamidomethylation, cysteinylation, and methionine oxidation. For N-
terminal acetylation, the quantile ranges (Q1-Q3) were shifted between the two categories.
However, it is important to note that the non-canonical category still fell within the standard
range of the canonical category, which was mostly due to the low number of identified non-
canonical N-terminal acetylated peptides with unmodified counterparts (9) compared to the

large number in the canonical group (426).

Validation 6: We checked the mass difference between the observed and calculated masses
(i.e., theoretical mass) of the peptide-spectrum matches (PSMs). We isolated the PSMs
identified by the de novo strategy as well as those validated by second-round search. A similar
distribution of mass differences between the de novo identified peptides (from -0.0014 to
0.0013 mass (M) / charge (2)) and the second-round search validated from -0.0012 to 0.0012
M/Z) was observed.

Validation 7: We performed a comprehensive comparison between the PSMs obtained from
our second-round search and those reported in the original studies. We hypothesized that if
the non-canonical peptides were correctly identified, they would not have been recognized by
the original studies that focused on detecting only canonical peptides originating from the
proteome. Our analysis showed a remarkable correlation with our hypothesis, as 98.87%
(9,495,747 of 9,508,165) of non-canonical PSMs were not detected in the original studies.
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Abstract

MHC-associated peptides (MAPs) bearing post-translational modifications (PTMs) have
raised intriguing questions regarding their attractiveness for targeted therapies. Here, we
developed a novel computational glyco-immunopeptidomics workflow that integrates the
ultrafast glycopeptide search of MSFragger with a glycopeptide-focused false discovery rate
(FDR) control. We performed a harmonized analysis of 8 large-scale publicly available studies
and found that glycosylated MAPs are predominantly presented by the MHC class Il. We
created HLA-GIlyco, a resource containing over 3,400 human leukocyte antigen (HLA) class Il
N-glycopeptides from 1,049 distinct protein glycosylation sites. Our comprehensive resource
reveals high levels of truncated glycans, conserved HLA-binding cores, and differences in
glycosylation positional specificity between classical HLA class Il allele groups. To support the
nascent field of glyco-immunopeptidomics, we include the optimized workflow in the FragPipe

suite and provide HLA-Glyco as a free web resource.
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Introduction

Protein glycosylation has been extensively studied and found to play a variety of biological
roles, including antigen recognition, host-pathogen interactions, and immune modulation’.
Glycosylation causes dramatic alterations in response to cancer and has been suggested as
a potential biomarker?. Moreover, glycosylation could be an attractive source of tumor-
specific antigens, considering the viability of post-translational modifications (PTMs) on MHC-
associated peptides®® (MAPs). Critically, glycosylation has been reported to have a significant
impact on the immunogenic properties of MAPs in terms of T-cell recognition'®-"'? and epitope

generation due to interference with the proteolytic cleavage.

High-throughput identification of glycosylated MAPs from mass spectrometry (MS) data
involves combining two notoriously challenging problems in computational proteomics. First,
the proteolytic processing of MAPs requires non-enzymatic searches (i.e., non-specific
cleavage of proteins at every peptide bond). Considering all possible cleavages of reference
proteins results in an enormous search space of candidate sequences. Second, the non-
templated nature of the glycosylation process results in hundreds of distinct glycans that can
be detected across the proteome'. A combinatorial explosion thus takes place when
considering all possible non-enzymatic peptide sequences with many possible glycans. As a
result, a non-specific glycopeptide search is not feasible with many search engines due to
prohibitively long run times and/or insufficient sensitivity. To the best of our knowledge, very
few glycosylation analyses of MAPs have been performed. One of the earliest successful
identifications of glycosylated class Il MAPs was made in 2005'" with 2 N-linked
glycopeptides found in an EBV-transformed human B-lymphoblastoid cell line. In 2017,
Malaker et al. successfully identified 26 glycosites in 3 different melanoma cell lines®. Both
studies required identification of glycopeptides by manual annotation of the spectra. More
recently, a third effort from 2021 captured 209 unique human leukocyte antigen (HLA) ll-bound
peptide sequences from the SARS-CoV-2 virus'® using an automated glycopeptide search

method assisted with a manual verification of all glycopeptide spectra.
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Large-scale analysis of glycosylated MAPs requires automated methods with exceptional
speed and accuracy to handle the enormous search space of glycosylated non-specific
peptides. The above-mentioned challenges have been tackled by our recent developments to
improve the search speed' (MSFragger) and address the complexity of glycosylation'®
(MSFragger-Glyco). Building on these advances, we developed an optimized workflow for
HLA glyco searches with a focus on optimizing the false discovery rate (FDR) control of
glycosylated MAPs. We assembled, carefully annotated, and analyzed 8 publicly available
immunopeptidomic datasets for N-glycosylation using our workflow and investigated the
glycosylated MAPs binding properties. From nearly 2,000 LC-MS/MS runs, we found 3409
class Il N-glycosylated MAPs on 1049 distinct protein glycosylation sites of 677 unique
proteins. We revealed characteristics of HLA glycopeptides, including high levels of truncated
glycans, conserved HLA-binding cores across the 72 studied HLA class Il alleles, and a

different glycosylation positional specificity between the classical allele groups.

Induced expression and antigen-presentation by the MHC class Il on tumor cells is
increasingly being recognized as a mediator of anti-tumor immunity and neoantigen efficacy'®-
24 Our results, made readily accessible as a free web resource, significantly expand our
understanding of glyco-MAPs in cancer; and together with our novel optimized workflow, are
expected to further the development and discoveries in the nascent field of glyco-

immunopeptidomics.

Results

Computational glyco-immunopeptidomics workflow

The computational workflow developed in this work for the analysis of glycosylated MAPs is
illustrated in Fig. 1. While O-glycosylated MAPs are also of potential interest?®, O-glycopeptide

analysis typically requires electron-based activation to locate the glycosite(s) within the
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peptide. As the vast majority of available immunopeptidomics data lacks such activation, we
focused exclusively on N-glycosylated MAPs for this analysis. Briefly, MSFragger-Glyco
performs N-glycosylation motif checks for the N-X-S/T consensus sequence, which serves as
the attachment site for polysaccharides (i.e., sequon). Simultaneously, spectra are checked
for the presence of fragmentation products of peptide-conjugated glycans (i.e., oxonium ions).
The glycan search is only performed for peptides with a sequon and for spectra containing
oxonium ions above a relative intensity threshold (10% in this case). A regular search is
performed for all other spectra. Next, we use PeptideProphet?® and ProteinProphet?” within
the Philosopher?® toolkit to model and filter false discovery rates (FDR) to 1% for peptide-
spectrum matches (PSMs), peptides, and proteins, respectively. As in previous glycopeptide
analyses, we applied the extended mass model of PeptideProphet to simultaneously model
the score and mass-shift distributions of the database search'. This provides a separate
probability model for different glycan masses (i.e., mass shifts) to account for the varying

frequencies of the different glycans™®.

Initially, we assessed the standard FDR procedures used for enzymatically digested and
enriched glycopeptides on non-enzymatic unenriched immuno-glycopeptides. We observed
that while 91% of the glycoPSMs corresponded to known glycosylation sites, less than half of
the observed glycosites (46%) were previously known (Supplementary Fig. 1a). Thus, known
sites tended to have many supporting spectra, while unknown sites had few and notably lower
scores, likely indicating an unacceptable increase in false discoveries. Since glycoPSMs
represent a small fraction of the identified spectra, the score thresholds used in our initial FDR
filtering were mostly influenced by non-glycosylated peptides. As glycopeptides have a much
larger search space, this results in an enrichment of false discoveries in the glycopeptide
fraction when all PSMs are filtered together. To counter this, we applied a separate
PeptideProphet probability (i.e., score) filter for glycosylated and non-glycosylated PSMs to
control FDR in each category despite the differences in search space, using a modified version

of Philosopher (see Methods and Supplementary Fig. 1b). We further filtered glyco-PSMs
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by glycan g-value (q < 0.05) to remove glycopeptides lacking sufficient evidence supporting
the glycan composition assignment®® by PTM-Shepherd®. With this improved filtering method,
the proportion of PSMs corresponding to known glycosites increased to 96%, and the
proportion of identified glycosites corresponding to known glycoproteins increased to 95%,
with 79% of sites previously identified in other glycoproteomic analyses (Supplementary Fig.
1c). These stringent glycopeptide-specific filters provide effective FDR control in a challenging

search, allowing for confident construction of the HLA glycopeptide resources.

Large multi-tissue MHC immunopeptidome dataset

We selected 8 immunopeptidomic studies®'~38, prioritizing studies with a large amount of high-
resolution mass spectrometry data and included a variety of instruments as a means to reduce
instrumental bias (see Methods). Based on our careful curation and annotation of these data,
our collection of 732 different HLA class Il mass spectrometry samples incorporated 90.8% of
HLA-typed data (Fig. 2a), 80.3% of patient tissues, 16.7% of cell lines, and 2.9% of tumor-
infiltrating lymphocytes (Fig. 2b). The previously mentioned sample types covered up to 6
different cancers (Fig. 2c) located in the brain (meningioma and glioblastoma), skin
(melanoma), colon (colorectal), and lung (adenocarcinoma and squamous carcinoma). In
addition, 59% of the samples are non-cancerous and come from disease-free individuals. In
terms of HLA diversity, up to 72 HLA class Il alleles of the 3 classic genes (DP, DQ, and DR)

are covered by varying numbers of mass spectrometry samples (Fig. 2d).

Leveraging the wealth of proteomic data, we queried the glycosites identified in our study
against previously reported glycosylation sites in GlyGen*. PSM level information showed
96.4% of previously reported glycosylation sites (Fig. 2e), 1.8% of glycosylation sites within
previously reported glycosylated proteins, and 1.8% of new glycosylation sites. On the other
hand, at the peptide level, 90% of glycopeptides mapped to previously reported glycosylation
sites, 6.7% of glycopeptides were within previously reported glycosylated proteins, and 3.3%

contained new glycosylation sites. A similar trend was observed at the glycosylation site level,
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with 78.8% of previously reported glycosylation sites, 15.6% of glycosylation sites within
previously reported glycosylated proteins, and 5.5% of new glycosylation sites. It appears that
peptides containing previously reported glycosylation sites are abundant species, considering
the high spectral count (Fig. 2f in gray) in comparison with the previously unreported ones
(Fig. 2f in blue and black). We then benchmarked our findings against previous work by
Malaker et al. 2017° on glycosylated MAPs in 3 melanoma and 1 EBV-transformed B-cell lines.
The original manuscript reported 93 glycosylated peptides corresponding to 26 glycosylation
sites, split between N-glycosylation (23) and O-glycosylation (3). Our workflow recovered 20
of the 23 identified N-glycosylation sites, of which 4 did not pass the FDR filter. With a 45-fold

increase in glycosylation sites, we identified 1033 new sites (see Fig. 29).

Enrichment of N-glycosylation in the class Il immunopeptidome

Several of the datasets we searched contained both HLA class | and Il peptides from the same
samples and, in one case, whole proteome data, allowing us to compare the frequency and
characteristics of glycosylation across these categories. Fragmentation of glycopeptides by
tandem MS (MS/MS) produces highly abundant oxonium ions resulting from the fragmentation
of conjugated glycan(s), which can provide an estimate of the fraction of glycopeptides in a
sample prior to a database search. To understand the abundance of glycosylation at different
molecular levels, we compared the percentage of oxonium-containing MS/MS scans for the 4
datasets containing multiple HLA classes (Fig. 3a). Interestingly, datasets A3' (Bassani-
Sternberg et al. 2016), B* (Chong et al. 2020), and D% (Forlani et al. 2021) showed, on
average, an approximate 5-fold enrichment in potential HLA class Il glycosylation events
compared with HLA class | data. In dataset C*? (Marcu et al. 2021), the only dataset containing
samples derived from healthy tissue, a similar proportion of oxonium-containing scans was
observed in the HLA class Il data as in the other datasets, but there were essentially no
oxonium-containing scans in the HLA class | data. As expected, the percentage of
glycosylated PSMs obtained from database searches of these datasets followed a similar

trend, with 0.5 to 3% of observed PSMs glycosylated in HLA class |l data versus less than
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0.1% glycosylated in HLA class | data (datasets A, B, and C). Strikingly, glycosylated PSMs
were also enriched approximately 7-fold in HLA class Il compared with the whole proteome
data in dataset D (Fig. 3b), a dramatic increase given the abundance of glycosylation in the

proteome.

We also noticed that the composition of glycans observed in the immunopeptidomic datasets
was different from that of their proteome counterparts. (Fig. 3c). The average glycan mass
detected in the immunopeptidome was approximately 1000 Da, which was significantly lower
than that observed in the proteome (1400 Da average). To further explore the nature of this
compositional discrepancy, we compared glycan types between the two groups (Fig. 3d). A
higher percentage of truncated glycans (68%) was observed in the HLA class |l
immunopeptidome compared to the more typical high-mannose and complex/hybrid
categories in the proteome, as noted in a previous analysis®. This trend of truncated glycans
on HLA peptides was preserved when only glycans from the same protein were considered.
For example, LRP1, a highly glycosylated protein, was observed with a mix of high-mannose
and complex glycans in the proteome sample, but with a mix of truncated and high-mannose
glycans in the HLA-Il sample with almost no mature complex glycans detected (Fig. 3e). There
was very little overlap between the glycosylated proteins and sites in each category, with only
22.8% of HLA-II glycoproteins observed in the whole proteome data and even lower overlap
(16.3%) when considering the specific glycosylation sites within proteins. (Fig. 3f). The whole
proteome glyco search likely captures glycopeptides from the most abundant glycoproteins,
as the experiment was performed without any glycopeptide enrichment, whereas the
immunopeptide datasets presumably capture MAPs with much less dependence on overall

protein abundance.

Overall, the data showed a remarkable enrichment of glycosylation in HLA class ll-associated
peptides relative to HLA class | and the whole proteome, leading us to focus the remainder of

our efforts on HLA class ll-associated and glycosylated peptides.
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Glycosylation of MAPs does not influence the HLA binding motif

To explore glycosylation in the context of HLA class Il presentation, we focused on the HLA-
binding core, a 9-mer sequence that interacts with the HLA molecule. In most mass
spectrometry experiments, samples express multiple HLA alleles, leading to an ambiguous
association between the identified peptides and the pool of available HLA molecules. Hence,
a deconvolution step to find the HLA motifs and the corresponding binding core offsets of each

peptide was deemed necessary for further experimentation (see Methods).

Deconvolution of peptides using a semi-supervised approach

We first chose to use MoDec® for deconvolution, a fully probabilistic framework that learns
both the motifs and preferred binding core position offsets from the sequences themselves.
The fact that MoDec does not rely on a pre-trained model is crucial when exploring HLA-bound
peptides with post-translational modifications (i.e., glycosylation) to avoid the removal of all
peptides that were not well modeled. Such a deconvolution strategy requires manual
intervention to choose the number of HLA motifs (i.e., number of clusters) and assign each
discovered motif to one of the expressed HLA alleles of a given sample. We carefully selected
a case study on a human B lymphoblastoid cell line (C1R) from Ramarathinam et al. 20213,
The purification protocol of the HLA-bound peptides in this study was performed sequentially
with pan anti-class |, followed by class Il anti-DP (Fig. 4a), class Il anti-DQ (Fig. 4b), and class
Il anti-DR antibodies (Fig. 4c and d). Hence, the resulting mass spectrometry samples were
mono-allelic (i.e., presenting one allele at a time), except for the DR samples with the
DRB1*12:01 and DRB3*02:02 alleles eluting together. Fig. 4 presents 4 sections a, b, ¢, and
d standing for the HLA class Il alleles DPA1*02:01/02-DPB1*04:01, DQA1*05:05-
DQB1*03:01, DRB1*12:01, and DRB3*02:02, respectively. All alleles showed a similar
percentage of glycosylated and non-glycosylated peptides with the corresponding HLA motifs
after deconvolution (Fig. 4, panel I). All 25 replicates showed an unaltered HLA-binding core

with glycosylation (two-sided Fisher’s exact test, 25 P-values > 0.05).
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Considering the concordance of glycopeptide sequences with the HLA-binding cores, we
checked the absolute glycosylation position per peptide length (i.e., glycosylation offset within
the peptide). Fig. 4 panel Il shows a glycosylation tendency towards the N- and C-termini for
both DQ and DR alleles (Fig. 4 sections b, ¢, and d at panel 1) and only the C-terminal
tendency for the DP allele (Fig. 4 section a at panel Il). To further decipher glycosylation in
the context of the HLA-binding cores, we looked at the relative position shown in Fig. 4 panel
Il (i.e., glycosylation offset from the HLA-binding core start). Negative values indicate sites
upstream of the HLA-binding motif start, O to 8 values reference positions within the HLA-
binding core, and values greater than 8 denote glycosylation sites downstream of the HLA-
binding core. For the DPA1*02:01/02-DPB1*04:01 allele, glycosylation occured 91% of the
time within the HLA motif at position 8 (Fig. 4 section a at panel lll). In contrast, for the other
3 alleles, glycosylation was more likely (86% of the time) to take place up- or downstream of

the HLA-binding core.

Deconvolution of peptides using a fully unsupervised approach

Despite the usefulness of MoDec for a previously unexplored category of peptides, such a tool
suffers from several limitations*%4': (1) the need for manual intervention to associate the
identified motifs with known allele specificities present in the sample; (Il) the difficulty of
assigning peptides to MHC molecules when alleles with overlapping motifs are co-expressed;
(M) low sensitivity with low expression of MHC molecules; and (IV) the complexity of HLA
class Il specificities due to the involvement of the variable alpha and beta chains for the HLA-
DQ and HLA-DP groups. All these, render motif-allele assignment a daunting task, especially
with up to 87 subjects in our dataset. Thus, we used the state-of-the-art binding model
NetMHClIpan 4.14'42 to perform MHC motif deconvolution and assign glycopeptide sequences
to their most likely HLA alleles without the need for manual intervention (see Methods).
Consistently, glycosylated and non-glycosylated peptides from Ramarathinam et al. 2021
showed similar binding properties, indicating that the detected glycosylation fit within the

known HLA-binding cores (two-tailed Fisher's exact test, P-value: 0.48). Interestingly,
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NetMHClIpan 4.1 confirmed most peptides with glycosylation located at P8 within the HLA-
binding core (97% for DPA1*0201 and 100% for DPA1*0202) for the C1R DP allele (Fig. 5a).
Overall, 95%, 83%, 76%, and 87% of glycopeptides were found to bind to C1R DP (Fig. 5a),
DQ (Fig. 5b), DRB1*12:01 (Fig. 5c), and DRB3*02:02 (Fig.5d), respectively. Hence, we

carried out the NetMHClIpan 4.1 deconvolution for the 83 remaining subjects in our dataset.

The HLA class Il N-glycosylation characteristics

We noticed a high tendency of glycosylation within the HLA-binding core for HLA DP alleles,
followed by a lower tendency for HLA DQ, and even lower one for HLA DR alleles. Hence, we
checked for the occurrence of such events for each of the 3 HLA groups (DP, DQ, and DR).
Fig. 6a shows that up to 57% of HLA DP associated peptides have glycosylation inside the
HLA-binding core, 30% for HLA DP, and 13% for HLA DR. In terms of glycan types, Fig. 6b
shows that HLA DP associated peptides showed the highest fraction (0.67) of truncated
glycans compared to DQ (0.55) and DR (0.41). High-mannose glycans showed a reverse trend
for DR, DQ, and DP alleles, with fractions of 0.37, 0.27, 0.21, respectively. All DP, DQ, and
DR associated peptides showed a depletion in complex/hybrid glycans in accordance with

previous findings®®.

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 81


https://doi.org/10.1101/2022.12.05.519200
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519200; this version posted December 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Discussion

Post-translational modifications increase the diversity of the immunopeptidome and may
provide new targets for the immune system to recognize tumor cells or respond to pathogens.
With PTM-driven antigenicity being continuously highlighted®3'4344  glycosylation is a key
PTM that, despite its long history of research, remains understudied in the context of MHC
presentation due to computational related challenges. In this work, we have developed a
workflow for glyco-immunopeptidomics that combines the speed and sensitivity of MSFragger-
Glyco, with the inclusion of glycopeptide-specific FDR control in Philosopher, which is critical
for filtering out low-confidence identifications. We used this workflow to produce a resource of
HLA class Il N-glycosylated MAPs arising from a harmonized analysis of 8 publicly available
studies. Overall, we identified 1049 glycosylation sites from 3409 different glycopeptides, an
order of magnitude greater than any previous effort in this area. Leveraging this large-scale
resource, we explored the properties of glycosylated MAPs, including the types of glycans
conjugated, MHC binding affinity predictions, and the positioning of glycosylation relative to
the HLA binding core. Interestingly, we observed no difference in binding motif predictions with
glycopeptides compared to non-glycopeptides, despite some peptides containing glycans
within the binding core. HLA DP alleles presented a majority of glycans within the binding core
(57%) compared with HLA DQ alleles (30%) and HLA DR alleles (13%). Moreover, we found
a difference in the glycan types between HLA groups (DP, DR, and DQ), with truncated

glycans enriched for DP alleles and a higher mannose content for DR alleles.

A study by Malaker et al.® on HLA class Il N-glycosylation covered 5 DR alleles (DRB1*0101,
DRB1*0401, DRB1*0404, DRB1*1502, DRB4*0103) and showed that 3 out of 23 peptides
had glycosylated residues within the binding core. In combination with molecular modeling,
this allowed the authors to postulate that glycan residues are most likely to protrude out of the
HLA-binding pocket and interact with the complementary determinant region of the T-cell
receptor. Our findings expand the coverage to 28 DR alleles, along with multiple DP and DQ

alleles, adding up to 87 HLA molecules overall, when considering the combination of alpha
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and beta chains. In addition to the preference of terminal glycosylation for peptides associated
with DR and DQ alleles, we observed an HLA-binding core glycosylation tendency for peptides
associated with DP alleles. Future studies should explore whether the correlation between
smaller glycans and presence within the HLA-binding core is related simply to size restrictions
preventing larger glycans from occupying the core or is a reflection of other processing of

MAPs for presentation.

The enrichment of glycosylated peptides on the MHC-II, while preserving canonical binding
motifs, offers the tantalizing possibility of designing and developing glycosylated neoantigen
vaccines with improved affinity over wild-type peptides??23. Which is further notable, in light
that most of the known anti-tumor CD4+ T cells are specific for highly immunogenic self-
derived MHC-II antigens, demonstrating that self-antigen CD4+ T cells can mount anti-tumor
responses. Cancer-specific glycosylation of MAPs may further contribute to the restriction of
those mechanisms to the tumor microenvironment. We made our findings readily available as
a web resource to query pertinent information about the identified glycosylated MAPs. Users
can search for a specific glycan and/or MAP sequence, protein, or glycosylation site
associated with a specific HLA allele. In addition, we included deconvolution information
allowing further interpretation of the data within the HLA haplotype context. We are planning
to grow this initiative, introduce more studies, and increase the HLA allele coverage. Moreover,
by providing the optimized computational workflow file, which can be loaded directly into
FragPipe to reproduce the method described here, we make it easy for others to carry out
challenging glyco-immunopeptidomics analyses on new datasets. It is our hope that the
method and findings presented here will expand the field of tumor-specific antigen discovery,
broaden the scope of possible antigens to target, and improve strategies for vaccine design.
O-glycosylated MAPs, for example, represent another potential class of antigens that can, in
principle, be studied by our method for further exploration*®. Finally, given the promising nature
of glycosylated MAPs, we anticipate the attraction of glycosylation-oriented research towards

the immunopeptidomics field.
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Methods

Dataset selection

Studies from the PRIDE*® database were first screened based on a list of keywords related to
immunopeptidomics. Next, low-resolution analyses were eliminated, and MHC-related
datasets conducted with at least one of the following instruments were kept: Orbitrap
Lumos/Fusion, Q Exactive, LTQ Orbitrap, Orbitrap Exploris 480, TripleTOF, impact Il, and
maXis. Then, manual curation of the resulting 312 studies was performed to filter non-relevant
datasets, resulting in 140 HLA Class |, Il, or | & |l datasets. The number of identified proteins
per study was retrieved from gpmDB*" and datasets with a high number of protein groups
were prioritized. A final manual curation step resulted in the selection of the 8 datasets

included in this study.

Mass spectrometry N-glycan search

Raw and wiff files were first downloaded from PRIDE and converted to mzML format using
msconvert®® with peak picking, FragPipe (TPP) compatibility, and removal of zero values
filters. The analysis was executed within the FragPipe suite v18.1-build5 using headless
mode. Glyco-searches were performed using MSFragger v3.5 with methionine oxidation, N-
terminal acetylation, and cysteinylation as variable modifications, and a list of 198 glycans. A
list of contaminants was added to the UniProt Swiss-Prot (UP000005640) proteins*®, along
with their corresponding reversed decoy sequences. Enzymatic cleavage was set to non-
specific with peptide lengths from 7 to 25 amino acids for the 8 HLA class Il datasets, from 7
to 12 amino acids for HLA class | datasets (A, B, C, D), and fully enzymatic cleavage with
peptide lengths from 7 to 50 amino acids for the whole proteome dataset D. Peptides
containing the consensus sequon (N-X-S/T) and decoy (reversed) peptides containing the
reversed sequon were considered as potential glycopeptides to ensure the that same number
of potential glycopeptides was searched in both target and decoy databases. Only spectra

containing oxonium ion peaks with summed intensity of at least 10% of the base peak were
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considered for glycan searches, while all others were searched without considering
glycosylation. Data were deisotoped® and decharged in MSFragger-Glyco, calibrated, and
searched with 20 ppm mass tolerances for precursors and 15 ppm for products with
MSFragger’'s built-in parameter optimization performed for each study®'. Errors in

monoisotopic peak detection by the instrument were allowed (+1 and +2 Da).

FDR control

Filtering was performed using Philosopher?® (v4.5.1-RC10), including PeptideProphet
modeling of peptide probabilities, ProteinProphet protein inference, and Philosopher’s internal
filter for FDR control. The semi-parametric modeling of PeptideProphet was used with the
expectation value as the only contributor to the f-value. The number of tolerable termini (ntt)
model was disabled, as it is not applicable to non-enzymatic searches. Filtering was performed
in Philosopher using a modified, group-specific FDR procedure. Non-glycosylated and
glycosylated PSMs were filtered separately, using a delta mass cutoff of 145 Da (the size of
the smallest glycan considered in the search) to distinguish glycosylated PSMs from non-
glycosylated PSMs. This allowed different score thresholds to be used to filter glycosylated
and non-glycosylated PSMs to 1% FDR. This is essential as the large search space for
glycosylated PSMs results in higher scoring false matches, requiring a higher score threshold
for effective filtering than for non-glycosylated PSMs. Since non-glycosylated PSMs make up
the majority of the results, filtering all PSMs together would yield an insufficiently low score
threshold for glycosylated PSMs. After the group-specific 1% FDR filter was applied to
glycosylated and non-glycosylated PSMs, 1% peptide- and protein-level FDR filters were
applied. A sequential filtering step was then applied to remove any PSMs matched to proteins
that did not pass the 1% protein-level FDR. Glycan assignment was subsequently performed
in PTM-Shepherd using the default N-glycan database?® and parameters along with a 0.05

glycan g-value threshold.
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Deconvolution of the MHC associated peptides

Motif deconvolution is the process of finding HLA-binding motifs and their corresponding
binding core offsets for a set of peptides. A first deconvolution that required manual inspection
was performed using MoDec®. The peptides were grouped by subject (i.e., instances of the
same replicates). A maximum of 10 clusters, 20 runs, and a minimum peptide length of 12
amino acids were considered. Since HLA-II ligands from the same subject come from different
alleles, MoDec provides a direct interpretation and assigns peptides with similar binding cores
to clusters (i.e., HLA motifs). However, manual inspection is still required to (I) the number
HLA motifs MoDec detected per subject and (1) annotate these motifs (i.e., clusters) to their
respective HLA Il alleles. Hence, the MoDec-identified HLA motifs were assigned to the correct
HLA class Il alleles by manual inspection for each analyzed subject. A second deconvolution
that didn’t require manual inspection, inspired from Kaabinejadian et al. 20224, was performed
using NetMHClIpan 4.1%2. Briefly, all unique peptides were predicted for MHC presentation
towards all the MHC alleles expressed in the given subject. The likelihood of peptides being
presented by a given MHC molecule is given by the percentile rank score, which ranges from
0 to 100, with 0 being the strongest binding score. Peptides with a percentile rank score > 20
were considered MS co-immunoprecipitated contaminants and labeled as trash. Peptides with
a percentile rank score < 20 were assigned to the lowest scoring allele of a given subject. We
applied the second deconvolution method using NetMHCllpan 4.1 to the entirety of the
subjects in this study, considering the similarity of the results to the first deconvolution method

(i.e., MoDec).

Figure generation

Motif plots were generated using the Python library Logomaker®?, heatmaps using seaborn®

and other plots using matplotlib®*.
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Figure 1: The HLA-Glyco workflow for the detection of glycosylated MHC associated peptides.
The FragPipe suite was used to (I) perform a search for glycosylated peptides (glyco search) with the
MSFragger search engine; (II) control the FDR with PeptideProphet in combination with a modified
version of Philosopher; and (lll) assign a glycan composition for each glycopeptide-spectrum match

using PTM-shepherd.

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 94


https://doi.org/10.1101/2022.12.05.519200
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519200; this version posted December 8, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Samples

p) Samples from

3 ith HLA typi tient °  so%
wi yping patients Sample Type g
i I Cell line g
% . £
80.3% %_ 60% N Patient o
§ = TiLs g 8
i 0| . S
o D) £ ©
o 40% {8 o £ &8 5 a
m O c 5§ 3
=4 3 2 o @ 8 8 o
S M - o ¢ E ¢ §
= ful B S o E
B > = o o ™ c [}
Sand{B @2 552t S 3
s P IM W = G 2 8w @
a = 8 8 oo
Samples Samples from Samples from = & £ £
without HLA typing cell lines TiLs 2.9% 0% l 2 C I 3
Disease type
d)
9 DPA DPB 9 DQA DQB
2 100 | 250 | 2 250 "I 500 I
| N ™ - _ _ II---___ HE e e
g 0 0 g 0 0
M= A~ b w5, b, vadh gk, T wagh, e, s, sl vech, W, e M ANTT N —NO W — T ONANNTANOOTON
29000 0080000003000 900008000 TAOT 2008800902998
NN TOLAND-NOOLOND BN ORI OO DN D N T D MO QD
o000 CO0O~TONONOO—N [slslalaslaslslslelelalelelely] CO0O00C0O000O00000
£ E K X KKK kKK qmemk EE £ K E X K E KKK £ KE XK ¥ X K % K X ¥ K K £ ¥ %
— —rrTTTT i f YT —rrrTrrTrTrrrrTT e —rT T T T T T
-
3 DRA DRB
2 250
£ 50 l I
& 0 Illllllllllllll--. _________
T 1 1 1T 11T 1T rrrrrrrI
o AT O N O NSO OO
e LR REEICRORPALLRLLRRLR
- KAGANr O OO OO~~~ ONT —
o OO~ O+~ TrO00000 T OOOTTO-0000
* X K % kK k Kk k¥ ¥ ¥ k X ¥ €k x kK *x k ¥ k ¥ X ¥ k k X ¥ x ¥
— OO T T T T T e T e e T T D0~ —
e) f 9
: : : alaker et al. 2017
PSMs Peptides Glycosylation sites 7
= 75
3
96.4% 90.0% 78.8% 8 50
=
©
2 25
(%)
0 -
1.8%1.8% 6.7% 3.3% 156% 5.5% MSFragger-Glyco

B Found in GlyGen [l Glycosylated protein in GlyGen [l Unseen glycosylation

Figure 2: HLA class Il infographics of the 8 collected datasets in this study. a) Percentage of
samples with HLA class Il typing information. b) Sample types of the collected mass spectrometry
samples (i.e., patient tissues, cell lines, and tumor-infiltrating lymphocytes/TILs). ¢c) Cancer types across
the collected mass spectrometry samples. d) HLA class |l alleles (DR, DB, and DQ) across the collected
mass spectrometry samples. e€) Percentage of glyco-PSMs, glycopeptides, and glycosylation sites
found in GlyGen. f) Abundance of the 3 categories from panel (a) by spectral count. g) Comparison of
the identified glycosylation sites with Malaker et al. 2017 findings.
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Figure 3: A comparison of the glycosylation on the proteome, HLA |, and HLA Il peptidome
levels. a) Levels of oxonium ions for HLA class | and Il in 3 datasets (A: Bassani-Sternberg et al. 2016,
B: Chong et al. 2020, C: Marcu et al. 2021), along with the whole proteome in dataset D: Forlani et al.
2021. b) Percentage of Glycosylated PSMs for the HLA class | and Il immunopeptidome in 3 datasets
(A, B, C), along with the whole proteome in dataset D. c) Average glycan mass in Dalton (Da) for the
HLA class Il immunopeptidome versus the whole proteome in dataset D. d) Glycan types for the class
Il immunopeptidome versus whole proteome in dataset D. e) Glycan types found in the low-density
lipoprotein receptor-related protein 1 (LRP1) for the class Il immunopeptidome versus the whole
proteome in dataset D. f) Comparison of glycoproteins (top) and glycosites (bottom) found in the HLA

class I, Il immunopeptidome, and whole proteome of dataset D.
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Figure 4: Semi-supervised deconvolution of glycosylated HLA peptides from Ramarathinam et
al. 2021 using MoDec. Panels | show the percentage of peptides and glycopeptides presenting the
HLA binding motif. Panels Il display the glycosylation absolute position within the peptidic sequence (x-
axis) and the peptide length (y-axis). Gray and black lines indicate the N-term and C-term respectively
while the white to blue gradient represents the number of peptides with a specific glycosylation position
at a specific peptide length. Panels Il present the HLA binding motif after deconvolution with MODEC
(top) and the number of glycopeptides per relative glycosylation position (bottom). Negative values refer
to glycosylation position upstream the HLA-binding core, values between 0 and 8 represent positions
within the HLA-binding core, and values = 9 refer to positions downstream the HLA-binding core. a)
Peptides associated with the HLA allele DPA1*02:01/02-DPB1*04:01 of the C1R cell line. b) Peptides
associated with the HLA allele DQA1*05:05-DQB1*03:01 of the C1R cell line. c) Peptides associated
with the HLA allele DRB1*12:01 of the C1R cell line. d) Peptides associated with the HLA allele
DRB3*02:02 of the C1R cell line.
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Figure 5: Fully unsupervised deconvolution of glycosylated HLA peptides from Ramarathinam
et al. 2021 with NetMHClIpan 4.1. Each panel illustrates 2 levels of information: the top level shows
the HLA-binding motif of peptides passing a NetMHClIpan 4.1 percentile rank threshold of 20 after
binding affinity prediction. The bottom level shows glycopeptides that are predicted to bind to a given
allele in green (%rank < 20), otherwise non-binder peptides (i.e., trash) are shown in red (%rank > 20).
Positions are shown relatively to the HLA binding core with negative values referring to glycosylation
position upstream the HLA-binding core, values between 0 and 8 represent positions within the HLA-
binding core, and values = 9 refer to positions downstream the HLA-binding core. a) Deconvolution of
glycosylated peptides associated with the HLA-DPA1*02:01/02-DPB1*04:01 alleles. b) Deconvolution
of glycosylated peptides associated with the HLA-DQA1*05:05-DQB1*03:01 alleles. c) Deconvolution
of glycosylated peptides associated with the HLA-DRB1*12:01 allele. d) Deconvolution of glycosylated
peptides associated with the HLA-DRB3*02:02 allele.
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Figure 6: Glycan characteristics of the glycosylated HLA class Il associated peptides. a)
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Supplementary Figure 1: Comparison of 3 different FDR control strategies for HLA glycosylated
peptides. Strategy | referred to as “sequential FDR” is typically used with enzymatic (i.e., trypsin)
glycoproteomic searches. Strategy Il referred to as “sequential glyco-specific FDR” has been
developed in this study to handle non-specific (i.e., non-specific cleavage of proteins at every peptide
bond) glyco searches. Strategy lll is the one being used in this study and consists of applying the
sequential glyco-specific FDR with an additional glycan g-value threshold of 0.05. a) Percentage of
glyco-PSMs, glycopeptides and glycosylation sites found in GlyGen. Peptides with glycosylation sites
reported in GlyGen are shown in gray, within glycosylated protein are shown in blue, and unreported
are shown in black. b) Abundance of the 3 categories from panel (a) by spectral count. c) The glycan
g-value range of the 3 categories from panel (a). d) Comparison of the identified glycosylation sites
identified in this study with Malaker et al. 2017 findings.
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Chapter 4: Summary, milestones, and future directions

Previous chapters have paved the way for exploring nonconventional sources of antigens. In
this chapter, 1 go beyond antigen presentation to discuss the underdeveloped aspects of
antigen recognition. The first section provides a summary of my findings and highlights the
novelty of the research. The second section outlines ongoing work that moves beyond MHC

presentation to improve neoantigen prioritization.
Summary and highlights of the presented work

The new age of T-cell therapeutics is ushered in by the characterization of cancer neoantigens
using both mass spectrometry and in silico approaches. The work presented in this thesis
paves the way for exploring alternative sources of cancer antigens through two computational

pipelines: COD-dipp and HLA-Glyco.

The development of COD-dipp allowed us to study the landscape of non-canonical MHC class
I-associated peptides (ncMAPS), that is, peptides from non-coding regions of the genome. We
designed a workflow for a large-scale analysis to explore the intricacies of ncMAPs. COD-dipp
is completely free, open source, and does not require any paid or licensed software. The 772
collected immunopeptidomics samples spanned 11 cancer types, provided a pan-healthy
panel of normals, and covered 114 HLA class | alleles. The analysis revealed a repertoire of
8,601 ncMAPs that proved to be shared not only between patients with the same cancer but
also between different cancer types. Moreover, the panel of normals served to detect and filter
NncMAPs expressed in healthy tissues. This is particularly important for clinical applications
where off-target toxicities can pose an issue. To ensure minimal levels of toxicity, we evaluated
the repertoire in the context of parental gene expression from 29 healthy tissues of 17,382
individuals, to stringently shortlist 17 cancer-selective ncMAPs according to our definition of

‘cancer selectivity’.
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The development of HLA-Glyco has allowed us to study the landscape of glycosylated MHC-
associated peptides. The ultrafast search engine MSFragger combined with several layers of
stringent False Discovery Rate (FDR) control enabled the large-scale study of the glyco-
immunopeptiome for the first time. Glyco-searches on their own are not new; however, none
of the existing free tools offer immunopeptidomic-oriented analysis owing to limitations in
speed, sensitivity and lack of glycosylation-enrichment. We optimized the workflow using an
iterative approach that included comparing the detected glycosylation sites with the proteome,
and assessing the consistency of HLA motifs between glycosylated and non-glycosylated
peptides. As we explored these two features, we achieved the best sensitivity by applying (1)
a 1% global FDR, (II) a 1% group-specific FDR, and (lI) a 5% cutoff for the glycan FDR (i.e.,
glycan g-value, which is a specific feature of MSFragger-Glyco). We created a library of over
3,400 HLA class Il glycopeptides from 1,049 different protein-glycosylation sites from eight
publicly available studies. The analysis revealed high levels of truncated glycans, conserved
HLA-binding cores among the 72 HLA class Il alleles under study, and distinct glycosylation
positional specificity across classical allele groups. To assist further development in the field
of glyco-immunopeptidomics, we (I) added the HLA-Glyco pipeline to the fragpipe suite, a tool
used by thousands of scientists, and (II) provided the library as an online website for ease of

access.

Over the past two to three decades, numerous studies have proposed various potential
candidates for cancer vaccines, but some have failed, at least in part, due to a lack of tumor
specificity. Laumont et al.»? addressed this issue using an elegant approach based on the
elimination of genes expressed in the medullary thymic epithelial cells (nTECs). mTECs are
found in the thymus and should represent the full antigenic repertoire of normal tissues in the
body. The process of central tolerance depends on the presentation of self-antigens by
MTECs to eliminate self-reactive T cells before entering circulation. Our work interrogates

publicly available studies to explore ncMAPs in a large number of patients, cell lines, and
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cancer types. However, most of these datasets do not contain mMTECs gene expression data;
hence, we addressed this issue by labeling non-tumor-selective non-canonical MHC class I-
associated peptides (ncMAPSs) when detected in a panel of normals (see Chapter 2). Although
mass spectrometry made a long way in terms of improved accuracy and throughput, it still
lags behind next-generation sequencing technologies in terms of sensitivity. Hence, the lack
of MHC class I-associated peptides detection by mass-spectrometry does not guarantee their
absence from a particular sample. In other words, the lack of detection in normal samples
does not inherently qualify an ncMAP as tumor specific. Therefore, we introduced a filter based
on parental gene expression in healthy tissues, referred to as cancer selectivity, to shortlist 17
non-canonical peptides with minimum healthy tissue toxicity for further clinical applications.
From a post-translational perspective, assessing the tumor specificity or association of
glycosylated MHC class l-associated peptides (see Chapter 3) is less straightforward. This is
due to the inadequacy of next-generation sequencing technologies for measuring these
events. All sources of antigens could benefit from a deeper understanding of the recognition

process that | expand on in the next section.

Beyond antigen presentation, towards antigen recognition

Effective neoantigen selection begins with an accurate direct measurement (MS) or prediction
of MHC presentation for a set of genomic, transcriptomic, or proteomic aberrations. MHC
binding predictors have reached a decent level of accuracy for MHC class I. While early
prediction tools relied solely on affinity data®, recent advances in MS immunopeptidomics have
provided extensive ligand elution training data and helped boost accuracy. However, most
predicted neoantigens do not end up being presented by the MHC system because available
models partly model the processing and presentation of MHC-associated peptides. A plethora
of conditions within the cell can influence the presentation of a particular peptide via the MHC

system. For instance, recent developments have shown that performance can be improved
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by incorporating antigen abundance data from RNA-Seq experiments*®. Moreover, even
when presented most identified neoantigens do not activate the immune system. It is clear
that, in addition to MHC presentation, neoantigens must be recognized by T cell receptors
(TCR) to illicit T cell activation. The surface receptor, known as the TCR, is a unique feature
of T cells that mediates epitope identification through interactions with the peptide-MHC
(PMHC) complex. TCRs are produced through a genomic rearrangement process that results
in an astounding level of diversity. It is now widely acknowledged that TCRs exhibit high levels
of cross-reactivity, that is, the ability to identify more than one pMHC complex®. According to
certain theories??, a single TCR may be able to distinguish between 10* and 107 distinct MHC-
associated epitopes. However, it has also been demonstrated that the likelihood of a TCR
interacting with a different randomly chosen peptide drops to 10 once it interacts with a
particular pMHC complex!!. Thus, TCR recognition is both cross-reactive and highly specific

at the same time.

T-cell assays offer the most accurate assessment of immunogenicity when selecting antigens.
For instance, the enzyme-linked immunosorbent spot (ELISpot) assay can be used to assess
T cell reactivity by priming them with neoantigens and measuring activation markers like IFN-
y1213  Although these assays are clinically robust predictors, they are time-consuming,
expensive, and have a low throughput. Instead, in silico pipelines routinely associate strong
binding with immunogenic potential*4, however this practice is debatable since Ebrahimi-Nik

et al.’>1® showed CD8+ T cell activation by low affinity pMHC complexes.

Modeling T-cell recognition is much more complex than MHC binding for many reasons,
including the scarcity of training data, low binding affinity between the pMHC complexes and
the TCRs (pMHC:TCR), and the large diversity of TCRs!”*®. Many attempts to predict TCR
binding based on various hypotheses have been proposed and elegantly summarized by
Gfeller et al. 2023, Xie et al. 2023%°, Lee et al.?!, Szeto et al.??, and Sim et al.%. Here, |

recapitulate the general knowledge around the pMHC:TCR recognition organized into three
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discipline-based groups. Group | — approaches based on biochemical characteristics of MHC-
I ligands; group Il — approaches based on structural information; and group Il — approaches

based on machine learning or deep learning.

Group | — Approaches based on biochemical characteristics of MHC-I ligands — Calis et al.
2013 were the first to show that large and aromatic amino acid residues increase the
likelihood of MAPs being immunogenic, and positions 4—6 have a significant impact on
immunogenicity. Two years later, Chowel et al.?® observed hydrophobic amino acid residues
are enriched in immunogenic epitopes. Other features that predict peptide immunogenicity
and hence neoantigen quality have been discovered. Quality metrics, such as the (I)
differential agretopicity index?¢2’ (DAI), that is, the ratio of MHC affinity of the mutant peptide
to that of its non-mutated counterpart; (ll) dissimilarity to self?32° (non-mutated proteome),
have been shown to have some predictive power for immunogenicity; and (lll) relative and
absolute binding affinities with respect to the position of the mutation within the presented
peptide®. Several tools, such as PRIME3®'*2, NeoScore®, INeo-Epp3*, and pTuneos®®, rely on
these ligand characteristics. Gfeller et al.’* suggested PRIME as an immunogenicity
predictor and produced results consistent with the aforementioned characteristics. Likewise,
NeoScore® predicts immunotherapy outcomes in melanoma patients, and INeo-Epp**
incorporates the position information of the mutation along with amino acid-related
characteristics. pTuneos® uses multiple features, including similarity between normal and
mutant peptides, similarity with known immunogenic peptides, and hydrophobicity. However,
these characteristics and metrics are sought as tendencies rather than rules. For instance, the

impact of hydrophobicity on immunogenicity is suspected to be HLA allele dependent®3,

Group Il — approaches based on structural information — TCRs are composed of two distinct
protein chains qualifying them as heterodimers. Most Human T cells are composed of alpha
(a) and beta (B) chains encoded by TRA and TRB loci, respectively. Each TCR chain is

composed of two extracellular domains, a variable region (V) and a constant region (C). The
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variable regions of each chain have three hypervariable or complementarity-determining
regions (CDR1, CDR2, and CDR3). These six flexible CDR loops (3 a and 3 ) are generated
through VDJ recombination, a process by which T and B cells randomly combine various gene

segments, that is variable (V), diversity (D), and joining (J) genes, to create unique receptors.

Structural analysis of TCR:pMHC complexes revealed certain general principles. The
hypervariable CDR3 loops are the primary drivers of peptide recognition, whereas germline-
encoded CDR1 and CDR2 loops are primarily focused on the recognition of MHC molecules.
The co-contribution from both a and B TCR chains is a common occurrence, with a roughly
shared and balanced contribution. All currently available TCR:pMHC-I structures demonstrate
that the TCR contacts both the peptide antigen and MHC. Despite the small size of the
peptides relative to the MHC molecule, they might nonetheless contribute significantly to the
PMHC:TCR interaction. This feature is not shared with lipid- or metabolite-derived specific
TCRs, for which the recognition of both MHC/MHC-like molecules and the bound antigen is
not required®. Despite the wide range of docking orientations, the structures that have been
solved thus far demonstrate that MHC-I-restricted TCRs must sit on top of the cleft to contact
both the peptide and MHC-I helices. This is a specific feature of peptide-MHC-I recognition,
for which no exception has been observed, even with a large number of solved structures.
Moreover, Peptide length is associated with successful TCR engagement according to recent
findings. Ekeruche-Makindeet et al.>” demonstrated that TCR cross-reactivity was dependent
on the length of the presented peptide, and that TCRs were unable to react to peptides of
different lengths. On the same note, structural dissimilarity from the self, that is, structural and
dynamic changes induced by point mutations at non-anchor sites, can influence TCR

recognition and transmit effective T-cell activation®.

There have been a few instances of reversed docking topology, in which the TCR chain is
docked over the MHC-I al-helix and the TCR chain is in contact with the MHC-I a2-helix®°.

Interestingly, these TCRs were very weakly activated upon pMHC-I identification, while being
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able to bind to pMHC-I with moderate affinities compared to the range in other TCR:pMHC-I
complexes. This demonstrates that T cell activation is not only determined by the affinity of
TCR:pMHC-I. Furthermore, it is possible that conventional docking topology is a prerequisite
for T-cell activation. In addition to binding in a reversed orientation, some pMHC complexes
interact with TCR with a C-terminal shift where the CDR3 Loop does not interact with the

peptide°4°,

In terms of computational development, recent studies have combined structural information
to build a generalized TCR scoring system. Riley et al.** designed an approach to capture
both peptide-MHC and TCR-pMHC binding, based on six structural and physicochemical
features. Aranha et al.*> showed that adding three-dimensional modeling to NetMHCPan
increases specificity and precision and reduces the number of false positives when predicting
neoantigens. Borrman et al.*® suggested a scoring method and modeling approach that uses
the structural characteristics of TCR-pMHC complexes to predict the binding of cross-reactive
peptides. It should be noted that these models began to reveal the TCR:pMHC complex and

are not yet able to execute ab initio prediction based on biophysical and structural data.

Group Il — approaches based on machine learning or deep learning — Despite the potential
variability of T-cell TCRs, there is evidence that they recognize the same pMHC epitopes
frequently and possess similar sequence characteristics. For instance, DeWitt et al.** showed
the existence of common patterns in the TCR repertoire across individuals exposed to the

same disease. These findings suggest that the TCR epitope specificity can be predicted.

Identifying TCRs specificity to given antigens requires sorting, sequencing, and clustering of
both naive and antigen-experienced T-cell repertoires. Recent advances in bulk- and single-
cell sequencing technologies have enabled the generation of high-throughput datasets.
Consequently, software development has allowed computational biologists to further examine

and profile TCR repertoires using specialized algorithms?*>46, Furthermore, efforts to catalog
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such information have resulted in the creation of multiple databases such as McPAS-TCR*’
and VDJdb*®. McPAS-TCR is a manually curated database TCR sequences identified in
human and mouse T cells linked to diverse clinical disorders. VDJdb is a database of TCR

sequences with known antigen specificities.

Researchers have attempted to identify common features among antigen-specific TCRs by
studying a collection of sequences. Based on the known interaction of the CDR3 loop with
MHC-associated peptides, methods for clustering the recurrent short stretches of amino acids
of these loops (i.e., CDR3 motifs) have emerged. Several techniques use distance metrics to
assign previously unobserved TCRs to characterized repertoires or rely on clustering TCRs
with comparable levels of specificity, such as pMTnet*®, GLIPH®*, TCRDist*!, TCRnet>?, ERGO

1193, and NetTCR-2.0%.

An investigation was conducted by Grazioli et al.>® to determine how well state-of-the-art deep
learning models®3°455-63 can predict TCR:pMHC binding and generalize to unknown peptides
by evaluating ERGO 1I°® and NetTCR-2.0%. ERGO Il relies on Long short-term memory
(LSTM) networks and autoencoders to compute representations of peptides and CDR3s.
NetTCR-2.0 uses a straightforward 1D convolutional neural network (CNN) model that
integrates information from CDR3 and peptide sequences to predict TCR peptide specificity.
The models did not generalize well to unseen peptides when using a hard split, a simple
heuristic for training/test splits, which ensures that test samples exclusively present peptides
that do not belong to the training set. The authors showed that this is largely due to suboptimal
training/testing splits causing models to simply memorize the CDR3 sequences and ignore
the peptides. To better predict the interactions between T-cell receptors (TCRs) and peptides,
Grazioli et al.** proposed a new model called Attentive Variational Information Bottleneck
(AVIB). The authors' benchmark shows that AVIB significantly outperforms cutting-edge

techniques in predicting TCR-peptide interactions. However, the authors stated that
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generalization to unseen sequences remains difficult because of the sparsity of the available

training data.

Despite these efforts, it is still not possible to predict the set of TCRs that recognizes a certain
antigen or the set of antigens that are recognizable by a certain TCR. This is due to several
factors, including sparsity of training data relative to the size of the TRC repertoire, lack of
alpha and beta pairing when performing TCR sequencing, excessive focus on the CDR3
loops, lack of training data, and lack of structural modeling integration in the architecture of

machine/deep-learning models.

When naive T cells are activated by a pMHC complex, extensive proliferation and
differentiation events occur. Qualitative differences arise when responding to antigens,
including a less stringent requirement for activation with the ability to respond to lower
concentrations of antigens than naive T cells. This interplay between the low and high avidities
of naive and trained T cells, along with the large number of recognition patterns, poses

challenges when it comes to the comprehensiveness of training data.

While TCR sequencing provides a high-throughput way to characterize repertoires, the
majority of studies have focused on the 3 chain of the CDR3 loop due to its known interaction
with the peptide and high combinatorial potential. However, both the a and 8 chains of CDR3

loops, and occasionally CDR 1 and 2 loops, contribute to antigen recognition.

Another key challenge in training accurate machine/deep-learning models is the cross-
reactive nature of the TCRs. This implies that a comprehensive training dataset would require
screening of the cross-reactivity spectrum for each unigue group of TCRs. Regardless of the
technical feasibility of this goal using wet-lab techniques, it is evident that such requirements
are both labor- and cost-inefficient. Hence, there is an urgent need to better understand cross-

reactivity for the rational simulation of data to supplement the true training data.
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Finally, sequence-based deep-learning models could benefit from estimating the chemical

interactions between TCR:pMHC complexes as well as the 3D structures in subsequent

iterations.
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Appendix 1: A technical guide for the COD-dipp pipeline

General description

The COD-dipp workflow is based on Snakemake, a workflow manager responsible for
bundling and integrating multiple tools. One major advantage of this setup is the breakdown
of complex bioinformatic workflows into several small jobs that can be run in parallel. In
addition, it automatically identifies the already completed tasks and avoids re-running them in
the case of a re-launch. On top of that, the execution is modular, allowing the user to choose
specific parts of the analysis. The tight integration with conda, a package and environment
management system, simplifies the first deployment on new clusters. This means that users
do not have to spend any time coordinating the installation of the dependencies. Another major
strength of COD-dipp is the intelligent use of high-performance computing (HPC) resources.
The setup relies on a configuration file in YAML format to specify the resource allocation in
terms of CPU, GPU, memory, and time requirements. This allows the analysis of a large

number of samples in a short amount of time using just one command.

COD-dipp integrates two orthogonal mass spectrometry DDA data analysis strategies. The
first strategy is called open search and utilizes MSFragger, one of the fastest search engines,
to identify peptides with or without post-translational modifications (i.e., chemical
modifications). de novo is the second strategy and is key for finding peptides from unannotated
proteins holding great promise for the identification of neoantigens. COD-dipp uses
DeepNovoV2 as the de novo engine, which leverages a deep learning architecture to extract
features from the mass spectrometry spectra themselves and uses natural language
processing. These two aspects of deep learning help in interpreting the noisy nature of mass
spectrometry data and imputing missing values by learning the amino acid sequences from

proteins themselves. Since deep learning models require a training step based on previously
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available data examples, we used spectral matching results from the MS-GF+ search engine

to train on-the-go de novo models in a personalized manner to each sample.

COD-dipp uses a multitude of quality control measures to ensure that the reported
immunopeptidomes are not the result of computational errors or are simply false positives. To
begin, the MS-GF+ results go through a rigorous post processing validation implemented by
scavager, a versatile post-search validation algorithm. Scavager relies on gradient boosting,
a machine learning technique that leverages up to 31 mass spectrometry features to
differentiate between target (correct) and decoy (incorrect) identifications. This procedure is
well established under the name of False Discovery Rate (FDR) control. De novo derived
peptides are required to go through a stringent accuracy filter (90%) along with a first of a kind
approach to map these sequences to the proteome as a first step then to the 3-frame
translated transcriptome as a second step. This step is responsible for identifying non-
canonical MHC class I-associated peptides (i.e., peptides from non-coding regions). First, de
novo peptides are aligned to a set of known proteins (i.e., proteome). Peptides with at most
one mismatch are labeled canonical peptides, and all other sequences are mapped to a 3-
frame translation (3FT) database provided by the COD-dipp suite. A peptide labeled non-
canonical would have at most one mismatch with the 3FT database and at least 3 amino acid
differences from any known protein sequence. When it comes to open search, extra care
needs to be taken due to the wide error tolerance of the strategy. The concept here is to allow
a certain error tolerance when attributing peptides to mass spectrometry spectra as a first
step, followed by an attempt to identify a chemical modification on one of the constituent amino
acids explaining the mass shift. Thus, an extra control step is required to quality control the
mass shift and its localization. For this, COD-dipp relies on PTMiner to control both the FDR

and False Localization Rate (FLR) using a robust Bayesian method.

As a Final step COD-dipp tracks back all immuno-peptides to the genome by using PoGo for

canonical peptides and pysam-based scripts for the non-canonical peptides.
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Applications of the method
COD-dip was originally developed to deal with mass spectrometry-based immunopeptidomics
in human samples. However, with flexibility in mind, all integrated tools are fully compatible
with proteomics, making this pipeline easily applicable to standard proteomic mass
spectrometry studies. This modification requires minor edits to the search engine parameter
files (FileMSGFPlus_Params.txt and Fragger_ Params.txt). Similarly, it can be adapted to
other species with minor modifications to the below scripts in order to change the organism:
1. scripts/prepare_annotation/generate_annotation.py
2. scripts/prepare_annotation/genes3FT generator.R
Experimental design
The analysis setup is relatively simple and requires pooling all the mass spectrometry files in
a folder. First, each sample requires its own folder with the naming convention ‘sample_*’,
where * is any chosen string. The sample folder must contain the MS files in mzML format. In
addition, the sample folder must contain a sub folder named ‘denovo’ containing the MS files
in MGF format. COD-dipp automatically detects all samples along with their corresponding

mass spectrometry files.

Expertise needed to implement the protocol
COD-dipp requires basic knowledge of the bash syntax to execute commands over the
command line. Familiarity with the workload manager SLURM is appreciated in very specific

cases where the HPC has an unusual setup or lacks GPU availability.

Hardware requirements

COD-dipp was designed to run on HPC clusters to leverage parallel computation. The
minimum requirements include 64 GB of RAM and 12 cores. The recommended requirements

are 120 GB of ram, 24 cores, and 1 GPGPU (General-Purpose Graphics Processing Unit).
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Software requirements

COD-dipp can be found at https://github.com/immuno-informatics/COD-dipp and has been

tested on a Centos 7 linux system. It requires SLURM to be installed, Python 3, Snakemake

v5.4.5, Anaconda, Singularity, and MSFragger.

PROCEDURE

Annotation generation step

1. For a human immunopeptidomics analysis, it is sufficient to download the pre-

generated data on this figshare link (https://doi.org/10.6084/m9.figshare.16538097)

under the file name “pipeline_annotation_files.zip” and skip the next step.
2. For non-human immunopeptidomics analysis, additional steps are required:
a. Download the pre-generated data on this  figshare link

(https://doi.org/10.6084/m9.figshare.16538097) under the file name

“pipeline_annotation_files.zip”.
b. Download the protein database for the organism in question from ENSEMBL
BioMart.

i Go to www.ensembl.org and click on biomart in the tools section.

Choose the ‘Ensembl Genes’ database. Then choose the desired
organism dataset. Click on ‘Sequences’, select ‘Peptides’ in the
‘sequences’ section. Expand the ‘header information’ section and
unselect everything, then select the following attributes in the exact
order: Protein stable ID, Transcript stable ID, Gene stable ID. Gene
name, Gene description. then click on ‘Results’ on the top left corner.
At this point click on ‘results’ in the top left corner and retrieve the fasta

file. Then use Philosopher (https://philosopher.nesvilab.org) to add a list

of contaminants and the decoys.
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i. Edit the script
scripts/prepare_annotation/1_generate_annotation.py atg =
Genome (db="hg38") to the genome of the organism of interest. Then
execute the script to generate a
‘UCSC_knownGene_hg38_features.tsv’ like file.

iii. Go to https://genome.ucsc.edu head to ‘tools’ then table browser.

Choose the organism of interest in ‘genome’ and select ‘ENSEMBL
genes’ in track and click ‘get output’ to download the file. Feed this file
to the scripts/prepare_annotation/genes3FT_generator.R to
generate the equivalent of ‘df features_inframes.tsv'.

iv.  Edit the script
scripts/prepare_annotation/genes3FT_generator.R at
ens94_human_dna and txdbENS to your own organism of interest
and execute the script to generate the 3FT database like file

‘3FTgenes_coding.fasta’.

Raw data conversion

3. Ensure that your raw files are correctly converted to mzML and MGF formats. The
msconvert gui or command-line tool can be used. Please ensure that the peak
picking filter is the first filter and that TPP compatibility option is checked. Please

check the example below for command line conversion:

msconvert fractionl.raw --mgf --filter "peakPicking true 1-" --
filter 'titleMaker <RunId>.<ScanNumber>.<ScanNumber>.<ChargeState>
File:"<SourcePath>", NativeID:"<Id>"'

msconvert fractionl.raw --mzML --filter "peakPicking true 1-" --
filter 'titleMaker <RunId>.<ScanNumber>.<ScanNumber>.<ChargeState>
File:"<SourcePath>", NativeID:"<Id>"'
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Environment setup

4. Please ensure that MS files follow the below organization:

COD-dipp

sample_NameOfSample

— denovo
i: fractionl.mgf
fraction2.mgf

— fractionl.mzML

L— fraction2.mzML

5. Create the conda environments required for the workflow to run:

a.

Edit conda_prefix pathin prepare_envs.sbatch to a desired location on the

cluster.

Edit the prepare_envs.sbatch SLURM -A parameter to specify an active

SLURM account.

Launch this command sbatch prepare_envs.sbatch to create the conda

environments at the specified conda_prefix.

6. Downloading COD-dipp can be performed using a few simple lines of code:

study_id="Example_Study"

mkdir $study id && cd $study id

git

clone https://github.com/immuno-informatics/COD-dipp.git

cd cod-dipp

rm -rf sample test database.fasta
mv $(1ls -A) ../

cd ..

rmdir cod-dipp
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unzip pipeline_annotation_files.zip
resource_files_dir="/PATH/TO/pipeline_annotation_files/folder’

cp $resource files dir/2019-04-30-td-
Homo sapiens GRCh38 biomart.fasta ./database.fasta

7. Edit the HPC cluster job settings:

a. Editthe integrated-pipeline-profile/config.yml configuration file.

i. Inthe PATH section, add the full path to each of the required files.

ii. Inthe SEARCH ENGINE params section edit the amount of memory to
be allocated in MB in case the existing values exceed your HPC
capacity. Setting the memory requirement too low will raise an
OutOfMemory error for either of the search engines.

b. Edit integrated-pipeline-profile/cluster-config.json to adapt it to
your own setup. Here, we describe the list of parameters and how to tune them
for the best compatibility:

i. Cluster-specific parameters that requires tuning:

1. "Account": assigns resources used by the pipeline to a specified
account on the HPC. Equivalent of --account when using
SLURM. Reverts to ‘normal’ if not specified.

2. "partition": Requests a specific partition for the resource
allocation. Reverts to ‘Long’ if not specified. Equivalent of --
partition when using SLURM.

ii. Pipeline-specific parameters that in most cases do not need to be
modified:

1. "cpus": number of cores to allocate. Equivalent of --account

when using SLURM.
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2. "memory": amount of RAM to allocate in MB. Equivalent of --
mem when using SLURM.

3. "time": "HH:MM:SS" Sets a limit on the total run time of the job
allocation. Equivalent of - -time when using SLURM.

4. "name": the default assigned name, will automatically get
modified by the launch. sh script to ‘dir_name.job_name’.

5. "nodes": the minimum requested number of nodes for resource
allocation. Equivalent of - -nodes when using SLURM.

6. "ntasks": in all cases should have a value of 1. Except for the
rule ‘denovo_annotation’ where the Message Passing Interface
(MPI) is used. Equivalent of --ntasks when using SLURM.

7. "gres": Specifies a comma-delimited list of generic consumable
resources. Should have a value of 0 in all cases except for the
denovo rule where 1 GPU is requested with the following value

"gpu:1". Equivalent of - -gres when using SLURM.

Launching the analysis

We made it easy to execute the pipeline with a bash wrapper script under the name
launch_pipeline. sh. This script assumes that the sample folder names start with 'sample_".
The value of the variable ‘type’ in the launch_pipeline.sh script could take the values
"cluster”, "local", or "dry-run". If ‘type’ is given the value ‘cluster’ the pipeline will execute the
step as SLURM jobs on the HPC. However, before running the actual jobs, it is always helpful
to launch a ‘dry-run’ to ensure all the requirements are satisfied. ‘dry-run’ will only display what
would be done without executing the commands. The ‘local’ option is particularly useful for

debugging since it will launch the commands directly on the machine without the use of

SLURM.
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TROUBLESHOOTING

e The pipeline generates the following logs when launched:

o slurm-logs directory containing all the launched jobs:

m Rulename-date-time_cmd.log containing the command used to launch

the job in question.

m Rulename-date-time_err.log as the standard error output when

something goes wrong.

m Rulename-date-time_out.log as the standard output, where all printed
information from the executed commands within the job in question are

printed.

o Snakemake-dry-run.log when a dry-run launch is executed by the user. This
file contains the Snakemake log of all planned jobs, along with the expected

output files.

o Snakemake.log when a ‘dry-run’ launch is executed by the user. This file
contains the Snakemake log of the executed jobs. In the case of a
communication error with the clusters, this file contains useful information on

how to fix it.

working dir

L—— sample/slurm-logs

Troubleshooting advice can be obtained from the COD-dipp help forum, which can be found

at https://groups.google.com/g/cod-dipp. In case you encounter a bug please raise an issue

rulename-date-time_cmd. log
rulename-date-time_err.log
rulename-date-time_out. log
snakemake-dry-run.log

snakemake.log

at https://github.com/immuno-informatics/COD-dipp/issues.

TIMING

A study with multiple patients would still take 10 to 12 hours to complete on a cluster owing
to the parallel computations. For instance, the analysis of the pride dataset PXD004894 (i.e.,

25 patients) comprising 140 MS files took over 12 hours (real time) and approximately

28892

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics


https://groups.google.com/g/cod-dipp
https://gitlab.com/alfarolab/cod-dipp/-/issues

computational hours (~5000 GPU hours for DeepNovoV2, ~7000 CPU hours for MS-GF+,

~16800 CPU hours for MSFragger, and ~92 CPU hours for Scavager).

ANTICIPATED RESULTS

File name

Description

Folder: reports/denovo_annotation

3ft_coords_3m.tsv

3ft_coords_4m.tsv

Non-canonical immunopeptides genomic coordinates.

This table reports the alignment of the non-canonical
peptides on the genome including the chromosome, star
end and number of mismatches.

3ft_coords_annotation_3m_framecheck.tsv

Non-canonical immunopeptides frame analysis.

This table reports if the non-canonical peptides from
introns follow the upstream exon frame.

3ft_coords_annotation_3m.tsv

3ft_coords_annotation_4m.tsv

Non-canonical immunopeptides annotation.

This table reports the type of feature the non-canonical
peptides align to: Exon, intron, Exon out of frame, 5UTR,
3UTR.

3ft_features_3m.tsv

3ft_features_4m.tsv

Non-canonical immunopeptides annotation.

Simplified table that reports the type of feature the non-
canonical peptides align to: Exon, intron, Exon out of
frame, 5UTR, 3UTR.

Denovo_exon_spectra_3m.tsv

denovo_exon_spectra_4m.tsv

De novo peptides that map to known proteins.

De novo peptide spectrum matches for sequences coming
from protein (i.e., exons)

Denovo_nonexons_spectra_3m.tsv

denovo_nonexons_spectra_4m.tsv

De novo peptides that map to non-canonical sequences.

De novo peptide spectrum matches for sequences coming
from ltrons, out of frame exons, 5 and 3' UTRs.

Stats_3mismatches.pdf
Stats_4mismatches.pdf

denovo_plots.pdf

Descriptive analysis of the results.

PDF files with bar plots and pie charts of comparison
between canonical and non-canonical de novo peptides.

Folder: reports/denovo_annotation/TITER
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Descriptive analysis of the results.

TIS_analysis.pdf Bar plots to describe the intronic peptides coming from

upstream Translation Initiation Sites (TIS).

De novo intronic peptides resulting from an upstream
Translation Initiation Site.
df_titer_pos.tsv This Table reports de novo peptides coming from introns
and that TITER predicts an upstream Translation Initiation
Site (TIS) for.

Folder: Reports

De novo peptide spectrum matches with 90% accuracy.

denovo_data_prep.tsv The output of DeepNovoV2 after applying a 90% accuracy
filter. These results have not been mapped to a gene
source and must be used with caution.

Folder: reports/PTMiner

Open search validation results.

filtered_result_processed.tsv This table contains the open search PSM results after

applying a 1% False Discovery Rate by PTMiner.

Open search Localization results.

loc_result_pocessed.tsv This table contains the open search PSMs results after
applying a 1% False Localization Rate for spectra
identified with a mass shift.

Open search annotation results.

This table contains the open search results for PSMs that
anno_result_processed.tsv

passed the 1% FLR filter and went through mass shift

annotation with UNIMOD.

Folder: reports/frs_msgfplus

Descriptive analysis of MS-GF+ results validation model.

Model.pdf This pdf offers a peek at the model that used to validate

MS-GF+ results.
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Peptide spectrum matches of MS-GF+ results.
scavager_PSMs_full.tsv

These 2 tables are the output of Scavager after False
scavager_PSMs.tsv
Discovery Rate control to 1% of MS-Gf+ PSMs.

Peptide summary level of MS-GF+ results.

scavager_peptides.tsv This table is the output of Scavager after False Discovery

Rate control to 1% of MS-GF+ peptides.

Protein summary level of MS-GF+ results.

This table is the output of Scavager after False Discovery
scavager_proteins.tsv Rate control to 1% of MS-GF+ proteins. This table might
sometimes be omitted due to the nature of HLA

associated peptides hindering the protein inference.

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 128



DocuSign Envelope ID: 9E6B07A9-1718-4E1A-87E3-6B89728D3B0D

Supporting document 1: Contribution statement from the co-authors of chapter 2

RE: A statement of authorship contri

bution.

Dear dr hab. Joanna N. Izdebska, prof. UG,
We, the contributing authors, are writing to confirm our participation in the manuscript titled
“The immunopeptidome from a genomic perspective: Establishing the non-canonical
landscape of MHC class l-associated peptides.”, which is being included as chapter 2 in
Georges Bedran’s PhD doctoral thesis. We would like to emphasize that Georges Bedran's
contribution to this work was utterly significant, as he was primarily responsible for conducting
the research, performing data analysis and interpretation, and drafting the manuscript.

The authors’ contribution can be found

Georges Bedran:

below:

(/@6@ Aleksander Palkowski:

1. Conceived and initiated the p

March 16", 2023

DocuSigned by:

ﬁh‘r—h»\lﬂ Pl ski

roject. 1.

Revised the manuscript.

2. \r:]V;(r)]tueS’g:’ielerst draft of the Maciej Pawlik: (M«w‘q puakt
3. Collected online studies. 1. Revised the manuscript.

4. Developed the computational Maciej Parys: rﬂw’q Parys
approach and software. 1. Revised the manuscript.

> orocessed the data, Robert O°Neill: (ot o0t

- »reated angrevised ngures. 1. Revised the manuscript.

7. Coordinated the manuscript. f,wm
DocuSigned by: P . e

Hans-Christof Gasser:

ﬁm,&,{wg&pl M. Brennan:
1

1. Created a supplementary figure.

Tongjie Wang:

DocuSigned by:

Revised the manuscript.

DocuSigned by:

(Shfm N, Symeowides

G’Mﬂb i, Stefan N. Symeonides:

1. Revised the manuscript.

1. Revised the manuscript.

Dor?inilgzv?;%r;?é manuscript. ﬁmwuhmqav:d T:\;e?/;gglﬁ:g manuscript. (DMM%M
Ken1r.|et£ev\>lizle(§:the ——— (M MLKeV; n IIRI’tecvril;g(i;\e manuscript. @WW{MM
Ale);.ang(e;/ it:ic;'?r;e e ﬁwmm ("ﬁOb;.n I;a;:;::; Tl:\e manuscript. ?WF h
. Tul X,
Chris.toll?og\isz(ajt:ﬁiel:manuscript. ( - Tedﬁ' Igg\ﬂgéd the manuscript. LMW |
(B oke

Fabio Massimo Zanzotto:

ﬁfall(o Massimo %ﬁ%‘o‘ n Kote:

1. Revised the manuscript.

Catia Pesquita:

project.
revised the manuscript.

Docusigned by:

(G psie 2.

1. Revised the manuscript.

Javier A. Alfaro:

DocuSigned by:

Coordinated and supervised the

DocuSigned by:

(\)Mw 1. Afars

Hakan Axelson: ﬁm Ivdssn 1 Conceived and initiated the project.

1. Revised the manuscript. v 2. Coordinated and supervised the
.. L itk Farn project.
Aj't:‘a RRa;\?igé Jthe manuscriot ﬁ o 3. wrote the first draft of the
' Pt manuscript.

David J. Harrison: (Dosid ) b 4,
1. Revised the manuscript. 5.

Created and revised figures.
Revised the manuscript.

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 129



Supporting document 2: Acceptance letter from Cancer Immunology Research

From: Javier Alfaro

Sent: Thursday, March 16, 2023 10:03 PM

To: Georges Bedran; Georges BEDRAN

Subject: Fwd: Decision Rendered: CIR-22-0621R3

—————————— Forwarded message ---------

From: Cancer Immunology Research <cancerimmunolres@msubmit.net>
Date: Thu, Mar 16, 2023, 9:02 PM

Subject: Decision Rendered: CIR-22-0621R3

To: <javier.alfaro@proteogenomics.ca>

Cc: <Javier.alfaro@ug.edu.pl>

Re: CIR-22-0621R3
"The immunopeptidome from a genomic perspective: Establishing the non-canonical landscape of
class | MHC-associated peptides."

Dear Dr. Alfaro:

| am pleased to inform you that your above-referenced manuscript has been accepted for
publication in Cancer Immunology Research. Thank you very much for this interesting contribution to
the journal; we have appreciated working with you throughout this process. Please ensure that you
read this letter in its entirety for important details surrounding production and publication.

Proofs
Please note that you will receive page proofs at this email address in 2 to 4 weeks' time. If you
expect your email address to change within this period, please notify us immediately.

Detailed editing instructions will be sent to you along with the proofs. We ask that you please read,
correct, and return the proofs within 2 business days. Please note that, if proofs are not returned
within this time frame, final publication of the article may be delayed.

Press Releases

If your institution's public relations office is planning a press release or other press-related activity
for this paper, please send an email to richard.lobb@aacr.org immediately and cc the journal office
at cancerimmunolres@aacr.org to alert us to hold online publication of your manuscript. A member
of the AACR Communications Department will then liaise with your institution to ensure that
embargo policies are followed.

OnlineFirst Publication

If a press release is not planned for your paper, please note that the accepted manuscript will be
posted on our website as an OnlineFirst article in about 48 to 72 hours. OnlineFirst publication
entails publishing online the author manuscript in its current form, which is not yet copyedited or
typeset. After proof corrections have been returned, the final edited version of your article will
replace the author manuscript on our website.

Funding Mandates

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 130



If during submission you requested that the AACR deposit the accepted version of this manuscript
on your behalf to PubMed Central (PMC) or Europe PMC to satisfy public access requirements of
certain US and European funders, this deposit will now be initiated. Please note this is not required if
you chose an open access license, as AACR will automatically deposit the final typeset article in PMC
and Europe PMC with no embargo period. If you did not select this option (or are otherwise unsure
of your selection) and you prefer that the AACR deposit the paper on your behalf, please notify us
immediately. Please be aware that deposition will not be complete until you respond to a request
from NIHMS or Europe PMC to verify and approve the deposit.

Billing

All article processing charges (e.g., the flat publication fee, any display item fees, and any open
access fee) are administered by the Copyright Clearance Center (CCC) through their online billing
platform RightsLink. If any fees are associated with this manuscript, you will soon receive an email
from the RightsLink Author system at copyright.com. The email notification will contain a link to view
and pay these charges. Please confirm your order promptly upon receipt to begin the payment
process and avoid publication delays.

Twitter

Cancer Immunology Research is on Twitter at @CIR_AACR. The journal may tweet about your
article upon its publication. If you have not done so already and would like to give the journal the
option to tag you in any such tweets, please click the link below to log into your SmartSubmit
account profile and add your Twitter handle.

Thank you very much again for submitting your outstanding manuscript to Cancer Immunology
Research. We sincerely appreciate your support of this important journal, and we are looking
forward to publishing your work shortly.

Sincerely,
Karen Honey, PhD

Senior Associate Editor
For the Cancer Immunology Research Editorial Board

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 131



DocuSign Envelope ID: A35C6E3A-FDE7-471B-ACE3-D30AEEF5F0CF

Supporting document 3: Contribution statement from the co-authors of chapter 3

RE: A statement of authorship contribution. March 16", 2023

Dear dr hab. Joanna N. Izdebska, prof. UG,

We, the contributing authors, are writing to confirm our participation in the manuscript titled
‘HLA-Glyco: A large-scale interrogation of the glycosylated immunopeptidome.”, which
is being included as chapter 3 in Georges Bedran’s PhD doctoral thesis. We would like to
emphasize that Georges Bedran's contribution to this work was utterly significant, as he was
primarily responsible for conducting the research, performing data analysis and interpretation,
and drafting the manuscript.

The authors’ contribution can be found below:

Georges Bedran: B

1. Collected and curated the data.

2. Generated the figures.

3. Generated the supplementary
materials.

4. Drafted and coordinated the
manuscript.

Daniel A. Polasky: (Sl
1. Performed the immunopeptidomics
analysis.
2. Supported figure generation,
interpretation of results, and drafting
and coordination of the manuscript.

Yi Hsiao: f_lmw
1. Produced the web portal.
2. Revised the manuscript.

DocuSigned by:

Fengchao Yu: (Ao ha ol
1. Supported the study with software
development related tasks.

Felipe V. Leprevost: ﬁ”ouruh\/um provest
1. Supported the study by adding a
group-specific FDR feature to
Philosopher.

nnnnnnnnnnnnn

Javier A. Alfaro: S 1. Ufrs
1. Supported with the writing of the
manuscript.

Marcin Cieslik: Cif@k— S
1. Helped with the study design.
2. Revised the manuscript.

DocuSigned by:

Alexey I. Nesvizhskii: [/
1. Conceived the project.
2. Helped with the study design.
3. Revised the manuscript.
4. Provided overall supervision.

Exploring alternative sources of tumor antigens using large-scale immunopeptidomics 132



	PREFACE
	TABLE OF CONTENT
	ACKNOWLEDGEMENTS
	Abstract in English
	Abstract in Polish
	Chapter 1: Introduction
	The major histocompatibility complex (MHC)
	MHC class I
	MHC class II
	MHC molecules and MHC-associated peptides

	Cancer and the immune system
	Selection of neoantigen candidates
	Indirect identification
	Direct identification

	Promising sources of antigens
	Genomic variants
	Transcriptomic variants
	Alternative splicing
	Non-coding regions

	Proteomic variants

	Thesis outline
	Key technical aims
	Key biological aims

	References

	Chapter 2
	Abstract
	Introduction
	Materials and methods
	Dataset selection
	Proteogenomic database generation
	Canonical protein database for MS database search
	Non-canonical protein database for alignment using BLAST-like alignment tool (BLAT)
	COSMIC mutated protein database for BLAT alignment

	MS computational analysis
	Data conversion
	Open search analysis
	De novo analysis
	De novo peptide annotation
	Second-round search

	Alignment of immunopeptides to the genome
	Open reading frame analysis
	Intron retention analysis
	Frameshift mutation analysis
	Comparison of the identified non-canonical MHC class I–associated peptides between studies
	Cancer selectivity of the non-canonical MHC class I–associated peptides
	Step 1: Panel of normal immunopeptidomes
	Dimensionality reduction of the HLA-binding motif space

	Step 2: Parental gene expression levels in healthy tissue
	Step 3: Protein expression levels in healthy tissue

	Code availability
	Data availability

	Results
	Immunopeptidomic MS datasets
	Closed Open De novo – deep immunopeptidomics pipeline (COD-dipp)
	ptmMAPs
	ncMAPs
	Comparison of COD-dipp ncMAPs with the literature
	Properties and origins of ncMAPs
	Cancer selectivity of ncMAPs


	Discussion
	Acknowledgments
	Author Contributions
	References
	Tables
	Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	Supplementary Figures S1-S7
	Figure S1
	Figure S2
	Figure S3
	Figure S4
	Figure S5
	Figure S6
	Figure S7

	Supplementary Notes S1-2
	Supplementary Notes
	Note 1: Dataset selection
	Note 2: Correctness of the identified peptides
	Open-search quality control
	De novo quality control
	Second-round search quality control



	Chapter 3
	Abstract
	Introduction
	Results
	Computational glyco-immunopeptidomics workflow
	Large multi-tissue MHC immunopeptidome dataset
	Enrichment of N-glycosylation in the class II immunopeptidome
	Glycosylation of MAPs does not influence the HLA binding motif
	Deconvolution of peptides using a semi-supervised approach
	Deconvolution of peptides using a fully unsupervised approach
	The HLA class II N-glycosylation characteristics

	Discussion
	Methods
	Dataset selection
	Mass spectrometry N-glycan search
	FDR control
	Deconvolution of the MHC associated peptides
	Figure generation

	Authorship contribution
	Acknowledgments
	References
	Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 3
	Figure 4
	Figure 5
	Figure 6

	Supplementary materials
	Supplementary Figure 1


	Chapter 4
	Chapter 4: Summary, milestones, and future directions
	Summary and highlights of the presented work
	Beyond antigen presentation, towards antigen recognition
	References


	Appendix 1: A technical guide for the COD-dipp pipeline
	General description
	Applications of the method
	Experimental design
	Expertise needed to implement the protocol
	Hardware requirements
	Software requirements

	PROCEDURE
	Annotation generation step
	Raw data conversion
	Environment setup
	Launching the analysis

	TROUBLESHOOTING
	TIMING
	ANTICIPATED RESULTS

	Supporting document 1
	Supporting document 2
	Supporting document 3
	8_Abstracts_Georges_Bedran.pdf
	Abstract in English
	Abstract in Polish

	Chapter 2 - Supplementary Figures S1-S7.pdf
	Figure S1
	Figure S2
	Figure S3
	Figure S4
	Figure S5
	Figure S6
	Figure S7




