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STRESZCZENIE 

 

ANALIZA PORÓWNAWCZA PRZEMYSŁOWYCH 

MODELI RYZYKA PORTFELA KREDYTOWEGO Z 

NOWYM PODEJŚCIEM OPARTYM NA MASZYNIE 

WEKTORÓW WSPIERAJĄCYCH (SUPPORT VECTOR 

MACHINE). 

 

Raphael Korbinian Reinwald 

 

Celem niniejszej pracy jest porównanie różnych modeli portfolio kredytowego i 

wykazanie, że zastosowanie podejścia opartego o maszynę wektorów wspierających 

(support vector machine) jest adekwatne do pomiaru ryzyka portfolio kredytowego, w 

tym, że dla części z modeli portfolio wykazuje skuteczność lepszą niż powszechnie 

stosowane modele przemysłowe. Aby zrealizować cel pracy, definiuje się różne klasy 

aktywów, ich grupy oraz ryzyko związane z obrotem nimi. Zaprezentowane zostają 

różne rodzaje ryzyka występujące w bankowości, współczesne wymogi zarządzania 

ryzykiem oraz stosowane w praktyce modele oceny i zarządzania ryzykiem wraz z ich 

formalnymi podstawami. W tym kontekście zostają przedstawione modele wyceny 

aktywów oraz budowania portfela inwestycyjnego. W szczególności praca dotyczy 

instrumentów dłużnych i związanego z nimi ryzyka kredytowego. W pierwszej 

kolejności dokonuje się oceny ryzyka pojedynczego emitenta długu w sposób 

ustrukturalizowany i skwantyfikowany, co z reguły następuje poprzez wykorzystanie 

ratingów i modeli skoringowych transformowalnych do ryzyka upadłości pojedynczego 

przedsiębiorstwa. Omówiony zostaje proces nadawania ratingu oraz wymogi związane z 

wewnętrznymi i zewnętrznymi czynnikami wpływającymi na jego kształtowanie. W 

celu ekstrapolacji ryzyka związanego z pojedynczym przedsiębiorstwem na poziom 

ryzyka całego portfolio skorelowanych papierów wartościowych, omówione zostają 
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modele portfolio kredytowego. Klasyczne modele ryzyka i modele strukturalne zostają 

porównane z wykorzystaniem przeglądu literatury. Omówione zostają także 

współczesne modele oparte o sztuczną inteligencję jako potencjalne narzędzia analizy, 

w szczególności sztuczne sieci neuronowe (SNN) oraz maszyny wektorów 

wspierających (SVM). Dla wszystkich czterech portfolio testowych odrzucona zostaje 

hipoteza zerowa o takiej samej skuteczności zbudowanego modelu opartego o SVM w 

porównaniu do modelu liniowego, co potwierdzają testy Kruskalla-Wallisa oraz miara 

RMSE. Co więcej, odrzucona zostaje analogiczna hipoteza dla najpowszechniej 

stosowanego w praktyce modelu CreditMetrics® biorąc pod uwagę różnice pomiędzy 

rzeczywistym a przewidywanym Value-at-Risk (VaR). Tym samym wskazane zostaje, 

że regresja oparta o maszyny wektorów wspierających charakteryzuje się wysoką 

skutecznością i może być wartościowym narzędziem oceny ryzyka kredytowego. 

 

Słowa kluczowe: Ryzyko kredytowe, ratingi, modele portfolio kredytowego, 

SVM, regresja 
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ABSTRACT 

 

ON A COMPARATIVE ANALYSIS OF INDUSTRIAL 

CREDIT PORTFOLIO RISK MODELS VERSUS A NEW 

SUPPORT VECTOR MACHINE - BASED APPROACH. 

 

Raphael Korbinian Reinwald 

 

The aim of the thesis is to compare credit portfolio models and to show that a 

novel approach based on support vector regression is suitable to measure credit portfolio 

risks and is even of superior performance compared to current industrial models for 

certain portfolios. Therefore, asset classes, further collections of assets in portfolios and 

funds as well as their underlying risk and return characteristics are defined and described. 

The various kinds of risks appearing in banking are presented, modern (credit) risk 

management requirements are discussed, and concrete risk measures and their 

mathematical foundations are explained. Afterward, as application and overarching 

context, current asset pricing and portfolio (risk) optimization models are considered. 

Thereby, the focus lies on debt or bond portfolios and the metrics utilized for credit risk. 

As the first component, the credit risk of single obligors has to be judged in a structured, 

quantifiable way, which is commonly achieved via rating or scoring functions, 

transformed into an individual probability of default. That rating process is thoroughly 

examined, and requirements for bank internal as well as external ratings are illustrated to 

build solid rating models. To put these in the context of a bank’s model inventory, risk 

models for various other banking risks are briefly touched on. In order to come from a 

single obligor point of view to a (whole) portfolio level with correlated bonds in the next 

step, credit portfolio risk models are introduced and treated in-depth. Hazard rate and 

structural models (and further econometric ones) are compared by means of a 

comprehensive literature review. Modern artificial intelligence techniques are presented 

as additional possible model candidates, especially ANNs and SVMs (SVRs). The null 
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hypothesis that SVR performs not better than a linear model is clearly denied for all four 

test portfolios, employing a Kruskal-Wallis test and RMSE measure for comparison. 

Moreover, the null hypothesis that CreditMetrics® as a leading model performs better 

than SVR in most cases is also denied in terms of comparing the distance of the predicted 

VaRs to the real VaR. Support vector regression shows superior performance and can be 

a valuable tool for banks to quantify credit portfolio risk. 

 

Keywords: Credit Risk, Ratings, Credit Portfolio Models, SVM, Support Vector 

Regression 
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INTRODUCTION 

This thesis deals with the topic of comparing credit portfolio risk measurement 

approaches – various “classical” methods used within the global banking industry versus 

an artificial-intelligence-based method. Thereby the author develops and verifies a new 

concept that is measuring credit portfolio risk with the help of an existing “machine 

learning” technique, more precisely utilizing support vector (machine) regression (SVM 

regression, SVR). 

Due to the fact that not only do capital requirements set by the regulators and 

especially within the finalization of Basel III1 and the CRR III2 framework have to be 

fulfilled by banks, but also internal (credit) risks need to be economically measured for 

controlling and risk management purposes, and even for the task of pricing credit and 

loans themselves, the measurement and quantification of credit risks within a bank’s 

portfolio is of eminent importance (Bouteillé & Coogan-Pushner, 2021, pp. 19-20; 

Camba-Méndez & Mongelli, 2021, pp. 2-3; Hull, 2015, pp. 33-36; McKinsey, 2016; 

Witzany, 2017, pp. 4-5, 32, 115). Some of the most recent changes within the regulatory 

framework especially regarding operational risk, (counterparty) credit risk, and the 

market risk framework (“FRTB”3 ) will be only part of the CRD VICCRR III banking 

package which was originally supposed to be approved by the European Parliament by 

2020 but postponed due to the COVID-19 pandemic. The authorities’ rationale was to 

support banks in reaching out new loans and credit lines to the severely hit goods and 

services industries worldwide, and to safeguard the operation ability of systemically 

important banking functions – as well as the protection of at least the covered or preferred 

class of deposits and savings (EBA-Statement, 2020; European Commission, 2020). 

Therefore, also the “CRR Quick Fix” was implemented in 2020 (European Commission, 

2020b). On October 27, 2021, the first draft versions of the revised CRR were discussed, 

and it is assumed (as of Mai, 2022) that the CRR III will not be put into formal law before 

late 2022C2023. Capital requirements are expected to increase for European banks on a 

 

1 Basel IV is the term used in the financial industry. The official supervisory term used by the Basel 

Committee on Banking Supervision (BCBS) is “finalization of Basel III”. 
2 CRR denotes the capital requirements regulation and CRD the capital requirements directive. From 

06/2019 onwards the CRR II and CRD V. The CRR III was originally planned for Q2/2020 yet rescheduled 

due to the COVID-19 pandemic in spring 2020 to 2022, drafted versions appeared in late 2021.  
3 FRTB is the fundamental review of the trading book. 
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weighted average between +6.4% to +8.4% in a long-term perspective (EY, 2021b, p. 4). 

Furthermore, it is evident that for reasons of avoiding bankruptcy or resolution (acc. to 

BRRD II4), preventing extended supervisory measures, or for mere business continuity 

management, an institute has to limit its downside risk (Berg, 2019; Berg, 2019b; 

European Commission, 2019c; Hull, 2015, pp. 33-36). The BRRD is a European act to 

ensure orderly bank resolution and to avoid taxpayer-funded bail-outs (European 

Commission, 2019c, preface). Instead, a bank is obliged to use bail-in-able instruments 

and write-down clauses for so-called senior unsecured non-preferred bonds to ensure it 

possesses enough capital for loss absorption, recapitalization, and market confidence 

charges upon recapitalization (WDCC5, as in § 72 b (2) CRR II). A further objective is 

the protection of sight and saving deposits of retail clients as far as possible, and a 

harmonizing of European insolvency ranks (Berg, 2019b; European Commission, 2019c; 

European Commission, 2019d). Generally, it is therefore essential for banks that risks are 

modeled precisely, are not underestimated, and a resolution threat is avoided (Berg, 2019; 

Witzany, 2017). However, there is also an inconvenient upfront “risk”, in case a model is 

too conservative (Gordy, 1998b; Witzany, 2017). 

The more precise a credit (portfolio) risk measurement method is and the less 

unnecessary conservative its buffer unfolds, the higher the margin when debt instruments 

like loans, credit facilities, or bonds are adequately priced (Bouteillé & Coogan-Pushner, 

2021, p. 231; Hull, 2015). Consequently, a bank is more competitive, and less capital is 

needed to be held as required regulatory capital to absorb risk (Bouteillé & Coogan-

Pushner, 2021; Witzany, 2017, pp. 150-151). This is further due to the reason that at least 

the so-called Pillar 2 (rarely also denoted Pillar II, Pillar two) of the Basel III capital 

accords allows the use of internal models, Pillar 1 differentiates between so-called 

standardized and internal approaches (Witzany, 2017, pp. 109, 156). Pillar 2 denotes an 

additional bank-specific requirement for capital covering the risks which are 

underestimated, purely internally regarded, or not treated by Pillar 1 (ECB, 2022c). It is 

regarded later in the thesis in detail. Pillar 1 is the general, formal minimum capital 

requirement taken from previous Basel accords for market risk, operational risk, and 

credit risk (Hull, 2015; Witzany, 2017, p. 111). Pillar 3 as the last Pillar aims to discipline 

 

4 Bank recovery and resolution directive 
5 Write-down and capital conversion 
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banks by means of enhanced transparency and public disclosure requirements, it is not 

directly concerning capital calculations (EBA, 2022f). Therefore, for precisely calibrated 

models there might be a – almost6 – sole Pillar 1 boundary which implies that not “too 

much” Pillar 2 credit risk enhancement has to be materially considered (Hull, 2015). If 

an institute is further allowed to use internal models also for the Pillar 1 calculations – 

denoted then as an IRB7 institute – at least the parameter probability of default (PD) is 

calculated with its own data and approved models (European Commission, 2019, §143 f.; 

Witzany, 2017, pp. 109-110). For so-called advanced IRB institutes, the loss given default 

(LGD) and corresponding exposure at default (EaD), potentially including the credit 

conversion factor CCF and a maturity factor, are expected by law to be calculated as well 

within an internal model, as will be shown later (BIS, 2005; European Commission, 2019; 

Resti, 2006, p. 8; Witzany, 2017, pp. 108-115).8  

Credit risk and associated credit risk-weighted assets (RWAs) constitute the most 

relevant instance and proportion of RWAs for the majority of banks (EBA, 2021b, p. 46). 

Historically, the global trend and promotion of using internal models were accelerated 

through Basel II and III, and supervisory preference toward internal models compared to 

the standard approach (Witzany, 2017, pp. 12-16, 115). Nowadays, whereas the U.S. 

institutions and authorities are tending more back toward the standard approach overall, 

European banks and supervisors on average still prefer internal models (Fitch, 2017; 

Pugsley, 2017). Half of the European banks’ RWAs on average were roughly generated 

by internal models in the past (Resti, 2006, pp. 8-10). The advantages in calculating more 

precise and economically valuable results are at forehand. To reduce the risk of banks 

calibrating the RWAs as to their own needs the ECB performs TRIM9 tests with their 

inspecting joint supervisory teams – the JSTs (ECB, 2019; ECB, 2022g). It sets binding 

as well as recommending (minimum) standards in cooperation with the European 

 

6 Mainly excluding the IRRBB based on Pillar 2, where IRRBB: Interest rate risk in the banking book. 
7 IRB(A): Internal ratings-based approach, approach relying on the own, internally calculated and used, 

permanently risk-adjusted, and monitored ratings – and hence PDs of a bank for its (credit) clients. 
8 An IRB bank is obliged to apply the standard IRB formula for credit risk – using the internally calculated 

parameters above – in the Pillar 1 framework afterward. Furthermore, the finalization of Basel III sets an 

overall “output floor” of 72.5 % of the standardized approach after a phase-in period. The output floor was 

introduced due to excessive volatility in risk-weighted assets (RWAs) among “similar” IRB banks’ 

portfolios. 
9 Targeted review of internal models: A thorough qualitative and quantitative test of the internal models 

used by banks. It is accompanied by a sector analysis and peer group review. The corresponding “TRIM 

Guide” (ECB, 2017) was later succeeded by the “ECB Guide on Internal Models” (ECB, 2019). 
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Banking Authority EBA (EBA, 2018; ECB, 2019; European Commission, 2019b).10 The 

measures are accompanied by regular updates of the specific guidelines, acts, and the 

CRR itself – e.g., sensitivities and risk weights were modified in the past and updated in 

the credit risk and the counterparty credit risk (CCR) frameworks due to empirical results, 

and following the findings of quantitative impact studies, the QIS (BIS, 2017; EBA, 

2021g; European Commission, 2019; Feridun & Özün, 2020; Witzany, 2017, pp. 12-16). 

Especially after the great financial crisis (GFC) in 2008 the regulators’ approaches 

became increasingly stricter (Bouteillé & Coogan-Pushner, 2021, pp. 143, 231; Hull, 

2015, pp. 368-416; Martin et al., 2014). 

The above-mentioned effects and limitations hence floor the quantitative impact 

of more precise models to some extent within the regulatory universe. Nevertheless, still 

for regulatory reasons and more importantly for the pricing of bonds and for (internal) 

risk management purposes these credit portfolio models11 remain of utmost importance. 

This fact also holds for loans, which – as regulators stress – should be regarded in the 

same way as bonds in light of a consistent market-oriented common loan and bond 

portfolio approach (OCC, 1998; Tapiero, 2004). Precise models allow more competitive 

pricing and risk controlling, and are therefore ultimately resulting in higher possible 

returns, in absolute as well as RAROC12-based terms, for the institutions (Bouteillé & 

Coogan-Pushner, 2021, p. 231; Gordy, 1998b; Witzany, 2017, pp. 119, 150-151). 

The main aim of the thesis is to introduce a credit portfolio model which is 

effective (compared to a linear model) and even a better predictor than current credit 

portfolio models for some common bond portfolios. It should deliver results that may 

serve as a competitive advantage in certain areas. Such a model would be of practical 

relevance for banks, and can be utilized to deliver more precise risk calculations, pricings, 

and hence returns. It contributes to academic research in that important field as it 

illustrates dependency and portfolio structures in a novel way, and improves current 

research models.  

 

10  A further examination of institutions’ models and a more direct comparison is achieved through 

supervisory benchmarking portfolios (SBP). 
11 As common in academic research in the field of credit risk, the terms credit portfolio models and credit 

portfolio risk models are used interchangeably throughout the thesis. 
12 RAROC: Risk-adjusted return on capital 
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The first research hypothesis13 hence states that the SVM regression (SVR) model 

is an effective model for credit portfolio risk (CPR) measurement of typical bond 

portfolios. Therefore, i.e., to prove the effectiveness, a comparison of the prediction of 

SVR calculated bond portfolio prices and losses, after training the SVR model with the 

portfolio data and calibrating it, with a linear multi-factor model (LM) and on a random 

sample of real portfolio losses is performed. First, a Kruskal-Wallis rank sum test for 

nonparametric independent samples is applied to verify if the two models have generated 

significantly different distributions of outcomes.  

In terms of measuring the concrete corresponding “errors”, hence the differences 

in the models’ predictions in comparison to the real data in the portfolios, the second 

research hypothesis claims that SVR’s “error”14 is smaller.  

Following this benchmarking, the further goal is a comparison of the two main 

industrial approaches for measuring credit portfolio risk with SVR. Therefore, the third 

research hypothesis states that the SVR method may outperform even the classical models 

for a majority of selected standard bond portfolios. 

To achieve the aim of the thesis, which is to verify the research hypotheses and 

show the usefulness of the SVR approach for the common bond portfolios, the thesis is 

divided into five chapters. To deal with credit portfolio risk generally in a precise manner, 

the necessary objects are defined in Chapter 1, which are equity, bank-specific regulatory 

own funds, and debt as well as alternative asset classes. Characteristics of these asset 

classes are described, and first (credit) risks appearing in connection with them are 

mentioned. Furthermore, collections of these assets forming a portfolio or a certain type 

of fund are described as well as corresponding investment styles and strategies. To 

measure the success of these strategies, risk and return metrics and ratios are introduced 

in Chapter 1.  

In Chapter 2, risk and the various types of risk appearing in banking – mainly 

including credit risk – are described in detail, risk management with its principles and 

requirements will be presented as well as formalized risk measures including moment-

based measures like volatility, drawdown measures, and (T)VaR. With these measures 

and tools, the task of asset pricing and creating optimal portfolios, in terms of riskCreturn 

 

13 The formalized null hypothesis in Chapter 5 negates the formulation of the research hypothesis as 

usual. 
14 Measured in terms of a root mean square error (RMSE) as shown later. 
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characteristics, is considered. Therefore, the classical modern portfolio theory of 

Markowitz, the capital asset pricing model, the single-index model, and asset pricing 

theory are introduced in chronological order (Markowitz, 1952; Markowitz, 1956; Sharpe, 

1963; Sharpe, 1964; Lintner, 1965; Ross, 1976a; Ross, 1976b). Innovative ideas such as 

the incorporation of behavioral components and machine learning techniques for portfolio 

management are briefly touched on (Thaler, 1993). 

A key factor of the APT model is the mentioned PD, a central parameter for credit 

risk management and directly connected with rating “grades”. As a consequence, internal 

as well as external rating processes and systems and further validation techniques for 

these systems (models) are illustrated in-depth in Chapter 3. Thereby, quantitative scoring 

and rating functions based on mathematical-statistical approaches are state-of-the-art for 

measuring credit risk for single obligors. Finally, quantitative models for the various 

(other) types of risks in banking, commonly used within academic research and the 

financial industry in practice, are introduced for a comprehensive model overview in the 

same chapter. 

The focus of the thesis is credit risk, and hence credit portfolio risk models are 

illustrated in detail. In the academic field of credit risk research, there a mainly two 

current standard types of schemes for modeling credit portfolio risk. These measure the 

potential (unexpected) loss of multiple obligors, which are correlated – the default 

correlation structure thereby presenting the decisive modeling component. The first ones 

are the so-called Merton models or enterprise-value-based models with their most well-

known representatives Credit Metrics® and KMV®. The other ones are actuarial or 

hazard-rate-based models. These models are occasionally also referred to as Poisson 

mixture models with its most famous instance being CreditRisk+®. A third econometric 

macro-factor-based model, CPV – CreditPortfolioView® – is described as well. It can be 

similarly classified as the first variant. All of these have their inherent strengths and 

shortcomings. These, as well as underlying ideas and precise definitions of either scheme, 

will be presented and highlighted as a further aim of the thesis in the following Chapters 

4 and 5 in greater depth.  

As will be laid out in Chapter 4 method preferences and a detailed comparison of 

these industrial models referring to a certain class of obligators (debtors) are possible, and 

some transformations between the two foremost applied model types, as well as 

equivalences within a unified framework, are shown. A comprehensive literature review 
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was utilized to give an overview of the current state of research in the field. Whereas 

further improvements and extensions of these models exist and are presented, the 

development since the inception of these models in the late 1990s and 2000s was 

generally modest, and only few innovations (as e. g. the ZPP model) succeeded.  

Therefore, in Chapter 5 a novel approach to credit risk measurement with the help 

of support vector regression is presented. Support vector machines are a classifier (SVM) 

or regressor (SVR) technique from the field of machine learning. They aim to categorize 

data into two or iteratively more classes or respectively approximate a given function 

utilizing multi-dimensional (back-)transformation and so-called “kernel functions”. That 

structure intuitively resembles rating or binary default categories and portfolio risk 

distributions, and lead to the idea to apply SVR to credit portfolio risk. As a further 

advantage, SVR is prone to high-dimensionality and nonlinear, nonparametric problems. 

In recent years, the SVM method was combined with techniques from quantum physics, 

which will potentially accelerate SVR calculations in the future even further (Dalal et al., 

2021). 

Having then introduced the SVM approach as a classification as well as regressor 

technique and as a by-product a technique widely used and of foremost general 

importance in the field of artificial intelligence, the usability and effectiveness of the 

SVM in respect to measuring credit portfolio risk as stated in the research hypotheses is 

shown in the empirical part.  

A prerequisite is real, comparable bond portfolio data to derive “real case” Value-

at-Risks (VaRs). Principally, the VaR contains a default-based VaR component, and a 

rating-migration-based VaR part which translates from ratings subsequently into different 

credit migration spreads, forward curves, and hence present values (exploited by 

CreditMetrics®). First, the SVM method is however compared with a linear model on 

randomly partitioned data, including a training (80 %) and test (20 %) set. The superiority 

and hence usefulness of the SVM is proven by means of a Kruskal-Wallis test and 

concrete root (of the) mean square error (RMSE) comparison calculations. The aim is to 

see how well the models’ predictions fit the real data (goodness-of-fit) with RMSE 

denoting a kind of complementary “fitting error”. The next task is calibrating 

CreditMetrics®, CreditRisk+® and SVM regression with a sample of that portfolio data.  
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In the final part of the dissertation, the comparison of the models’ predicted VaRs 

with real out-of-sample data is executed – proving again that the SVR approach is 

effective, and further showing it is even the most precise credit portfolio risk model. 
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CHAPTER 1 

ASSET CLASSES AND INVESTMENT PORTFOLIO 

TYPES 

1.1 Equity and Debt (Bonds), Regulatory Own Funds 

Before credit portfolio management and credit risk measurement techniques are 

introduced it is necessary to define the objects upon which these systems operate – assets 

and portfolios themselves. 

An asset in this thesis is defined as a financial resource or object one can invest in 

and from which one expects a future economic benefit as an aim of that investment. In 

the official international financial reporting standards (IFRS) conceptual framework of 

the IFRS foundation (IFRSF)15, the standard-setter for global accounting rules, the term 

asset is defined in a similar fashion. It is described, a bit more technically, via the terms 

“economic resource” and “right”, as a “present economic resource controlled by the entity 

as a result of past events. An economic resource is a right that has the potential to produce 

economic benefits” (IFRS Foundation, 2013, p. 3; IFRS Foundation, 2018, p. 26). The 

Corporate Finance Institute® (CFI®) as an influential organization for investment 

professionals defines: “An asset is a resource owned or controlled by an individual, 

corporation, or government with the expectation that it will generate a positive economic 

benefit” (CFI, 2022, p. 1). 

In terms of accounting, it is then booked in the asset side of a balance sheet or 

account – hence indicating ownership or possession. From an accounting perspective, an 

asset further represents the “opposite” of a liability (e.g., debt) and in the financial 

industry is needed to cover them, e.g., considering asset-liability-management in the 

banking and insurance sectors (IFRS Foundation, 2018, p. 30)16. Assets can be considered 

and categorized in many respects, e.g., simply according to their prices which do not 

necessarily reflect or be equal to their inner cash flow as discounted values in the short 

 

15 Supported by the International Accounting Standards Board (IASB), which is part of the IFRSF. 
16 In terms of banks and their role in the financial industry, further transformations size-, risk-, term-, and 

maturity-wise between different assets and liabilities take place (Hicks, 1946; Ho & Saunders, 1981; IMF, 

2018). 
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term17 and naturally corresponding scarcity (Damodaran, 2014). They can be classified 

according to their usage or to physical appearance, their convertibility, liquidity, and 

fungibility (CFI, 2022). Fungibility means how comfortably assets can be sold or traded, 

and it therefore influences the capital structure of a company (Viswanath & Frierman, 

1995). Physical appearance might be viewed in regard to the assets’ material (e.g., hard 

metal versus soft commodities or even digital assets) and hence also storability, however 

more general, the usual differentiation between tangible and intangible assets is 

considered. Tangible or fixed assets are assets with physical existence, mostly longer-

term used, and with the ability to be touched, felt, or seen – intangible ones not, e.g., legal 

rights, or royalties (Ciumag, 2012, p. 48; Van der Lei et al., 2012).  

From a risk management perspective an asset‘s intrinsic idiosyncratic as well as 

systematic risk, its maturity profile, and related cash flows as interest or coupon payments, 

dividends, bullet payments, or similar payouts could be considered (Gregoriou, 2006, pp. 

107-131; McNeil et al., 2015). Especially the differentiation between systematic risk and 

idiosyncratic one is introduced in Chapter 2. Furthermore, regulatory and legal aspects 

can categorize certain assets, like ownership status, special rights connected to those 

assets, taxes, and restrictions as well as optional and underwriting components (Basile & 

Ferrari, 2016; IFRS Foundation, 2003, pp. 7-8). While treating a variety of these aspects 

within the following chapters, the main focus of the thesis deals expectably with the price 

and corresponding risk of assets.  

In the financial industry, assets are connected with investments, where investment 

is seen as an outlay of money to reach a certain purpose, normally a profit or income in 

the future (Cambridge University Press, 2011; Stewart, 2006). The usual macro-economic 

relation to savings (as deferred consumption) and immediate consumption also holds true 

for investments in the financial industry (Mankiw, 2019). 

 

An investment (generally) can include a range of assets such as  

• equity (e.g., stocks) 

• debt (e.g., bonds) 

 

17 According to Eugen Fama’s efficient market hypothesis in the middle or long run and when markets 

avoid or are not subject to frictions like transfer controls, tariffs/bans, illiquidity, or high transaction costs 

the price will normally tend towards the inner, “true” value as will be seen later (e.g., in terms of arbitrage-

freeness or discounted cash flows (DCF) and depending on the price measure in use). 
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• currencies and related interest rates as EURIBOR, SOFR, ESTR, and 

formerly also the LIBOR18 

• commodities  

• real estate, real estate investment trusts (REITs) 

• precious metals  

• other alternative investments (hedge funds, private equity, private debt, or 

certain certificates and derivatives for instance) 

 

These asset classes, namely collections of all assets of the same or a very similar 

type in a class, can be further devised (IMF, 2009, p. 4; Maginn et al., 2007; SEC, 2008; 

SNA, 2008): 

Equity instruments are instruments that incorporate an ownership interest in an 

entity, and common shares define the most basic ownership interest herein, they illustrate 

“the residual corporate interest” once liabilities are subtracted from assets (EY, 2021, p. 

110). Besides common stock, equity can also appear as preferred stock or in special forms 

known as ADRs, GDRs, or SDRs (IMF, 2009, pp. 6-7). A GDR, denoting a global 

depositary receipt, is a special instrument which is representing shares in a foreign 

company (IMF, 2009, pp. 6-7). An American depositary receipt is an instrument that 

illustrates shares in a foreign stock, taken for trading on an American stock exchange 

(SEC, 2012b). Special drawing rights are defined by the International Monetary Fund 

(IMF) as “an international reserve asset, created by the IMF in 1969 to supplement its 

member countries’ official reserves” (IMF, 2021, p. 1). Especially with the increased 

circulation of the not free-convertible Chinese yuan (“renminbi”) and shifted global 

economic weights toward a more multilateral global economy SDRs became a useful tool 

for many countries (IMF, 2021). 

Common Stock ought to be regarded as direct, “normal” ownership in a 

company’s stocks including for instance voting rights whereas for preferred stocks voting 

rights are normally excluded, but on the other hand, this special form guarantees preferred 

 

18 The LIBOR and the other rates like EURIBOR, SOFR, and ESTR are interbank rates, i.e., the rates for 

which banks lend to each other short-time (Hull, 2015, pp. 215-217; McNally, 2021). Due to manipulated 

(“rigged”) London interbank offered rates (LIBOR), the LIBOR system and other rates were replaced by 

the SOFR (Secured overnight financing rate) in the US, SONIA (Sterling overnight index average) in Great 

Britain, and ESTR (Euro short-term rate) in continental Europe. The New EURIBOR (Euro interbank 

offered rate) replaced EURIBOR. See also (IFRS REG IASB, 2018; EIOPA, 2020). 
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treatment in terms of (the amount of) dividends and distributions receivable (EY, 2021; 

Kaye, 2005). Other special forms of ownerships (e.g., SPACs19, popularized in recent 

years) and legal constructions such as LLPs (limited liability partnerships) exist, are 

however not in the scope of the thesis (Dowling, 2007; Fabozzi et al., 2008b). At that 

point, economical or accounted equity is considered, which has to be differentiated from 

regulatory requirements as will be shown later in this chapter. 

Debt securities are usually classified according to their originating party as 

sovereign bonds (like U.S. treasury bonds, German bunds20), municipal bonds, agency 

bonds, corporate bonds, or special money market paper, as commercial paper or 

certificates of deposit (Hünseler, 2013; IMF, 2009, pp. 24, 31; SEC, 2008b; SEC, 2008c; 

SEC, 2012). 

As indicated by the name, sovereign or state bonds are issued by a certain country 

and hence have the taxing-right-backed financial power of a state underlying its debt 

service. Municipal bonds are issued by regional or municipal government authorities and 

are generally (in case slightly) more risky than national government debt (Bouteillé & 

Coogan-Pushner, 2021, pp. 145-147, 152-160; IMF, 2003; IMF, 2009). Depending on the 

federal structure and financial market development of a country municipal bonds are more 

widespread (e.g., in the United States) or less (Hildreth, 2006). Whereas national debt is 

regularly issued by only one country,21 for municipal bonds it is also common that a group 

of (neighboring) regions issue bonds collectively (SEC, 2012; Maliqi, 2012). Agency 

bonds are issued by government-sponsored enterprises (GSE) or state agencies (SEC, 

2012). Corporate bonds are finally debt issued by private corporations via different 

possible vehicles as will be seen later, similar also short-term money market instruments 

(SEC, 2008c). 

 

19 Special purpose acquisition companies. A SPAC is just a shell company when it starts its own initial 

public offering (IPO) in contrast to normal IPOs of operating companies. After the IPO – possibly even 

years after – the SPAC management (its sponsors) look to acquire or merge with lucrative operating 

companies, the initial business combination (IBC). See, e.g., (Klausner et al., 2022) for a recent study on 

SPACs or the U.S. Securities and Exchange Commission (SEC) for basic information (SEC-Statement, 

2021). 
20 For instance, Poland even had its own Ministry of Treasury which was also responsible for state debt and 

bond issuing, alongside the ministry of finance, established during the Polish administrative reform of 1996. 

However, it was dissolved in 2017 and included in the Ministry of Finance. In 2019 a (type of limited) 

treasury ministry was created again to deal with state-owned companies and assets, see (Roca, 2019). 
21 In Europe and the eurozone there were discussions about common “eurobonds” on several occasions, 

e.g., again during the COVID-19 pandemic in 2020 (Giavazzi & Tabellini, 2020). However, the final 

European recovery package included pro-rata (proportional) liabilities and hence no “eurobonds” in a real, 

strict sense, cf. (European Commission, 2020). Other historic monetary unions as the Latin monetary union 

had no further common liability structures, see (Theurl, 1992). 

https://ec.europa.eu/info/strategy/recovery-plan-europe_en
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An important aspect of corporate bonds is the tradability in financial markets and 

thus easier risk transfer compared to ordinary loans, which are generally held in the 

banking book of a financial institute up to maturity (Schiffmacher & Humlach, 2009; 

Witzany, 2017). The term structure and maturity profile of a bond is a decisive aspect, as 

they relate to cash flows and (default) risk over the time horizon, and a bond is hence 

normally rewarded with a higher premium the higher the duration of the (otherwise 

equivalent) bond is (IMF, 2009, pp. 26, 39).22 

One differentiates along the maturity line between short-term bills (e.g., the 

American “T-bills”, German “Schatzanweisungen”) then obligations, medium-term notes 

(MTNs) or T-notes, and finally long(er)-term bonds as different types of notes or so-called 

fixed income instruments (Fabozzi, 2020; Maliqi, 2012; SEC 2008). 

 

Figure 1 Fixed-income instruments, sorted along with their original maturity.  

Source: Own illustration 

Depending on tradability, placement type (public or private), and ownership status 

bonds are further classified (Fabozzi, 2020). Private placements are issuances that are 

only available for a pre-selected limited group of investors, in some cases even only one 

investor with very specific requirements for the note, whereas public placements are 

placements for the general investing public with equal conditions and mainly executed 

via auctions or public offerings, e.g., on a stock exchange or exchange platform (Fabozzi, 

2020). Registered bonds or registered note loans are placed for a certain, pre-known 

 

22 This is however not always the case, especially preceding recessions and in times of financial distress an 

inverting yield curve is rather common, cf. (CFI, 2022b). 
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owner and the rights of the owner are connected to that entity, similarly, promissory note 

loans (often referred to by their German origin as “Schuldscheindarlehen”, SSD) as 

described in (Reichling et al., 2005, pp. 170-177). Consequently, they are not traded, and 

risk concentration is higher (Reichling et al., 2005). 

Additionally, order bonds are existing, which award the owner the right to hand it to 

certain other entities in a pre-defined endorsement fashion (assignment rights23 ), see 

(Fabozzi, 2020). They are however less frequently issued and utilized in practice 

compared to registered notes or promissory note loans (Reichling et al., 2005). 

The remaining types of bonds are known as bearer bonds, which are publicly listed with 

a defined unique international securities identification number (ISIN) and are freely 

traded, possibly in an anonymous fashion, e.g., on a public exchange (Fabozzi, 2020; SEC, 

2008; Schiffmacher & Humlach, 2009). 

The type and number of issued securities have to be registered by a registrar holder, 

for bearer bonds often large banks or functional settlement instances (e.g., Clearstream 

Banking International in Luxembourg) are responsible for carrying out that duty whereas 

for named, “personal” notes24 usually the emitting bank itself is executing that process 

(Clearstream, 2022). 

All of these securities illustrate debt and are hence exposed to credit risk. They 

are treated within a unified credit risk framework from Chapter 2 onwards. Furthermore, 

debt securities like bonds can be classified by the type of their underlying collateral 

(“secured-ness”) into unsecured or secured respectively collateralized instruments (IMF, 

2015; SEC, 2008).  

Instances for secured bonds are covered bonds based on real estate (e.g., 

mortgages), public emitted loans by state or municipal agencies, ships, or even airplanes 

as collateral (Packer et al., 2007). The most prominent and original versions, besides 

Anglo-American covered bonds, are the German “Pfandbriefe” and the Luxembourgish, 

Swiss, or French “Lettres de gage”25 (Packer et al., 2007). Secured debt decreases credit 

risk in a natural fashion, as it reduces the possible loss amount given default of the 

counterparty by the sell-off value (possibly with a “haircut”) of the collateral (Bouteillé 

& Coogan-Pushner, 2021; de Laurentis et al., 2010, pp. 20-21). 

 

23 German (e.g., for order bonds, SSDs): “Zessionsrechte”. 
24 Like the SSDs and registered bonds described. 
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Further examples of secured finance are repos (repurchase agreements), which are 

collateralized by a security (e.g., a stock or bond) and contain the promise of the lender 

of the security (for which it received money) to buy it back including interest or fees 

(Bouteillé & Coogan-Pushner, 2021, p. 219; Schindler & Hindelang, 2016). Hence, repos 

are an opportunity to receive short-term liquidity in a rapid way; or gain the possession 

of a security for a short time in case one is positioned on the counterparty side of the 

transaction (Schindler & Hindelang, 2016). Depending on the side of the transaction an 

entity resides, one is consequently referring to that instrument as repo or reverse repo 

respectively. 

Furthermore, the insolvency rank of the creditors can be differentiated, where 

junior (or even first-loss peace) debt is ranking low, and is hence served late, mezzanine 

debt is in between, and senior debt is ranking high hence served first (Nijs, 2013). 

Therefore, different credit risk profiles can be represented by different ranks (and 

tranches). One should stress at that point that mezzanine capital as a hybrid form can 

appear on one hand in the form of mezzanine equity (like silent partnerships, German 

“Genussscheine”, or for instance participation rights with equity kicker) or on the other 

hand as mezzanine debt (Nijs, 2013). Technically, the latter is a special form of 

subordinated debt (Fabozzi et al., 2008b). Additionally, there are also other forms of 

hybrid capital existing, yielding characteristics of equity capital as well as characteristics 

of debt capital (EY, 2021; Fabozzi et al., 2008b). 

Examples are nonstandard participation rights with specific triggers or special 

convertible bonds as contingent convertible bonds issued by banks, often abbreviated and 

referred to as “CoCos”, with a regulatory call option executed once the bank’s equity falls 

under a pre-defined threshold and would therefore breach regulatory requirements (Albul 

et al., 2010; Avdjiev et al., 2013; EY, 2021; Frank, 2014). Contingent convertibles can 

serve as useful tools for banks to safeguard that the institutes fulfill their regulatory capital 

requirements. 

In the financial world debt securities with a maturity of less than roughly a year 

(conventionally 397 days) are usually considered money market instruments and 

abbreviated as MMIs (IMF, 2015, p. 10). They are called commercial papers, e.g., in the 

case of short-term promissory note loans issued by a company, or in case they have a 

tradable and a deposit-like component with a certain named owner the instruments are 

labeled as certificates of deposit (Choudhry, 2011; IMF, 2003; IMF, 2015, p. 65). 
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Having illustrated the types of equity and debt in the financial markets the next 

step is to consider the capital of banks more precisely, as this is the foundation of most 

regulatory purposes like the common reporting framework COREP26 with its own funds 

requirements and the basis to cover (potential) losses hence materialized risks (Hull, 

2015). While debt and third-party equity (holdings) thus bear risks like credit risk, own 

funds on the other side shall safeguard against the risks. 

When regarding the banking sector in a more detailed fashion one has to be 

especially aware of the tier structure of banks’ regulatory capital, the so-called regulatory 

“own funds” (BIS, 2019). The question of sufficient regulatory capital, which can absorb 

(potential) losses and ensures the survival of a bank, is the central one of regulatory capital 

requirements and is dealt with in detail in this chapter (Rutkowski & Tarca, 2015; Witzany, 

2017, p. 2). 

Many regulatory changes and capital charges in that area were due to financial 

crises and turmoil in the past (Hull, 2015, pp. 368-416). In terms of laws and regulatory 

requirements for banks, the thesis concentrates on the European Union. While most of 

them are derived from the (international) Basel accords, some details and exact 

requirement quantities differ compared to other jurisdictions like the United States as 

shown in (Sabel, 2013; Witzany, 2017, pp. 11-16). 

The most important capital for a bank is CET 127, common equity tier 1, consisting 

of own sharesCequity, retained earnings, funds for general banking risk, and accumulated 

other comprehensive income – AOCI (Bundesbank, 2022; CFA, 2022c; European 

Commission, 2019, §26). The decisive part is formed by own shares and retained earnings 

(Hull, 2015). A precise list of which instruments are eligible as CET 1 is updated every 

few years by the European Banking Authority (EBA, 2021e). It is the core capital of a 

bank and the “hardest”, i.e., safest and directly available source of capital (Bundesbank, 

2022; Hull, 2015). 

Second to it is AT 1, additional tier 1, which is mainly hybrid capital like 

participation rights or silent partnerships meeting further requirements as perpetuity, 

instruments have to be fully paid up, the acquisition of ownership is not (indirectly) 

funded by the entity itself, and no early redemption is incentivized for the institution 

 

26 See the European Banking Authority (EBA) on the Common Reporting Framework (COREP) in (EBA, 

2021d) or for the British case in (FCA, 2021). 
27 See, e.g., the Bundesbank on CET 1 and own funds for definitions and a broad overview (Bundesbank, 

2022). Sometimes also denoted CET1 or CET-1. 
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(European Commission, 2019, §52). It is also highly valuable for regulatory purposes. 

The combination of these, CET 1 and AT 1, is called tier 1 capital (T 1) implicating (BIS, 

2019): 

 𝑇 1 =  𝐶𝐸𝑇 1 +  𝐴𝑇 1 (1) 

Whereas before the great financial crisis there were three distinct kinds of tier 

capital existing, in the aftermath, following thorough reviews of its causes and 

assessments of the optimal capital structure of banks, a more conservative approach was 

followed and tier 3 capital abolished (BIS, 2019; Hull, 2015, pp. 152-164). Consequently, 

besides tier 1 capital there only exists tier 2 capital (T 2) in the realm of regulatory own 

funds (Bundesbank, 2022). The T 2 category contains mainly subordinated bonds – apart 

from national-specific instruments, most however were ceased after a transitional phase 

in 2021C2022 – with a remaining maturity of at least five years (European Commission, 

2019). In case the bond with such an original maturity bears a current maturity within a 

shorter period of time, this remaining maturity is split pro-rata and with x years of time-

to-maturity (TTM) as xC5 of the carrying amount – however normally calculated day-wise 

(EBA, 2013).28 This means xC5 of its book value and accrued interest29 are considered 

own funds T 2 eligible, whereas (5–x)C5 of the carrying amount are considered 

subordinated T 2 in phase-out and hence not (applicable) T 2 (EBA, 2013). Subordination 

by law, contractual subordination, or statutory subordination are eligibility characteristics 

as stated in the CRR III, e.g., a contractually subordinated own funds eligible plain-vanilla 

bearer bond with TTM of seven years is a regulatory recognized part of a bank’s T 2 

capital. The sum of tier 1 (T 1) and tier 2 (T 2) capital is known as total capital (TC); hence 

it can be written as (BIS, 2019; European Commission, 2019): 

 𝑇𝐶 =  𝐶𝐸𝑇 1 +  𝐴𝑇 1 +  𝑇 2  (2) 

The CET 1, AT 1, and T 2 capital components, also labeled Pillar 1 capital, are 

essential for a bank, and have to account for at least 8 % of its risk-weighted assets (RWA) 

as a regulatory requirement (BIS, 2019; Hull, 2015, p. 373).3031 As will be shown later, 

 

28 Calculation of outstanding tier 2 (T 2), which is succeeding the pre-payment of amounts that have been 

amortized or “phased-out” (EBA, 2013, p. 1). For a calculation example refer also to (EBA, 2013). 
29 Book value (BV) and accrued interest (AI) are summed up and called carrying amount (CA): CA = BV + 

AI. 
30 For these assets exposure on-balance-sheet, as well as off-balance-sheet and derivative exposure, has to 

be included - this is then part of the so-called Cooke ratio (Hull, 2015, p. 370). 
31 These 8 % are also sometimes denoted as capital adequacy ratio – CAR (Witzany, 2017, pp. 15, 108). 

https://d.docs.live.net/3fdb7a6ff677fb8d/Dokumente/Thesis%2001-2022/Sicher%2003-05/Calculation%20of%20outstanding%20Tier%202%20capital,%20following%20pre-payment%20of%20amounts%20that%20have%20been%20amortised%20or%20phased-out%20|%20European%20Banking%20Authority
https://d.docs.live.net/3fdb7a6ff677fb8d/Dokumente/Thesis%2001-2022/Sicher%2003-05/Calculation%20of%20outstanding%20Tier%202%20capital,%20following%20pre-payment%20of%20amounts%20that%20have%20been%20amortised%20or%20phased-out%20|%20European%20Banking%20Authority
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when considering the banks’ assets, regulators are mainly interested by the “risky-ness of 

assets” not by the pure nominal amount of them, hence the exposure of assets is not taken 

nominally but attached with a certain risk weight – RW (Hull, 2015). In the early days of 

the Basel accords (Basel I) these weights were mainly 0 % (e.g., for cash, state debt), 

20 % (OECD issues, etc.), 50 % (e.g., secured mortgages) or 100 % (corporates, more 

risky debt, etc., extended by a special 150 % class) as Hull or Witzany describe (Hull, 

2015, pp. 373-374; Witzany, 2017, p. 15). Later the weights in the so-called standardized 

approach – and even more regarding the method known as internal models, the alternative 

way for suitable banks to calculate risk weights (on their own) described in detail in the 

following chapters – were calibrated in a more sophistical manner. As will be seen in the 

course of this thesis the mentioned 8 % ratio, comprising of a compulsory 4.5 % CET 1, 

1.5 % AT 1, and 2 % T 2, appears throughout many pieces of legislation (Hull, 2015, p. 

405). 

The idea behind the 8 % figure is grounded in the empirical fact that the 

unexpected losses (UL) and the RWA relate to expected losses (EL) (Witzany, 2017, p. 

111). The factor is roughly three to four in total, i.e., totalCstressed losses (TL) are that 

times higher when for instance a 99.9 % confidence interval is used, so (Witzany, 2017, 

p. 111): 

 𝑈𝐿 = 𝑇𝐿 − 𝐸𝐿  (3) 

Therefore, if one takes an average portfolio (of for instance BB+ to B- rated 

companies), the historic default rate is roughly 5 %, the historic loss rate that occurs 

(subtracting the recovery amount one can receive) is roughly 60 % for senior unsecured 

debt hence the expected loss is roughly 5 % × 60 % = 3 % (Witzany, 2017, pp. 111-112). 

Now 3 % × 3 – 3 % = 6 % and 3 % × 4 – 3 % = 9 %, the mean is 7.5 % and hence rounded 

8 %. 

Many formulas in the European implementation of the finalization of Basel III, 

the capital requirements regulation CRR III, contain the 8 % figure or equivalents thereof, 

like a factor of 12.5 with which many absolute sums of risk covering capital are then 

multiplied (European Commission, 2019; Hull, 2015, p. 380; Witzany, 2017). Equities in 

the standardized case are then equipped with a credit risk weight (RW) of normally 300 % 

for publicly traded and 400 % for other entities, and may reach 1.250 % (hence with factor 

12.5 the complete value as capital backup is required) for “high-risk” cases, as intuitive 

(BCBS, 2019, pp. 10-12). 
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Figure 2 Breakdown of the Pillar 1 (P1) requirements for own funds according to 

the CRR III.  

Source: Own illustration. 

The supervisory bodies extended their requirements in terms of a bank’s solvency 

by adding a second pillar of capital32 for own funds as, e.g., explained by the ECB (ECB, 

2022c). It is denoted as Pillar 2 requirement (P2R), which is individually set by the 

supervisory authorities in the supervisory review and evaluation process (SREP) as laid 

down in (EBA, 2018; EBA, 2018b). In the course of that process, the regulators are 

checking the solvency capital and liquidity of a bank in a detailed fashion, and also 

validate the bank’s internal capital adequacy assessment procedure (abbreviated as 

ICAAP for capital and ILAAP for liquidity) in terms of quantitative and qualitative 

aspects (Buchmüller & Igl, 2019; Hull, 2015).33 The P2R then contains the results of those 

findings, special risks or internally calculated excesses of main types of risk as well as 

risks not covered in Pillar 1 as the interest rate risk in the banking book (BIS, 2019c; EBA, 

2018; Hull, 2015, pp. 212-234). 

The EBA updates its guidance for the SREP process regularly, the latest was a 

slight modification in 2022 (EBA, 2022). 

 

 

32 Definition of Pillar 2 by the ECB as in (ECB, 2022c). 
33 Also cf. the Bank of England on ICAAP, SREP, and Pillar 2 (BoE, 2021). 
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Figure 3 SREP – the process, assessment, and measures.  

Source: Own illustration, according to the EBA (EBA, 2018). 

Qualitative results of the EBA’s yearly stress test for significant institutes34 (SIs) 

or the nationally supervised LSI stress test (formerly known as “NZU”CLIS35) for less 

significant banks are also included in the P2R in euro area countries (ECB, 2022c; Farmer 

et al., 2022). Finally, a marking in four descending categories of interest within the scale 

of one to four, according to the complexity, type and size of business, risk awareness and 

appetite, governance and control measures, systemic importance and business strategies 

of a bank, takes place (Buchmüller & Igl, 2019; EBA, 2018; EBA, 2018b, p. 11). Having 

set a specific requirement for P2R aligned with a certain range of that mark, hence an 

absolute add-up to the former 8 % of, e.g., another 2 %, one derives at the TSCR, the total 

SREP capital requirement (EBA, 2022).  

Since the year 2021, the EBA and ECB have also gradually introduced climate 

stress tests accompanied by given methodologies and guidelines for banks (ECB, 2022). 

In 2022, the first overall climate stress test – stressing the banks’ available capital and 

consisting of three modules with short-term and long-term scenarios for transitional and 

 

34 The European Banking Authority (EBA) uses the term (financial) institute in official documents as a 

general one for banks, savings and loans associations, etc., throughout this thesis the term institute is used 

interchangeably with the term banks. A current list of institutes that are deemed significant by the European 

Central Bank (ECB) and hence directly under ECB (and EBA) supervision is available here (ECB, 2022d). 
35 “Niedrigzinsumfrage”/Low-interest survey 
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physical risks – was executed in practice (ECB, 2022). During that test, institutes are 

obliged to break down and categorize their business counterparties and clients by their 

amounts of CO2 emissions and their efforts to scale back on these emissions in a precise 

manner (ECB, 2022). In a medium-term perspective, the results are expected to become 

parts of ICAAP and the P2R (Deloitte, 2020).  

If one then adds the combined buffer requirement for banks (CBR) to the TSCR 

the result is the OCR, the overall capital requirement (EBA, 2022). As indicated by the 

name the combined buffers serve as additionally available capital buffers. The buffers 

consist of individual components as well as general or systemic ones (Witzany, 2017, p. 

12). Thus three sub-buffers are defined. A national counter-cyclical buffer (CCyB36) to 

mitigate the credit cycle and avoid exuberances, which is set rather similarly within the 

euro area, then a capital conservation buffer (CCB 37 , of 2.5 %) and finally certain 

systemic buffers, if an institute is relevant for the entire national, European, or global 

financial system – and hence coined a systemically important bank, a SIB (Behn et al., 

2022; EBA, 2020; Hull, 2015, pp. 405-406). 

 

 

36 The countercyclical buffer (CCyB) is described in more detail here: (ESRB, 2022). 
37 The capital conservation buffer (CCB) is described in more detail here: (ESRB, 2022b). 
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Figure 4 Overall capital requirement (OCR) for banks.  

Source: Own illustration, in accordance with EBA regulation as in (EBA, 2018; EBA, 2022). 

As the “interconnectedness of banks” severely amplified the financial crisis in 

2008C9, a prudential view of these connections became a strong focus of supervision 

(Freixas & Rochet, 2011; Hellwig, 2008). Regulators tried to avoid a situation where 

institutes are “too interconnected to fail” beside their exposure sizes (known as “too big 

to fail”, abbreviated TBTF38 ) and could thus cause the necessity of a public bail-out 

instead of an ordered resolution (Freixas & Rochet, 2011; Hellwig, 2008; Hull, 2015, pp. 

152-164). As a consequence, the corresponding systemic capital buffer requirements were 

set (Behn et al., 2022).  

While the bank lending and capital borrower’s balance sheet channel was regarded 

rather early in the academic literature, summarized for example by Bernanke in 1995, the 

bank capital channel only became a serious research topic with the Basel accords and 

increasingly after the GFC (Bernanke & Gertler, 1995; Drumond, 2009; Gordy & Howells, 

2006). Drumond gives a comprehensive overview of the pro-cyclical effects of the Basel 

accord‘s bank capital regulation, and as a consequence of these studies, the 

 

38 See, e.g., the FINMA as Swiss banking supervision authority, comparable in other jurisdictions (FINMA, 

2014). 
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countercyclical buffer (CCyB) was introduced to mitigate amplifying effects (Drumond, 

2009, table 1). Therefore, capital buffers are allowed and even encouraged to be used 

during economic downturns like the COVID-19 pandemic recession – as opposed to a 

breach of the TSCR which is never allowed – yet they should be fully filled in “normal” 

economic times (Behn et al., 2022; Couaillier et al., 2022). Moreover, the OCR figure is 

a certain threshold (among others) for the distribution of an institute’s returns. If it is not 

fulfilled distributions like dividends are not allowed to be fully paid out (European 

Commission, 2019; Hull, 2015). 

The final component of a bank’s required own funds is the P2G (Pillar 2 

Guidance) as it is denoted by the regulators (EBA, 2017). This is a guidance target on top 

of the bank’s OCR, which ought to be fulfilled in normal times. It includes a spare amount 

for potentially occurring times of financial distress in the future and unusual events. THE 

P2G comprises mainly the quantitative result of the mentioned EBA stress tests39 (EBA, 

2022). The OCR plus P2G sums up the “total capital”40, which is required by a bank under 

normal circumstances (EBA, 2017; Hull, 2015). It is important to note that, apart from 

the pre-defined Pillar 1 requirements, where CET 1 is 4.5 percentage points hence 

56.25 % of the first pillar, banks P2G as well as (pro-rata) P2R and the combined buffers 

have to consist of CET 1 capital (European Commission, 2019). Average available CET 

1 of banks per Q4C2021 was 15.4 % of risk-weighted assets on a fully-loaded basis, and 

TC was 19.6 % of risk-weighted assets – all on a size-weighted average – hence enough 

excess capital at the moment (EBA, 2021b, pp. 3, 13). In times of crisis like the COVID-

19 pandemic or adverse scenarios, a bank is allowed to also make use of the P2G, besides 

its buffers (EBA-Statement, 2020).  

Regarding the bank’s regulatory own funds, it is eminent that some subordinated 

T 2 debt capital is counted as regulatory capital, more precisely “own funds capital”, and 

is not considered as (full) debt capital in the regulatory sense (European Commission, 

2019). That differs from and is unequal to equity in the balance sheet according to 

accounting standards like IFRS or the (national) generally accepted accounting principles, 

nGAAP (IFRS, 2018). In either of them, T 2 would be counted as debt, not as equity 

 

39 For smaller banks in the EU similar LSI stress tests exist. In Germany, in that context, the P2G is 

sometimes referred to as EZK, “Eigenmittelzielkennziffer”, which might be translated as own funds target 

(figure). 
40 In an intuitive sense, considering that is the capital needed to fulfill the total aggregated requirements 

mentioned. Not to be confused with the official term total capital in Pillar 1 which is just the sum of T 1 

and T 2. 
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(IFRS, 2018). In recent years, due to its ranking in insolvency and its use in cases of bail-

in-scenarios, some debt is classified as minimum requirement of own funds and eligible 

liabilities (MREL) capital or in case of global systemically important banks, the so-called 

GSIBs, denoted as TLAC41-eligible (European Commission, 2019c). This bank resolution 

connected term MREL refers to a certain kind of debt, with a remaining maturity of at 

least one year, fulfilling regulatory clauses in the respective contracts (bail-in clauses and 

others, listed in article 44 of the BRRD II42, article 12 of the SRMR II43). This special 

debt is bearing no structure, e.g., can not be a structured note, while conventional floating 

rate notes that are based plainly on standard interbank offered rates (IBORs) like LIBOR44 

in GB, EURIBOR and EONIA in the EU, or their successor rates SONIA (GB), new 

EURIBOR, €STR (EU), or SOFR (US) are allowed (EIOPA, 2020; ESMA, 2021; Hull, 

2015, pp. 215-217; IFRS REG IASB, 2018). The aim is to keep that capacity facile 

enough to avoid obstacles to resolution as a too narrow time frame (hence the obliged 

residual maturity of at least one year) or too complex products which are hard to dissolve 

(hence no structured or derivative components except the IBOR-related ones are allowed) 

(Deloitte, 2016). 

Furthermore, there is no possibility of containing derivative components, and no 

creditor calling rights within that year’s timeframe are permitted by the BRRD (European 

Commission, 2019c). Especially subordinated – according to the BRRD II definition in 

the preamble 45  – MREL-eligible debt securities, forming the class of non-preferred 

(MREL-eligible) senior unsecured debt instruments, are of high regulatory importance 

and hence issued regularly by banks (SRB, 2022).46  

1.2 Alternative Assets and Investment Funds 

Apart from a single asset perspective on debt instruments and equity or own funds 

instruments – thus including capital required from banks by regulatory authorities to 

cover risks – one can group certain assets of possibly different asset classes together. The 

 

41 Total loss absorbing capacity 
42 The bank recovery and resolution directive II, consolidated version of 2019 (BRRD I was of 2014): 

(European Commission, 2019c). 
43  The single resolution mechanism regulation I, original version: (European Commission, 2014), 

amendment for SRMR II in (European Commission, 2019d). 
44 See the SEC’s statement on LIBOR transition to new IBOR rates (SEC, 2021b). 
45 The BRRD II and its preamble can be found here: (European Commission, 2019). 
46 See, e.g., Reinwald in a consulting whitepaper (Reinwald, 2018). 
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various assets might be forming a wider collection multiple investors are interested in – 

an (investment) fund47 (SEC, 2007). 

An investment fund frequently just called a fund, for the scope of this thesis is 

pooled capital belonging to numerous investors (European Commission, 2022). The fund 

manager uses this capital to purchase assets on behalf of the investors, while each investor 

retains ownership of his (own) parts or shares (Terraza & Razafitombo, 2013). By law, 

depending on the type of fund and the circumstance if the originator of the fund (which 

legally equals an investment PLC or LLP by Anglo-American law48) is also managing it 

internally or externally through a management company the so-called fund administrator 

and depending on the country’s further investment laws, also the assets have to be kept 

separated,49 specially protected by law, and stored by an external custodian or depositor 

(Gogarn, 2012). 

In the investment industry funds including just stocks and bonds (and cash) are 

called mutual funds or (rarely) mixed funds (Harkopf, 2016; SEC, 2007). However, there 

are further alternative assets and opportunities to invest money. They are also prone to 

(credit) risk as will be seen later. 

Alternative investments are then defined as investments in nontraditional assets 

and furthermore not in classical banking products (SEC, 2007; Zetzsche, 2020). Within 

that context stocks, bonds, and holding cash are considered traditional assets and sight, 

term, or saving deposits, and also life insurance contracts being traditional financial 

products (Chamber et al., 2020). An example of an alternative investment is a private 

equity investment or a stake in a wind or solar park. Funds that also contain alternative 

investments are coined multi-asset funds (Chambers et al., 2020; Zetzsche, 2020). 

 

 

47 The term fund here must not be confused with the term fund(s) in the context of own funds requirement, 

where it refers to the funding (re-financing) of a company’s assets. 
48 PLC: Public limited company (also denoted plc), LLP: Limited liability partnership (also denoted llp) 
49 As described by law in (European Commission, 2014b). 
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Figure 5 Mutual fund and multi-asset fund.  

Source: Own illustration 

A further classification of (sub-)assets in the realm of alternative investments can 

be done as in the following paragraphs. Comparable ways are found in documents of the 

industry professionals’ association AIMA® – the Alternative Investment Management 

Association® – or the industry’s standard institute CAIA®50  (Chambers et al., 2020). 

However, one should mention at this point, that in some terminologies and classification 

schemes currencies, commodities and also real estate holdings are not considered 

alternative investments, but asset classes in their own right, as in (Fabozzi et al., 2008; 

Fabozzi & Markowitz, 2011; Fabozzi et al., 2020). 

A typical alternative investment asset class is currencies (Chambers et al., 2020; 

Ponsi, 2007). Currencies can be disassembled further as a complete portfolio currency 

(e.g., a “U.S. dollar portfolio”), a share of a portfolio or they can appear in a hedged way 

(e.g., labeled “Quanto-Fund”, “EUR hedged tranche”).  

An investment portfolio (also just referred to as a portfolio) is moreover coined in 

this thesis as a collection of certain investable assets which are allocated to achieve an 

investment aim (Aby & Vaughn, 1995; Fabozzi & Markowitz, 2011; PMI, 2017). Such a 

portfolio groups (sometimes but not necessarily similar) assets together but does not have 

to be investable by different investors – it can also belong to just a single individual or be 

 

50 Chartered Alternative Investment Analyst Association® 
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artificially constructed for certain investment structuring aims and lacks strict legal 

definitions – as opposed to a fund (Fabozzi & Markowitz, 2011). A fund hence ought to 

be considered as a special legal and technical form of an investment portfolio with various 

fund investors (SEC, 2007). Apart from a few risk-decreasing legal requirements – as 

minimal diversification requirements like the “5-10-40”51 - concentration rule in Europe 

or regarding fund leveraging utilizing derivatives or, e.g., special bond investment grade 

quality requirements for insurances and pension funds – funds and portfolios are regarded 

in an equivalent fashion from a risk perspective as a collection of correlated individual 

assets with their inherent risk characteristics. 

In the context of currencies, multi-currency baskets are trading baskets containing 

various different currencies and are frequently used for currency speculation (Garner, 

2012). Corresponding swaps (swap lines) for the currencies – allowing to exchange one 

currency to another at some timeframe in the future for a certain amount and price (the 

FX rate) – can be considered as well (Chambers et al., 2020; Ponsi, 2007). Especially 

multinational companies are in need of such instruments by the nature of their business. 

For many companies which operate in different countries thus currency 

management along the whole supply chain is essential. Derivatives on currencies like 

options and forward contracts, optionally allowing them (or force them in the case of 

forwards) to receive a certain amount of a currency at a certain time (period) in the future 

for a certain price to hedge against a disadvantageous price movement of a currency, like 

a sudden unwanted decline of the euro-dollar exchange rate, form an indispensable tool 

(Garner, 2012; Ponsi, 2007).  

A rapidly evolving class of alternative investments is one of crypto-assets,52 

including cryptocurrencies, which are generally based on the distributed ledger 

technology (DLT) and increasingly regarded by the media and public as an alternative to 

gold or other currencies (Curran, 2021; Feyen et al., 2022; Feyen et al., 2022b; Sandner 

et al., 2020; Valuewalk, 2021). The regulatory environment is only set up in a rather 

rudimentary way so far, and some details are still discussed (BIS, 2019b; Giudici et al., 

 

51 Funds according to the UCITS directive (alternative ones according to the AIFM directive and hence, 

e.g., a closed alternative fund not) are not allowed to invest more than 10 % of the fund’s assets in one 

single counterparty. Furthermore, all assets with more than 5 % of the fund combined must not surpass 

40 % of the fund’s assets. Hence, a fund needs to hold at least 16 assets of different counterparties. 
52 Opinion of the European Central Bank “on a proposal for a regulation on Markets in Crypto-assets 

(“MICA”) and amending Directive (EU) 2019/1937” (ECB, 2021). 
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2020). Famous proponents of “cryptos” are Bitcoin®, Ripple®, Solarna®, Cardano®, 

Ethereum®, or Tether® (Nakamoto, 2008; Sandner et al., 2020). 

These share some of the properties of currencies as tradability, exchange 

possibilities, acting as means of payment and partially possess storage functionalities, 

however not all (Chiu & Koeppel, 2017; Feyen et al., 2022). Especially, they are generally 

neither issued nor backed by central banks yet – though the Chinese central bank offered 

a crypto-renminbi prototype some time ago, and the western central banks work on an E-

euro and E-U.S.-dollar respectively as well.53  If they are not issued by central banks 

cryptocurrencies are no official, public means of payment or “money” (deVries, 2016). 

In case a central bank issues such an official digital currency one speaks of a central bank 

digital currency, a CBDC (Harvey et al., 2021). Only in particular cases cryptocurrencies 

are backed by assets and are then denoted as stable coins or stable cryptos like diem, 

formerly known as libra, issued by meta® (formerly facebook®). However, recently 

meta® decided to sell diem to Silvergate®, and its future “survival probability” seems to 

be low (FT, 2022). Some researchers and also the ECB generally question the stability of 

these stable coins, especially if, e.g., bank runs appear in times of a crisis (Panetta, 

2021).54 In reminiscence of the issuance of new stocks for a young company initially 

listed on an exchange platform, known as an initial public offering (IPO), the issuance of 

new coins is termed initial coin offering (ICO) as in (Sandner et al., 2020). The volatility 

for most cryptocurrencies like Bitcoin® or Ethereum® is remarkably high yet, which 

makes them unsuitable for, e.g., regular wage paychecks at the moment (deVries, 2016). 

The market risk might be thus seen as high. 

However, they are increasingly used as speculative investments especially among 

young groups of investors using online and app-based investment vehicles like the 

Robinhood® platform combined with Reddit® 55 , sometimes applied as a portfolio 

diversification component with a low overall share in the whole portfolio (Welch, 2022). 

Crypto-exchanges as FTX®, founded just three years ago, are meanwhile valued higher 

 

53 Central bank digital currencies (CBDC) or crypto-money are expected to get launched during the next 

years – like the mentioned E-euro, as described in (Sandner et al., 2020). 
54 In the process of the last finalization of this thesis a similar scenario even happened, when the TerraUSD 

stable-coin, swap-related to the cryptocurrency Luna, crashed. See, e.g., the Wall Street Journal article 

“Crash of TerraUSD Shakes Crypto. ‘There Was a Run on the Bank.’” in (Osipovich & Ostroff, 2022).  
55 Coming to fame during the 2021 short squeeze of the game stop stock where young crowd retail investors 

made (temporarily) high profits for collectively agreeing to buy and bet against certain short-positioned 

hedge funds. Popularly illustrated in (Yun, 2021). See also for more details (Welch, 2022). 



37 

 

than, e.g., Deutsche Bank® as of Mai 2022.56 In smaller countries cryptocurrencies are 

even used as a means of exchange and alternative for the weak local currency or the dollar 

dependence – as in El Salvador57, Nigeria, Guatemala, or the Central African Republic58 

(Sandner et al., 2020). Increasingly other tokenized and encrypted forms of assets appear 

– combined with smart and verifiable contracts, and labeled as level II cryptos – like 

crypto-SSD-IOs59 (Harvey et al., 2021). Meanwhile, level II networks and platforms as 

Lightning® overcome weaknesses of the “old” level-I assets as Bitcoin® (Arcane, 2022; 

Harvey et al., 2021). Companies like Tesla® or Visa card® as payment providers also 

increasingly accept cryptocurrencies as means of payment (Lee, 2021; New York Times, 

2021). One should however keep in mind that while the (credit) risk of default for states 

as currency providers is very low and sometimes negligible, though possible as known 

from the cases of, e.g., Argentina, Russia, or Greece, the one from private cryptocurrency 

issuers is supposed to be higher in most circumstances (Blustein, 2005; Feldstein, 2002; 

Sandner et al., 2020). Proper due diligence concerning the (credit) risk of the issuer is 

thus recommended. 

As currency and cryptocurrency trades are executed around the clock and form a 

trillion-dollar market yearly, currencies are considered an essential alternative asset class 

(Feyen et al., 2022b; Giudici et al., 2020; Harvey et al., 2021; Newbery, 2022; Statista, 

2022; Statista, 2022b). 

Besides currencies, major alternative investment instruments are commodities 

(Harasheh, 2021). Commodities are commonly divided into “soft-commodities” like 

grain, wheat, soya, cacao, coffee, sugar cane or pig halves and “hard-commodities” like 

copper, aluminum, or steel, and the special treated commodities gas and oil (James, 2017). 

The most-traded sorts of (crude) oil are the light ones west Texas intermediate (WTI) and 

Brent oil, e.g., from the North Sea (CFI, 2022d; ICE, 2020). In several contexts energy is 

regarded – as in the traded case on power exchanges or also in the area of project finance 

(cf. below) – as another form of a commodity in its own right, and in the literature 

 

56 See FTX® on its website (https://ftx.com) and for a comparison with, e.g., Deutsche Bank® use the 

calculator for market caps, retrieved Mai 15, 2022, from https://companiesmarketcap.com/deutsche-

bank/marketcap/#:~:text=As%20of%20May%202022%20Deutsche%20Bank%20has%20a,company%20

by%20market%20cap%20according%20to%20our%20data.?msclkid=33859087d02f11ecb4bde67d38ed8

e82 
57 As illustrated in the New York Times on (New York Times, 2021b). 
58 In late April 2022 (BBC, 2022). 
59 Schuldscheindarlehen-Initial Offering, SSD-IO, with SSD being the German version of a promissory 

note loan. 
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sometimes even “weather” and weather derivatives are seen as a form of a commodity 

(Kulkarni, 2004). Weather derivatives are used for hedging agricultural exposures as well 

as for speculative objectives (Cao et al., 2007).  

Having a basic economic function as wheat for nutrition or steel for buildings, 

gold for jewelry and its accoupling physical delivery and settlement properties as well as 

a speculative, future-oriented character, commodities might be employed for various 

purposes (James, 2017). Market participants however in any case need a deep 

understanding of the fundamentals and market sentiment – acting then, e.g., as 

commodity trading advisors (CTAs) in investment banks or brokerage firms – to be 

successful (Fabozzi et al., 2008). Regarding commodities, credit risk appears in the form 

of pre-payments or delivery in advance in the timeframe where the commodity is paid for 

but is not delivered by the counterparty yet or vice versa (Bouteillé & Coogan-Pushner, 

2021). It is sometimes also denoted as delivery risk, or in the case of a settlement or 

clearing intermediary labeled settlement risk and regarded as a special subcategory 

(Bouteillé & Coogan-Pushner, 2021). Once one has obtained the commodity and 

possesses it oneself60 the credit risk component has evidently disappeared, other than for 

instance market risk.  

Special commodity exchanges exist for commodity trading in the United States 

like the Chicago Mercantile Exchange (CME®), Chicago Board of Trade (CBOT®), 

Chicago Climate Exchange (CCX®), and U.S. Futures Exchange (USFE®) in Chicago, 

the Intercontinental Exchange (ICE®) in Atlanta, the Kansas City Board of Trade 

(KCBT®), or the New York Mercantile Exchange (NYME®), see (Commodity, 2020). 

In Great Britain for instance the London Metals Exchange (LME®) and London 

Commodity Exchange (LCE®) are operating, whereas in continental Europe the 

European Energy Exchange (EEX®) in Leipzig or the Climate Exchange (CLIMEX®) in 

Amsterdam are important, as well as for example the commodity department of the 

European Exchange EUREX® and Euronext® (Commodity, 2020). While increasingly 

also so-called exchange-traded funds (ETFs61 ) on commodity shares, certificates on 

commodities like exchange-traded commodities (ETCs), or derivatives62 are offered to 

 

60 Otherwise if it is held in a depository the named risks (delivery and depositary) arise again. 
61 For a definition see the SEC in (SEC, 2017). 
62 Derivatives can be forwards (which have to be exercised and fulfilled by both sides), options (which can 

be exercised when the option holder chooses to decide so), exchange-traded forward contracts called futures, 

or swaps (where an exchange, a “swapping”, of assets and/or money takes place). Furthermore, 

combinations of these like swaptions - which is an option on a swap - exist. 
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retail investors, the commodity market still remains largely in the hand of institutional 

investors, banks, and large global companies (Fabozzi et al., 2008; Schaeffer, 2008). This 

asset class is further exposed to enormous geostrategic and political risk besides the 

normal market forces, as lately seen in the case of the Russian invasion of Ukraine in 

2022, which spurred an enormous rise in oil and gas prices in the western world (Caldara 

& Iacoviello, 2018; Corden, 1984; ECB, 2022b; Murray, 2018; WEF, 2022; Weizhen, 

2022). 

 

Figure 6 Categories of commodities.  

Source: Own illustration. 

Real estate, the next class of alternative investments, is usually separated into the 

residential real estate and mortgage sector on one hand and the commercial (and 

industrial) real estate side on the other (Haight & Singer, 2004; Goddard & Marcum, 

2012). Often, they are abbreviated as RRE and CRE (NAREIT, 2021). Residential real 

estate can be further divided into apartments (flats) or houses, multi-family or single-

family homes, and special forms like detached houses or semi-detached (duplex) houses 

(Haight & Singer, 2004). 
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For (semi63-) professional investors especially residential building complexes and 

the rent or commercial sell-off of certain units are interesting, whereas the area of private 

house buying or home construction is not considered (Haight & Singer, 2004). Yet, as 

seen, these can be utilized as well as collateral for the loans banks are reaching out, 

therefore reducing the banks’ unsecured credit risk exposure or collateral (covered) pool 

for covered bonds. Regarding real estate and real assets in general, credit risk may arise 

in a natural fashion, if an estate is funded by a loan or bond, or it may arise again due to 

pre-payment before the estate is completely constructed (construction risk) and ready-to-

use (Haight & Singer, 2004; Hull, 2015). Afterward, risk may arise similarly through (in 

most cases temporary) material, quality, or operational problems, when the promised 

amount (like rent or energy) cannot be delivered due to quality problems – subsumed as 

operational risk, which is introduced later. Credit risk may again arise in the form of 

default risk when pre-payments or acquisition of shares of an estate or real asset have 

taken place, but no cash flow is received because the provider or its users (tenants, energy 

consumers) default (Bouteillé & Coogan-Pushner, 2021). 

In terms of commercial real estate, the sectors which are currently of the highest 

demand investor-wise are office space, logistic real estate, retailers, and hotels (NAREIT, 

2021). Common types of portfolios or funds operating within the realm of real estate are 

either “closed (real estate) funds”, which have certain strict conditions on minimum 

investable amounts, withdrawal restrictions, and tax treatment, and are mainly used by 

(semi-) professional investors as investors become stakeholders in the business as liability 

partners, or “open-ended real estate” funds with fewer restrictions, as the possibility to 

only one year-ahead selling announcements in the EU and shorter minimum holding 

periods (Goddard & Marcum, 2012; SEC 2016, p. 5). As indicated, in the real estate 

investment sector one thus has to differentiate between direct investments or holdings, 

e.g., the direct purchase of a building complex, indirect fund investments, e.g., in “normal” 

open undertakings for collective investments in transferable Securities (UCITS) and 

stakeholderCownerships as in the case of (closed) alternative investment funds, known as 

AIFs (Gogarn, 2012). 64  Furthermore, a common investment vehicle are real estate 

investment trusts, REITs, which are single real estate companies or grouped indices of 

 

63 Semi-professional investors are defined as very experienced investors with a minimum commitment of 

200 000 EUROs (respectively 100 000 EUROs for the European venture capital fund regulation), cf. (ICLG, 

2021). 
64 Definitions by the European Commission in (European Commission, 2022). 
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companies in the real estate sector and hence represent an investment in (real estate) 

stocks not directly in real estate like building complexes (Sotelo & McGreal, 2013). 

Additionally, in many cases of real estate investments – in the case of infrastructure or 

renewables investments like in wind parks this fact holds as well – one considers not only 

already available, completely constructed properties but the area of project finance with 

the whole life cycle of real estate including planning, building, and then selling or renting 

(leasing) to others, and even managing the estates is regarded (Goddard & Marcum, 2012). 

In project finance, the development and construction phase have a substantially different 

risk and capital leverage65 profile and often even different sponsors66 than the phase of 

running the project (Joseph, 2013). Thus, investments in new greenfield projects vs. in 

existing brownfield projects, in which case the estate is already completely built, are 

differentiated (Adams & Watkins, 2002; Preqin, 2022). 

Similar project (or object) finance sponsored forms of investment is infrastructure 

investments. They inherit their own risk and return characteristics (Lewin et al., 2015). A 

special case of them, which is frequently referred to as an own asset class, is the sub-

category of renewable assets (“renewables”) like solar and wind power plants or parks, 

but also including energy forms like water power, geothermal energy and bio power 

(Mohamadi, 2021; WEF 2016). 

In contrast to that, classical infrastructure projects are, e.g., toll collect highways 

or other infrastructure typically build within a PPP, a public-private partnership (APEC, 

2018). A sub-classification of infrastructure investments including renewables is achieved 

by closer monitoring and assessment of the underlying risk and return profiles. Low-risk, 

“income type” investments are labeled as core infrastructure investments like social 

infrastructure or guaranteed PPPs (Gourntis, 2017; Mercer, 2021). Credit risk during the 

operating phase is generally rather low because of the PPP design, often quasi-

monopolistic well-rated providers, state guarantees for loans and long-term contracts 

(Mercer, 2021; Waters et al., 2015). The next stage core plus (Core+, CP) describes rather 

similar but slightly more risky projects, frequently implemented with the help of large 

oligopoly companies (Mercer, 2021). Finally, the terms “value add(ed)” with a balanced 

risk profile and “opportunistic” with higher volatility and expected returns are used to 

 

65 Leverage is defined as the equity to debt ratio in financing a project (and on the other hand fund leverage 

of the equity/debt ratio within a fund, including derivative instruments). 
66 Synonym for certain classes of investors in the context of project finance acting as main underwriter or 

promoter. 
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define infrastructure projects. Usually, the expected returns on that different so-called 

infrastructure investment strategies are ranging incrementally from 4-5 % in the core case 

to 14-15 % in the opportunistic one. As usually the higher expected returns are linked to 

a higher counterparty (credit) risk and less experienced, economically fewer stable 

providers (Waters et al., 2015).  

Increasingly electronic infrastructure such as 5G-networks or cloud and data 

centers are becoming part of alternative investments in infrastructure (Mercer, 2021; 

Preqin, 2022). 

Many of the infrastructure linked vehicles – similarly as in the case of 

securitization transactions with ABS67 or CDOCCDS68 papers – are specially set up for a 

project (object) financing and risk transfer purpose and are hence called special purpose 

vehicles or special purpose companies, SPCs (Bouteillé & Coogan-Pushner, 2021, p. 317). 

Available data in reference to such projects is sometimes sparse compared to liquid time 

series69, and due to survivorship and appraisal bias it is less reliable or not representative 

for the entire class (Preqin, 2022). Yet, there are specialized providers like Cambridge 

Associates®, the self-proclaimed market leader Preqin®,70 EDHEC®, or the Cambridge 

university with its center for alternative finance (CCAF71 ) tackling these issues and 

providing increasingly better data. Modeling possibilities for these types of assets and 

available “proxy solutions” in case of sparse data are mentioned later on. 

In some cases, real assets combine not solely real estate but any type of investment 

bringing potentially “real” income, like the “natural assets” farmland – more generally 

the acquisition, development, and construction of land as described by the Basel and CRR 

III ADC exposure class – or timberland and waters (Demaria, 2020; Villanacci et al., 

2002). In addition, the asset class “machines, plant, and property” like fabrics, machinery 

or automotive vehicles are counted as real assets (Demaria, 2020; Villanacci et al., 2002). 

 

67 Asset-backed securities, securities in which coupon payments are (re-)financed by pooled, securitized 

underlying assets like auto loans, credit card loans, or mortgages. In the latter case, then called mortgage-

backed securities – MBS. 
68 Collateralized debt obligations, obligations that are securitized, pooled together to receive a higher rating 

due to – often questionable – diversification effects, divided into tranches, and then sold to investors. 

Similar to ABS, cf. (Bouteillé & Coogan-Pushner, 2021; Martin et al., 2014). 
69 Though there are also liquid alternatives like certain listed hedge funds and listed infrastructure available. 
70 As stated on the Preqin® website, retrieved Mai 16, 2022, from https://www.preqin.com/about/who-we-

are 
71 Cambridge Research Center for Alternative Finance at Cambridge university, retrieved Mai 16, 2022, 

from https://www.jbs.cam.ac.uk/faculty-research/centres/alternative-finance/?msclkid=07eb6f6db03811ec 

b9b497e791258b93 
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These types of assets are commonly associated with special forms of lending as well as 

financeCsale or operating leasing (Villanacci et al., 2002).  

Moreover, commodities and the real estate sector as well as real assets have 

proven to be valuable sources of diversification for a portfolio (Johnson & Jensen, 2001). 

Credit risk naturally may arise during the acquisition period in the form of non-delivery 

caused by the bankruptcy of the counterparty (Hull, 2015). It can arise during the 

development and construction period due to the default of developers, construction 

companies, or providers or during the operating period caused by the default of an 

external operating company or servicersCproviders (Bouteillé & Coogan-Pushner, 2021; 

Demaria, 2010). In rare cases, as these investments normally form a wide, rather 

diversified cohort, credit risk may appear also (indirectly) in terms of (defaults of) 

consumers, users, or tenantsCleasers (Bouteillé & Coogan-Pushner, 2021; Demaria, 2020; 

European Commission, 2019; Hull, 2015). Though these phases and cases might appear 

rather different, they can be treated again within a similar modeling framework as will be 

seen in Chapter 2. 

 

 

Figure 7 Project finance with the forms of real estate and real assets, classical 

infrastructure, and renewables.  

Source: Own illustration. 
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Real assets are increasingly popular as they outperform other classes during times 

of financial distress and high inflation (Blackrock, 2021; Demaria, 2020). This is possible 

as the income side can often be adapted through enforcing higher nominal prices, rents, 

or fees and increased demand for the goods such as energy which became relatively scarce, 

while the cost and expense side may be capped by “expense pass-throughs”, “beneficial 

leverage”, or higher replacement costs (Blackrock, 2021, pp. 4-6; Mayer, 2022). Inflation, 

as commonly known in economics and, e.g., shown by Friedman, is mainly a monetary 

phenomenon (Friedman, 1992; Lothian, 2014). High state debt is hence, especially when 

financed by quantitative easing, intricately linked with higher inflation (Reinwald, 2022a). 

Therefore, real assets are demanded in times of inflation, they serve as a natural hedge 

and diversification component in that regard (Demaria, 2020). A similar function and 

perception of inner value are accredited to precious metals (Darst, 2013). 

Precious metals are, e.g., gold, platinum, and silver which also serve as special 

asset classes (Darst, 2013). Especially gold has a thousands of years long perception as 

storage of high value, coin money, inflation protection, means of exchange, backup 

currency, or an underlying asset (Buranelli, 1979; Durant, 1954). In the US until President 

Richard Nixon’s 1971 decoupling of the dollar from the gold binding, established in the 

Bretton Woods agreement of 1944, the currency (US-$) was convertible into ounces of 

gold (Mayer, 2022; NMA, 2003). Apart from gold, which is besides jewelry and the 

luxury goods industry also used as effective conducting metal in the area of microchips 

and semiconductors, the chip sector enormously relies on rare metals – also referred to as 

“rare earths” – like Yttrium, Scandium, Samarium, or Thulium (Mosley, 2012). These are 

also considered alternative investment metals, though – contrary to their name – they are 

not rare around the world (Mosley, 2012). However, production sides are very expensive 

to build, and China is currently acting as a nearly monopolistic provider (Mosley, 2012). 

The geopolitical risk mentioned above, combined with the problem of undiversified 

supply chains, can be therefore seen in that respect as well. 

There is a wide range of other alternative investment opportunities, like hedge 

funds (Cumming et. al, 2021). Originally, this vehicle was set up for hedging 

(“protecting”) against market risk and building up risk-avoiding, averse positions in 

relation to its underlying (“base investment”), e.g., when holding (long) a certain stock in 

a broader portfolio and then simultaneously short-selling it, i.e., betting with the means 

of derivative options for a price decline of this stock, or equivalently eliminating its 
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individual, idiosyncratic risk when considered in a portfolio risk context (Cumming et al., 

2021; Holler, 2012). Since the 1990s however, hedge funds are generally considered 

investment vehicles that are free in their (dis-)investments and longer-term strategic as 

well as short-term tactical asset allocations, when opportunistic (Cumming et al., 2021). 

Hence, they intend to make profits in all market phases and business cycle periods, also 

falling markets (Holler, 2012). Hedge funds are divided by their applied investment styles 

and strategies, e.g., a “Long-CShort strategy”, “market neutral strategy”, “directional or 

relative value strategy”, “global macro strategy”, “event-driven strategy”, or “managed 

futuresCCTA strategy” (Baker & Filbeck, 2017). Derivatives such as forwards, futures, 

options and corresponding options’ strategies (as the “collar” or “butterfly”) are heavily 

utilized by hedge funds, and the overarching alternative investment class is commonly 

referred to as hedge funds & strategies (Baker & Filbeck, 2017). As hedge funds are 

directly related to their investments and usually have few operational business and risks 

besides, when investing in a hedge fund or fund in general the risk of the fund roughly 

equals the risk of its investments, and acquired holdings (Baker & Filbeck, 2017; 

European Commission, 2019). Hence, regulators envision a “look-through approach” 

(European Commission, 2019). For more details concerning hedge fund strategies, which 

are not in the further scope of this thesis, see for instance Cumming, Satchell, or Kiesel72 

(Bingham & Kiesel, 2004; Cumming et al., 2021; Satchell, 2015). Often, they are also 

categorized as the sub-class absolute return funds (Holler, 2012). 

A further, closely linked asset class is private equity, where the investors directly 

allocate their money into a fund that is investing in private (unlisted) companies with the 

means of equity and owner-type instruments (Demaria, 2013; Pöllath, 2018). 

Depending on the investment targets, i.e., the acquired companies’ age structures 

or “vintages”, positions in the market, and the phases of enterprise growth one 

differentiates between the styles of venture capital, buyout, growth, and distressed debt 

(Demaria, 2013). Venture capital is commonly denoted as VC (Demaria, 2013). In terms 

of VC, it is a widespread practice to even separate between the seed stage and startup 

stage in the early phase of an investment, the succeeding growth or expansion stage, the 

 

72 Bingham and Kiesel authored a standard book on risk-neutral pricing and valuation including common 

derivative hedge fund strategies (as bull-spread, bear-spread, wrangle, butterfly) - cf. (Bingham & Kiesel, 

2004). 
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following pre-IPO stage, and finally the multi- or later-stage when regarding 

corresponding funds (Braun, 2018, p. 4). 

Buyout investments are further classified by the type of initiator(s) of the buying-

out of (parts of) a company (Gleissner & Schaller, 2008). Management buyouts are 

initiated by one or more current managers or employees of a company who acquire the 

majority of stocks and buy themselves (parts of) the company making them the new 

owners (Demaria, 2013). If the management team is external (before the transaction) and 

acquires the company one speaks of a management buy-in, MBI (Braun, 2018, pp. 7-8). 

Leveraged buyouts and so-called squeezes73 with debt capital are the most popular form 

of buyouts, where private equity funds use (foreign) debt capital and hence a high 

debtCequity leverage ratio to acquire (parts of) a company (Demaria, 2013; Gleissner & 

Schaller, 2008). This is evidently a method to minimize the use of their own equity and 

to receive a higher return on equity. In practice, LBOs are often combined with MBOs, 

and managers receive equity incentives to align interests for the transaction (Braun, 2018). 

Another form of buyout transaction, where the PE investor (institution) directly acquires 

the company from the vendor is denoted institutional buyout, IBO (Braun, 2018, p. 7). 

Finally, owners’ buyouts are buyouts, where some of the (part) owners of a company buy 

up the whole (or majority) of a company, e.g., the rest of the free-floating stocks to gain 

full control (Demaria, 2013). This might be a method to gain control and hence change 

the (strategic) direction of a company when (parts of) the management of a company 

disagrees with the current owners on major decisions or the future strategy of the 

company and are convinced they have better strategies and can monetarize on them as 

new owners. The forms of buyouts are abbreviated as MBO (MBI), IBO, LBO, and OBO 

respectively (Braun, 2018, pp. 6-8). 

Growth style is the term for private equity investments in rapidly growing or 

already maturing companies (Demaria, 2013). Regarding the underlying risk and return 

structure, growth strategies are more similar to buyout strategies than to venture capital, 

which incorporates a considerably individual characteristic and vice versa (Braun, 2018, 

p. 4; Canderle, 2020; Pöllath, 2018; Ritchie, 2017). In the case of VC, the probability of 

default of an equity funded company is much higher, many startups do not survive the 

first years, hence a large cohort and well-diversified portfolio is essential for business 

 

73 Respectively called squeeze-outs. 
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investors to reduce credit risk exposure (Canderle, 2020; Demaria, 2013). For buyouts of 

established companies the equity (credit) risk is often comparable to one of “normal” 

peer-group companies (Braun, 2018). The overall risk, however, can be substantially 

higher for private equity investments and transactions, when buyouts are highly leveraged 

and funded by external debt (Demaria, 2013; Pöllath, 2018; Witzany, 2017). In all cases, 

proper due diligence of companies and a profound understanding of the market sector is 

required to be successful, and most investors are again (semi-) professional ones (Demaria, 

2013). 

There are special forms of private equity (PE) existing like mezzanine PE, which 

exploits hybrid capital like participation rights or subordinated debt options or also 

turnaroundCdistressed debt strategies (Gleissner & Schaller, 2008). These commonly 

involve highly activist (sometimes disrespectfully labeled as “rogue”) investors, often 

motivated as “event-driven”, i.e., incentivized by certain corporate actions like dividend 

payments, interest step-ups, the issuing of new stocks and hence diluting of old ones or 

events like rating downgrades, hostile takeovers, or mergers and acquisitions (M & A) of 

companies (Braun, 2018; Pöllath, 2018). Private equity funds further possess a different 

incentive and reimbursement structure regarding their management and general owners, 

with carried interest74 being an essential part of the cash flow structure (Demaria, 2013; 

Demaria, 2015). 

 

74 Apart from only the usual so-called high-level watermark and performance fees for fund managers 

awarding them with higher payments, bonuses or normally direct participation rates of, e.g., 20 % of the 

on-top performance once they reach a certain performance threshold (Demaria, 2015). 
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Figure 8 Hedge funds and strategies, private equity, and private debt.  

Source: Own illustration. 

The natural pendant of private equity capital structure-wise is private debt (PD75). 

In the case of private debt investors or collective funds, as again this type of investment 

can be set up in a direct or indirect manner via funds and fund ownerships, reach out loans 

to companies (Ritchie, 2017). This fund instrument is often used when the companies 

were not able to arrange bank loans or directly issue traditional bonds or promissory note 

loans (Grün, 2021; Nesbitt, 2018). The underlying credit risks regarding the loans are 

hence often higher in comparison to standard bank loans (Nesbitt, 2018). As with 

registered bonds and promissory note loans (“SSDs”), investors are frequently 

institutional investors, insurance companies, and large pension funds (Nesbitt, 2018). In 

the area of private debt, one classifies mainly in terms of the attributes and characteristics 

of the given loans taking into account the seniority, i.e., at what level an investor is 

positioned within the creditor ranking, in rare cases collateralization of the debt, tranches 

available, and maturity as well as interest options and types (Grün, 2021). The latest 

feature refers to the type of interest, i.e., if the debt interest is paid via fixed or floating 

rates (coupons), in which frequency (i.e., semi-annual or annual) and if it is containing 

 

75 Not to confuse with PD as an abbreviation for the term probability of default as mainly used throughout 

this thesis. 
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options (special payments regarding certain pre-defined events) or not. This is similar to 

the case of standard debt securities (IMF, 2009). As debt types in these funds, one 

separates between whole loan, mezzanine, or equity debt types (Grün, 2021; Nesbitt, 

2018). Regarding many characteristics, the (debt-funded) real estate project finance 

described before and private debt often serve each other as available proxies and are, e.g., 

occasionally interchangeable used for validating the formal underlying risk models as will 

be mentioned later (Joseph, 2013). 

Finally, rather exotic investments are commonly coined under the phrase 

“alternatives”. These are collectibles like noble wines (e.g., the Château Pétrus), 

extremely rare stamps (like the “Blue Mauritius”), music instruments (like a Stradivari 

violin), or other exotic investments like fine art, so-called electronic non-fungible tokens 

(NFTs) like special digital pictures, sports teams, or vintage cars (Mirabile, 2021). Credit 

risk appears mainly in the acquisition phase caused by the time difference between 

payment and delivery (settlement), later-on the risk associated with collectibles is due to 

conservation of the quality of the good and market demand for the scarce asset (Mirabile, 

2021). 

 

Figure 9 List of alternative investment classes.  

Source: Own illustration. 

As proven in the academic literature many of these asset classes are most of the 

time rarely correlated or even negatively correlated to each other (on average, e.g., 
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equities and bonds or hedge funds and cashCcurrencies), the various assets therein 

therefore form are a valuable source of diversification for a portfolio (Nguyen et al., 2020; 

Pojarliev & Levich, 2012; Webb et al., 1988; Yan & Garcia, 2017; You & Daigler, 2013; 

Ziobrowski & Ziobrowski, 1997).76 

 

 

Figure 10 Historical correlations between asset classes from 01/2011-12/2021.  

Source and copyright: Guggenheim® investors. Retrieved Mai 28, 2022 from 

https://www.guggenheiminvestments.com/mutual-funds/resources/interactive-tools/asset-class-

correlation-map?msclkid=fcea45f6cfcd11ec8c5fbf8 

Further valuable reasons, as their different profiles, maturity and tenor structures, 

ownership rights, and various inherent risk components were presented. 

 

76 Updatable correlations between common indices on shares, bonds, commodities, real estate and, e.g., 

gold can be shown here: https://www.portfoliovisualizer.com/asset-class-correlations (Retrieved Mai 16, 

2022). 
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1.3 Investment Strategies and Funds 

Having described the available forms of assets, asset classes, inherent (credit) 

risks and investment opportunities and first associated types of funds the next step is to 

define investment strategies and further funds. Recall that various assets from potentially 

different asset classes with their own characteristics regarding, e.g., returns and (credit) 

risks can be grouped together to form a portfolio or an investable fund. 

An investment fund (or also an investment portfolio) is set up with a certain 

investment aim. This aim can be a certain return77, also denoted as performance, over a 

specified time horizon (i.e., 5 % p. a.), it might be more broadly defined as, e.g., “the 

conservation of capital” or it may be a certain riskCreward profile or even tax and 

regulatory purposes. Depending on the aim and possible target group – e.g., a public fund 

for retail clients and associated tranches versus one for institutional clients or trusts – an 

accompanying investment strategy is derived (Aby & Vaughn, 1995; Gregoriou, 2006). 

The centerpiece for its implementation is the selection of assets, the asset allocation 

(Fabozzi & Markowitz, 2011; Ibbotson, 2010; Gregoriou, 2006). 

Considering the asset allocation and the management of a fund or portfolio one 

can then differentiate between the overall, long-term allocation strategy, which is known 

as the strategic asset allocation (SAA) and the short-term allocation the tactical asset 

allocation (TAA) (Fabozzi & Markowitz, 2011; Gregoriou, 2006; Galoppo, 2021). 

The TAA allows for over- or underweighting of assets in pre-defined ranges 

according to short-term investment opportunities. This part of the allocation is also often 

accompanied by a temporary “derivative overlay” for hedging or leveraging purposes 

(Galoppo, 2021). 

 

 

77 A return r over a time horizon t0 to t1 with corresponding asset prices P0 and P1 is defined in the thesis as 

(P1-P0)/P0 which equals P1/P0 - 1 and used within this thesis as such. Sometimes a log-return or return 

defined as ln(P1/P0) is considered and rather equivalent for small deviations and nonskewed normal 

distributed data. 
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Figure 11 Asset allocation example of a multi-asset fund.  

Source: Own illustration 

Empirically, studies show that the SAA accounts for most parts of the performance 

compared to the TAA, even though the percentage varies and the formerly assumed “90%” 

is definitely overhauled, and recent studies – like Davis’ meta-study – tend more toward 

“60%” or “more than half” of the returns (Campbell & Viceira, 2002; Davis et al., 2007; 

Fabozzi & Markowitz, 2011; Ibbotson, 2010; Ibbotson, 2010b; Kinlaw et al., 2021). 

In any way the strategic asset allocation and strategy behind it is crucial for the 

performance (aim) and risk of any portfolio or fund. An example strategy is the aim of 

capital conservation with the means of a fund consisting of 60 % bonds, mainly consisting 

of European corporate bonds in the associated iBOXX® Corporate Bond Index, 

combined with 40 % large cap stocks, listed on European stock exchanges and their issued 

indices as the EURO STOXX 50 ®. Hence, a 60 C 40 allocation is the SAA. In times of 

higher volatility, it might be secured by derivatives and ratios for instance adjusted to 70 

C 30 – as TAA. 

Furthermore, a company might also just advise or portfolio-manage such a fund, 

which itself is administered and often risk-managed by another management company 

and even invests in a mixture of fund managers (in a fund of funds structure) – these funds 

are known as “white-label funds” (Galoppo, 2021). That kind of construction is often 

exploited when (several) small fund managers or boutiques shall manage the portfolio 

Asset Allocation

Fixed-Income Equity Alternative Investments - Private Equity Alternative Investments - Exotics
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composition and selection (“picking”) of assets and exposure to managers shall be 

diversified, whereas large investment companies like Universal Investment® provide the 

fund administration, settlement, and depositary tasks, further post-trade executions, 

documentation, and risk management reports. Additionally, also payments and occurring 

bills can be externally managed by so-called paying agents and the registration of assets 

is done by registrar holders or agents (Broby, 2010). National numbering agencies 

(NNAs) add and register the ISIN and stock exchanges and platforms execute the issuing 

process (Galoppo, 2021). The form of management and degree of outsourcing 

(organizational features) should be derived from or supporting the investment aim(s) and 

strategies, the same holds true for the setup and specific type of fund to be selected (Broby, 

2010; Terraza & Razafitombo, 2013). 

As briefly mentioned before, considering the overall setup, two kinds of funds are 

allowed in the EU and (mainly) the US. These are general UCITS funds (also known as 

OGAWs78), which are the “normal”, open79 funds and so-called Alternative Investment 

Funds (AIFs), constituting by law the rest of funds (SEC, 2016, p. 5). Alternative 

Investment Funds often being closed 80  “special funds” – and hence only open for 

investment for semi-professional investors as opposed to “public funds” that are available 

for every private investor (SEC, 2016; Terraza & Razafitombo, 2013).81 

Funds have further characteristics and distinguishing properties. They are either 

listed, which means registered and traded on a daily basis on an exchange, like an ETF or 

on the other hand not listed (Meziani, 2016; SEC, 2016, p. 6). A fund may be composed 

of sub-funds and in that case, it is called a fund of funds, acting as a “roof” for its sub-

funds (Bookbinder & Strachman, 2009). Furthermore, a fund can be fed by the money of 

other funds. In this case, the “feeder funds” invest in the “master fund” (Bookbinder & 

Strachman, 2009). 

Modern funds are often also referring to their investment paradigms and “black-

list” forbidden companies to not invest in, like coal energy suppliers, or on the contrary 

in a stricter manner only “white-list” – explicitly allowed or desired – companies. These 

 

78 Known as “Organismen für Gemeinsame Anlagen in Wertpapiere” in Germany and the “DACH-region”. 

In that context the term DACH stands for Germany (D), Austria (A), and Switzerland (CH) as abbreviated 

in the EU. 
79 It is possible to buy and sell shares of that fund at all times. 
80 Closed means just open for a certain period of time for investors and normally also only to a certain group 

of special investors before being soft closed or hard (completely) closed. 
81 A good comparison, e.g., for typical Luxembourgish constructs, can be found on (Chevalier & Sciales, 

2022). 
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fund approaches are called ethical (“blue”) or sustainable (“green”) funds (Terraza & 

Razafitombo, 2013). 

The exact breakdown of a portfolio or fund is usually, apart from the types of 

invested asset classes, further achieved by a decomposition of invested regions and 

geography, branches and industry sectors, currencies, and often the top ten largest 

holdings (Ang, 2014; Satchell, 2016). Therefore, funds depending on their asset holdings 

are classified and also named as (pure) bond or debt funds, money market funds82, or 

equity funds, when only investing in this sole class of assets (Harkopf, 2016; IMF, 2009; 

SEC, 2016). Otherwise, as described before, they are labeled as traditional mutual funds 

or multi-asset funds when containing various asset classes. Exceptional cases are 

balanced or hybrid funds – when containing stocks and bonds but additionally with the 

aim of a balancing strategy or a capital plan, e.g., for pensioners, like a monthly income 

plan (MIP), as illustrated in another possible graph below (Harkopf, 2016; IMF, 2009; 

SEC, 2016). 

 

82 A money market fund (MMF) is “an open-ended mutual fund that invests in highly liquid short-term 

financial instruments” (IMF, 2009, p. 10). Money market funds might be set up with a “constant net asset 

value”, which is the inventory value of a fund as its total volume divided through the number of shares 

(CNAV), where the net asset value NAV is “a constant $1 per share, or with variable NAV (VNAV) where 

the NAV can fluctuate” (IMF, 2009, p. 10). Generally, money market funds are possible be installed as 

either UCITS or AIF fund cases (IMF, 2009). 
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Figure 12 Types of mutual funds.  

Source: Own illustration, in accordance with (Harkopf, 2016). 

According to the geographical locations of their investments funds can be labeled 

as emerging markets funds, composed of assets located mainly in the emerging countries 

of the world, as developed countries funds, which are composed of assets located mainly 

in developed nations, or frontier markets funds that are composed of assets located mainly 

in countries on the brink to a developing status (MSCI, 2021; MSCI 2021b). In the fund 

industry, depending on the regional focus of the invested assets, one speaks of U.S. funds, 

Asian funds, European funds, often EMEA funds – funds only investing in countries 

within Europe and Middle or East Asia – or ROW funds, which focus on the rest of the 

world except Europa, the US, and Asia (Harkopf, 2016). 

Funds can be further categorized according to the branches or sectors they invest 

in, like technology funds, i.e., funds where stocks are picked from the technology sector 

or a technology index (Satchell, 2016). Another example is mining funds, in which case 

only mining companies are constituents of the funds. 
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In case funds are classified according to the market capitalization (“size”) of the 

purchased shares of companies they are labeled small cap funds when just containing 

small or very small (micro) companies whose market capitalization, the market value of 

its outstanding shares amounts to less than three hundred million or up to two billion U.S. 

dollars, depending on the jurisdiction-specific definition (Farlex, 2012). Similarly, mid 

cap, and large cap funds are defined. 

Funds can be further classified according to their management activity as active 

or passive funds. An important factor and reason for many investors to prefer so-called 

passive investment funds like ETFs, where often just an index like the S & P 500 ® (U.S.) 

is replicated and the assets are rarely rebalanced, over active ones, which are actively 

managed and the constituents regularly changed by fund managers, is the factor costs or 

fees (Meziani, 2016; SEC, 2016, pp. 24, 26, 41). The less one needs to trade the less the 

trading and management costs are – including costs for research, risk, strategy, execution, 

and post-trade documentation – and the better the ceterus paribus net performance, hence 

the performance after costs is (Barclay et al., 1998; SEC, 2016, p. 26). For proponents of 

Eugen Fama’s efficient market hypothesis (EMH), which states that markets are efficient 

in the longer-run and irrational exuberances and exaggerations occur only, at maximum, 

very short-timed and that it is not possible to outperform (“beat”) the market in the long-

run, passive investments are the selection of choice as active fund managers statistically 

underperform against the (overall) market (Fama, 1970; Harvey & Liu, 2022). In the long 

“battle” between proponents of (more) active funds as Kosowski and of passive funds as, 

inter alia as seen, Fama and French, the researchers Harvey and Liu recently examined 

both of the methods used in an overarching study and confirmed older findings by 

showing that the evidence points, with some restrictionsCsoftening of the original 

statement, toward the Fama-French conclusion (Fama & French, 2010; Harvey & Liu, 

2022; Kosowski et al., 2006). Hence, only very few active fund managers are able (by 

their skill instead of luck) to outperform the market (Harvey & Liu, 2022). 
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Figure 13 Breakdown and classification possibilities of funds.  

Source: Own illustration. 

Generally one differentiates between costs on the side of the fund or asset manager, 

e.g., for the administration, bureaucracy, and the deposit process83, which are included in 

the total cost of ownership84 figure (TCO) and (total) fund costs. More precisely these are 

called – because also including trading costs and performance fees, e.g., a performance 

share when outperforming over a certain threshold, denoted as a high-level-mark – the 

all-in-one fee (SEC 2016). In contrast, the total expense ratio (TER) is only the annual 

cost of holding an ETF or other fund (SEC, 2016). Finally, an investor has costs on the 

buyer’s side like deposit costs at his depository bank, upfront payments, or emission fees, 

which cover the sales costs of the investment company. Empirical research finds that fund 

costs are one of the most essential factors when considering net performance (Barber & 

Odean, 2000; Barclay et al., 1998; Fama & French, 2010; Fischer & Gerhardt, 2007; 

Koestner et al., 2017). 

 

83 Costs for the depositor, custodian and possibly paying agent containing. 
84 In a comprehensible fashion explained in (Riedl, 2021). 
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Nowadays, funds and funds of funds are frequently labeled according to their 

investment style or precise (allocation) strategy like value or growth funds, smart beta or 

low vola funds, large-buyout funds, or event-driven funds (Barberis & Shleifer, 2003, pp. 

161-199; Cerniglia & Fabozzi, 2018; Chincarini & Kim, 2022; Harkopf, 2016; SEC, 

2016). 85  Value funds aim to find assets, mainly shares, which are underpriced in 

comparison to their perceived inner value – generally calculated by a discounted cash 

flow or equity method of their free or owner’s cash flow – and therefore appear to be a 

chance for investment when considering that security margin (Graham, 1949). The 

security margin hence is the difference of the (traded) share price to the share’s inner 

value or “fair price”. Warren Buffet and Charlie Munger are probably the most famous 

proponents of that investment style, which is dating back to Graham and his book “The 

intelligent investor” (Graham, 1949). The approach aims to focus on solid companies in 

regard to their (low) debt ratios, with high and constant income, profits, revenue, and 

liquidity ratios, often being market leaders in their branches with high entry barriers and 

a conservative management with a proven track record (Frazzini et al., 2019; Greenwald, 

2001). Research proved that strategy as being successful during the “normal”, moderate 

phasis of a business cycle (Basu, 1977; Frazzini et al., 2019; Otuteye & Siddiquee, 2019). 

Growth funds tend to invest in companies with growth opportunities, often these 

companies are less established, more risky, and reside for instance in the tech sector. The 

style growth can be a successful strategy under certain circumstances as well (Asness et 

al., 2000). Smart beta funds select their assets with regard to the beta-factor of potential 

constituents, e.g., by requiring a low beta of less than 0.5 (Chincarini & Kim, 2022). The 

beta-factor roughly indicates how strong a certain single asset (stock) correlates with the 

overall market and how much price movements are amplified – multiplied by the beta-

factor (Chincarini & Kim, 2022). Low volatility funds choose assets that have a ceterus 

paribus low volatility compared with the overall market volatility or in pre-defined 

absolute terms, while volatility is defined by financial markets here as the historical 

standard deviation (hence the square root of the variance) of (daily) returns of that asset 

over a certain period, e.g., the last five years86 (Cerniglia & Fabozzi, 2018; Chincarini & 

Kim, 2022; Gao & Guo, 2018). Another type, large-buyout funds are e .g. funds utilizing 

 

85 See (Morningstar, 2004). 
86 In the financial sector a year normally consists by definition of 250 trading days (on average excluding 

weekends and bank holidays). 
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the buyout strategy in the area of private equity as described before while focusing on 

large companies, i.e., with a market capitalization of more than five hundred million 

dollars. Event-driven funds are funds that are set up with the aim of buying (or selling) 

companies or parts of their shares in expectation of a certain corporate action or credit-

influencing event to appear soon, which impacts the share price – Jorion is discussing 

proper risk management for that style (Jorion, 2008). 

It is common that multiple combinations of the mentioned types are taken into 

account and funds labeled according to it for instance in the case of so-called multi-

strategy balanced funds (SEC, 2016). In either case, consistency and “sticking to the style” 

seems to be a critical issue (Brown et al., 2002). 

 

 

Figure 14 Aim and strategy of a portfolio or fund, influencing the fund type and 

settings chosen, the asset allocation based on asset classes and further breakdown 

criteria, and the fund navigation and investment style.  

Source: Own illustration. 

Depending on different investment aims and economic circumstances, as the state 

of the business cycle, most of the various portfolio types and investment strategies have 

their legitimacy and empirical foundations though some of them like “value-momentum”-
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strategies or – a bit less clear – small cap funds seem to outperform87 others more often 

(Asness 1997; Asness et al., 2013; Cerniglia & Fabozzi, 2018; Ehsani & Linnainmaa, 

2022; Geczy & Samonov, 2017; Meyer & Mrozik, 2014; Switzer 2010). 

Common investment mistakes and biases were investigated by Barber, Odean, and 

Campbell, more recently by Loos et al. from the University of Frankfurt for individual 

investors, and by Ahmad et al. for institutional investors (Ahmad et al., 2017; Barber & 

Odean, 2011; Campbell, 2006; Firth, 2015; Loos et al., 2014). Overall, the expected biases 

home bias, overconfidence bias, etc., the disposition and anchoring effect as well as the 

assumption of too less diversified portfolios are confirmed (Barber & Odean, 2000; 

Barber & Odean, 2001; Barber & Odean, 2011; Fischer & Gerhardt, 2007, pp. 10, 12, 13, 

15; Koestner et al., 2017; Loos et al., 2014; Shefrin & Statman, 1985). Annaert et al. and 

Fischer together with Gerhardt have shown that financial advice and guidance based on 

research findings is able to significantly improve investment returns (Annaert et al., 2005; 

Fischer & Gerhardt, 2007). 

The academic literature provides multiple well-known measurements of 

“performance” 88  and “risk”, e.g., the α, β-factors for performance; volatility and 

maximum drawdown, i.e., the maximum amount an asset lost in its price during a certain 

period of time as a year, for risk or industry typical combined ratios like RARO(RA)C, 

Sharpe ratio, Calmar (Sterling) ratio, Sortino ratio, or information ratio as also defined by 

Leach or in the standard book “Investment Performance, Analytics, and Risk - Glossary 

of Terms” (Leach, 2010; J. P. Morgan, 2008; Sortino & Price, 1994). These ratios like the 

risk-adjusted return on risk-adjusted capital (RARORAC) put return and risk in relation, 

i.e., the return figure in the nominator and the risk figure in the denominator of the ratio 

(Leach, 2010; Schierenbeck et al., 2014). Risk-adjusted return means that a risk-free 

(market) rate like the federal funds rate or the rate of ten-year (assumed asymptotically 

risk-free) treasury bonds are subtracted from the measured asset return (sometimes also 

further costs) and the risk-adjusted capital, in this case, is the so-called Value-at-Risk89 

figure, defined later in this thesis (Schierenbeck et al., 2014). It roughly states the loss 

 

87  According to the definition of returns mentioned before with return at the point in time t as  

r(t)= P(t)/P(t-1)-1 
88 The term performance is used equivalently used to return, sometimes surplus return over a risk-free rate. 

Outperforming means having higher (net) return rates. 
89 Sometimes also denoted Value at Risk. 
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amount of money that was never exceeded with a certain probability (like 95 %) in a 

certain period of time in the past, like a year. 

The Sharpe ratio uses the volatility (σ) instead of the Value-at-Risk in the 

denominator, the Calmar ratio employs the maximum drawdown (MaxDD), the Sortino 

ratio a similar downside risk (σd) also defined later in a detailed fashion and the 

information ratio is used by index trackers or passive ETFs, when the goal is to replicate 

an index, here the denominator is the so-called tracking error (TE) measuring the 

deviation of the tracker’s returns from the original one (J. P. Morgan, 2008). The formula90 

for RARORAC might be written as: 

 
𝑅𝐴𝑅𝑂𝑅𝐴𝐶 =

𝑅𝑖𝑠𝑘 − 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛 (𝑅𝐴𝑅)

𝑅𝑖𝑠𝑘 − 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 (𝑅𝐴𝐶) 
 

 

(4) 

Example: 

 

𝑅𝐴𝑅𝑂𝑅𝐴𝐶1

=
𝑅𝑝  −  𝑅𝑓  + 𝐹𝑒𝑒𝑠 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑜𝑠𝑠 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 − 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑉𝑎𝑅
 

 

(5) 

with Rp denoting the portfolio return and Rf denoting the risk-free rate, hence the 

difference is the excess return (spread) of the portfolio over the risk-free rate (de Laurentis 

et al., 2010, p. 31). VaR is the Value-at-Risk, a common risk measure in finance, which is 

defined later.  

By using the Value-at-Risk instead of the volatility σ in the RARORAC formula 

(occasionally also then defined as RARORAC as opposed to RAROC in case of just 

capital used in the nominator else or in the nominator without costsCfees) normality of 

returns is not needed anymore and hence Markowitz’ theory of optimal portfolios can be 

also applied to bonds and loans with nonnormal credit return distributions and not only 

to equity as seen in Chapter 2 – often then denoted RARO(RA)C 2020 (J. P. Morgan, 

1997, pp. 6, 12; Witzany, 2017, p. 119). 

It would be also possible to use Jensen’s alpha in the nominator, with  

 α =  𝑅𝑝–  E[𝑅𝑝]  (6) 

 

 

90 A note on formulas formatting: According to APA7 and common standards, important formulas on a new 

line are formatted utilizing a formula editor and generally (apart from e. g. cumulative functions as the 

probability P, cdf F, expectation E, standard function (max, min, log, etc., except the e-function as also the 

number e exists) and apart from Greek letters) are written in italics. When formulas or variables or 

assumptions/extensions appear within a text and are in connection with a formula they are coherently 

written in that style, otherwise nonitalic. 
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and E[Rp] denoting the expected portfolio “market” return of the capital asset 

pricing model (CAPM) as will be seen later. Therefore, Jensen’s alpha is denoting the 

individual “excess return” over the market return. For the denominator, one could imagine 

other risk measures, as the commonly used volatility σ or the ß-factor of the CAPM.  

Then one can define return per risk ratios: 

 𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝  −  𝑅𝑓

σ
 (7) 

  with volatility σ 

 𝑇𝑟𝑒𝑦𝑛𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝  −  𝑅𝑓

ß
 (8) 

with CAPM market beta-factor ß 

 𝐶𝑎𝑙𝑚𝑎𝑟 𝑟𝑎𝑡𝑖𝑜91 =
𝑅𝑝  −  𝑅𝑓

𝑀𝑎𝑥𝐷𝐷
 (9) 

with maximum drawdown MaxDD 

 𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝  −  𝑅𝑓

σd
 (10) 

with downside volatility σd 

 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑝  − 𝑅𝑓

𝑇𝐸
 (11) 

with tracking error TE 

 

Having defined assets, assets classes, investment in funds and portfolios and their 

characteristics, investment returns and empirical “success factors” as well as briefly 

mentioning return and risk ratios, the precise definition of risk measures – as this is a 

cornerstone of the thesis – followed by a theory of portfolios and optimal portfolios (in 

terms of return and risk measurement, hence applying the definitions to the portfolios) 

seems convenient. 

To follow the historical timeline, the Markowitz model including portfolios 

labeled as effective portfolios, the capital asset pricing model (CAPM), and asset pricing 

theory (APT) are presented as models for portfolio management and optimal allocation 

in that order in the following chapter. For the historically interested reader on CAPM, the 

portfolio theory of Markowitz and the APT including valuation techniques one can 

 

91 It is important to note that, in contrast to the other measures and as opposed to the so-called Sterling ratio 

which is similar to the Calmar ratio but considers also a whole year, the Calmar ratio operates on monthly 

returns (Lee et al., 2010). 
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recommend the reader to the original works of Markowitz, Sharpe, and Fama, or for an 

alternative comprehensive introduction refer to the excellent “Handbook of Quantitative 

Finance and Risk management” by C. F. Lee, A. C. Lee, and J. Lee (Fama & MacBeth, 

1973; Lee et al., 2010; Markwoitz, 1959; Sharpe, 1964). The handbook also covers further 

interesting principles of finance, which are not in the scope of this thesis such as 

equivalence principles, arbitrage-free-ness and the so-called two main (fundamental) 

theorems of asset pricing. These theorems define under which circumstances the price of 

an asset is possible to determine and under which in a unique way. 

Roughly speaking under the condition of no-arbitrage it is generally possible to 

find a statistical measure (in that context a so-called martingale price process 92 ) to 

determine the price of an asset, and in terms of an additionally complete market that price 

is unique (Björk, 2009, pp. 33, 36; Lee et al., 2010). Arbitrage occurs when the same asset 

is bought (and then sold) in different (parts of) markets to take advantage of a price 

difference in its quotes, it formally and more generally means having the chance of a 

profit with a probability greater than zero without having any risk – a risk-free chance of 

a profit (Bingham & Kiesel, 2004; Björk, 2009, pp. 7, 9, 33). In practice in a developed, 

liquid market one expects it to be rather arbitrage-free as if that would be not the case, 

agents known as arbitrageurs would directly take the chance to make a profit hence 

moving the price in the direction of the arbitrage-free price until it is reached (soon). A 

complete market is one in which every (possible) claim (i.e., every asset and its 

corresponding price movement) can be replicated in a certain portfolio and hence also be 

hedged (Björk, 2009, pp. 10, 18, 36; Lee et al., 2010). After the theorem was first proved 

by Harrison and Pliska for finite probability spaces, it was further extended by Kreps in 

the same year (1981) for more general settings (and infinite spaces) and by Delbaen and 

Schachermayer93– assuming a similar yet more strict concept as arbitrage, labeled “no 

free lunch with vanishing risk” – NFLVR (Harrison & Pliska, 1981; Kreps, 1981; Delbaen 

& Schachermayer, 1994; Delbaen & Schachermayer, 1998). The concepts of NA, NFLVR, 

and completeness and their mechanisms are regarded for pricing and therefore finally risk 

determination. Equivalence principles in finance just refer to identities and conditions 

under which two sorts and thus sides of present values (or future values) of discounted 

 

92 For a precise definition see the annex as well as for hazard rate models and credit risk see (Bielecki & 

Rutkowski, 2004, pp. 166, 222). 
93  Even for unbounded processes when allowing for sigma-martingales instead of martingales, see 

(Schachermayer, 2008, p. 8). 
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cash flows are the same, e.g., premium payments of annuities and the value of a future 

insurance rent or cash flow payout. These principles can be found in connection with 

derivative pricing and for instance the calculation of CDS legs. 

The current thesis, as it is focused on credit risk, is mainly concentrating on debt 

portfolios consisting of different bonds at a later stage. Ultimately, four different types of 

portfolios depending on the parameters geography (e.g., the US, euro area) and risk 

structure (“volatility risk”) of obligators are selected. Obligors denote the companies94 

which have to pay back their debt and issued the bonds, they are also called debtors, debt 

portfolio companies, or constituents of the debt portfolio.  

 

 

94 The term company is used interchangeably with enterprise or corporation in the following chapters of the 

thesis. In the same way client, customer, and occasionally in the context of credit risk, derivative or 

transaction counterparty are used interchangeably. 
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CHAPTER 2 

INVESTMENT AND CREDIT RISK MANAGEMENT: 

DEFINITIONS AND TERMINOLOGY 

2.1 Risk, Types of Risk Appearing in the Financial Industry and Risk 

Management 

In this chapter, the definitions and terminology for measuring credit risk which 

are commonly used within the area of financial (investment) risk management are 

presented as well as current portfolio theory (Markowitz-Theory, CAPM, and APT). 

In finance, risk is defined as the “lack of (definite) predictability of outcomes” or 

“uncertainty of outcomes” (Gericke, 2018; Hull, 2015, pp. 20, 21; Zopounidis et al., 2021). 

Risk can have a two-sided component for upturn risk or success, often referred to as 

“chance” as well as for downturn risk or failure. In parts of the literature, the concentration 

is on the downside potential, and it is thus therein referred to that element as “risk”. 

Generally, the fact is considered that losses can occur because of nondeterministic, value-

impacting variables which are labeled risk factors (Hull, 2015, pp. 36, 62). 

Risk is measured in terms of fluctuation of prices or returns95, when considering 

again that the return at some discrete point t in time with prices P(t) and P(t-1), t-1 

denoting one point in time before like the day before, is defined as  

 𝑟(𝑡) =
𝑃(𝑡) − 𝑃(𝑡 − 1)

𝑃(𝑡 − 1)
=

𝑃(𝑡)

𝑃(𝑡 − 1)
− 1  (12) 

or sometimes  

 𝑟(𝑡) = log ( 
𝑃(𝑡)

𝑃(𝑡 − 1)
 ) (13) 

and for continuous-time naturally as an infinitesimal (stochastic integral) limit 

thereof. The “fluctuation” or risk can be measured in ways of deviations of the returns of 

a certain mean, maximal drawdowns/losses or just considering the returns with the 

highest probabilities in some interval, i.e., the most frequent appearance in the past or in 

some simulation of possible future outcomes (Hull, 2015, p. 20; Zopounidis et al., 2021). 

 

95 More precisely the (often historic but - even more general - also stochastic present or future) price or 

return process. 
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All of these approaches are precisely defined in this chapter later. It is presented 

in which area risk is appearing in banking and which types of risks generally exist in the 

financial industry. In the area of financial risk, one can find different types or 

classifications of risk. The most common types of risks relevant to the banking sector are 

the following ones, cf. (Hull, 2015, pp. 62-63, 184, 430, 535, 557). 

Credit risk or address risk, which is composed of the two components default risk 

(essentially the risk of “bankruptcy” for a company) and migration (creditworthiness) risk, 

is treated first (Bielecki & Rutkowski, 2004, p. 3; Hull, 2015, pp. 430-499). This type of 

risk is the central one in the thesis and describes the risk that an entity (counterparty, 

client) is not able or willing to fully pay back its obligations due on time and the 

contractually agreed conditions (Bouteillé & Coogan-Pushner, 2021, p. 3; Hull, 2015, pp. 

430-515). 

Default risk is defined in article 178 of the CRR (European Commission, 2019). 

A company defaults as one possibility when it either declares bankruptcy or is forced to 

declare it by the state or regulatory authorities, for example when a company seeks the 

protection under chapter eleven of the U.S. bankruptcy code (Bouteillé & Coogan-

Pushner, 2021, p. 3). That is for instance normally the case when a company (will be soon 

in or) faces the situation that it cannot repay its debt because the amount of debt D exceeds 

its value of assets A, and the equity is hence negative, which is called insolvency. The 

second possibility is that a company breaches the days past due criterion for default 

identification, i.e., its payments are already due for (more than) ninety days and were not 

paid back yet (European Commission, 2019, §178). This case of inability or unwillingness 

to pay can be due to insolvency when the debt exceeds the remaining assets or due to 

(temporarily) illiquidity (Bouteillé & Coogan-Pushner, 2021, p. 3). In both cases, a 

company does not pay back its obligations on time. In practice, many debt issuances 

contain covenants with cross-default definitions, stating that once a company defaults on, 

e.g., one of its other bonds, the named issuance is declared defaulted as well (Bielecki & 

Rutkowski, 2004, pp. 10-11). The third possibility is required bank-specified indicators 

of unlikeliness to pay (UTP), which are further defined in the corresponding EBA 

guidelines, as the “Guidelines on the application of the definition of default under article 

178 of Regulation (EU) No 575/2013”, see (EBA, 2016; European Commission, 2019). 

Among UTP criteria can be, e.g., the default of a parent company or affiliates, a cross-

default, an extreme internally induced business event (like fraud, as in the case of 
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Wirecard® in Germany 2020) 96 , or an externally triggered one, e.g., all assets are 

nationalized by a socialist government or a natural disaster destroys the plants and 

equipment (EBA, 2016; EY, 2019, pp. 5, 18; Makri et al., 2014). Furthermore, the breach 

of certain credit covenants or the downgrade of a company to a (near) default grade by an 

accredited rating agency like Standard & Poor’s ® are regarded as common UTP flags 

(EY, 2019, p. 18). The various unlikeliness to pay criteria form the third possibility of 

default (European Commission, 2019). The determinants of unlikeliness to pay and non-

performing97 loans in general, as well as the relation between the UTP (NPL) ratio and a 

bank’s capitalization and risk management, were researched by Cucinelli et al., Makri et 

al., or Louzis et al. (Cucinelli et al., 2018; Louzis et al., 2011; Makri et al., 2014). As 

expected, macroeconomic factors such as high unemployment rates and debt ratios are 

positively correlated with UTP and NPL ratios, and GDP growth for instance negatively 

correlated (Louzis et al., 2011, pp. 12, 26; Makri et al., 2014). The main findings 

concerning banks were that there is a positive correlation between the UTP ratio and a 

bank’s capital (yet procyclicality for NPLs) and a negative one between the UTP ratio 

and a bank’s proper organizational structure and strict risk treatment, showing the 

importance of a well-set risk and dedicated UTP management unit for lowering UTP and 

NPL ratios (Cucinelli et al., 2018, pp. 27-29; ECB, 2017b; Louzis et al., 2011, pp. 26-27). 

On top of UTP criteria, the regulators require that also conditions for the return to a non-

defaulted status and “a treatment of the definition of default in externally provided data” 

have to be defined by banks (EBA, 2016, preface, p. 1; European Commission, 2019; EY, 

2019, pp. 5-6; Makri et al., 2014). 

One has to keep in mind that besides default also cure can happen after a 

restructuring process, generally, company debt can either mature (and be fully paid back), 

a company can default before the maturity date or it can be restructured but cured (after 

or without a default) – therefore, a cure is a competing form to default (Tong et al. 2012; 

Wycinka, 2015).  

The thesis by its nature concentrates on the economic triggers of default, as the 

criterion that the debt exceeds the assets available for a company, an extreme business 

cycle induced failure or other common exogenous factors (Bouteillé & Coogan-Pushner, 

 

96 Cf. as an example (FT, 2020). 
97 Denoted also, e.g., by the IMF, as nonperforming (American English version). For the scope of the 

thesis, as European regulation is the main focus, the EBA term non-performing (British English version) 

is used. 
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2021; Hull, 2015). The past due criterion is not modeled, as this is a purely formal 

criterion and a directly tracked indicator by a bank. A (formal) declaration of bankruptcy 

is also not further treated, as it is normally the consequence of the modeled economic 

factors before. Further possibilities as personal fraud, jurisdictional issues or other 

operational risk-related events – as defined later in this chapter – are not a part of original 

credit risk. Neither are rare operational risk events like natural catastrophes, even though 

they all might be even already included in past historical default data when such events 

happened in the past and were subsequently leading to defaults. The rating agency case 

is included in the considerations directly when using ratings for a credit risk model, or 

indirectly, when the ratings are a for instance a consequence of negative equity, as a model 

output by a credit risk model (de Laurentis et al., 2010; Witzany, 2017). Hence, the 

approach used in the thesis seems appropriate and comprehensive. 

Having defined the default risk component one ought to consider credit migration 

risk, the latter one being the risk that the creditworthiness of a debtor is changing (without 

directly causing default), e.g., in case a downgrade or negative outlook by a rating agency 

occurs due to worsening financial fundamentals or negative news, concerning a certain 

company and its ability to repay its debt in the same manner and under the same 

circumstances as assumed before (Bielecki & Rutkowski, 2004, pp. 28, 407; Witzany, 

2017, pp. 88-93). 

As a special case credit risk is referred to as counterparty credit risk (CCR) for the 

default possibility of a derivatives counterparty and the migration risk, in this case, is 

incorporated in the term credit (debt) value adjustment, in short form the CVA (DVA)98 

– risk (Bouteillé & Coogan-Pushner, 2021, p. 284; Hull, 2015, pp. 480-490; Witzany, 

2017, pp. 9-10, 217-220, 231-237; Zopounidis et al., 2021). If one considers a quoted 

bond of a company or a defaultable99 interest rate claim or curve the difference between 

the risk-free rate (of a treasury bond) and a defaultable bond yield curve, e.g., a corporate 

yield curve, in a perfect liquid and rational market without market risk is then called credit 

spread (Hull, 2015). The risk associated with that is hence denoted as credit spread risk 

and includes default and migration risks (Bielecki & Rutkowski, 2004, p. 264; Giesecke 

& Goldberg, 2005). It is important to note that even for same-rated bonds the credit 

spreads can differentiate (Giesecke & Goldberg, 2005). This is due to the fact that rates 

 

98 CVA: Credit value adjustment, DVA: Debt value adjustment 
99 A defaultable claim is a claim that bears credit risk and can therefore default (and credit migrate). 
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are more precise than rating grades (the former are “finer grided”, more granular) and can 

therefore differentiate between, e.g., an “average” BBB+ grade and a “better” (i.e., within 

the highest 5 % percentile of BBB+s, but still not BB-) BBB+ grade (Hull, 2015; Witzany, 

2017). An even more granular differentiation in default or migration risk and its changes 

can hence be included in credit spread rates. Furthermore, when credit risk relevant 

information is published or publicly available100 generally credit spreads (as well as credit 

default swaps) react fast, whereas ratings are published just once in a while and are 

therefore lagging in time, while also constituting an “average through the cycle” view 

(Witzany, 2017, pp. 93-94, 167). This market observation (“stylized fact”) is illustrated 

in more detail at the end of Chapter 3.  

It is crucial to keep in mind that the interest rate of a loan should include not only 

the credit spread or risk premium component101 above the risk-free rate but also the 

internal costs of funding of a bank (“own credit/funding spread”), the administrative costs 

of the bank, the cost of embedded options if existing and finally a profit margin as the 

bank normally intends to make a profit with the loan or bond (de Laurentis et al., 2010, 

pp. 29-30; Witzany, 2017, p. 93). 102  One can swiftly derive, in terms of simplified 

assumptions and normalized EAD unit, the following correspondence between the credit 

risk premium RP and the probability of default PD of a loan by assuming no-arbitrage or 

equivalently that the premium payments compensate exactly for potential default with 

probability PD (Witzany, 2017, p. 94): 

 𝑅𝑃 =
𝐸𝐿 

1 − 𝑃𝐷
 (14) 

As  

 
(1 +  𝑟) =  (1 +  𝑟 +  𝑅𝑃)(1 −  𝑃𝐷) +  𝑃𝐷(1 −  𝐿𝐺𝐷)  

=  1 +  𝑟 +  𝑅𝑃 –  𝑃𝐷(1 +  𝑟 +  𝑅𝑃 –  1 +  𝐿𝐺𝐷) 
(15) 

because with no-arbitrage one should receive the same amount when investing in 

a risk-free bond of unit one and return 1 + r (the left-hand side of the equation) as when 

investing in a risky bond of unit 1 with return (1 + r + RP) after one period, hence the 

 

100 The use of private information is excluded here as it is forbidden by law to trade with such information, 

referenced to as insider trading. 
101 That is including at least the expected loss – due to default and migration, incorporated in the standard 

costs of credit concept. 
102 Though sometimes, especially in highly competitive markets, loans are cross-financed and used as 

“door-opener” for a future lucrative client relationship and are not (all of them) making profit regarded 

isolated on their own (Bouteillé & Coogan-Pushner, 2021; Witzany, 2017, pp. 93-94). 
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risk is compensated through the risk premium RP. As the bond is however risky it has a 

probability that it is defaulting, the PD. If it is not defaulting with probability (1 - PD), 

the return (1 + r + RP) is earned, if it is defaulting with probability PD then just the part 

not included in the loss given default (which equals the recovery rate, 1 - LGD) is earned. 

These two options are constituting the right-hand side of the equation and overall, 

after re-ordering, the equation above is obtained (Witzany, 2017, p. 94). The formula then 

further simplifies to  

 𝑅𝑃 =  𝑃𝐷 ⋅ 𝑅𝑃 +  𝑟 ⋅ 𝑃𝐷 +  𝑃𝐷 ⋅  𝐿𝐺𝐷  (16) 

and with unit EAD the expected loss is defined as  

 𝐸𝐴𝐷 ⋅ 𝑃𝐷 ⋅  𝐿𝐺𝐷 =  𝑃𝐷 ⋅ 𝐿𝐺 = 𝐸𝐿 (17) 

hence  

 𝑅𝑃 –  𝑅𝑃 ⋅  𝑃𝐷 =  𝑟 ⋅ 𝑃𝐷 +  𝐸𝐿 (18) 

so generally  

 𝑅𝑃 =  
𝐸𝐿 +  𝑟 ⋅ 𝑃𝐷

1 −  𝑃𝐷
 (19) 

If LGD = 1 (complete 100% loss) is assumed, then 

 𝑅𝑃 =  
(1 +  𝑟) 𝑃𝐷

1 − 𝑃𝐷
 (20) 

illustrating the risk premium in terms of a product of the risk-free rate and the 

(PD) odds. Sticking to an arbitrary LGD and the general formula above, however, 

regarding the special case of a risk-free rate r of zero, the formula  

 𝑅𝑃 =  
𝐸𝐿

1 − 𝑃𝐷
 (21) 

is finally derived. The remaining excess (or liquidity) spread risk is also 

commonly considered a further component and is due to illiquidity and sentiment like 

anxiousness in the market (Bielecki & Rutkowski, 2004; Downing & Covitz, 2007; 

Witzany, 2017, p. 236). It indicates the further risk premium and hence interest rate add-

on one needs to pay compared to the same (or a very similar) bond with the same default 

and migration probability in a more liquid and timid market time (Bielecki & Rutkowski, 

2004, p. 7; Bouteillé & Coogan-Pushner, 2021; Downing & Covitz, 2007). 

A type of risk that is sometimes classified as a class in its own right, yet possibly 

appears for all types of risks under certain unfavorable circumstances, is concentration 

risk. However, especially in the area of credit risk credit, concentration risk ought to be 
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observed very closely (Ávila et al., 2012; BIS, 2006; Bouteillé & Coogan-Pushner, 2021, 

pp. 37, 251; Kozak, 2015). It has to be reported in the large exposure (LE) and million 

loans reporting of banks in the EU and surveilled on a daily basis (European Commission, 

2019b). The concentration in regard to the loan portfolio of a bank may appear in terms 

of concentration among very few counterparties and hence large exposures, in terms of 

geographical concentration, sector-wise or country-wise concentration, (foreign) 

currency concentration, or maturity concentration, which might cause further problems 

for the asset-liability-management (Bouteillé & Coogan-Pushner, 2021). Moreover, 

empirically, the contagion risk in times of crisis generally increases with high 

concentration risk in a portfolio (Ávila et al., 2012; Badreddine, 2016; BIS, 2006; 

Brunnermeier, 2008; Schiavone, 2018). 

As most banks and lenders rely on the task of providing credit (loans) as their 

primary business objective and loans constitute a major share of their assets, the credit 

risk components form the overwhelming part of the risks the institutes face (EBA, 2021b, 

p. 46). A thorough credit risk assessment of a credit client is hence crucial in determining 

if an institute believes in a debtor’s ability to serve the credit – the name credit stemming 

from the Latin word “credere”, which means to trust or to believe (in the ability to repay 

the debt), indicates that already (Bouteillé & Coogan-Pushner, 2021, pp. 47, 81, 107; Park 

& Greenberg, 2017).  

Credit risk can appear, when a loan is given to another entity or equivalently a 

bond issued by another entity is bought (Hull, 2015). This illustrates the main use case 

for banks and is therefore mainly covered in this thesis. Credit risk can also appear in 

leasing (or renting) contracts when the lessee cannot pay the leasing fees. Another 

important example is receivables, which might be not paid back by the trading partner 

who already received a good or service upfront, e.g., in trade finance (Bouteillé & 

Coogan-Pushner, 2021, p. 7). A similar case is prepayments on goods and services, which 

inherit the risk that the other side of the transaction does not deliver or not on time – or 

vice versa when goods are delivered first, the counterparty does not pay (Bouteillé & 

Coogan-Pushner, 2021; Hull, 2015). Generally, whenever there is a time gap between the 

delivery and the payment of goods and services credit risk arises. This is nearly always 

the case when no guarantor (or insurance, etc.) or central counterparty, with time-adjusted 

collateral, exist in a transaction (Witzany, 2017, p. 217). Credit risk also appears in the 

area of project finance, as there might be a substantial time delay between the construction 
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phases and payments, and hence severe credit risk can arise, as illustrated in (Joseph, 

2013). 

Another example is deposits or depository goods. There is always a risk that the deposited 

goods or money (“deposits”) are gone or not fully covered in case of a default of the 

counterparty (Bouteillé & Coogan-Pushner, 2021; IADI, 2020). For instance, bank 

deposits in Europe are generally only covered up to 100 000 EUR and in the US by the 

FDIC103 only up to 250 000 $ by law. The last category involves (contingent) claims, 

guarantees or derivative contracts, in which the counterparty is not able (or willing) to 

fulfill its obligations and does not pay back the owned money (or assets) fully on time 

regarding the underlying contract (Bouteillé & Coogan-Pushner, 2021, p. 7).  

To completely understand the real economic credit risk of a client, a bank needs 

to take its obliged “know your customer” process (KYC) and its due diligence very 

serious, as often a counterparty consists of borrower units and connected clients, 

complicated holding structures or shell companies with “hidden” beneficial owners or 

special purpose vehicles (SPVs) in case of derivative transactions (Bouteillé & Coogan-

Pushner, 2021). 

Furthermore, banks need to build loan reserves (provisions) for expected losses 

and adjust them regularly, also on-time provisions and write-offs (at a period’s end) for 

already (partly) defaulted exposures and hence incurred losses (generally on a single base 

and in rare cases of homogeneous, larger portfolios on an equivalent portfolio base) – 

normally the IFRS method is used in that regard by international banks (Witzany, 2017, 

p. 6). Assets are in the latter case accounted for as impaired assets (Witzany, 2017). An 

early and prudent provision is crucial concerning credit risk (Burroni et al. 2009; 

European Commission, 2019). According to Witzany, it is “one of the most important 

items scrutinized by external auditors during an annual review” (Witzany, 2017, p. 100). 

A comprehensive overview of the requirements of the Basel accords for credit risk 

management is given in the corresponding original BCBS papers or by Berg, Burroni, 

Hull, or Witzany, all relevant parts for the thesis are introduced later on (BCBS, 1999a; 

BCBS, 2000b; BCBS, 2022; Berg, 2019; Berg, 2019b; Burroni et al., 2009; Hull, 2015; 

Witzany, 2017, pp. 11-16). 

 

103 Federal Deposit Insurance Company, the U.S. deposit insurance agency. 
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The possible approaches for credit risk in (Pillar 1) regulatory terms are, as 

mentioned, the standardized approach (SA) as well as the internal ratings-based approach 

(IRBA) – where banks determine the PD (and also exposure and loss at / given default in 

the case of the advanced IRBA) by an internal model (Witzany, 2017, pp. 108-115). 

Credit portfolio models are then used to determine the credit risk amount for Pillar 2 and 

internal measurement and controlling purposes as will be shown later. 

While credit risk constitutes the most important risk category for the vast majority 

of banks, with an average of 82.8 % of RWAs as of Q4/2021 and a stable average of 

roughly +80 % over the years, there are also further types of risks banks are exposed to 

(EBA, 2021b, p. 46). 

Market Risk describes the risk which is connected with (downward) market price 

movements (FED, 2022; Gericke, 2018; Hull, 2015, pp. 184 - 341). From a supervisory 

point of view, it “stems from all the positions included in banks’ trading book[sic] as well 

as from commodity and foreign exchange risk positions in the whole balance sheet” 

(Bundesbank, 2022c; EBA, 2022e, p. 1). Position risk especially includes the categories 

of share (price) risk and debt security (price) risk in market trading, which is visible in 

the prices of stocks respectively bonds (Auer, 2002, pp. 97-110; Zopounidis et al., 2021). 

They can be due to changed expected financial fundamentals of a company, overall 

market or business cycle changes prompting worsening profit outlooks, due to the market 

liquidity situation, or changed market sentiment like increased anxiousness (Fama & 

French, 1993; Fama & French, 2014; Hull, 2015; Szylar, 2013).  

Generally, that risk, therefore, illustrates a change in the economic outlook and in 

the expected prospects of a company. Along with that price risk for (mainly) bonds and 

stocks, known as position risk as seen, an important risk type is interest rates risk 

(Milanova, 2010, p. 396). Interest rate risk in that regard describes the risk of a (sudden) 

change in interest rates (Milanova, 2010, pp. 396-398). Interest rate risk mainly 

determines the price of a bond, however, it is also influenced by other factors constituting 

the position risk as for instance market expectations about future interest rates and 

monetary policy as well as liquidity concerns (Bai et al., 2019; Hull, 2015). It can be 

further specified, as the interest rate curve might be divided into a risk-free base rate as 

the fed funds rate104, which is a common or general interest rate risk, and the risk premium 

 

104 Or normally the rate of a certain treasury bond of the US or as another common possibility short-term 

swap rates like the overnight-indexed (average) swap (OIS) as in (Hull, 2015, pp. 215-217). 
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rate that is due to common market or sector factors as well as individual funding 

characteristics and spreads - it implicates the banking and trading book of a bank, even in 

potentially different manners (Hull, 2015, pp. 212-234; Tapiero, 2004; Zopounidis et al., 

2021). To separate it from trading book risks, regulators coined the term Interest Rates 

Risk in the Banking Book (IRRBB), when referring to the risk of interest-sensitive assets 

held in the (longer-term) banking book of an institute (BIS, 2019c). 

While price risk and accompanied spread and volatility risk appear for all assets 

traded in financial markets there are certain further risks associated solely with specific 

assets (Gericke, 2018). 

When considering foreign exchange (FX, Forex), interest rates and currencies 

among different geographic regions and countries, a (foreign) currency risk appears as an 

additional risk component (Hull, 2015). Regulators require its consideration for all on- 

and off-balance-sheet items of a bank, thus including the trading and banking book (EBA, 

2022e). Commodity risk, e.g., due to certain production or mining issues, due to storage, 

availability of facilities, reserves, and transportation as well as global demand, is a further 

asset-specific risk type which ought to be considered in the realm of market risk (EBA, 

2022e; Hull, 2015).105 Real estate risk, which is connected with the determining factors 

of the overall housing market situation, socio-demographic developments as well as the 

individual location, construction issues or for example vacancy rates, is another important 

category, especially in the recent years and essential for mortgage lenders or real estate 

funds (Haight & Singer, 2004). Some other market-related risks, which were often 

overlooked or treated not precisely enough by banks in the past, are option risk, base 

(rate) risk, and hedging risk in the area of financial derivatives, funding risk for a bank 

itself or conduit (or SPV106) risk in relation to securitizations (Hull, 2015). 

Market prices are often very volatile and have normally a high frequency of 

available quotes with, e.g., daily or intraday prices (Hull, 2015, pp. 185, 248; Milanova, 

2010, pp. 399, 405, 410). Sometimes even “real-time quotes” published by stock 

exchanges are accessible – hence the prices and returns can be observed and backtested 

rather conveniently (Hull, 2015; Milanova, 2010; Scandizzo, 2016). Internal approaches, 

 

105 Often again accompanied by political risk when the commodities and natural resources are exploited in 

or imported from politically unstable countries. Commodity risk has to be considered again for the trading 

as well as the banking book (EBA, 2022e). 
106 Special purpose vehicle, a legal vehicle set up for certain securitizations, e.g., for asset-backed securities 

(ABS).  
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the so-called internal models approach (IMA) for market risk as well as the internal 

models method (IMM) especially for derivative CCR/CVA models, are allowed to be 

used to determine the RWA – as well as (again) regulatory standardized approaches like 

the SA - FRTB107 or the so-called simplified standard FRTB for RWA calculation (Hull, 

2015; Witzany, 2017). 

The average RWAs in terms of market risk are roughly 4 % over the last years in 

the European Union (3.6 % as of Q4/2021), considerably reduced since the great financial 

crisis (EBA, 2021b, p. 46). In many cases, however, especially for investment banks and 

trading-oriented banks, market risk naturally also forms a rather important part of the 

overall risk assessment and required risk capital (Gericke, 2018).  

Operational risk, the third most important type, describes risks appearing in the 

(daily) operation of a bank and the execution of its business (Gericke, 2018; Hull, 2015, 

pp. 535-556). It contains risks evolving from human misconduct, human errors like a “fat-

finger” in trading, management mistakes, or even fraud (Bundesbank, 2022d; OCC, 2019). 

Secondly, it includes risks arising from natural disasters, pandemics such as the SARS-

2-pandemia in the early 2000s or the COVID-19-pandemia in 2020 or climate change, 

which is generally spoken an environmental risk (Kaiser, 2021; Ryder, 2022). The third 

part stems from systems like the IT infrastructure a bank has in use or other technologies 

applied and forms an increasingly important risk an institute faces (Gericke, 2018; Ryder, 

2022). As mentioned, regulators abolished the possibility to utilize the internal AMA108 

and with the finalization of Basel III and the introduction of the CRR III in Europe solely 

the standardized measurement approach (SMA) remains left (European Commission, 

2019).  

Generally, the risk areas and three topics human, environment / exogenous factors, 

and systems are hence sub-categorized in operational risk scenarios. However, especially 

reputational issues such as unethical behavior, fraud, or unsustainable business models, 

but also cyber risks are evolving as ever more important risk factors banks are dealing 

with (Gericke, 2018). As a consequence, the related divisions should receive more risk-

weighted capital and further human resources to control them. As in Q4/2021 operational 

risk amounted to an average of 10 % of a bank’s RWAs (EBA, 2021b, p. 46). 

 

107 FRTB: Fundamental review of the trading book, denoting the market risk framework of the finalized 

Basel III accords. 
108 Advanced measurement approach 



76 

 

Liquidity risk109, the fourth important category, is the risk of becoming illiquid 

and being not able to cover a certain outflow (draw) of assets during times of financial 

stress (Brunnermeier, 2008; Gericke 2018; Hull, 2015, pp. 557-575; Zopounidis et al., 

2021). Examples are large cash withdrawals by bank customers in times of crisis (“bank 

runs”), the “freezing” of the interbank market or securities which cannot be sold anymore 

due to market illiquidity, see e. g. (Brunnermeier, 2008; Takemura, 2012). For 

measurement purposes, there is Liquidity-at-Risk (LaR) on one hand, which includes a 

certain 30-days-stress imposed measure with deposit withdrawal scenarios and 

countermeasures through the use of bank-owned high-quality liquid assets (HQLAs), as 

in the LCR regulations of the CRR (European Commission, 2019; Hull, 2015, pp. 557-

575; Zopounidis et al., 2021). Liquidity Value-at-Risk (LVaR) on one hand, has to be 

differentiated from LaR on the other, with LVaR denoting the “normal” Value-at-Risk 

measure extended by “settlement costs”, hence adopted for liquidity purposes but without 

hypothetical stress scenarios (Hull, 2015, pp. 563-565). 

Besides regulatory reporting like LCR/NSFR110 , ALMM reporting and stress 

testing in the area of liquidity risk, a (precise) daily surveillance of internal limits is 

essential for liquidity risk controlling and the treasury department of a bank. 

An even more granular classification of risks might be employed in some cases of 

banks, adding, e.g., political risk, regulatory risk, business (strategy) risk, participation 

(ownership) risk, or concentration and contagion risk to a banks risk inventory (Bouteillé 

& Coogan-Pushner, 2021, p. 4; Zopounidis et al., 2021). All of these risks have to be 

precisely described in the risk handbook and framework of a bank, some are however 

hard to quantify like political risk or regulatory risk and are in practice mainly dealt with 

by certain internal monitoring processes, proper training of the staff, lobbying and 

participation in respective bank associations’ sessions (Hull, 2015; OCC, 2019). 

 

109 The terms liquidity and liquidity risk are used in four different settings and senses, and therefore one has 

to differentiate between them thoroughly (Hull, 2015). The first one is referring to the absence of short-

term illiquidity, i.e., the institute is able to cover cash outflows (and drawbacks) in a stress situation with 

its own highly liquid assets. A fundamental regulatory indicator for that scenario is the liquidity coverage 

ratio (LCR). The second one is the ability of an institute to fund itself middle- to long-term, also maturity 

transformation wise, and that its assets and the corresponding required stable funding are matched by the 

right available liabilities. The corresponding regulatory indicator is called the net stable funding ratio 

(NSFR). The third one refers to the fungibility and tradability of assets – considering the time it takes to 

sell them in a potential illiquid market. The fourth one then refers to the amount of money (like M1) which 

is in the market, referring to the liquidity controlled and brought to the markets through central banks and 

subsequently commercial banks in a fractional reserve banking system (Hull, 2015, pp. 570, 572). 
110 Again LCR denotes the liquidity coverage ratio, NSFR is the net stable funding ratio and ALMM the 

additional liquidity monitoring metrics (Hull, 2015, pp. 572-574). 
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In the area of operational risk, one might especially add and consider conduct risk, 

reputational risk, legal, tax and litigation risk, cyber/ IT risk, and model risk itself as 

subcategories (Buraschi & Corielle, 2005; Hull, 2015, pp. 587- 605). 

 

 

Figure 15 The main risk types appearing in banks as illustrated in any standard 

textbook, for example (Hull, 2015): Credit risk, market risk, operational risk, and 

liquidity risk.  

Source: Own illustration. 

For the described types of risks in a bank, all sorts can further appear in terms of 

concentration risks, when aggregated in an undiversified fashion. 

The classification of types of risk also depends on the business strategy, therefore, 

linking business and risk strategy, reporting, and documentation closely together – as also 

required by regulatory laws, in combination with the “risk appetite” and overall risk 

controlling philosophy of a financial institute (Bouteillé & Coogan-Pushner, 2021, pp. 

21-29; Martens & Rittenberg, 2020, pp. 1-3). The risk appetite, similar as described in 

ISO31000, is written down in a risk appetite framework (RAF) and ought to be 

documented thoroughly (Gericke, 2018; Hull, 2015; Martens & Rittenberg, 2020). The 

risk tolerance thereby is the maximum bearable amount of risk (losses). 

Risk is dealt with in several divisions and levels of an institute. The organization 

structure is hence a crucial component for proper risk management, with the risk 

management department normally residing close to the finance department (i.e., 

accounting, reporting, treasury, and business controlling) of a bank, yet clearly separated 

from the business and investment banking division (Bouteillé & Coogan-Pushner, 2021, 

p. 32; Witzany, 2017, pp. 4-6). The chief risk officer (CRO) as “top risk officer”, 
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meanwhile an industry standard, is sitting in the management board of the bank (Witzany, 

2017, pp. 4-6). 

Generally, to defend against threats from risks, banks apply a 3-level-system, 

labeled as three “lines of defense” (Bouteillé & Coogan-Pushner, 2021, p. 22; Gericke, 

2018). The first line of defense is the market division, which has the first look at upcoming 

risks and the duty to report and restrict them. The second line of defense is the risk control 

unit, often further divided, e.g., containing a credit risk control unit (CRCU) with the sole 

purpose of credit risk controlling (Bouteillé & Coogan-Pushner, 2021; de Laurentis et al., 

2010). Quantitative analysts commonly labeled as “quants” and (separated) model 

assembling and validation experts are part of that line of defense. It is essential that the 

employees in the CRC unit possess the required skills, techniques, quantitative education, 

and tools to assess credit risk in a proper way and at the same time, it is crucial that they 

operate in an independent and unbiased manner (Witzany, 2017, pp. 4-5). Often the CRO 

as risk controlling head also directly reports to the shareholders’ supervisory board 

(Witzany, 2017, p. 5). 

As the third line of defense the internal auditors sometimes denoted internal 

revision in Europe, are installed, who back-check the adequacy of the control measures 

in place on a regular and ad-hoc-event case base (Gericke, 2018). The risk control and 

especially the internal audit unit have to be separated and independent, can require access 

to (nearly) all documents, and report directly to the C-level of a company (Witzany, 2017, 

p. 4). Hence, risk management has to be a key task for senior management and lived by 

“tone from the top” (Bouteillé & Coogan-Pushner, 2021, p. 33; Gericke, 2018). 

In the area of regulatory affairs and the Basel accords (finalized Basel III as of 

12/2018), there is a clear differentiation between the strictly regulatory, CRR-defined, 

and rather formal Pillar 1 risks and the more qualitative, CRD encrypted, and often 

nationally preconized Pillar 2 risks (European Commission, 2019; Witzany, 2017, pp. 11-

16). Whereas the core risks credit, market, and operational risk have to be quantified in 

both Pillars, thus including Pillar 1, the interest rate risk in the banking book (IRRBB) is 

a prominent representative of a pure Pillar 2 risk, utilizing quantification methods like net 

interest income (NII) for income and P & L purposes and economic value of equity (EVE) 

for economic valuations (European Commission, 2019; Hull, 2015, pp. 212-234). 

Sometimes one disassembles a risk further into a systematic part belonging to the 

country risk, to a certain industry sector, or just “the market” and a pure individual, 
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idiosyncratic risk component (Gregoriou, 2006, pp. 107-131, Witzany, 2017). Eventually, 

when dealing with different countries or currency areas, one should supplement the 

transfer risk (Aldasoro & Ehlers, 2017). That means the risk of transferring an asset from 

a foreign currency and country to a local one, especially when there are capital (flow) 

controls or tariffs on capital as will be seen again later (Aldasoro & Ehlers, 2017; Hull, 

2015). 

An increasingly more important risk is model risk, i.e., the risk of using models 

as simplified versions of reality and a certain type of model in its own right (Abasto & 

Kust, 2014; Behm et al., 2013; Breinich-Schilly, 2021; Buraschi & Corielle, 2005, p. 

2884; Glasserman & Xu, 2014; Hull & Suo, 2002; Hull, 2015, pp. 587-605; Limas et al., 

2015; Rösch & Scheule, 2010). Due to a growing inventory of (internal) risk models, the 

“mathematization” of risk, and the rise of artificial-intelligence-based methods the impact 

of this risk type might be enormous for banks (Breinich-Schilly, 2021; Hull, 2015). 

Henceforth a strict model risk policy and model risk framework have to be implemented 

(Farkas et al., 2021; Reinwald, 2022b). Farkas et al. even proved that capital requirements 

which are adjusted for model risk are as conservative as the finalized Basel III ones, but 

less volatile and more efficient (Farkas et al., 2021). 

Investment risk is a sub-category of banking risk111, while the former contains the 

risk of investing, i.e., credit risk, market risk, and possibly further liquidity risk, the latter 

subsidies all sorts of risks which can occur in the banking or financial sector, also 

including operational risks (like cyber risk) in banks (Hull, 2015). 

The standard definition of investment risk also does not include risks that are 

indirectly involved when investing into assets, like settlement and clearing risks or 

depositary risks, etc., these are consequently summarized as opRisks (operational risks) 

here as well (Hull, 2015). The thesis operates within the class of investment risk, more 

specifically credit risk. 

To deal with the phenomenon of risk it generally has to be managed, hence the 

following is defined for the purpose of the thesis. 

 

111 Sometimes banking risk (or financial entity risk) that includes all risks described before which appear 

in the banking business, especially credit risk, market, and operational risk, is then divided into (hence 

differently defined) financial risk comprising of credit and market risk and nonfinancial risk which means 

operational risk. Furthermore, sometimes banking risk and investment risk are differentiated in the sense 

that investment risk can only appear in the process of investing in an asset, hence, e.g., credit risk related 

to a bank loan is regarded as banking risk and financial risk, but not as investment risk. In the thesis, 

investment risk is used in a comprehensive sense and hence interchangeably with financial risk.  
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Risk Management is the management and controlling of the resources and 

commitments of a company in such a manner “as to maximize its value, taking into 

account the impact that unpredictable outcomes or events can have on firm performance” 

or existence (Gericke 2018; Hull, 2015; Bansal et al., 1991, p. 1). 

The guidelines by supervisory authorities as the EBA, FED, and the NCAs, the 

laws and experts stress the importance of risk management as a continuing process, as 

integrated in the overall bank controlling and management, which has to be very well 

documented and reported (EBA, 2018; Witzany, 2017, pp. 4-5, 11-16). This is usually 

implemented in the form of regular risk reports, risk dashboards with key risk indicators, 

known as KRIs, accompanied by early warning signals and triggers, risk-bearing capacity 

calculations and defining the risk tolerance of the institute (IOR, 2010; SDW, 2022). 

The risk culture has to be lived by the top management as well as every single 

individual in the financial firm – “every employee is a risk-aware employee” (Alexander 

& Sheedy, 2004; Witzany, 2017). To foster that, the bank needs to implement concrete 

measures, e.g., setting up whistle-blowing processes to create a means to report suspicious 

or unethical behavior without the fear of reporting employees of being punished and 

making sure that the remuneration and bonus system of the bank is risk-adapted 

(Alexander & Sheedy, 2004; Angeli & Gitay, 2015; Gericke, 2018).112113 The graph 

below summarizes the risk universe and its sub-sets, as in (EBA, 2018; Hürlimann, 2018). 

 

Figure 16 Risk universe and sub-sets.  

Source: According to (Hürlimann, 2018). 

 

112 For more details on regulatory requirements concerning remuneration, see on (EBA, 2022b). 
113 Explained further in “The Professional Risk Manager’s Handbook” from the editors C. Alexander and 

E. Sheedy, published by The Professional Risk Managers’ International Association ® in 2004. 
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Whereas risk (bearing) capacity (RBC) means the maximal capital available to 

absorb losses, the risk tolerance is a limit below that number as it should be avoided that 

distributions like dividend payouts are forbidden by regulators (when the MDA threshold 

is breached), extreme losses occur and have to be reported or regulatory fines have to be 

paid (EBA, 2018; Hull, 2015). The tolerance hence can be regarded as the maximal limit 

under minimal standards or practical considerations. Within that business tolerance limit 

a bank now decides how “offensive” or “defensive” it is taking on risks, time-adjusted 

also to economic conditions and opportunities – this is the mentioned risk appetite and 

the corresponding framework RAF (Hull, 2015; Martens & Rittenberg, 2020, pp. 1-3; 

Witzany, 2017). 

As indicated before, an overarching risk management framework and governance 

system including the RAF and risk strategy as well as the entire management process and 

step-by-step risk management handbook have to be available for the respective 

employees in the risk controlling department in a bank (Bouteillé & Coogan-Pushner, 

2021, pp. 21-33; Martens & Rittenberg, 2020). 

The entire risk management process is considered as the risk inventory, analysis, 

general valuation (including quantification) and implementation, monitoring processes, 

control and reporting requirements of all material risks, and mitigating solutions. Risk 

management hence sequentially involves the following steps, after setting up the risk 

strategy, as in (Alexander & Sheedy, 2004; BCBS, 2000b; Bouteillé & Coogan-Pushner, 

2021; Gericke 2018; Hull, 2015; Witzany, 2017): 

  

(1)  An exhaustive identification and classification of the risks that can occur  

(also known as risk inventory), including also rare or at first nonmeasurable/ 

nonmodelable risks (NMRs114).  

(2)  A thorough analysis of risks, followed by precise measurement and 

valuation of the risks in terms of likelihood of their occurrence and the impact or 

magnitude of losses arising from the risks. Furthermore, the correlations and 

interconnections of the risks ought to be considered, and finally one compares the 

quantified risks with the available (economic) risk capital or risk-bearing capacity 

as well as the risk tolerance. 

 

114 Sometimes also denoted as risks not in VaR (RNIV). 
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(3)  A permanent controlling and reporting, which includes formal 

documentation of the risks, has to be ensured.  

(4)  An implementation of the actions required to control business risks within 

certain acceptable bounds has to take place. 

 

Conclusions and potential improvements derived from (4) are then again 

implemented in a lessons-learned process for adapting the strategy and also the steps (1)-

(3) in form of a “Do-Plan-Act”-Circle. 

 

 

Figure 17 Risk management process cycle.  

Source: Own illustration, similar as in standard risk management textbooks, e.g., (Hull, 2015). 

Furthermore, risk mitigation is commonly following step 4. The actions can 

include avoiding risk, insuring risk, mitigating risk, transferring/selling/securitizing risk, 

dividing it, and controlling for it (Bouteillé & Coogan-Pushner, 2021, p. 289). 

In recent years, especially following the great financial crisis, institutes also have 

to test their risk management framework by applying suitable stress tests (Farmer et al., 

2022). Some of them are obligatory and pre-defined by the supervisory authorities like 

the EBA stress test in the European Union or the comprehensive capital analysis and 

review (CCAR) and Dodd-Frank act stress test (DFAST) in the United States – the latter 
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ones introduced in 2011 respectively 2013 (EBA, 2022c; FED, 2021). Often stress tests 

make use of various base and adverse scenarios, e.g., historical ones like the great 

financial crisis (GFC) in 2009 or hypothetical ones like “a sudden 50 % drop in housing 

prices” or they are simulation-based like Monte Carlo simulations - also hybrid forms 

exist (Bellini, 2016; EBA, 2018c; Farmer et al., 2022). Overall, risk management is a 

(circle) process, which has to be challenged constantly. 

It is important to stress that credit risk management is roughly consisting of four 

steps. Credit origination, then (single obligor) credit assessment and analysis, portfolio 

valuation and management, and finally risk transfer and mitigation (BCBS, 2000b; 

Bouteillé & Coogan-Pushner, 2021; Witzany, 2017). In the circle above – illustrating the 

process as most actors in finance regard it – these elements are contained, only the credit 

(or risk-bearing item in general) is “already there” and one hence starts with the inventory, 

followed roughly by the other three steps. However, a precise risk manager should already 

regard the respective risk management process at an earlier stage – at the origination or 

even before, at the negotiation point of a deal (Witzany, 2017, p. 6). Consequently, in 

many cases a very bad deal in terms of a risk management viewpoint might be practically 

uncontrollable or an asset unsellable later and if a “bad risk” can be avoided at the 

beginning it should be – and the prospective deal then neglected or re-arranged (Witzany, 

2017, p. 6). From that perspective, some risk managers even regard the origination 

process as the most crucial step in risk management (Bouteillé & Coogan-Pushner, 2021, 

p. 21). Risk managers should always accompany this origination process closely and in a 

detailed fashion or at least – in the case of much less risky or standardized origination 

contracts – provide checklist-style approvement schemes and limits to the size of 

originations as well as “black-lists” for certain countries, branches, or clients, which 

appear enormously unfavorable in risk terms (Bouteillé & Coogan-Pushner, 2021, p. 34; 

Witzany, 2017, p. 7).  

General credit portfolio risk management guidelines and advice might be gained 

from the International Association of Credit Portfolio Managers® (IACPM®), a leading 

industry association in the world (IACPM, 2005; IACPM, 2017). The institute also offers 

regular surveys among its members and extracts working objectives and changing 

priorities (trends) thereof, i.e., toward an active balance sheet management including 

further return enhancements or wholistic approaches within a bank, in the community 

(IACPM, 2017). Another valuable source for professional risk managers, in general, is 
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the (membership) organization Global Association of Risk Management Professionals® 

(GARP®) with chapters in every major country.115 

The steps of credit risk analysis, valuation, and portfolio considerations are dealt 

with in detail in the thesis. Risk mitigation and transfer is not the scope of the thesis, the 

main possibilities in this area are, as mentioned, credit sales (i.e., transferring the risk by 

selling it), insurance techniques (either private single loan credit risk insurance – PCRI – 

or with the means of credit default swaps, CDS), indirect insurance techniques (e.g., by 

so-called credit linked notes, CLN, or insurance-linked-notes, ILN), or portfolio swaps 

synthetic securitization for risk mitigation, SRT, as shown in (IACPM, 2022). 

In addition to a general risk management process, various specific handbooks and 

concepts, in case of necessity also sub-frameworks for the individual risks and their 

proper management, have to be derived, e.g., for market risk and credit risk (Bouteillé & 

Coogan-Pushner, 2021; Witzany, 2017; Zopounidis et al., 2021). Furthermore, real up-

to-date risk reports have to be submitted at least on a monthly basis to the management 

of an institute, with daily surveillance and weekly meetings within the smaller risk 

controlling groups and units (Gericke, 2018). For instance, market risks and large 

exposure (credit) risks have to be calculated and monitored daily as obliged by the law 

(European Commission, 2019b; Zopounidis et al., 2021). A quarterly report has to be 

submitted to the regulators as well as – often presented by the CRO himself – to the risk 

committee in the supervisory board116 of the bank. 

Finally, for certain risks and their corresponding risk models a validation 

framework, concept, and validation handbook have to exist. Therein the adequacy of the 

model including its methodological foundation, assumptions, data input, calculations, and 

output are challenged (Reinwald, 2022b). 

At least yearly, as well as “on special occurrences”, like when substantial model 

changes happened, restructurings or a crisis occurred, a validation process has to take 

place (Satchell & Christodoulakis; 2008; Tasche, 2006). The results are written in the 

validation result report (Reinwald, 2022b). Also, the models themselves have to be put 

into an inventory of models and have to be categorized and valued (“scored") by their 

importance as well as their potential risk impact and shortcomings, i.e., the severity of 

 

115 See http://www.garp.org (Retrieved Mai 17, 2022). 
116 In the US – where a single management body system is standard – the board of directors with the 

supervisory and oversight committee, in most European states as Germany the supervisory board 

(“Aufsichtsrat”) and Switzerland the administration board (“Verwaltungsrat”) fulfill that responsibility. 
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risks (Glasserman & Xu, 2014; Satchell & Christodoulakis, 2008; Scandizzo, 2016). This 

is usually done with the help of scorecards and heatmaps. Abasto and Kust introduced a 

promising method to measure incremental model changes by means of weighting Monte 

Carlo paths under constrained optimization to receive lower and upper bounds (Abasto & 

Kust, 2014). Relying on categorization and valuation, a conservative capital charge, the 

model risk buffer (MRB), is finally calculated and assigned to the model (Reinwald, 

2022b; Rösch & Scheule, 2010; Scandizzo, 2016). 

The legal requirements for risk reporting were set out by the Basel Committee on 

Banking Supervision in the document “Basel III: A global regulatory framework for more 

resilient banks and banking systems - revised version June 2011”, for risk data 

management in BCBS 239 in 2013, in BCBS d328 in 2015, furthermore in december 

2017 in the finalization of Basel III, and followed by the European authorities as for 

instance in CRD IV article 74, 76 ff. which had to be nationally implemented (BIS, 2011; 

BIS, 2013; BIS, 2015; BIS, 2017; European Commission, 2019b; Witzany, 2017, pp. 11-

16). For instance, in Germany, the national CRD implementation was done in the 

“normeninterpretierende Verwaltungsvorschrift MaRisk”, based on the modification of 

the national article 25a. KWG (BaFin, 2021). The latest version, the 7th revision of it, 

appeared in the fall of 2021 and includes current developments concerning IT risks and 

outsourcing as well as the handling of critical, “non-performing” loans, further also risks 

stemming from an environmental, social, or governance induced context known as ESG 

risks (BaFin, 2021; Hannemann et al., 2022). 
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Figure 18 Example of (regulatory) risk capital requirements vs. the risk-bearing 

capacity of a bank.  

Source: Own fictive example and illustration. 

As stated in these acts, a bank has to be able to clearly (dis-)aggregate the 

quantified risks, e.g., measured as VaR, throughout the single risk factors and types, 

processes and departments (BaFin, 2021; EBA, 2018; Hull, 2015, pp. 36, 618-622). This 

requirement is including correlations between risks in the institute (BaFin, 2021). Often 

this is done by means of a “large matrix summation”, denoted as variance-covariance 

matrix summation, of the different risk types (Hull, 2015, pp. 618-622; Li et al., 2015).  

Such a (hybrid) summation is shown, e.g., by Rosenberg and Schuermann who 

also describe typical shapes of market risk, credit risk and operational risk distributions 

as normal or t-student ones, Gamma ones and Generalized Pareto ones (Rosenberg & 

Schuermann, 2004).  

More sophisticated methods such as copulas, introduced later in the thesis, are 

discussed for instance by Li et al. (Li et al., 2015; Witzany, 2017, pp. 188-202). The result 

of these calculations is a total aggregated risk and corresponding VaR exposure of an 

institute (Hull, 2015, pp. 618-622).117 

Funds as well as (risk) capital – the one really used, as well as the one which is 

planned to be available in the future under certain conditions – can be allocated and 

assigned to certain functions and departments of a company (Figueiredo, 2021). That 

 

117 See in Germany (BaFin, 2021). 



87 

 

method is commonly known as (risk) capital aggregation or funds transfer pricing (FTP) 

and can be seen as a kind of “banking within a bank” (Figueiredo, 2021).  

Furthermore, an escalating and risk-corresponding limit system has to be 

implemented, constantly monitored, and updated regularly, as well as occasionally, when 

induced by “major changes” (Bouteillé & Coogan-Pushner, 2021; Hull, 2015). Literally 

every new product, business deal and client have to be equipped with a certain limit, and 

every individual involved in such a deal has to be aware of it (Hannemann et al., 2022). 

Especially also a global risk limit for the entire institute has to be set (Hannemann et al., 

2022). It is common to include the Basel “traffic light” approaches with “red” (which 

means out of limit, usually from ten limit breaches onwards for a 99 % quantile), “yellow” 

(which means still in the limit, five onwards), and “green” (meaning the limit is rarely 

used or not used at all, e.g., three) color codes for reasons of feasibility (BCBS, 1996; 

Guericke, 2018).  

2.2 Risk Measures 

In order to measure risk, one needs to define, in a subjective or objective way, the 

range of possible outcomes (events) and the assigned probabilities, i.e., through a 

probability distribution, that these outcomes will occur (Albrecht, 2004; Van Deventer et 

al., 2013). For scientific value, one needs to consider objective or principally at least 

strong intersubjective measures. 

A risk measure for the purpose of this thesis is a statistical measure allowing to 

describe the uncertainty of an event in a quantitative way (Albrecht, 2004; Bielecki & 

Rutkowski, 2004; Björk, 2009; Van Deventer et al., 2013; Hull, 2015). It is an operation 

or map which assigns a certain value to a risk. Such a measure is intuitively necessary to 

quantify and “measure” risk and calculate risk amounts. To proceed, therefore, a few 

terms are defined mathematically on the following pages. 

A σ-algebra on a set S is a collection A of subsets of S, where  

 

1. 𝑆  ∈  𝐴  (A includes S itself) (22) 

2. 𝑋 ∈  𝐴 ⇒ 𝑋𝑐 ∈ 𝐴  (A is closed under complementation) (23) 

3. 𝑋1, 𝑋2. . . ∈  𝐴 ⇒ ∪𝑖=1
∞ 𝑋𝑖 ∈  𝐴  (A is closed under countable unions) (24) 

 

https://en.wikipedia.org/wiki/Subset
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as for instance defined in (Bingham and Kiesel, 2004; Björk, 2009, p. 461). The 

definition implies directly (via 1. and 2., respectively 2. and 3.) that the empty set is an 

element of A 

 ∅ ∈  𝐴   (25) 

and that A is closed under countable intersections Hence given a set S, A is a 

collection of subsets of this set, which includes the whole set itself, the empty set, the 

complementary sets and is closed under countable unions. It will be utilized later, e.g., 

for (risk) events. 

The pair (S, A) is called a measurable space or Borel space (Bielecki & Rutkowski, 

2004, pp. 33-34; Björk, 2009, p. 461; McNeil et al., 2015). An example is the real 

numbers with all open intervals of the real numbers as A. The measurable space is hence 

the mathematical foundation to really measure the probability of a certain risk event. 

Given now a sample space S and an associated sigma-algebra A, hence a Borel 

space (S, A). 

Then a probability function (or probability distribution or distribution measure) is 

a function P on a Borel space with domain A – therefore P maps from the basis A,  

P: A → ℝ, ℝ is the field of real numbers – such that (Björk, 2009, p. 484): 

1. P(𝑋) ≥  0, ∀ 𝑋 ∈  𝐴  (i.e., P is positive definite) (26) 

2. P(𝑆)  =  1  (i.e., the measure of the whole sample space is one) (27) 

3. If 𝑋1, 𝑋2. . . ∈  𝐴 are pairwise disjoint, then P(∪𝑖=1
∞  𝑋𝑖) =  ∑ P(𝑋𝑖)

∞
𝑖=1  (28) 

Similar standard descriptions are found throughout the literature, e.g., in (McNeil 

et al., 2015). Number three says that the probability of pairwise disjoint (i.e., 

nonintersecting) events can be simply added up. These properties make sense in the 

practical world. The probability of an event is always nonnegative as an event can (will) 

happen with a certain chance or probability (then P(X) > 0) or it can never happen (then 

P(X) = 0). But it cannot be less than “not happen (ever, at all)”, hence never have a 

probability less than zero assigned. Furthermore, a probability can never be more than 

100 %, hence one (1), when the event happens for sure (“no matter what”). If one has a 

whole (complete) sample the probability of the whole sample is naturally one (see the 

definition of (S, A)). The last property can be heuristically motivated as an (exclusive) 

“or”-event, connected then with “+”, where the probabilities are hence just summed up. 

https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Measurable_space
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These three properties are known as axioms of probability or the Kolmogorov 

axioms. Any function P that is satisfying the axioms of probability is called a probability 

(measure) function (Bingham & Kiesel, 2004). For instance, a function that maps for five 

different balls the probability of one-fifth (1/5) for drawing one of them evenly on each 

ball fulfills all the axioms and is hence a probability function. One can directly derive the 

following properties from the rather intuitive definitions. 

If P is a probability function, X is any set in A, then (where ∅ is the empty set):  

I. P(∅)  =  0 (The probability of an empty set is zero) (29) 

II. P(𝑋) ≤  1 (A probability is always less or equal than one, i.e., 100 %) (30) 

III. P(𝑋𝑐)  =  1 −  P(𝑋)  

(The probability of the complementary set is one minus the probability of 

the set) 

(31) 

as shown in (Bingham & Kiesel, 2004; Björk, 2009, pp. 485-486; Chen, 2018, p. 

3). This can be also seen when recalling that by definition: 

 𝑆 =  𝑆 ∪  ∅ , 𝑆𝑐  =  ∅ . (32) 

 P(∅)  =  0  (33) 

is clear, when the third point is established and by writing  

 P(𝑆𝑐)  =  P(∅)  =  1 −  P(𝑆)  =  1 –  1 =  0  (34) 

where  

 P(𝑆)  =  1  (35) 

comes from 2. further above. The same is true for the second property  

 P(𝑋)  ≤  1 (36) 

When the third point is established then  

 P(𝑋)  =  P((𝑋𝑐)𝑐)  =  1 −  P(𝑋𝑐)  (37) 

and as by 1. further above  

 P(𝑋𝑐) ≥ 0 (38) 

it follows  

 P(𝑋)  ≤  1.  (39) 
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Therefore, only the third point has to be proven. Yet, point three directly follows 

from 3. further above as X and the complement X c do not intersect (are independent) by 

their very definition as complementary sets, further 

  𝑆 =  𝑋 ∪  𝑋𝑐 (40) 

by definition and by 

 𝑃(𝑆)  =  1  (41) 

from 2. above. As a result, 

 1 =  𝑃(𝑆)  =  𝑃(𝑋 ∪ 𝑋𝑐)  =  𝑃(𝑋𝑐)  +  𝑃(𝑋) (42) 

thus  

 𝑃(𝑋𝑐) = 1 − 𝑃(𝑋) (43) 

The last point means that the probability of a complementary (“opposite”) event 

is one minus the probability of the event. However, one needs to be precise when 

regarding complementary events. As an example, the complementary event of “The color 

of the ball I have drawn is black” is not “The color of the ball I have drawn is white” but 

logically just the negation of the first event, hence “The color of the ball I have drawn is 

not black” so “The color of the ball I have drawn is any color except black”. 

If P denotes again a probability function, furthermore X1 and X2 are any sets in A, 

then one can from the definition of a probability measure above also directly deduce (an 

alternative way to the own one below is shown in Chen, 2018, p. 3): 

 • P(𝑋1 ∩ 𝑋2
𝑐)  =  P(𝑋1)  −  P(𝑋1 ∩ 𝑋2 ) (44) 

 • P(𝑋1 ∪ 𝑋2) =  P(𝑋1) + P(𝑋2)  −  P(𝑋1 ∩ 𝑋2 ) (45) 

 
• If 𝑋1  ⊂  𝑋2, then P(𝑋1) ≤  P(𝑋2) 

 

(46) 

The first equation can be rewritten as: 

  P(𝑋1 ∩ 𝑋2
𝑐) +  P(𝑋1 ∩ 𝑋2 ) =  P(𝑋1) (47) 

As  

 (𝑋1 ∩ 𝑋2
𝑐)  ∪  (𝑋1 ∩ 𝑋2 )  =  𝑋1  (48) 

by definition of the complementary set of X2, and as (X1 ∩ X2) and (X1 ∩ X2
C) are 

disjoint by definition of the complementary set, together with 3. further above  

 P(𝑋1 ∩ 𝑋2
𝑐) +  P(𝑋1 ∩ 𝑋2 ) =  P(𝑋1) (49) 
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regrouping shows the first point. The third point can be proved as follows. As 

X1 ⊂ X2 one can write  

  𝑌 ∪ 𝑋1 = 𝑋2 (50) 

for some set Y, being disjoint from X by construction. Then with 3. further above 

one gets  

 P(𝑋1  ∪  𝑌)  =  P(𝑋1)  +  P(𝑌)  =  P(𝑋2)  (51) 

and as by 1. further above  

 P(𝑌)  ≥  0  (52) 

it yields  

 P(𝑋1)  ≤  P(𝑋2).  (53) 

From  

 𝑋1  ∪  𝑋2  =  (𝑋1  ∩  𝑋2
𝑐)  ∪  (𝑋1

𝑐  ∩  𝑋2)  ∪  (𝑋1 ∩ 𝑋2),  (54) 

which are disjoint by definition follows with 3. further above directly  

 

P(𝑋1  ∪  𝑋2)  =  P(𝑋1  ∩  𝑋2
𝑐)  +  P(𝑋1

𝑐  ∩  𝑋2) +  P(𝑋1 ∩ 𝑋2)  

=  P(𝑋1) −  P(𝑋1  ∩  𝑋2)  +  P(𝑋2) −  P(𝑋1  ∩  𝑋2)  

+  P(𝑋1  ∩  𝑋2)  

(55) 

With the help of point 2. and hence by regrouping and summing up one gets:  

 P(𝑋1  ∪  𝑋2)  =  P(𝑋1) +  P(𝑋2)  −  P(𝑋1  ∩  𝑋2)  (56) 

One can also derive the following result in table 1 from measurement theory and 

counting, showing the “number of possible arrangements of size r from n objects” (Chen, 

2018, p. 6; Witte & Witte, 2010). 

Table 1 Arrangements of objects with and without replacement in an ordered vs. 

unordered fashion. Thereby r and n are denoting natural numbers and r ≤ n.  

 Without 

Replacement 

With 

replacement 

Ordered 𝑛!

(𝑛 − 𝑟)!
 

𝑛𝑟 

Unordered (
𝑛

𝑟
) (

𝑛 + 𝑟 − 1

𝑟
) 

Source: Own illustration in line with (Chen, 2018, p. 6). 
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From the definition above, it is further defined (Bingham & Kiesel, 2004; Björk, 

2009, p. 484): 

A probability space is a triple (Ω, A, P) where Ω is a set of samples (sample space, 

which is the set of all possible outcomes of a given experiment), A is a σ-algebra (a set of 

events, where each event is a set containing zero or more outcomes as defined above) and 

P is a probability measure function (mapping a probability to each event, as also defined 

before). 

For risk management purposes and theory, probability spaces are fundamental 

objects as for certain risk events the corresponding probabilities and exposures are 

mapped onto them utilizing probability spaces (Bingham & Kiesel, 2004).  

In the annex the probability-based concepts of a filtration, random variables as 

variables that assign values to events of a domain space with a certain probability, i.e., 

“randomly”, (in)dependence of random variables, random processes as a collection of 

random variables indexed by a set like the natural or real numbers, adopted processes and 

martingales – colloquially a special stochastic process with a conditional expectation of 

the process at point t with knowledge of time t-1 being equal to the process and random 

variable at t-1, hence zero expected increment – are formally defined. For the purpose of 

the thesis an intuitive understanding and the descriptions given in the text are sufficient. 

In finance the existence of the mentioned special (martingale) measure in a probability 

space, denoted as a risk-neutral probability measure, with expectation zero is equivalent 

to no-arbitrage opportunities as already seen before in the first fundamental theorem of 

asset pricing. To return to the central definition of a risk measure one can formally define: 

A risk measure is a mapping  

 ρ: 𝑀 (𝛺, ℝ)  →  ℝ , 𝑋 ↦ ρ(𝑋)  (57) 

where M (Ω, ℝ) ⸦ Mℬ (Ω, ℝ) is a ρ-dependent sub-vector-space. Hence, a real 

number (measure) is assigned to the random variables in the sub-space by the mapping 

(Björk, 2009; McNeil et al., 2015). This concept gives the possibility to measure and 

quantify risks now. 

Many risk measures include a parameter α ∈ ]0,1[ with which, accompanied by 

the specific measure, the desired “security level” is defined (Hull, 2015). This important 

parameter is hence referred to as confidence level (Hull, 2015). A mathematical 

concretization of the “security level” is then defined by three elements, a certain risk 

measure, a confidence level like 0.95 hence 95 % and a certain time horizon like a year, 

https://en.wikipedia.org/wiki/Outcome_(probability)
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to which the (gains or) losses then correspond (Bouteillé & Coogan-Pushner, 2021, p. 

239; Hull, 2015, pp. 294-298; McNeil et al., 2015). 

The literature mainly differentiates between so-called moment-based risk 

measures (MBR), which are grounded in the statistical moments like the mean, variance 

or higher moments then Value-at-Risk measures, alternative tail or conditional Value-at-

Risk measures, which are also sometimes called expected shortfall measures, and finally 

the spectral measures (Adam et al., 2008; Albrecht, 2004; Bouteillé & Coogan-Pushner, 

2021, pp. 78-80; Hull, 2015, p. 298; McNeil et al., 2015; Raskin, 2006). All of which will 

be defined in more detail in this chapter. 

In statistics, a cumulative distribution function (or a cumulative probability 

distribution, often referred to as cdf or cpd) of a real-valued random variable X is the 

function  

 F𝑋 (𝑥)  =  P (𝑋 ≤  𝑥) (58) 

where P (X ≤ x) is the probability that the random variable X takes on a value less 

than or equal to x (Bingham & Kiesel, 2004; Björk, 2009, pp. 484-485; McNeil et al., 

2015). In the discrete case, this is just the summation up to that part. If there exists – it is 

often not the case – a function fX such that  

 F𝑋 (𝑥) = ∫ 𝑓𝑋(𝑡) 𝑑𝑡 
𝑥

−∞

 (59) 

then fX is called the (probability) density function of FX (Björk, 2009). The 

integration (or summation in the discrete case) of the density up to x hence leads to the 

cumulative probability distribution. It follows directly from the definition that every 

cumulative distribution function FX is right-continuous and non-decreasing, which makes 

it a so-called càdlàg118 function (Bielecki & Rutkowski, 2004; Björk, 2009; Bingham & 

Kiesel, 2004). 

In statistics, especially in descriptive statistics, apart from the cdf of a random 

variable X one is interested in parameters like the mean, median, or variance of a 

distribution, generally in statistical moments, hence a general n-th moment is defined 

where n can be any natural number. 

 

118 continue à droite, limite à gauche 

https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/C%C3%A0dl%C3%A0g
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If F is a cumulative probability distribution function of a probability distribution 

P then the n-th moment of the probability distribution is given by (where just the n-th 

power of x is taken): 

 μ𝑛 = E[𝑥𝑛] = ∫ 𝑥𝑛𝑑F(𝑥)
∞

−∞

 (60) 

E[X], hence the first moment, is also the called expectation value of the random 

variable X. μ is called the mean (Björk, 2009, p. 485; McNeil et al., 2015). For a 

cumulative probability function with a density function f as defined above, the equation 

then simplifies to 

 μ𝑛 = E[𝑥𝑛] = ∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥
∞

−∞

 (61) 

Substituting X with X - E[X] one can derive for the second moment 

 σ(𝑋) =  √E[(𝑋 − 𝐸(𝑋))2)] =  √var(𝑋)  (62) 

which is called standard deviation, in many situations in finance referred to as 

volatility, and where var(X) := E[(X − E(X))2] is called the variance (Björk, 2009, p. 485; 

Hull, 2015, pp. 240-248; McNeil et al., 2015). This formula gives the opportunity to 

explicitly calculate the mean (expectation value) and volatility of a random variable or 

realized random process and hence to quantify risk in a certain way. To summarize, 

moments-based risk measures are the standard deviation (or vola) indirectly, the variance 

(second moment), sometimes skewness and kurtosis (with moment n equals three and 

four), or higher moment measures (Hull, 2015). 

For different random variables X and Y, one calls then  

 E[(𝑋 − E(𝑋))(𝑌 − E(𝑌))]  =  cov(𝑋, 𝑌)  (63) 

the covariance of X and Y, which generalizes the variance concept (Hull, 2015, pp. 

272-274; McNeil et al., 2015). 

While volatility – a kind of deviation from some expected value as the mean – is 

an often-used concept for measuring risk, it should never be the sole one. Other concepts 

like the maximum drawdown within a period and further measures based on VaR-like 

capital ratios, performance and risk ratios, RWA and leverage ratios – or even factors like 

net in-/outflows, active share, or the Kelly factor in case of investing portfolios should be 

regarded (Van Deventer et al., 2013; Kelly Jr., 1956). The Kelly factor is stemming from 

game theory and the idea behind it is searching for the optimal proportion of the 

investment money to invest in each step (Kelly Jr., 1956). Active share describes what 

https://en.wikipedia.org/wiki/Cumulative_distribution_function
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proportion of a portfolio is managed in a real active way as opposed to which part is 

mainly tracking indices (benchmarks) and is hence considered passive investing (Cremers, 

2017). The concept of net in-/outflows is self-describing and measures which amount of 

capital is flowing in and out of assets (or normally a whole portfolio respectively fund) 

considering different time frames, investor groups, and relations. The last three figures 

are mainly used within portfolio and fund management, whereas volatility, maximum 

drawdown and VaR-like measures are generally applied in the financial industry 

(Albrecht, 2004; PMI, 2017). 

The concept of applying multiple (in some cases partly complementary) measures 

was already described in the risk management process before, where a strong focus was  

 

1. on a set of various indicators (volatility, maximum drawdown, risk/return  

ratios) and metrics collected in a dashboard,119 as well as  

2. on (dis-)aggregable VaRs/TVaRs throughout the institutes’ departments  

and processes 

 

Furthermore, especially the occurrence of extremely rare unforeseen events, in the 

financial industry known as “black-swans”, unhappy foreseen circumstances hence 

events labeled as “white-swans” or “grey-rhinos” or changing correlations in stress 

situations are essential (Hull, 2015; Taleb, 2008). Hence, the VaR measure and related 

concepts will be broadly discussed in the following parts, stress tests are again mentioned 

later in the thesis. 

One property of the standard deviation is that positive deviations have the same 

impact as negative deviations. Especially for risk management purposes, however, one 

often prefers to concentrate on the negative side, the “loss-side” (Hull, 2015). One 

solution is to just consider these losses which exceed the expectation value, and one 

subsequently derives  

 σ+ =  √E[max(0, 𝑋 − E(𝑋))2]  (64) 

 

119 The internal capital adequacy assessment process ICAAP with its core of calculating and comparing the 

risk-bearing capacity with the overall Value-at-Risk, hence potential loss capital needed, can be similarly 

executed with liquidity (which is just “short-term available/required capital”) and its liquidity risks. Hence, 

keeping the interconnectedness between capital and liquidity in mind the combination is named an ICLAAP 

process (capital and liquidity). In some contexts, the extensions of the risk metrics are including 

performance parameters (among risk, capital, liquidity, and return) and structural or regulatory parameters 

which are then sometimes denoted as IMAAP (or ICLMAAP) with “M” for management. 
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(Albrecht, 2004). 

The “danger” of crossing a certain threshold is generally measured by the Shortfall 

measures (McNeil et al., 2015; Sortino & Price, 1994; Sortino & Satchell, 2001). 

For losses one can then derive the upper partial moments for a threshold a (McNeil 

et al., 2015): 

 • 𝑈𝑃𝑀(ℎ, 𝑎)(𝑋) =  √E[max(0, 𝑋 − 𝑎)ℎ] , ℎ >  0  (65) 

 
• 𝑈𝑃𝑀(ℎ, 𝑎)(𝑋) = P(𝑋 ≥ 𝑎), ℎ = 0 

 
(66) 

Another risk measure sometimes used in the financial industry is the maximum 

drawdown (MaxDD), which is the already mentioned maximum loss having occurred 

during a pre-defined period, like a 250-days MaxDD. 

Nevertheless, most of these measures are not really suitable for finance, and apart 

from the standard deviation (and skew, kurtosis) the moments-based measures are not 

intuitive and imaginable (Albrecht, 2004, pp. 11, 15, 17; Artzner et al., 1999; BIS, 2009). 

The maximum drawdown120 lacks certain mathematical properties and is also extreme as 

it solely concentrates on the very maximum, and the standard deviation is less useful for 

unsymmetric risks and gradual phases of price declines (Hull, 2015). 

To eliminate these properties the next risk measure is defined, which is 

mathematically feasible and of the highest practical relevance, the Value-at-Risk (VaR) 

measure, which first appeared in the banking industry with the introduction of Till 

Guldiman in the 1980s (Afzal & Nawaz, 2011, p. 7475; Bouteillé & Coogan-Pushner, 

2021, p. 65; Hull, 2015, pp. 294-298; Holton, 2002; Jorion, 2007). Main ideas however 

date back much longer, for example to Leavens et al. (Leavens, 1945). 

To have the ability to measure also “correlated assets” within the VaR concept 

correlation needs to be defined more precisely. The Pearson’s correlation (coefficient) 

between X and Y is defined as:  

 

120 Chekhlov et al. generalized the concept of maximum drawdown (MaxDD or MDD) and introduced the 

– path-dependent – conditional drawdown (CDD), containing a whole family of drawdown risk measures 

(Chekhlov et al., 2005; Möller, 2021, p. 3). 

The maximum drawdown (MDD) and the average drawdown (ADD), an arithmetic mean of occurred 

drawdowns, are special cases thereof. A special kind of that family, the so-called conditional expected 

drawdown (CED), has been introduced in (Goldberg & Mahmoud, 2017; Möller, 2021, p. 3). However, 

they are only useful in few practical (and theoretical) applications and hence not further considered here 

(Afzal & Nawaz, 2011). 
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 ρ𝑋,𝑌 =  
𝑐𝑜𝑣 (𝑋, 𝑌) 

σ(𝑥) σ(𝑦) 
 (67) 

with volatility function σ(x) sometimes briefly denoted σx (Hull, 2015, p. 270; 

McNeil et al., 2015). In some contexts like linear regression, R2 := ρ X,Y
 2 is called the 

determination coefficient. There is a direct mathematical relationship to bilinear, 

symmetric, positive semi-definite inner products and regression analysis, one can derive 

similar principles and definitions for multi-dimensional random variables; furthermore 

also more general goodness-of-fit measures similar to R2 (Hull, 2015; McNeil et al., 2015). 

The Value-at-Risk VaRα,T (X) is defined as: 

 𝑉𝑎𝑅α,𝑇 (𝑋): =  inf {𝑥 ∈  ℝ: F𝑋(𝑥) ≥  α}, 𝑇 ∈  ℝ (68) 

where FX denotes the cumulative distribution function of X, T the time horizon 

and inf the standard infimum function, i.e., the minimum function in the case of a closed 

set (Hull, 2015, p. 294; Holton, 2002; McNeil et al., 2015). Considering an illustration of 

the Value-at-Risk makes sense due to its practical value and its far-reaching applications: 

If VaR0.05, 365 (X) = 100, then in just 5% of all the cases the loss within a year (365 

days) exceeds 100 Euro. Equivalently formulated: The loss in 95% of all cases within one 

year does not exceed 100 Euro. The Value-at-Risk measure is the most important risk 

measure in finance and for that reason, it will be also used to quantify portfolio losses in 

the following chapters (Hull, 2015; pp. 294-295; McNeill et al., 2015). 

If one considers stressed values in a (hypothetical) stress scenario or a stressed 

distribution then the corresponding Value-at-Risk in that regard is labeled Stressed Value-

at-Risk – SVaR (Alexander & Baptista, 2017; Dupacová & Polívka, 2005; EBA, 2012).121 

A risk measure closely related to VaR is the tail Value-at-Risk measure (TailVaR, TVaR). 

The tail Value-at-Risk or conditional Value-at-Risk (CVaR) or expected shortfall (ES) is 

defined as, see (Holton, 2002; Hull, 2015, p. 298): 

 𝐸𝑆α  = 𝑇𝑎𝑖𝑙𝑉𝑎𝑅α(𝑋) = E(𝑋|𝑋 >  𝑉𝑎𝑅α(𝑋)) (69) 

It defines the expected loss, under the condition that the worst (1 - α) × 100 % of 

the cases occur, hence that the α × 100 % threshold is already crossed. Looking at the 

definition, one can see that the expected shortfall measure is also suitable for rare events 

and heavy-tailed distribution, where a large mass of the distribution lies in its outer tails 

(Hull, 2015, pp. 298-300). It is therefore used for stress testing and sometimes the 

 

121 See the source (Dupacová & Polívka, 2005) for stressing the VaR and CVaR measures. 
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calculation of extremal values in extreme value theory (de Haan & Ferreira, 2006; Farmer 

et al., 2022). Especially after the great financial crisis ES-based methods were introduced 

in the Basel III regulatory package, e.g., the FRTB-concept122 in the area of market risk 

measurement. The stressed extension exists for the CVaR as well, denoted as SCVaR 

(Alexander & Baptista, 2017; Dupacová & Polívka, 2005). 

 

 

 

Figure 19 Risk measures with the central VaR.  

Source: Own illustration. 

An interesting extension of Value-at-Risk and expected shortfall is risk 

measurement by an expectile123 , which overcomes the shortcomings of Value-at-Risk 

(not coherent) and of expected shortfall (not/hardly elicitable for effective backtesting) 

and can be regarded as a generalization of the mean in the same way quantiles generalize 

the median (Chen, 2018, pp. 11-18). Expectiles are hence a symbiosis of VaR and ES and 

can be calculated incorporating them both as  

 𝐸𝑆α  =  𝑉𝑎𝑅α(1 +


 (1 −  2)
 ) (70) 

 

122 Fundamental review of the trading book, as mentioned before. 
123 A synthetic word, combined from the words expectation and percentile. 
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That is shown in (Chen, 2018, pp. 11-18).  

Similarly, other “weighted combinations” of VaR and ES were investigated 

(Happersberger et al., 2019). While expectiles possess great theoretical (and potentially 

regulatory) appeal, they are however hardly used in the financial industry at all and hence 

not dealt with in more detail for the purpose of this thesis (Chen, 2018, p. 12). 

If the Value-at-Risk (or expected shortfall, sometimes also denoted as tail 

conditional expectation – TCE124) refers to time series of the past and historical values it 

is regularly denoted as HS-VaR (respectively HS-TailVaR := HS-TVaR) for the historical 

or historical simulated Value-at-Risk (respectively historical tail Value-at-Risk) as in 

(Bohdalová & Greguš, 2016; Hull, 2015, pp. 318-330).  

There exist however some assets like bond portfolios with inconvenient maturities 

or bonds named multi-callables, which basically yield options that can be exercised at 

multiple points in time, or also private equity assets, newly listed companies, merger 

companies, or private placements, for which historical price information is not directly 

available (Andersen et al., 2005). Hence, “pseudo” historical prices must be constructed 

using either standard quantitative pricing models, factor models, or proxies as 

comparisons (Andersen et al., 2005; pp. 2-3; Bohdalová & Greguš, 2016; Hull, 2015). 

The assets which lack historical prices might in this case be matched to “similar” or 

“comparable” assets by their characteristics as capitalization, industry sector, business 

structure, or duration. The historical pseudo asset prices and returns can then be 

constructed with the help of these properties of the substitute assets.  

However, the lack of conditionality, hence time-dependency in the HS-VaR 

approaches might be a reason for concern first (Bohdalová & Greguš, 2016; Hull, 2015, 

pp. 318-334; Pritzker, 2001). To solve the problem, several methods are available for 

remedying this deficiency, and they are introduced in line with the paper “Financial Risk 

measurement for financial risk management” (Andersen et al., 2011). The two concepts 

used within this field are the directly implementable RiskMetrics (RM) and the 

generalized autoregressive conditional heteroskedasticity (GARCH) models 

(Constantinides et al., 2012; Hansen & Lunde, 2005; Hull, 2015, pp. 253-265; J. P. 

Morgan & Reuters, 1996; Nelson, 1990). 

In the RM framework, VaR is defined as, see (J. P. Morgan & Reuters, 1996), 

 

124 Or sometimes also CTE: Conditional tail expectation. 
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 𝑅𝑀 − 𝑉𝑎𝑅𝑇+1|𝑇
𝑝 ≡ σ𝑇+1 Φ𝑝

−1 (71) 

where Φ-1
p denotes the p-quantile of the standard normal distribution (SND) and also 

where  

 σ𝑡
2 =  λ σ𝑡−1

2  +  (1 − λ) 𝑟𝑡−1
2 (72) 

with σt denoting the conditional volatility, more precisely one could also write σt|t-1, λ is 

further a parameter between zero and one, r the (asset) returns and hence recursively (for 

j > t-1 the rt-1-j are set to zero): 

 σ𝑡
2 =  ∑ ß𝑗 𝑟𝑡−1−𝑗

2

∞

𝑗=0

 (73) 

where ß𝑗  denotes ß𝑗 = λ𝑗  (1 − λ) (J. P. Morgan & Reuters, 1996, p. 82). 

Therefore, one also refers to “exponentially weighted moving averages” for this method. 

Various distributions and quantiles could be used instead of the standard normal 

distribution (SND), but the assumption of conditional normality is the one most 

commonly used (J. P. Morgan & Reuters, 1996). 

Furthermore, the smoothing or decay parameter λ can be conveniently calibrated 

to best fit the specific historical returns. However, it is typically fixed at the preset value 

of 0.94 for daily returns (McNeil et al., 2015; J. P. Morgan & Reuters, 1996, pp. 236, 

240). 

The GARCH framework mentioned also incorporates a VaR and herein VaR is 

defined as (Bollerslev, 1986; Bollerslev et al., 1992): 

 𝐺𝐴𝑅𝐶𝐻 − 𝑉𝑎𝑅𝑇+1|𝑇
𝑝 ≡ σ𝑇+1 Φ𝑝

−1 (74) 

where  

 𝑟𝑡  =  µ𝑡 +  σ𝑡𝑧𝑡 (75) 

zt is independently identically distributed, hence denoted as zt ∼ i.i.d., the 

expectation value is zero and the variance is one, i.e.,  

 E(𝑧𝑡)  =  0 (76) 

 Var(𝑧𝑡)  =  1 (77) 

GARCH is the generalized version of ARCH, the autoregressive conditional 

heteroskedasticity model introduced by Engle in 1982 (Bollerslev, 1986; Engle & 

Bollerslev, 1986; Box et al., 1994; Engle, 1982; Engle, 1983). As the name indicates 

homoscedasticity is not necessary, and conditional heteroskedasticity is considered which 
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allows to model (randomly) changing volatility processes and volatility clusters as, e.g., 

during a financial crisis (Engle, 1982; Bollerslev, 1986). For simplicity, henceforth a zero 

conditional mean  

 µt ≡ 0 (78) 

is assumed. This is without loss of generality (W.L.O.G.) as conditional mean 

dynamics is then evidently implemented by considering demeaned returns rt −µt in place 

of rt (Bollerslev, 1986). 

Further, the GARCH(1,1)125 process is described as  

 σ𝑡
2  =  ω +  α 𝑟𝑡−1

2 +  β σ𝑡−1
2

 
 (79) 

hence recursively (again for j > t the rt-j are set to zero): 

 σ𝑡
2  =  

ω

1 − β
 +  α ∑ β𝑗−1

∞

𝑗=1

𝑟𝑡−𝑗
2

 

 (80) 

GARCH parameters and also the GARCH volatility are estimated using rigorous 

statistical methods which utilize probabilistic inference (Bollerslev, 1986; Hull, 2015, pp. 

255-260). Therefore, (ω, α, β) are estimated by – in most cases where no analytical 

calculation possibility exists numerically – maximizing the corresponding log-likelihood 

function based on the assumption that zt is i.i.d. in N[0,1] as shown in (Bollerslev et al., 

1992). The log-likelihood function selects the parameters as the ones implying the 

maximum likelihood of outcomes respectively the logarithms of it (Hull, 2015, pp. 255-

260). The solution is stable in the defined sense that if the conditional return distribution 

is a nonnormal one, the quasi-maximum likelihood estimator in general still produces 

consistent, useful – and asymptotically normal – results, which are valuable for practical 

purposes of risk measurement (Bollerslev et al., 1992; Hull, 2015).  

Another possibility is extending GARCH with a HAR-RV type model to 

GARCH-X126 or to T-ARCH (Andersen & Bollerslev, 2005; Bollerslev et al., 2016; 

Hansen & Lunde, 2005, p. 876). In that way, structural breaks or jumps of the price 

process and volatilities can be included in the process. 

 

125 GARCH(p,q) is the general form, here p = q = 1 hence the process goes one step back (from t to t-1) for 

returns and for the volatility. Generally, it is utilizing p return and q volatility predecessors. For α + ß < 1 

the important case of a covariance stationary (ergodic) process is derived. The GARCH(1,1) process 

suffices for most price processes in practice as shown by (Hansen & Lunde, 2005). Models which include 

the impact of asymmetric news were, e.g., proposed by (Nelson, 1990) or (Engle & Ng, 1993). 
126 GARCH-X (or GARCHX) is including covariates in the model, T-ARCH is including a threshold T for 

jumps. 
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In a straightforward manner, the same extensions as of the VaR with RM and 

GARCH methods are then directly applicable to the ES measure as well, as it is defined 

upon the VaR measure. 

However, the expected shortfall (ES) measure also has an additional mathematical 

property. It is a coherent risk measure (Artzner et al., 1999; Hull, 2015, p. 299; Embrechts 

& Wang, 2015). That means it contents the property of sub-additivity and hence usual 

summations under the condition of the triangular inequality hold, which makes it a 

convenient measure for, e.g., comparing cross-calculations (Hull, 2015, p. 299). For 

further details on coherent risk measures, convexity, sub-additivity and spectral measures 

which are not (core) parts of this thesis, the reader may consult the Annex. 

A risk metric is an attribute (or property) of a risk being measured. Ultimately, 

however, after measuring the amount of risk which can occur, an institute needs enough 

capital consisting of its own funds and possibly certain eligible liabilities to cover those 

losses and be able to continue its business as seen. This holds at least for the named going-

concern business continuity perspective, on the contrary, the turning point on which 

losses result in bankruptcy or resolution of a bank is then labeled the liquidation or gone-

concern perspective (EBA, 2017). The available amount of capital was defined as risk 

cover potential or risk-bearing capacity and is of utmost importance for institutions (EBA, 

2017). 

The credit risk side of transactions was often overlooked in that context in the past 

which, along with other factors, led to tremendous crises in times (Martin et al., 2014). 

The miscalculation or in most cases pure non calculation of counterparty credit risk in the 

field of financial derivatives and hence missing risk covering capital accelerated – 

alongside wrong assumptions of normality conditions, wrong rated CDOs and the misuse 

of Gaussian copulas underestimating tail risks – the great recession of 2009 (Hellwig, 

2008; Hull, 2021, p. 152-166; Martin et al., 2014; Wigmore, 2008; Witzany, 2017; 

Zopounidis, 2021). This led to the development of a whole new CVA framework and the 

so-called regulatory “big bang” within the Basel accords (Martin et al., 2014; Witzany, 

2017, pp. 8-10, 217-220). Furthermore, multi-curve approaches taking the (own) funding 

and counterparty credit spread risks, defined earlier, into account are used when 

discounting and valuating financial products (Martin et al., 2014). In the times before, 

often a single curve was used for all discounting purposes and for both sides of a financial 

contract. The counterparty credit risk and credit spread for short-timed deals were simply 
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(falsely) neglected. An example where multi-curve approaches are applied is the pricing 

of the so-called “legs” (sides) of a credit default swaps CDS (Martin et al., 2014). It is an 

instrument that aims to protect the buyer of such a CDS in case a default of the referenced 

company occurs (Bielecki & Rutkowski, 2004; Martin et al., 2014). Implied correlations 

of CDS and the link to credit spreads are for instance examined in (Witzany, 2017, p. 

186). 

Rendleman Jr. also contributed to research on risk premiums associated with risky 

debt and quantified the impact debt financing even has on equity values, in the case of 

included taxes and without taxes (Bhandari, 1988; Lee et al., 2010, chapter 2.4/2.5; 

Rendleman Jr., 1978). As a consequence also in the field of modern corporate funding 

this risk component meanwhile comprises a necessary part – other than in original 

CAPM-based considerations as illustrated later. 

Within the class of credit risks and losses, one has two differentiate between 

expected losses and unexpected losses (Bouteillé & Coogan-Pushner, 2021; Hull, 2015; 

Martin et al. 2014). 

Expected loss (EL) is not the risky part as it is “expected” and is directly calculated 

as the expected value or probability (Bouteillé & Coogan-Pushner, 2021, p. 65). An 

institute accounts for that value, holds risk reserves and pre-calculates the costs of it for 

the margin or price of credit (Standard Cost of Credit). The unexpected loss (UL) is the 

part excessive of that expected loss, the loss “not expected” for an observer which “rarely” 

appears (Bouteillé & Coogan-Pushner, 2021). It is the risky part of losses, and the 

calculation is more complex. This part is not accounted for at first in the credit pricing 

and hence has to be covered by (additional) regulatory capital (Hull, 2015; Rutkowski & 

Tarca, 2015; Witzany, 2017). 

Using the VaR framework the unexpected loss over a time horizon T, with 

confidence level α and a random variable X is defined as in (Hull 2015, p. 294-298; 

McNeil et al., 2015): 

 𝑈𝐿 =  𝑉𝑎𝑅α,𝑇 (𝑋) –  𝐸𝐿 (81) 

where  

 𝐸𝐿 =  E[𝑋] (82) 

Often the UL is referred to as Credit Value-at-Risk (CreditVaR or CVaR, not to 

be confused with the Conditional VaR, often also denoted CVaR, as in (Hull, 2015, pp. 

500-513)). Sometimes, however, one defines  
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 𝑉𝑎𝑅 ∶=  𝐶𝑟𝑒𝑑𝑖𝑡𝑉𝑎𝑅 = 𝐶𝑉𝑎𝑅  (83) 

hence without subtracting the expected loss. 

 

 

Figure 20 Frequency – VaR diagram.  

Source: Graphic from (Bouteillé & Coogan-Pushner, 2021, pp. 78-79) and financetrainingcourse.com ®. 

As seen before, once having calculated the Value-at-Risk, by multiplication with 

12.5 one can generally derive the risk-weighted assets, RWA (Hull, 2015, p. 380). If the 

expected loss (EL) is already provisioned for (as it should) and VaR as in the first 

definition (including EL) then  

 𝑅𝑊𝐴 =  12.5 (𝑉𝑎𝑅 –  𝐸𝐿). (84) 

Otherwise by definition  

 𝑅𝑊𝐴 =  12.5 𝑉𝑎𝑅 (85) 

when VaR equals CVaR. The formulas are then evidently, as in (European Commission, 

2019): 

 𝑅𝑊𝐴 =  𝐸𝐴𝐷 ⋅ 𝑅𝑊 (86) 

 where RW denotes the risk weight (per unit) and EAD the exposure (size) at the 

(potential) default time – in terms of on-balance, non-derivative exposure often just the 

book value or book value and (at maximum) undrawn credit line. Hence, for a fixed 

exposure (potentially stressed by the undrawn credit line) the risk weight (per unit) 

determines the risk-weighted assets. Further, one then gets  

 𝑅𝑊 =  𝐾 ⋅  12.5 (87) 
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where  

 𝐾 ⋅  𝐸𝐴𝐷 =  𝑉𝑎𝑅  (88) 

above. K is the VaR per exposure unit. In the IRB formula (also labeled Gordy or 

Vasicek127 formula) of the CRR III article 153128 one has a form of  

 𝐾 =  (𝑈𝐷𝑅 (𝑃𝐷)  −  𝑃𝐷)  ⋅  𝐿𝐺𝐷 ⋅  𝑀 (89) 

with UDR: Unexpected default rate, PD again the probability of default (BIS, 

2005; European Commission, 2019, §153; Cech, 2004, p. 7). 

One could also regard UDR (PD) as a type of “stressed PD” (Witzany, 2017). 

LGD denotes again the loss once a default occurs (“loss given default”) and M is only a 

regulatory maturity factor, often equal to one, e.g., for retail receivables (BIS, 2005; 

European Commission, 2019). 

In the IRB formula under some assumptions, like normally distributed returns of 

an asset shown later, the formula above reduces to the following expression – without the 

at that point less important maturity factor (European Commission, 2019, §153; Cech, 

2004, p. 7): 

 𝐾 = (𝑆𝑁𝐷 (
1

√1 − 𝑅
𝐺(𝑃𝐷) +

√𝑅

√1 − 𝑅
𝐺(0.999)) − 𝑃𝐷) 𝐿𝐺𝐷 (90) 

where SND is the standard normal distribution and G the inverse standard normal 

distribution (G is defined as equal to SND-1). One can directly see that  

 𝑈𝐷𝑅 (𝑃𝐷)  = 𝑆𝑁𝐷 (
1

√1 − 𝑅
𝐺(𝑃𝐷) +

√𝑅

√1 − 𝑅
𝐺(0.999)) (91) 

In that case 

  𝐾 =  𝑈𝐷𝑅 (𝑃𝐷)  ⋅  𝐿𝐺𝐷 –  𝑃𝐷 ⋅  𝐿𝐺𝐷  (92) 

and  

 𝑅𝑊𝐴 =  (𝐸𝐴𝐷 ⋅  𝑈𝐷𝑅 (𝑃𝐷)  ⋅  𝐿𝐺𝐷 –  𝑃𝐷 ⋅  𝐿𝐺𝐷 ⋅  𝐸𝐴𝐷)  ⋅  12.5  (93) 

and as the expected loss is  

 𝐸𝐿 =  𝑃𝐷 ⋅  𝐿𝐺𝐷 ⋅  𝐸𝐴𝐷  (94) 

 

127 Named after Michael B. Gordy respectively Oldřich A. Vašíček. The American spelling “Vasicek” is 

used when referring to the associated formula or model – as common in the literature. 
128 See again (European Commission, 2019, §153). 
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one derives  

 𝑅𝑊𝐴 =  12.5 (𝐸𝐴𝐷 ⋅  𝐿𝐺𝐷 ⋅  𝑈𝐷𝑅 (𝑃𝐷)  −  𝐸𝐿) (95) 

 

One has to keep in mind when regarding the Value-at-Risk, the probability of 

defaults is considered in stressed circumstances as the formula shows - not just the 

(expected) “average” probability of default but a distribution of defaults containing the 

99.9 % quantile – as well as the exposure at default through regarding the extreme default 

case with the undrawn credit line. However, as the VaR is the 99.9% quantile distribution 

of defaults frequencies and also the loss severances, the loss given default parameter 

(LGD) should also be stressed. Regulators hence require a so-called downturn-LGD 

(calculated within three possible types) including recession scenarios as in (EBA, 2019; 

Witzany, 2017, pp. 114, 155). If that suffices is debated and watched by regulators, 

however, a real, larger problem is a potential correlation between creditors and between 

the parameters LGD and PD (Witzany, 2011; Witzany, 2017, pp. 114, 154-155).  

In that regard, the IRB formula should be viewed in a critical way (Witzany, 2017, 

pp. 154-155).129 First, correlations among creditors are considered – in the IRB formula 

reflected through a certain correlation (R) for whole exposure classes and sometimes PDs 

to the overall business cycle, as seen – later in the thesis also the LGD-PD nexus, which 

is not regarded in the IRB formula. 

As calculating the VaR for a single asset is quite straightforward, the VaR for a 

whole diverse portfolio of assets yet has to take into account the various mentioned asset 

correlations (or even migration and default correlations), which is a much more complex 

task (Hull, 2015). 

 

129 This might lead to a surprising effect. Banks have, as stated in the thesis when considering the UTP 

criteria, some degree of freedom in choosing a definition (events) of default. In case this definition is “too 

soft”, hence counting counterparties as defaulted “relatively early”, as a consequence many borrowers will 

be later defined as “cured” after potential restructuring and after some time (under living forbearance) are 

considered as non-defaulted with a recovery rate of one (Witzany, 2017, p. 155). Therefore, a very “soft 

default definition causes the empirically observed PD to be higher, while the empirical LGD is lower“, or 

even zero for many borrowers (Witzany, 2017, p. 155). As a result, that induces lower capital requirements 

when applying the IRB formula compared to a standard definition of default as shown in (Witzany, 2017, 

p. 155). The effect is hence caused by insufficient modeling of the LGD. 
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In this situation (credit) portfolio models are playing out their strengths and are 

used to solve the problem with underlying correlations and thus higher credit losses 

(Duffie & Singleton, 2003; Hull, 2015; J. P. Morgan, 2007; Witzany, 2017). 

2.3 Asset Portfolio Models 

Having introduced the mathematical and terminological foundations for 

investment portfolios, risk and risk management in this chapter, it is briefly concluded 

with effective portfolios according to Markowitz’s theory and the CAPM and APT 

models. The historical development in the area of portfolio theory was in the following 

order (Bodie et al., 2011; Fuller et al., 1987). 

The Markowitz model, also known as modern portfolio theory (MPT), was 

introduced first in (Markowitz, 1952). It was followed by the less known single-index 

model (SIM), a special case of an asset pricing theory model by Sharpe (Sharpe, 1963). 

There are several comparisons between the two models, generally, the single-index model 

is regarded as an extension performance-wise (Vargese & Anoop, 2018).  

In a scientific breakthrough, the capital asset pricing model (CAPM) was then 

introduced and is still considered a standard model in the field used, e.g., for calculating 

weighted average costs of capital or premiums and optimal capital structures of 

companies (Hull, 2015, p. 27; Lintner, 1965; Sharpe, 1964). An extension, the 

intertemporal capital asset pricing model was introduced by Merton (Merton, 1973). Later, 

the CAPM was succeeded by a less restrictive and more flexible model based on a multi-

factor linear combination of risk factors, the arbitrage pricing model or theory 

(APM/APT) by Ross (Huberman & Wang, 2005; Hull, 2015, p. 32; Ross, 1976a; Ross, 

1976b). Model enhancements were further introduced by Chen et al., or Shanken and 

Weinstein (Chen et al., 1986; pp. 383–403; Shanken & Weinstein, 2006). Finally, APT 

was extended by behavioral components (B-APT), e.g., influenced by methods of Thaler 

(Thaler, 1993). One idea of that approach is to include a consumers’ or investors’ 

confidence factor (Kahneman & Tversky, 1979; Emrul, 2010). The latest developments 

to create optimal portfolios, also including rebalancing considerations and time-

dependent solutions, use machine learning techniques as reinforced learning methods 

(seen later), which apply stochastic dynamic programming as the Bellman optimality – 

the theory behind it and examples are shown in (Dixon, 2020, pp. 25-28; Dori et al., 2018). 
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Further applications for (special) stock portfolios utilizing G-learning and for wealth 

management can be found in Dixon’s book as well (Dixon, 2020, pp. 380, 401). 

 

Figure 21 Asset portfolio models.  

Source: Own illustration. 

The Markowitz model or MPT first achieved the goal to answer two main 

questions of portfolios and were thus shaping the financial world substantially (Mangram, 

2013).  

First, it offered a positive proof and quantification of diversification on risk and 

return in a portfolio, while introducing and explaining the role of correlations (Hull, 2015; 

Mangram, 2013; Markowitz 1952). 

Second, it showed a method for selecting an “optimal (efficient) portfolio“. The 

model is built up as follows (Elton & Gruber, 1995; Markowitz, 1952; Markowitz, 1959).  

It needs the assumptions of an investor who is using only publicly available information 

like prices/quotes, dividends, cash flows and who acts rational and hence opportunistic – 

as usual in standard economic theory (Holton, 2003; Hull, 2015). The investor is 

additionally utility-maximizing and risk-averse (Markowitz, 1959, pp. 77-79, 81, 83). 

Furthermore, the model assumes a complete capital market as defined before, 

which means a market that is arbitrage-free, friction-less, and especially all claims in it 

can be replicated (Markowitz, 1952; Markowitz, 1959 pp. 82-85). It requires that not all 

assets are perfectly correlated as this is the trivial case, the mixture of assets is then 

irrelevant at all. 

Markowitz 
(MPT)

CAPM APT
Extended 
Versions 

like B-APT
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The model aims to find and select an optimal “combination” of assets (Markowitz, 

1952). This implies a portfolio bearing an optimal risk/return profile, which means a 

portfolio that has the highest returns while having the same risk or the same return with 

lower risk – among and compared to all possible combinations of other assets and 

portfolios (Hull, 2015; Markowitz, 1959, pp. 79, 82).  

For the model one can define that a portfolio A “dominates” a portfolio B, when 

for the affiliated returns  

 𝑟(𝐴)  ≥  𝑟(𝐵)  (96) 

and for the volatilities  

 σ(𝐴)  <  σ(𝐵)  (97) 

or equivalently: 

 𝑟(𝐴) >  𝑟(𝐵) (98) 

and 

 σ(𝐴)  =  σ(𝐵)  (99) 

(Gollier, 1997; Markowitz, 1952). 

A is called efficient when it dominates all other portfolios B for this set of assets, 

with r(i) denoting the expected return of asset i (and r(A) the return of the whole portfolio 

A), i.e., the fraction (p(t) - p(t-1)) / p(t-1), with t in time [0;T] when p(t) denotes the asset 

portfolio price at time t (Markowitz, 1952; Markowitz, 1959). σ(i) is the volatility, the 

standard deviation of the (time-dependent) returns of asset i, hence the “risk” for an asset 

i (Markowitz, 1959). 

Therefore, the portfolio return might be regarded as the proportionally weighted 

sum of the different assets’ returns and the portfolio volatility is a weighted sum of the 

correlations ρ(i, j) of the different assets (Markowitz, 1959). Hence, for all combinable 

asset pairs (i, j), i=1,…, n and j=1,…, n for a portfolio with n assets the volatility is 

 σ =  ∑ ∑ 𝑤(𝑖) 𝑤(𝑗) σ(𝑖, 𝑗)

𝑗𝑖

 (100) 

where σ(i, j) is the covariance, i.e.,  

 σ(𝑖, 𝑗) =  σ(𝑖) σ(𝑗) ρ(𝑖, 𝑗)  (101) 

and w(i) respectively w(j) denotes the weights of the assets in the portfolio (Elton 

& Gruber, 1995; Markowitz, 1959). 
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An optimal portfolio depends on the risk preference of an investor. Therefore, for 

an optimal portfolio, it holds that the slope of the indifference curve equals the slope of 

the efficiency line, as defined below, with the maximum return when the risk or 

indifference curve is given or the minimal risk when the return is given (Markowitz, 1959). 

Consequently, to solve the two questions above one has to use the following scheme 

developed by Markowitz (Markowitz, 1952; Markowitz, 1959): 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑇𝛴 𝑤  s. t.   𝑅𝑇 𝑤 =  μ,  (102) 

where 𝛴 is the covariance matrix, μ is given as the expected return, or equivalently  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑤𝑇𝛴 𝑤 − 𝑚∗𝑅𝑇𝑤 , 𝑚∗ =
1

𝑚
 (103) 

In the last line m* is denoting the “risk tolerance”, m is the slope of the 

indifference curve, as stated above. Both equivalent optimization problems, also denoted 

programming problems, are standard economic problem settings and are usually solved 

by Lagrange multipliers (Markowitz, 1956). As a result, the weight vector w for an 

optimal portfolio is obtained. 

As mentioned before, the Markowitz idea can be also applied to bonds and loans 

with nonnormal returns as opposed to equity (e.g., shares) with supposed normal returns, 

and then loan portfolios are optimized in the same way – one only substitutes the volatility 

σ with the Value-at-Risk VaR in the formula and respective concept above, as also 

described in (Witzany, 2017, pp. 111, 119). 

A special case and finding of MPT is, that the capital allocation line (CAL) for a 

combined portfolio (P) of one risky (C) and one riskless asset, R* denoting the risk-free 

rate, is the following (Markowitz, 1952; Merton et al., 1973): 

 E(𝑅(𝐶)) =  𝑅∗ +  σ(𝐶)
E(𝑅(𝑃)) −  𝑅∗ 

σ(𝑃)
 (104) 

Generally, the CAL looks like as in the following figure, and similarly for two 

non-risk-free assets or “mutual fund portfolios” (Karatzas et al., 1986). 
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Figure 22 Capital allocation line (CAL) and a tangency portfolio intersecting the 

efficient frontier.  

Source: Own illustration. 

An extension of the MPT or Markowitz model is the CAPM (Hull, 2015, p. 27). 

The aim and main idea of CAPM is to consider all (or at least in case of weaker model 

assumptions “very many”) market participants hence “the whole market”, i.e., extending 

MPT, which considers just one investor in that sense (Hull, 2015). The assumptions for 

the investors are again that they just act upon publicly available information (Lintner, 

1965). The agents and investors are furthermore classified as rational and opportunistic 

again, they are acting utility-maximizing, and they behave in a risk-averse manner 

(Lintner, 1965; Sharpe, 1964; Tobin, 1958). 

The assumptions for the model are further that everyone in the market owns the 

risky assets in identical ratios to one another and hence these ratios are pre-defined by the 

so-called efficient or tangency portfolio (Sharpe, 1964). This is one of the most criticized 

assumptions of the CAPM, for further details see e. g. (Dumas & Allaz, 1996). When a 

market equilibrium is reached in the CAPM, the existence of such an equilibrium under 

certain conditions is proven in standard literature by, e.g., Arrow-Debreu building on 
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works of Wald or by Mantel, the risky assets’ prices and hence returns have adapted in 

such a manner that the ratios in the tangency portfolio equal the ratios in which the supply 

of risky assets to the market takes place (Arrow & Debreu, 1954; HKT, 2021, p. 3; Mantel, 

1976; Sharpe, 1964). Hence, the model is involving also a macroeconomic factor besides 

the micro-agents. 

The market view on risk is consequently involving two risk components, which 

were already briefly discussed in the thesis, unsystematic risk as an individual, 

idiosyncratic risk specific to an asset, which is diversifiable (away), and systematic risk, 

e.g., “market risk” as a whole, which cannot be diversified (Lintner, 1965). Systematic 

risks yet can be managed by a strategy known as a "market neutral" portfolio, a portfolio 

that holds long as well as short positions in assets for that purpose (Fama & French, 2004; 

Satchell, 2015). 

The core idea of CAPM is that the fair price paid for an extra asset x, p(x), must 

equal the incremental effect on expected return and risk, when the additional risky asset, 

x, was added to the market portfolio (Sharpe, 1964). 

Hence, with the additional risk – the in-brackets expression in the denominator of 

the following formula – and additional expected return – denoted after w(x) in the 

nominator – and weighting function w one gets the following result (Sharpe, 1964): 

 
𝑤(𝑥)(E(𝑅(𝑥)) −  𝑅∗)

2 𝑤(𝑚) 𝑤(𝑥) ρ(𝑥, 𝑚) σ(𝑥) σ(𝑚)
 =  

𝑤(𝑥)(E(𝑅(𝑚)) − 𝑅∗)

2 𝑤(𝑚) 𝑤(𝑥) σ(𝑚) σ(𝑚 )
  (105) 

 

where R* is again the riskless return, R(x) the return of x, R(m) the former market 

return. Thereby, one is rationally assuming E(R(x)) > R*, i.e., that the expected return 

should be more than the risk-free rate (Sharpe, 1964). On the right-hand side of the 

expression, the former market ratio is extended and multiplied by w(x) in the nominator 

and denominator. The equation further simplifies, by multiplication times 2 w(m) and 

using the covariance definition, to  

 E(𝑅(𝑥))  =  𝑅∗ +  
E(𝑅(𝑚) −  𝑅∗) σ(𝑥, 𝑚)

 σ(𝑚, 𝑚)
  (106) 

The ratio of the covariance between x and m in the nominator and the variance of 

m in the denominator is called β as before (Lintner, 1965). In practice β and the surplus 

return α are calculated via regression on real, available market data (Fama & French, 

2004). A special finding in that context is the security characteristic line SCL:  
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 𝑅(𝑥) − 𝑅∗  =  α +  β(𝑅(𝑚) − 𝑅∗) (107) 

as in (Fama & French, 2004; Hull, 2015). This is basically the “extended version” 

and analogion of the capital allocation line (CAL).  

“Post-modern portfolio theory” (PMPT) even extends CAPM by, e.g., other 

measures of risk or by allowing nonnormal, asymmetric (“skewed”), or even “fat-tailed” 

distributions for risk factors (Chaudhry & Johnson, 2008; Rom & Ferguson, 1993). 

Another approach exploits the methods of the Black-Litterman portfolio theory, which 

requires the formulation of “how assumptions about expected returns differ from the 

markets” and the degree of confidence in the alternative assumptions plus expected utility 

(Chen et al., 2018; Black & Litterman, 1992; Noguer i Alonso & Srivastava, 2020, p. 2). 

As the last model the state-of-the-art portfolio model APT is introduced, the 

arbitrage pricing theory, however concentrating on the classical version excluding 

behavioral proprietary extensions. The aim is to insert multi-factors to represent market 

influence (Hull, 2015, p. 32; Ross, 1976a). The reason is the empirical evidence that many 

factors in reality impact asset returns (Fama & French, 1993; Fama & French, 2004; Ross, 

1976a; Ross, 1976b). Furthermore, market equilibrium in that model is not necessary, but 

only freedom of arbitrage. The assumptions for agents are again that they behave in a 

rational and opportunistic manner plus arbitrageurs are in the market to guarantee the 

mentioned no-arbitrage-condition, often named NA-condition (Ross, 1976a). Further risk 

preferences are also not necessary, e.g., a certain risk-averse, Bernoulli, or (μ,σ)-principal 

behavior is not a required pre-condition (Ross, 1976a). 

The model assumptions include that there is a basket of assets x(i), i = 1, …, n 

existing. The return R(i) of an asset is dependent on many micro and macro factors F(j), 

j = 1, …, n and sensitivities to these factors β(i, j), while ϵ(i) is the idiosyncratic risk (Ross, 

1976a). The return is therefore written as  

 
𝑅(𝑖)  =  E(𝑟(𝑖))  +  β(1, 𝑗) 𝐹(1)  +  β(2, 𝑗) 𝐹(2)  +  ⋯ +  β(𝑛, 𝑗) 𝐹(𝑛)

+ ϵ(𝑖)  
(108) 

(Ross, 1976a; Ross, 1976b). That equation needs to be solved for the betas. This 

objective is achieved via a standard multi-(linear)-regression on empirical data for the Fs, 

though calibration on that data might be in some cases relatively complex (Ross, 1976a). 

Ross proved that the expected return (under a NA condition) in a complete capital market 

is then 
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 E(𝑅(𝑖))  =  𝑅∗  +  ∑(E(𝑅(𝐹(𝑗))) – 𝑅∗) β(𝑖, 𝑗)

𝑗

  (109) 

while freedom of arbitrage is reached here by ensuring that assets with the same 

risks expect the same returns (Fama & French, 2004; Huberman & Wang, 2005; Ross, 

1976a, pp. 341-360). Therefore, unsystematic risk is already assumed to be diversified 

away, ϵ(i) is vanishing. This is approximately the case for very large and nonconcentrated 

portfolios. Special findings are the following ones related to the APT concept. Research 

by Ross showed that five macro-factors (denoted “5f”) explain an asset return quite 

precise (Gibbons et al., 1989; Ross, 1976b): 

These are the long-term inflation (expectations), the short-term inflation, real 

interest rates, an index of industrial production or on output data and the probabilities of 

default (PD) for the assets. 

There are also other factors that can influence asset prices, but they are generally 

less significant or in the realm of “policy”, i.e., institutional economics or monetary policy 

– which affects asset prices in a longer-term than previously expected (Bianchi et al., 

2022). Possible extensions – like including consumers’ confidence in a six-factor model 

(6f), albeit more complex – were mentioned before. Also in other related economic fields, 

five or six factors are commonly used to model prices or investment decisions, often 

utilizing socio-demographic factors or attitudes and behaviors as e. g. factors influencing 

the prosumer's investment decision on the use of “renewables” like solar power (Rausch 

& Suchanek, 2021). 

Most APT models mainly (except for the PD) or even solely use macro-factors 

hence a macroeconomic model is derived when considering all agents and all assets. The 

criteria and variables mentioned above are also commonly used – among various further 

variables – for many modern macro-economic models like dynamic stochastic general 

equilibrium models (DSGE) as the Smet-Wouters model from the ECB, which is used for 

forecasting and measuring policy response functions, it is normally estimated by Bayesian 

estimation (Smets & Wouters, 2003; Smets & Wouters, 2007; Uhlig, 2007).130 Yet the 

last feature in the APT model above, the probability of default, sticks out and can be quite 

individual. For investors and lenders, the probability of default or reciprocally stated the 

(credit) quality of a company is of utmost importance.  

 

130 For a well-explained model introduction see (Uhlig, 2007). 
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Hence, the aim is to develop a grade or more general a whole scoring – in the 

retail case – or rating system, which is judging the creditworthiness of a company on a 

certain measurable scale and also directly links and calibrates it to its probability of 

default (Brusov et al., 2021; Witzany, 2017). This “rating process” is furthermore of 

general importance for the wider scope of credit risk and as input for industrial credit 

portfolio models as CreditMetrics® or CPV® as well as the support vector regression 

applied in the thesis, which all utilize ratings to quantify the portfolio risk. After having 

introduced the Markowitz, CAPM, and APT portfolio models building on risk and return 

measures, the models’ assumptions, applied methods, corresponding quantification 

formulas, main findings and ratings as “risk model input” are hence now discussed in 

detail (Chen et al., 2018; de Laurentis et al., 2010; Fama & French, 2004; Izzi et al., 2011; 

Witzany, 2017). 
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CHAPTER 3 

RATINGS AND RISK MODELS 

3.1 Rating Systems, Their Characteristics and Validation 

Through regulatory efforts like the Basel II and III accords the use of ratings 

became increasingly widespread and standardized (Izzi et al., 2011; Quattrociocchi, 2016; 

S & P, 2016, pp. 6-9). The credit risk or creditworthiness of a bank’s debtors has to be 

judged by the institute with the help of external or internal, bank-internally calculated, 

ratings (Daldrup, 2006, pp. 11-15; Kumar et al., 2012). After the experience of the great 

recession, which was also spurred by inaccurate, far too positive ratings for CLOs131 and 

other subprime mortgage packages, the new Basel III finalization – commonly referred 

to simply as “Basel IV“ within the banking industry – requires due diligence when using 

external ratings from rating agencies in the standard approach (SACST) for credit risk 

(Abdo, 2020; BCBS, 2022; Financial Crisis Inquiry Commission, 2011; Hull, 2015, pp. 

152-164; Podkul, 2019a). That necessity is legally implemented in the EU within the CRR 

II and CRR III legislations. Further lessons of preceding crises concerning ratings and 

credit risk in general, for instance the Herstatt insolvency in 1974 or the savings banks 

crisis in the 1980s, were already incorporated in Basel II and the CRR I (BCBS, 2000b; 

de Laurentis et al., 2010, p. 15; Riedl, 2002).  

Generally in Europe, most debtors of banks are micro, small, and medium-sized 

companies (SMEs) or retail clients132, which are not listed on capital markets and as non-

public companies mostly do not bear an external rating (Abdo, 2020; Kumar et al., 2012). 

Hence, according to the CRR and even more when considering the fact that banks with 

the Basel III finalization need to make their own due diligence also in the case of using 

external credit ratings within the SA, banks are (partly) incentivized to make use of the 

internal methods (Daldrup, 2006; Oyama & Yoneyama, 2005; Witzany, 2017, pp. 11-16). 

These rating methods are the foundational internal ratings-based approach (F-IRBA), 

where institutes have to determine an own internal creditor rating and a corresponding 

 

131  As mentioned, CLO: Collateralized loan obligation, special form: CMO Collateralized mortgage 

obligation, where the loans are mortgages. Both forms are bundling and packaging many, often subprime 

level loans and through diversification and the securitization of the loans (often via special purpose 

vehicles), their rating gets (often disputable) better. 
132 Retail clients here refers to SMEs plus private clients as used in the credit risk approach by the BCBS. 
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PD for every debtor in that rating class by means of their own internally developed rating 

system, or the A-IRBA (advanced IRBA) as applicable for the retail segment (European 

Commission, 2019; BCBS, 2000a; BCBS, 2022; Oyama & Yoneyama, 2005; Witzany, 

2017, pp. 15, 108, 112-116). The use of IRB approaches has to be permitted and is 

controlled by regulators (European Commission, 2019, §143). In the case of the A-IRBA, 

banks not only determine the PD but also another classification or rating, then often called 

transaction rating and probability, the so-called LGD mentioned before (European 

Commission, 2019; Witzany, 2017, pp. 112-116).  

The LGD is the loss given default, hence the loss once default occurs, which 

equals one minus R when R specifies the recovery rate (Bouteillé & Coogan-Pushner, 

2021; Daldrup, 2006; Kumar et al., 2012): 

  𝐿𝐺𝐷 =  1 –  𝑅  (110) 

The loss given default is commonly expressed as the percentage of the exposure 

at default that one does not retrieve back after a default, sometimes also denoted as LGD% 

(Daldrup, 2006). LGDs for models are frequently obtained from empirical workout-LGDs, 

i.e., the LGDs a bank experienced in its real, comparable cases after a defaulted exposure 

was worked out by its NPL133 and workout units, with collateral sold, estate foreclosed, 

assets sold, etc. and after costs for lawyers and administration (Schuermann, 2002; 

Witzany, 2017, p. 98). LGDs, including their time-variability, can be yet also treated 

within a statistical framework and model, commonly utilizing Beta or mixed Beta 

distributions (Schuermann, 2002; Witzany, 2017, p. 98). These distributions are able to 

describe many empirical LGD distributions rather precisely (Witzany, 2017, pp. 96-100, 

129-131). When employing the advanced IRBA the institutes also need to determine the 

exposure at default (EAD or EaD), taking especially into account the “CCF”, as the third 

parameter (de Laurentis et al., 2010, pp. 15, 21-22, 396; European Commission, 2019). 

That is the credit conversion factor, which describes and models the part, or more 

precisely the percentage of a credit line or other off-balance-sheet exposure, still to be 

drawn in the future until the default event occurs and is taken from the UCL, the undrawn 

credit line (Bouteillé & Coogan-Pushner, 2021; Daldrup, 2006, pp. 92, 93; de Laurentis 

et al., 2010, pp. 21-22, 396; European Commission, 2019; Witzany, 2009c; Witzany, 2017, 

pp. 112-116). It can be written as: 

 

133 Non-performing loans 
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𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑡 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 (𝐸𝐴𝐷)  

=  𝐷𝑟𝑎𝑤𝑛 +  (𝐿𝑖𝑚𝑖𝑡/𝐿𝑖𝑛𝑒 –  𝐷𝑟𝑎𝑤𝑛)  ⋅  𝐿𝐸𝑄 

=  𝐷𝑟𝑎𝑤𝑛 +  𝑈𝑛𝑑𝑟𝑎𝑤𝑛 ⋅  𝐿𝐸𝑄 

(111) 

LEQ here denotes the loan equivalent factor or credit conversion factor CCF134 

(de Laurentis et al., 2010, p. 21).  

The worst-case here is that a company draws its entire free (open) line briefly 

before it defaults. Empirical studies found that the credit conversion factor is indeed much 

higher atCafter a default of a company and showed that there is further a positive 

correlation between the economic cycle and the undrawn line (limit), as well as a positive 

one between the riskiness, i.e., worse rating of a company and the drawn line or CCF 

(Zhao & Yang, 2019, p. 1). The EAD is therefore a time-dependent function. 

Time is generally a crucial parameter – alongside PD, LGD, and EAD (with CCF). 

Therefore, maturity and fictional maturities (e.g., for daily withdrawable sight deposits) 

are modeled for some exposure classes in the A-IRB as well (Daldrup, 2006; European 

Commission, 2019; Witzany, 2017, pp. 112-116). Generally speaking, more time means 

more time for default or worsening creditworthiness (rating) and hence more credit risk 

(Bouteillé & Coogan-Pushner, 2021; Hull, 2015). Different approaches considering that 

time and (rare) models of a time-dependent EaD were developed, e.g., by Moral, Jacobs, 

and also Witzany (Jacobs, 2008; Moral, 2006; Witzany, 2009c). Generally, a so-called 

fixed time horizon approach of normally a year and used for a PD weighted concept, a 

cohort approach that also normally endures a year, is standard and used otherwise, e.g., 

for mean weighted concepts, or a variable time approach beginning from one month, 

month-wise up to one year, mainly used for seasonality concepts, are differentiated 

therein (Witzany, 2017, pp. 100, 102). Especially Moral’s and partly Jacob’s ideas also 

influenced the latest CRR III regulation with its CCF approach (Witzany, 2017, pp. 100, 

102). 

A reminder that a highly leveraged counterparty reveals enormous risk and might 

drive up the EAD substantially was the collapse of the Archegos fund in 2021 – a method 

to include such leveraged cases in an intensity model was recently published by Dickinson 

 

134 Banks may calculate the EAD of the unfunded part of the loan utilizing LEQ or CCF. Within the CRR 

of the European Union and Basel, the terms LEQ and CCF are used interchangeably. The American OCC 

yet defines the CCF “as the balance at default to balance 12 months prior to default” (Zhao & Yang, 

2019, p. 1). As before, the thesis sticks to the first, interchangeably used definition. 
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(Dickinson, 2022). Apart from PD and LGD modeling in the A-IRB approach, the often 

less regarded EAD should therefore form a crucial model part as well (Jacob, 2008; 

Witzany, 2017).  

An advantage of the IRB is that institutes can calculate their own internal PD and 

in the case of the A-IRBA also the LGD, EAD (with CCF) and partly the maturity factor 

M – and the resulting capital requirements are generally (slightly) lower than the ones 

required by the standardized approach (BCBS, 2006b; Witzany, 2017, pp. 109, 154). 

A further argument for using the IRB approach is that banks in the European 

Union can more easily decide to just use the IRB for certain specific exposure classes or 

even portfolios, known as partial use (PU) within the CRR III and can “return it” in 

exchange for a switch to the standardized approach faster, whereas in the past they had to 

use it throughout all the segments or portfolios then (European Commission, 2019, §149-

150). On the other hand, also the standardized approach (SA) for credit risk is much more 

risk-sensitive than in the past (Hull, 2015; Witzany, 2017). The use of the IRB will be 

floored at 72.5 % of RWAs calculated by the standard method covering all risk categories 

(phased in from 50% from 01.01.2022 until 01.01.2027)135136 – which hence has to be 

calculated in either way – and the use of the A-IRBA now is limited to certain credit 

exposure segments as will be shown in the next paragraph (ECB, 2019; European 

Commission, 2019; Hull, 2015; Witzany, 2017, pp. 112-116). 

Therefore, it remains to be seen whether the IRB approach is used more frequently 

than before,137 less frequently as maybe expected by supervisors138 or – after considering 

costs-and-benefits – rather similar than nowadays (Behn et al., 2022b; Bundesbank, 

2022b; Witzany, 2017). 

The concept of the PD case, which is the primary parameter and the only one not 

covered in detail yet is treated in the following part of that chapter. It represents the sole 

parameter needed for the A-IRBA as well as for the F-IRBA139, and the definition and 

 

135 01.01.22: 50 %, 01.01.23: 55 %, 01.01.24: 60 %, 01.01.25: 65 % ,01.01.26: 70 %, 01.01.27: 72.5 % 
136 In 04/2020 in the wake of the COVID-19 pandemic the finalization of Basel III and the transition rules 

and dates were scheduled for one year later. 
137 See (Woodall & Bhollah, 2019) and for German banks the Bundesbank list on (Bundesbank, 2022b). 
138 The regulators are cautious because of their assumption that the institutions use these models mainly to 

lower their RWA and capital burden and that there are limits to model-based regulation as shown in (Behn 

et al., 2022b). 
139 With the finalization of Basel III and the adjusted SCRA and IRB approaches the A-IRBA is mainly left 

to the exposure class of small companies, it is even required for retail portfolios - whereas for banks and 

larger companies with more than five hundred millions in revenue just the F-IRBA, hence just the PD 

estimation, is allowed by regulators (Witzany, 2017, p. 15). 



120 

 

generating of a rating are crucially linked with it (S & P, 2016; Witzany, 2017). A rating 

is a standardized and (mostly) objective valuation of an object or person by a grade or 

score, which follows at least an ordinal but, in most cases, a metric scale (Bielecki & 

Rutkowski 2004; Daldrup, 2006, p. 3; de Laurentis et al., 2010, p. 33; Izzi et al., 2011). 

However, most ratings include a qualitative component, regarded as a difference 

compared to automated “scorings”, and rating agencies who publish them then declare 

ratings, mainly for legal reasons, as an “opinion about credit risk” (de Laurentis et al., 

2010, pp. 67-78, 320-322; S & P 2016, p. 4). Scoring is mainly used for retail exposure, 

where an overall assessment, including a large amount of qualitative data, is considered 

too expensive (Bouteillé & Coogan-Pushner, 2021, pp. 136-140; de Laurentis et al., 2010, 

pp. 116, 452). At the point of loan application and before loan origination for natural 

persons, the income or wage verification of at least the last three years, shown by pay 

stubs and tax filesCstatements (e.g., the form 1040 of the IRS140 in the U.S.) as well as 

possible collateral like a stock portfolio, personal jewelry, an owned car or house are 

examined by the bank – often combined with the score from a consumer credit reporting 

agency as FICO®141 in the US or Schufa®142 in Germany (Bouteillé & Coogan-Pushner, 

2021, pp. 136, 138-139; de Laurentis et al, 2010). Later in the time of the credit-

relationship lifecycle with a client, the focus in scoring shifts more from past-looking 

creditworthiness statements to dynamic, behavioral-based payment patterns of the 

borrower (Bouteillé & Coogan-Pushner, 2021; de Laurentis et al., 2010). Increasingly, 

data based on internet shopping patterns and behavioral data from certain apps, labeled 

as super-apps, as the Chinese WeChat® is used for scoring purposes (Roa et al., 2021). 

As the main focus of the thesis lies within the realm of a middle-sized or larger 

company’s creditworthiness the following part deals with ratings (and not scorings, 

though many aspects are common). 

If a rating occurs in the context of a company’s willingness and ability to pay all 

its obligations completely and on time, hence its creditworthiness, then it is called a credit 

rating143 (S & P, 2016, p. 4). Since the scope of the thesis is on credit, the terms rating and 

credit rating are henceforth used interchangeably. A rating can be generally done in a 

 

140  Internal Revenue Service, U.S. tax authority. Form under: https://www.irs.gov/pub/irs-

pdf/f1040.pdf?msclkid=cfd937aebb0011ec920d4a09ce6141da (Retrieved Mai 16, 2022). 
141 Fair Isaac Cooperation® (Website: Retrieved Mai 15, 2022, from https://www.fico.com/en) 
142 Schutzgemeinschaft für Allgemeine Kreditsicherung® (SCHUFA® e. V., Website: Retrieved Mai 14, 

2022, from https://www.meineschufa.de/de/) 
143 Sometimes also denoted credit-rating. 
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public or in a private fashion (de Laurentis et al., 2010). There are also two further ways 

of categorizing ratings. The category then depends on the rating object. If the rating aim 

is the creditworthiness of a whole company, of a state (or supranationals, sub-sovereigns, 

and agencies - SSA) or a municipality one speaks of an issuer rating or issuer credit rating 

(Izzi et al., 2011; S & P, 2016, pp. 15-18). If the rating refers to a certain special 

investment instrument or issuance with its own properties, collaterals, covenants, tranches, 

seniorities, and specifications or a project without recourse rights and hence solely 

dependent on the corresponding forecasted project cash flows, one talks of an issue rating 

(S & P, 2016, pp. 15-18). In the case of object or project finance a corresponding rating 

is thus known as an object, transaction, or project rating (Izzi et al., 2011; Joseph, 2013; 

S & P, 2016, pp. 15-18).  

If a whole branch or country is rated, instead of a company, a sole financial object 

or a natural person, one refers to that circumstance as branch rating or sovereign rating 

(Bouteillé & Coogan-Pushner, 2021, pp. 121, 145, 163; de Laurentis et al., 2010, p. 42; S 

& P, 2016). In case the entity level is a sub-national level, one can further break down the 

categories into municipal ratings and regional or communal ratings (European 

Commission, 2019; SEC, 2012). 

These ratings often act as so-called ceilings or caps for the creditor rating (Daldrup, 

2006; IMF, 2005; Quattrociocchi, 2016). The term ceiling (cap) in this regard means that 

the rating of a subsidiary or company within a country should not be better than the one 

of the parent entity or state itself (Daldrup, 2006; IMF, 2005). This is due to the fact that 

generally profits (and losses) are upstreamed within a group or holding and often patron 

declarations or unlimited guarantees for subsidiaries exist (de Laurentis et al., 2010; 

Quattrociocchi, 2016). The parent entity thus serves as a “parachute”. In the case of a 

company within a country, the company is dependent on the political system and laws, its 

resources, infrastructure, technological environment and human capital of that country, 

and its ability to raise taxes to pay for infrastructure and state expenses in general (de 

Laurentis et al., 2010). So, it is exceedingly rare that companies perform better than their 

overall environment and available infrastructure – hence they are normally capped by the 

state or country ceiling. Only in seldom cases and, e.g., for multinational, globalized 

companies who have worldwide sources of income and can even use arbitrage between 

the various tax and business environments the company is able to achieve higher ratings 

than its country of origin or the country where its headquarter currently resides (Moody’s, 
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2022). Similarly, under normal circumstances, also for instance regional or municipal 

ratings are capped by the state or national ratings thus the government level above, where 

the states can be viewed as support factors or sometimes even explicit guarantors of debt 

– though in its detail depending on the infrastructure, laws and constitutions, inter-state 

transfer schemes, and possibly additional factors (Naciri, 2015; Quattrociocchi, 2016; 

SEC, 2012).  

On the other side the term “rating floor” means that a specific rating cannot be 

worse than the general floor rating. This is referred to as “the weakest link in the chain” 

and an example is the worst rated state in a union of states – the overall union rating, for 

reasons of arithmetical averaging of indicators, cannot be worse than the one of the worst 

rated member state (Quattrociocchi, 2016). One calls a rating a “stand-alone rating” 

(SAR), when it comes without any supportCburden factors of affiliated companies or 

governments and before an eventual expert override 144  or currency conversion 145 

(Daldrup, 2006; Izzi et al., 2011; Moody’s 2022; S & P, 2016, p. 16; Quattrociocchi, 2016). 

This stand-alone rating is sometimes also referred to as baseline credit assessment (BCA), 

for example by the rating agency Moody’s® (Moody’s, 2022). It is the core of a 

company’s ratings. The rating methodology of the most relevant agencies as S & P Global 

Ratings®146, Moody’s Investors Services®, or Fitch Ratings® developed substantially 

since their inception and the use of ratings grew enormously since the 1990s (Cantor et 

al., 1999; Nickell, 1998; S & P, 2012). The origins of judging companies’ creditworthiness 

already date back until the beginning of the nineteenth century, with Dun & Bradstreet 

pioneering, and accumulated in the second part of that century, when railway 

infrastructure financing was a preeminent national task and the issuing of bonds became 

common (de Laurentis et al., 2010, pp. 14-15). Moody’s was founded in 1900 (1909 under 

a new name) and Standard & Poor’s in 1941, merging from Poor’s Publishing Co. which 

traces back until the 1860s and Standard Statistics Co. from 1906, subsequently S & P 

was acquired by McGraw-Hill in 1966 (de Laurentis et al., 2010, p. 15; S & P, 2022b; 

Sinclair, 2005). Internal ratings were not introduced by banks until the second half of the 

1980s after the loans and savings crisis, during which more than 2800 savings banks 

collapsed, when the FDIC and OCC subsequently required a classification of bank loans 

 

144Sometimes it is also called overwriting. 
145 Receiving first a foreign currency rating (FCR) and then after a rating transfer a local currency rating 

(LCR).  
146 In the course of the thesis sometimes just briefly denoted as S & P ®, Moody’s ® or Fitch®. 
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into at least six grades (de Laurentis et al., 2010, p. 15). For external as well as internal 

rating systems the BCA forms the basis of a rating. 

After the BCA and the adding of affiliate support as well as government support 

– and in case a bank is the rated issuer, also after the LGF147 analysis of the risk in the 

event of failure of the bank has taken place – one derives at the issuer credit rating, the 

ICR (Moody’s, 2022; Quattrociocchi, 2016; Witzany, 2017). In the very rare cases 

mentioned above the affiliate (group) and government factors might be a burden instead 

of support and one then speaks of government burden (Izzi et al., 2011). 

The term rating is often used for the result and actual rating grade as well as for 

the rating process in general (Bouteillé & Coogan-Pushner, 2021). 

Having defined credit ratings and rating objects, considered entities for which 

ratings are used as well as supportCburden-factors transforming the individual BCA (SAR) 

to a final ICR the two main rating paradigms are regarded. 

 

 

Figure 23 Rating with support and structural analysis, from BCA to ICR in case of 

a rated bank.  

Source: Own illustration, according to (Moody’s, 2022) and NORD/LB® Fixed Income Research. 

 

 

147 Loss given failure 
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Figure 24 BICRA rating process methodology of S & P ®.  

Source: Own modified illustration, from (S & P, 2022): “How we rate financial institutions”. 

In the banking industry it is possible to either use point-in-time (PIT) ratings, 

which are done at a specific, concrete point in time and for a certain short-term horizon, 

e.g., a year backward and through-the-cycle ratings (TTC), which are taken over a certain 

period of time including a whole economic cycle, especially also a recession or downturn 

time (Daldrup, 2006, p. 13; Oyama & Yoneyama, 2005, p. 11; Trueck & Rachev, 2008; 

Witzany, 2017, pp. 63-64). The first paradigm is more exact at the specific time and more 

sensitive, hence useful for real credit risk and bank controlling in the internal control 

systems (ICS) as well as for fair value pricing (Izzi et al., 2011; Witzany, 2017). On the 

negative side, however, it is pro-cyclic, hence better ratings are assigned during an upturn 

or boom and worse ones in a downturn phase of the economy (de Laurentis et al., 2010; 

Gordy & Howells, 2006; Izzi et al., 2011; Oyama & Yoneyama, 2005, pp. 11-12; Repullo 

et al., 2009; Witzany, 2017, p. 64). Therefore, the PIT approach is amplifying the cyclical 

effects and the VaR and loan provisions needed instead of smoothing the economic cycle 

effects and hence ratings are less stable compared to TTC ratings, which change less and 

are generally more long-term oriented and therefore often preferred for regulatory settings 

(Gordy & Howells, 2006; Repullo et al., 2009; Witzany, 2017, p. 63-64, 66, 113). 

However, this pro-cyclicality is partially countered within the CRR III framework and 

with the introduction of the buffers CCyB and CCB as shown before (Witzany, 2017, pp. 
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155-156). Hence, it depends on the use case and application, when deciding what 

approach to prefer. Regulators principally allow both to be utilized for the IRB approaches 

in the CRR III, but downturn effects have to be considered, which is a prerequisite tending 

toward the TTC method; however, the period is on the other hand a short-term perspective, 

which might better suit the PIT approach (Izzi et al., 2011; Oyama & Yoneyama, 2005, p. 

12; Witzany, 2017, pp. 112-113). Principally, the downturn effect is also assignable to PIT 

ratings by means of a MOC148, by a history containing, e.g., the GFC or by a capped 

procedure (de Laurentis et al., 2010; European Commission, 2019). As it is moreover the 

approach mainly used for internal controlling and economic capital determination 

purposes and better confirming the vision of regulators to converge the ideas of a 

regulatory, normative perspective and an economic perspective in RBC, PIT ratings might 

be preferred (de Laurentis et al., 2010, p. 406; Izzi et al., 2011). Furthermore, the PIT 

methodology has to be applied for stress testing purposes in the EBA stress test and the 

LSI stress tests for small banks (EBA, 2019). Generally, an institute is well advised in 

either case to precisely describe which approach it is using and for what reasons – to be 

on the safe side a PIT and TTC calculation might be executed (Daldrup, 2006; Witzany, 

2017). 

A rating, especially if it shall be accepted and accredited by regulators, in both 

cases of rating philosophies has to fulfill some prerequisites (Daldrup, 2006, pp. 15-24; 

Witzany, 2017, pp. 18-20, 110). A rating is usually given by an associated (whole) rating 

system, which assigns it during the rating process and especially includes a rating function 

for that purpose (de Laurentis et al., 2010). Formally, a rating system “comprises all of 

the methods, processes, controls, and data collection and IT systems that support the 

assessment of credit risk, the assignment of internal risk ratings, and the quantification of 

default and loss estimates” (Basel Committee, 2004, p. 394; de Laurentis et al., 2010, p. 

14). 

Such a rating system ought to be constructed in a way that the following axioms 

hold truth (Brusov et al., 2021; European Commission, 2019; Izzi et al., 2011; Krahnen 

& Weber, 2001; Moody’s, 2022; Naciri, 2015): 

The rating system is (fairly) objective, measurable and verifiable, transparent, 

information efficient, and understandable (Daldrup, 2006, pp. 15-25; de Laurentis et al., 

 

148 Margin of conservatism 
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2010, p. 35). It divides the rated objects into certain classes or grades, as mentioned. 

Furthermore, also the best rating class has a certain probability of default assigned to it 

which is bigger than zero, as described in (Moody’s, 2022). Otherwise, the investment 

would be risk-free, which is only the case for a risk-free rate or bonds issued by an “ideal 

government”. Real governments and their bonds yet bear some risks, as one could observe 

during the euro-crisis in the case of the so-called “PIIGS”, Portugal, Ireland, Italy, Greece, 

and Spain, whose bond and CDS spreads “soared” in the wake of the crisis (Bouteillé & 

Coogan-Pushner, 2021, p. 53; Musabegović et al., 2010). The CRR generally sets a 

minimum input floor at least for certain exposure classes’ PDs (European Commission, 

2019). 

 

 

Figure 25 CDS Spreads of Spain, Greece, Ireland, and Portugal during the euro-

crisis of 2010.  

Source: Graph according to (Witzany, 2017, p. 167). 

The system, as a further condition, has to be monotonous – as intuitively clear 

(Daldrup, 2006, p. 18; de Laurentis et al., 2010, pp. 176, 229). This means if the 

probability of default of a certain obligor (𝑃𝐷1) is lower than the one of another obligor 

(𝑃𝐷2), then the rating has to be better as well or at least equal if the PD is “nearly” the 
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same (Daldrup, 2006, pp. 18-19). The later case implies that companies are in the same 

“bucket” or class when constructing the discrete rating function. Mathematically, that 

reads as  

 𝑃𝐷1 <  𝑃𝐷2 ⇒  𝑅𝑎𝑡𝑖𝑛𝑔 1 >  𝑅𝑎𝑡𝑖𝑛𝑔 2  (112) 

and vice versa, and if    

 𝑃𝐷1 =  𝑃𝐷2 ⇒  𝑅𝑎𝑡𝑖𝑛𝑔 1 =  𝑅𝑎𝑡𝑖𝑛𝑔 2  (113) 

(Daldrup, 2006, p. 19). The rating function is also transitive when comparing three 

or more creditors and absorbing (Daldrup, 2006; de Laurentis et al., 2010). Transitivity 

means when 

  𝑃𝐷1 <  𝑃𝐷2 ;  𝑃𝐷2 <  𝑃𝐷3 ⇒  𝑅𝑎𝑡𝑖𝑛𝑔 1 >  𝑅𝑎𝑡𝑖𝑛𝑔 3  (114) 

(Daldrup, 2006, p. 19). Absorbing means that if a company has already defaulted 

it cannot be cured for a certain time, the rating is the default rating, e.g., with the symbol 

or “rating code” D and stays in default (Izzi et al., 2011; Scandizzo 2016). This is a rather 

conservative assumption in practice and can be released under certain circumstances. For 

the reason of completeness, one should further keep in mind that a PD can be either 

calculated as counting the number of defaults per period divided through the number of 

all debtors, which is the standard way also used within the thesis and known as count-

weighted or by taking the volumes of exposures denoted as volume-weighted and rarely 

used in practice (Scandizzo, 2016; Witzany, 2017). 

A rating function must contain enough rating classes to differentiate between 

obligors and make use of “the width of the scale and segments universe”, but at the same 

time not too many to have a representative number of obligors in each class and to stay 

comparable (Brusov et al., 2021; Daldrup, 2006, p. 19; de Laurentis et al., 2010, pp. 93-

95). Further properties one can often observe in the financial sector are that the rating 

classes are not necessarily equidistant and that the ratings change over time and are not 

completely constant or “stable” (de Laurentis et al., 2010, pp. 17, 34, 345-346; S & P, 

2016, p. 19; Scandizzo, 2016; Trueck & Rachev, 2008). A “relatively good” stability is 

yet important (de Laurentis et al., 2010, pp. 233, 294, 329, 347-351). 

A rating system ought to further have the greatest possible flexibility such that it 

can (theoretically) be used to rate all past, present, and future customers without having 

to make fundamental changes to the system itself (Daldrup, 2006, pp. 17, 24; de Laurentis 

et al., 2010, p. 92-94; S & P, 2016). The rating system should therefore be flexible enough 
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to be able to rate at least all foreseeable types of companies and types of transactions in 

that area it was developed for. It hence has to be granular, of adequate complexity, 

specificity, and complete using all possible available data at that point in time (Daldrup, 

2006, p. 23-24; de Laurentis et al., 2010; Izzi et al., 2011; Scandizzo 2016). 

As ratings are important for pricing and reaching out loans or bonds as well as for 

internal controlling purposes and a proper information flow, the assembling of ratings is 

a task, which has to be implemented with much rigor and on a solid data base (Brusov et 

al., 2021; Witzany, 2017). This data base can be an own one of a bank or credit agency or 

partly externally enriched, pooled – which is done, e.g., by mutual and savings banks, 

that often use centrally collected data and rating service providers or units within their 

associations (de Laurentis et al., 2010; Witzany, 2017).  

In detail, each rating agency (and most banks) makes use of its own specific 

method to calculate its corporate ratings (Moody’s, 2022; S & P, 2016, p. 10).  

These methods take into account quantitative aspects, which are mainly financial 

data and statistical data of an entity, as well as qualitative characteristics, which are more 

subjective “soft facts” like business strategy, competitive situation e. g. by applying the 

Porter’s five® or ESPEL® methods and considering the management qualities of a 

company – but also by examining the surrounding political and environmental stability 

of a country or company (Bouteillé & Coogan-Pushner, 2021, pp. 81-104; Daldrup, 2006, 

p. 7; Izzi et al., 2011; Moody’s, 2022; Oyama & Yoneyama, 2005, pp. 13-15; Porter, 1980; 

Porter, 1985; S & P, 2016; Scandizzo 2016).149 Quantitative data is collected through the 

companies’ statements published on their websites150, data from preferably independent 

analysts and financial data providers like Bloomberg® or Refinitiv® and research via 

official databases like the ones of national statistics bureaus or the SEC’s EDGAR.151 

The information used for the quantitative part is mainly past or present-oriented 

(Daldrup, 2006; Witzany, 2017). The named qualitative aspects are forward and future- 

oriented (S & P, 2016, p. 5). Additionally, contextual criteria are considered as changes in 

an industry as a whole or specific events and current crises at the time of the rating 

assembling process (Eigermann, 2002; Oyama & Yoneyama, 2005, p. 13). The collection 

 

149 See Moody’s ® scheme in (Moody’s, 2022b). 
150 which ought to be critically double-checked however 
151 The EDGAR system is explained here: (SEC, 2021). 
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of all these criteria or risk factors is called a “long-list” (Moody’s, 2016; Witzany, 2017, 

pp. 44, 51). 

 

 

Figure 26 Quantitative and qualitative criteria for a rating.  

Sources: Own collection and illustration. 

While many banks in the past used creditworthiness estimates, close personal 

bank-client relationships and often subjective criteria as main factors for credit decisions, 

modern ratings use complex rating systems, which are quantitatively grounded, 

backtested, ideally rather objective, and additionally have a professional collateral 

valuation and management system integrated (Brusov et al., 2021; Chen, 2018; de 

Laurentis et al., 2010, pp. 93-235; Witzany, 2017). The methods in use changed 

accordingly, from more relationship-banking-based ones and methods like the four C’s 

(character, capital and capacity, coverage, collateral), to more sensitive and more 

structured approaches like CAMELS (capital adequacy, asset quality, management, 

earnings, liquidity, sensitivity) by J.P. Morgan® or LAPS (liquidity, activity, profitability, 

structure) as shown in (de Laurentis et al., 2010, p. 39). Contrary to popular beliefs about 

the important role of relationship banking in the theory of banks as financial 

intermediaries, the increased use of automated scoring systems for SMEs has empirically 

neither led to fewer SME companies being financed nor higher costs – even rather 

independently of a bank’s size or organizational structure (Berger et al., 2002; de 
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Laurentis et al., 2010, pp. 408-409, 424-425, 426-427; DeYoung et al., 2003; Frame et al., 

2001). Therefore, apart from the already mentioned advantages like higher objectivity, 

verifiability, homogeneity, etc., automated scoring or more quantitative rating approaches 

seem to be the preferred method of choice (de Laurentis et al., 2010, pp. 408-409). The 

remaining criteria and factors finally selected are then given scores or grades on a certain 

scale, the rating system weights them according to their impact and aggregates them to 

an overall grade or rating, normally the mentioned baseline credit assessment (Daldrup, 

2006; Izzi et al., 2011; Moody’s 2022; Trueck & Rachev, 2008). 

One of the first approaches to give a company a certain score influenced by macro-

economic factors traces back to Altman and is hence denoted as Altman’s Z-score 

(Altman, 1968). It can be regarded as a multi-factor approach assigning a score to the 

weighed summation (Witzany, 2017, p. 37). 

It has further enhancements (Altman, 1989a; Altman, 1989b). Especially also the 

idea of “unexpected losses” was included in a 1993-version (denoted Z’’ model) and an 

extension to emerging market bonds took place (Altman, 1993; Altman et al., 1995). As 

will be seen in this chapter, nowadays probit or logit (logistic regression, with logarithm 

on odds)-based models or even AI-based approaches are used to estimate PDs and ratings 

– which are basically just a code for a PD range in a certain class of obligors (Daldrup, 

2006; de Laurentis et al., 2010, pp. 85-91; Witzany, 2017). 
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Figure 27 Qualitative and Quantitative factors are weighted, scored, and aggregated 

via (standard) logistic regression.  

Source: Own illustration, based on (Witzany, 2017, p. 63). 

By a more general level the model design process, which is beside the data an 

important part when initiating a model, ought to be regarded as follows: 

 

Figure 28 Model design process.  

Source: Own illustration 

The process is hence getting more granular from the model and its type, followed 

by its concrete architecture to a specific definition of default and PD as well as LGD 

characteristics (Daldrup, 2006). After the model design process and the concrete creation 



132 

 

of a rating function and system, regarded later in this chapter, the rating system needs to 

be initially validated (de Laurentis et al., 2010). 

The rating system even has to be (re-)validated regularly, at least annually as well 

as on “special occasions” (Daldrup, 2006; European Commission, 2019; Scandizzo, 

2016). That process might be accompanied and extended by a set of predefined early 

warning indicators and an internal escalation system (Witzany, 2017). Early warning 

indicators are important because they may substantially reduce the costs of workouts as 

the indicators help “limit the exposure at default and increase the safeguard of collaterals 

and guarantees” (de Laurentis et al., 2010, p. 396). 

Qualitative validation is then especially applied to the data quality, the use cases 

and applications as well as the model design, often including change policies (de 

Laurentis et al., 2010, pp. 334-345; Scandizzo, 2006). During the validation process the 

system also has to be backtested or benchmarked quantitatively (Aussenegg et al., 2011; 

Daldrup, 2006, p. 19; de Laurentis et al., 2010, pp. 324f., 346-357; Oyama & Yoneyama, 

2005; Scandizzo, 2016). Quantitative backtesting contains the application of statistical 

tests, whereas benchmarking means ultimately comparing the rating model with other 

industrial models, methods or external ratings (Daldrup, 2006, pp. 93-101; de Laurentis 

et al., 2010, pp. 237-256, 346-357; Oyama & Yoneyama, 2005, pp. 17-24). The backtests 

include accuracy or discriminatory power tests as the application of CAP and AUC or 

ROC and AUROC – and the corresponding ratios AR, Gini, or AUROC – to differentiate 

between defaults and non-defaults or rating classes (de Laurentis et al., 2010, pp. 224, 

286; Engelmann et al., 2003; Oyama & Yoneyama, 2005, pp. 17-24; Scandizzo, 2016; 

Witzany, 2017, pp. 20-30). CAP stands for cumulative accuracy profile, AUC for area 

under the curve – in connection with the CAP curve (Engelmann et al., 2003; Oyama & 

Yoneyama, 2005, p. 45; Witzany, 2017, p. 21). AR is the accuracy ratio, sometimes also 

denoted as Gini (Oyama & Yoneyama, 2005, p. 19; Witzany, 2017, p. 21). ROC denotes 

receiver operating characteristic and AUROC152 the area under ROC (de Laurentis et al., 

2010, pp. 224, 286f; Engelmann et al., 2003; Oyama & Yoneyama, 2005, p. 46). Generally, 

the idea is that one relates statistical measures and odds as, e.g., “good units”, in the case 

of the thesis correctly predicted defaulted companies, against other figures like “number 

of all actual good companies”, “number of all companies” as in the case of CAP or to 

 

152 Sometimes also confusingly abbreviated as AUC. 
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“wrongly predicted good companies”, “wrongly predicted bad companies” the so-called 

“bad odds” as in case of the ROC (Scandizzo, 2016, p. 62-67, 87; Witzany, 2017). Then 

they might be related to ideal modelsCorders (Witzany, 2017, p. 22). 

More precisely for the AUC method, the CAP curve is constructed by plotting the 

percentage of classified defaulted companies after each step against the percentage of all 

companies, in ascending order, and looking at the area under this curve – cf. figure 28 

(Witzany, 2017, p. 22).  

 

 

Figure 29 CAP and AUC illustration.  

Source: According to (Witzany, 2017, p. 22). 

From this area, ½ is subtracted, as this is the area of a random linear model – like 

a dice and proportional to m/n, where n is the sample size and m are the defaults – with 

slope 1 (Oyama & Yoneyama, 2005; Scandizzo, 2016, Witzany, 2017, p. 22). The 

resulting area is denoted as aR (“area of the rating model”). As next step, a perfect model 

is considered which means a model for which in the first step 1Cm of all defaulted 

companies are correctly detected (and 1Cn of all companies looked at), where m denotes 

the total number of defaulted companies, n the total number of all companies (Oyama & 

Yoneyama, 2005; Scandizzo, 2016). Then in the second step hence 2Cm are correctly 

classified (and 2Cn looked at), … straight up to m/m = 1 in the m-th step, when m/n debtors 

were looked at. This yields a straight line from 0 ≤ t ≤ m/n with slope n/m and intersect 
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zero followed by a constant one for t ≥ m/n (Oyama & Yoneyama, 2005; Scandizzo, 2016; 

Witzany, 2017, p. 17).  

Again, if considering the area under that curve of the perfect model the random 

model, ½, is subtracted resulting in the area aP. In the next step, the accuracy rate (AR) is 

just calculated by the division of aR and aP.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑒 (𝐴𝑅) =
𝑎𝑅

𝑎𝑃 
  (115) 

(Oyama & Yoneyama, 2005; Scandizzo, 2016). It lies between zero and one, and 

the closer it is to one the better the employed model performs (Witzany, 2017, p. 22). 

In the case of AUROC, one plots the correct default classifications (already a ratio), 

hence the true-positive-rate (TPR), mentioned before and sometimes also labeled “hit 

rate”, against the false-positive-rate (FPR) of wrong classifications of default, also known 

as “false-alarm-rate” (de Laurentius et al., 2010, pp. 224, 286; Oyama & Yoneyama, 2005; 

Scandizzo, 2016). The resulting curve is then the receiver operating characteristic (ROC) 

and the area underneath the AUROC (Oyama & Yoneyama, 2005; Scandizzo, 2016): 

 𝑅𝑂𝐶 =
𝑇𝑃𝑅

𝐹𝑃𝑅
 (116) 

Then it is also again compared (normally without the subtraction of the area of a 

random model – ½) to the optimal model with area one and hence the area under the ROC 

curve divided by one, which is still AUROC (de Laurentis et al., 2010, pp. 285-286; 

Witzany, 2017, p. 23). The receiver operating characteristic approach stems from the 

usual definitions of sensitivity (or recall) and specificity in the confusion matrix of 

sampling statistics (Witzany, 2017, p. 28). In that “language” it can be expressed as  

 𝑅𝑂𝐶 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
  (117) 

 (Witte & Witte, 2010). 
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Figure 30 ROC and AUROC illustration.  

Source: According to (Witzany, 2017, p. 23). 

It is also possible to give probabilistic definitions of the parameters AR and 

AUROC first, thereby directly receiving the relationship  

 𝐴𝑈𝑅𝑂𝐶 =  ½ (𝐴𝑅 −  1)  (118) 

and then show the equivalence to the geometric definition given before as proven 

in a straightforward way in (Witzany, 2017, pp. 24-25). 

The definitions of AR and AUROC given above are numerically approximated in 

reality, as there is only a finite sample of rated obligors where defaults were observed 

(validation sample) and not the complete (whole) population sample (Witzany, 2017, p. 

25). The accuracy rate or the area under receiver operating characteristic measured on the 

training sample (historic sample where the rating system is derived from) are usually 

nearer to one than the ones calculated on different samples, hence a more conservative 

out-of-sample validation is preferred, as opposed to validation on parts of the training 

sample (Witzany, 2017, p. 25-27). Rating providers such as Standard & Poor’s normally 

achieve high accuracy ratios (Ginis) of roughly 90 %153  and even 86 % during the 

COVID-19 crisis in 2020 (S & P, 2022). Given the estimated accuracy ratio or Gini 

coefficient, Witzany’s advice is that “one should also look at the confidence interval for 

 

153 See for 2020 (S & P, 2021) and for 2021 (S & P, 2022). 
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the real coefficient AR on the confidence level α, using an estimator given”, as by 

Whitney-U or asymptotic normal ones (de Laurentis et al., 2010; Engelmann et al., 2003; 

Greene, 2003; Witzany, 2017, p. 26). This might hence also help in selecting 

discriminatory relevant and statistically significant factors for a rating system as will be 

shown later when the univariate analysis is regarded.  

Furthermore, as in other statistical contexts, one can compare two rating systems 

with accuracy ratios AR1 and AR2 – which might be correlated and have interlapping 

confidence intervals – by utilizing a t-statistic test (Witzany, 2017, p. 27). Other 

discriminatory measures as the weight of evidence (WoE), the use of ordinary analysis of 

variance (ANOVA) or the information value (IV) exist but are considered less important 

and are rarely used in the realm of discriminatory analysis in practice in the financial 

industry (Scandizzo, 2016; Witzany, 2017, pp. 48 – 51). 

As the next step in the whole validation process, the correlations between the 

chosen risk factors are measured and tested, e.g., via Spearman’s rank correlation or 

Kendall’s tau (de Laurentis et al., 2010, pp. 233-235, 376; Oyama & Yoneyama, 2015, pp. 

17-24). That is apparently important to see which risk factors impact each other and in 

which “strength” and “direction”. Highly correlated ones (e.g., more than 70 %) might be 

omitted (Oyama & Yoneyama, 2015). Furthermore, a principal component or factor 

analysis is often utilized in regard to correlation structures (de Laurentis et al., 2010, pp. 

95, 98-113). 

Then as another key step, the calibration is tested, i.e., the ability of the model to 

assign accurate PDs to each rating in the longer term (de Laurentis et al., 2010; Oyama & 

Yoneyama, 2015). That is executed via statistical tests. Utilized are standard Binomial, 

Spiegelhalter, or Hosmer-Lemeshow tests or nonparametric tests like a Wilcoxon rank 

sum test in the independent or Wilcoxon rank sign test in the dependent case (Daldrup, 

2006, pp. 93-101; de Laurentis et al., 2010; Scandizzo, 2016, pp. 70-73). Often, also 

comparison mappings from internal (and its master scale) to external rating systems are 

performed (Bouteillé & Coogan-Pushner, 2021). In practice, the Binomial test or Hosmer-

Lemeshow test, which ought to be preferred, are most frequently used (Witzany, 2017). 

Backtesting calibration is one of the most crucial components of backtesting besides 

discriminatory (accuracy) tests (Scandizzo, 2016, p. 69). For a rating or PD backtest the 

before-mentioned “traffic-light”-approach can be again utilized when deciding about the 

denial or acceptance of a model (Scandizzo, 2016, p. 73; Tasche, 2003).  
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Besides backtesting it is also often convenient to compare different (nested) 

models, i.e., benchmarking them by comparing their log-likelihood ratios, the Akaike 

information criterion (AIC), or the Schwarz information criterion (SIC), also known as 

the Bayesian information criterion (BIC), and testing if they are for instance extensions 

of each other with additional variables (de Laurentis et al., 2010; Oyama & Yoneyama, 

2015, p. 19; Scandizzo, 2016). General comparing concepts like goodness-of-fit tests are 

also available (Izzi et al., 2011). 

The last validation area concerns the stability of a rating system, which is tested 

for instance via causal relationships, transition matrices, tools like stability indices or the 

Kullback-Leibler divergence and indicates the consistency of the system over time 

(Scandizzo, 2016). A rigorous execution of the quantitative validation is a must to avoid 

pitfalls and impreciseness (Aussenegg et al., 2011). 

The challenged models and their results have to be finally reported and 

documented exactly. Model risks themselves have to be kept in mind as well, quantified 

in “quantified heatmaps”, scorecards, or similar concepts, and the results considered with 

a certain a model risk buffer, known in risk management as margin of conservatism – 

MOC (Breinich-Schilly, 2021; Hull, 2015, pp. 587-605; Reinwald, 2022b). 

 

 

Figure 31 Three dimensions of quantitative ratings. 

Source: Own illustration, in line with (Farooq, 2016; Witzany, 2017). 
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3.2 External and Internal Rating Processes 

In contrast to a more classical creditworthiness check of companies by their house 

banks to decide about loans, which is generally a detailed due diligence of the balance 

sheet, financial statement and P & L, a rating should also include some future-oriented or 

at least current information (Izzi et al., 2011; S & P, 2016, pp. 5, 11). The following 

description deals with the most frequent case of rating a company – nearly all parts 

however can be transferred for an application to other entities like states or individuals as 

well. The latter case is often referred to as scoring as mentioned when completely using 

quantitative data, normally in a fully automated way and often in retail segments 

(Bouteillé & Coogan-Pushner, 2021, p. 59). Firstly, the entire process which is followed 

by a rating agency is illustrated – most parts again can be transferred to the use of internal 

ratings as in (Daldrup, 2006; de Laurentis et al., 2010, pp. 93-235; Oyama & Yoneyama, 

2015). Apart from the agency-committee-company interaction – the bank’s internal data 

and history is used instead – and the missing presentation to the rated company and non-

publishing of the rating, the process stays the same. 

As already explained, there are external and internal credit ratings – external ones 

are drafted by a regulated and registered credited rating agency abbreviated often as CRA 

(Daldrup, 2006, pp. 13-15; European Commission, 2013). These private companies are 

making their profit by rating other companies, states and other municipalities, supra-

nationals and state-like actors, complete branches, and single financial instruments 

(Naciri, 2015; Witzany, 2017, p. 35). There are only a few accredited and registered rating 

agencies in the Western hemisphere, and mainly relevant are the American companies 

Standard & Poor’s Global Ratings® (S & P Global Ratings®), Moody’s Investors 

Service®, and Fitch Ratings®154 (Naciri, 2015).155156 In the EU they are called external 

credit assessment institution (ECAI, sometimes external credit rating agency ECRA) and 

 

154 Fitch was partly French-owned by Fimalac® until Hearst® took over the remaining 20 % stake in 2018. 

See, e.g., the press statement on (Hearst, 2018). 
155 The three of them own a combined market share of more than 95 % in the US and similarly globally 

(SEC, 2022, p. 23).  
156  After the great recession and the perceived overarching power and American oligopoly of rating 

agencies there was an effort in the EU to set up a foundation-based rating agency, but the market was not 

very comfortable with this idea, and the effort largely failed. The plan of a European CRA is described in 

(Spiegel, 2012). A further important rating agency in North America is the Canadian Dominion Bond 

Rating Services (DBRS). 
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are supervised by the ESMA – the European Securities and Markets Authority (ESMA, 

2014; ESMA, 2017; ESMA, 2021; Witzany, 2017, p. 110).157 

In the US they are regulated by the Securities and Exchange Commission’s Office 

of Credit Ratings (OCR) and called nationally recognized statistical ratings organizations 

NRSROs (SEC, 2022b; SEC, 2022c). There are other agencies that are just partly 

accredited for certain types of debt – the so-called exposure classes – in the US and the 

EU, e.g., for accreditives and foreign payments or special loans, as Euler Hermes, Scope, 

or Creditreform (Bouteillé & Coogan-Pushner, 2021, pp. 55-62). 158  Rating agencies 

normally use symbols or rating codes to express their rating judgment, famous are, e.g., 

the triple-A, “AAA”, by S & P ® or symbols like baa1 in the Moody’s ® code (Bouteillé 

& Coogan-Pushner, 2021, p. 57; Moody’s 2022; S & P, 2016, p. 13). The aim is to inform 

investors about the debtors and to provide for an open and transparent market and 

trustworthy credit pricing (Daldrup, 2006).  

Rating agencies possess a substantial amount of power as the use of external 

ratings is included in legal requirements as the CRR III (as regarded) and more than 34 

trillion $ in securities on the financial markets are judged by these agencies (Witzany, 

2017, p. 35). 

Yet, as most ratings are paid for by the companies themselves and unpaid, free 

ratings known as unsolicited ratings without any order are less lucrative for the agencies, 

some studies suggest that the ratings ordered by a company tend to be slightly better than 

unsolicited ones, as it may serve as an incentive for re-ratings by the same agency and 

conflicts of interest may arise (Bouteillé & Coogan-Pushner, 2021, pp. 55-62; Daldrup, 

2006; de Laurentis et al., 2010, p. 40; Lucas, 2008; Podkul, 2019a; Podkul, 2019b; S & P 

2016, p. 12; Witzany, 2017, p. 35). Furthermore, as most of the companies are located in 

the US and are used to the U.S. capital market based open financial system, some studies 

suggest a weak bias toward that system and against the European or Japanese bank-loan 

centered system of financing and funding companies (Bartels, 2019; Behr & Güttler, 2004, 

pp. 109-112; Ichiue, 2006; Oyama & Yoneyama, 2005). Having rated a company, the 

process often involves “follow-up ratings” and an “outlook” which can be negative, 

positive or neutral, and the company stays on the “watchlist” for an “upgradeCdowngrade” 

of further steps (S & P, 2016, pp. 11, 18). These rating steps are called “notches” (S & P, 

 

157 Different methodologies are shown by the ESMA on (ESMA, 2017). 
158 See again (ESMA, 2022). 
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2016). The processes are often similarly executed by banks when they use internal ratings. 

The largest rating agencies use the following scale and rating symbols: 

 

 

Figure 32 Rating codes.  

Own illustration, according to http://www.swiss-rating.agency/rating-scales-codes/ 

Importantly the “investment grade” section, which indicates rather safe debt, is 

including the BBB- (by S & P methodology) rating class, while everything below that 

class is non-investment grade and often referred to as “junk” (Bouteillé & Coogan-

Pushner, 2021, pp. 55-57; Everling & Bargende, 2005; Moody’s, 2022; Wieben, 2004). 

Some institutions, e.g., pension funds and insurance companies, are obliged by law to 

invest in investment-grade bonds solely (Behr & Güttler, 2004; Bouteillé & Coogan-

Pushner, 2021, pp. 145-151). 

Figure 33 shows a differentiation of rating codes in terms of the time horizon of a 

company considered, or the maturity of financial instruments issued by the company, and 

that motivates the distinction of short-term ratings (P-1 to P-3 at Moody’s ® and slightly 

more granular A-1+ to A-3 at S & P ®), generally debt due in less than 12-13 months, and 

long-term ratings (Moody’s, 2022c). Rarely medium-term ratings for a range of 3-5 years 

are published (Izzi et al., 2011). It is also important to look at what kind of debt is rated. 

Is the company itself rated or normally equivalently its Senior Unsecured bonds or loans, 

Verbal description

Long Term Short Term Long Term Short Term Long Term Short Term

Aaa AAA AAA Prime

Aa1 AA+ AA+

Aa2 AA AA

Aa3 AA- AA-

A1 A+ A+

A2 A A

A3 A- A-

Baa1 BBB+ BBB+

Baa2 BBB BBB

Baa3 BBB- BBB-

Ba1 BB+ BB+

Ba2 BB BB

Ba3 BB- BB-

B1 B+ B+

B2 B B

B3 B- B-

Caa1 CCC+ CCC Substantial risk

Caa2 CCC

Caa3 CCC-

CC

C

SD RD

D D In default

C

CC

Lower Medium Grade

Upper Medium Grade

High Grade

Non Investment Grade Speculative

Highly Speculative

In default with little prospect for recovery

Extremely speculative

B

C

D

F-1 +

F-1 

F-2

F-3

B

C

D

S & P Fitch

Ca

C

A-3

A-1 +

A-1 

A-2

P1

P2

P3

Not prime

Moody's
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or also other debt like subordinatedCjunior debt or covered bonds or collateralized loans 

(Moody’s, 2022). If the loan or bond is subordinated and hence lower in the insolvency 

regime, the ranking of debtors, or classified as non-preferred senior unsecured, which is 

a “middle-stage” between preferred senior debt and subordinated debt, the rating is 

generally worse (Bouteillé & Coogan-Pushner, 2021; Moody’s, 2022). In terms of a 

collateralized loan or covered bond the unsecured exposure (part) is naturally lower or 

even zero when fully (over)collateralized, and hence the recovery rate and thus the rating, 

especially for the LGD, is higher. 

As presented before, in most cases external ratings are ordered by a client (S & P, 

2016, p. 12). The rating is often henceforth published together with its rationale, denoted 

a public rating (Moody’s 2022; S & P, 2016, pp. 11, 21). Unpublished but still used ratings 

are then private ratings. The (public) rating process can be viewed in diverse ways yet as 

to illustrate a standardized way the ICRA® rating process (of the Indian ICR-Agency®, 

a subsidiary of Moody’s ®) is directly shown below. 

 

 

Figure 33 ICRA® rating process. 

Source: Own illustration in accordance with www.icra.in (Retrieved Mai 24, 2022), copyright by: ICRA® 

India. 
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As the details of the rating processes and methodologies of major agencies are 

usually kept as business secrets there are some regulatory and transparency requirements 

in place, which force the ECAIs to publicly disclose their methodologies to some extent 

and some agencies even publish more information than that to (re-)gain the trust of the 

public and of investors (BCBS, 2000a; Daldrup, 2006, p. 6; de Laurentis et al., 2010; 

Moody's, 2022b) If the input parameters and the corresponding weights of a rating are 

roughly known, it is quite usual that the rating function behind it is emulated and tested 

(“copied”) by others, who then build a “shadow rating” (Engelmann & Rauhmeier, 2006; 

Everling & Bargende, 2005; Izzi et al., 2011; Wieben, 2004; Witzany, 2018, pp. 36, 66). 

Even though the methodologies of rating companies are often rather similar, the 

comparability has its limits when it comes to different definitions in use, different 

populations taken by the agencies and varying conceptual details (de Laurentis et al., 2010, 

pp. 53-56). 

Generally, an agency begins with assembling a team of analysts and with the pre-

analysis including information collection from public sources and in its own databases, 

also used for a peer group review and comparison, in addition to the information offered 

by the company itself (Eigermann, 2002, p. 32; Everling & Bargende, 2005, pp. 263-264; 

Izzi et al., 2011; S & P, 2016, pp. 10-11; Wieben, 2004, p. 92). Following a rather 

standardized bottom-up approach, the team first estimates the home country and branch 

risks and ratings, hence the environment a company is operating in (Daldrup, 2006, pp. 

6, 30, 33-41; Bouteillé & Coogan-Pushner, 2021, pp. 55-56; de Laurentis et al., 2010, p. 

43; S & P, 2016 pp. 10-11). Then it analyzes the company-specific risk, the idiosyncratic 

one, which can be divided again into individual business risk which is, as seen before, 

mainly depending on the strategy, management and competitive environment and is hence 

future-oriented and financial risk, which is mainly objective and based on financial 

figures, planning scenarios and hence more backward or present-oriented (Caouette et al., 

2008; de Laurentis et al., 2010; Everling & Bargende, 2005; Moody’s, 2022; Witzany, 

2017, pp. 33-34). Adding the peer group analysis the analysts derive a set of checklists, 

questionnaires and a first and preliminary rating assessment, which is then discussed with 

the company’s management – in most cases at least with the CEO and CFO – in an 

analysis talk or meeting (Bouteillé & Coogan-Pushner, 2021, pp. 55-63; S & P, 2016, p. 

11). Often that meeting might be accompanied by further quantitative information 

presented by the management and a tour through the company’s (production) facilities. 
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The exchange is subsequently followed by the assembling of a final rating 

recommendation by the analysts, who are further trying to compile an outlook for the 

future of the company (Moody’s, 2022). The analysts are considering especially the 

following areas, as shown in (Bouteillé & Coogan-Pushner, 2021, pp. 81-104; Caouette 

et al., 2008; Daldrup, 2006, pp. 7, 33-40; Eigermann, 2002; Everling & Bargende, 2005; 

Moody’s, 2022; Oyama & Yoneyama; 2005, S & P, 2016, pp. 16, 18; Witzany, 2017, pp. 

33-34): 

 

• Financial figures (financial statement and disclosures, balance sheet, cash  

flow and income statement, P & LCearnings, and other KPIs)  

• Financial management 

• Production  

• External stakeholders and relations (clientsCcustomers, sales, and  

suppliers) 

• Shareholders  

• Overall management and strategy  

• Business and risk controlling  

• Employee capabilities, satisfaction and education, and a company’s  

attractiveness for young talents 

• The use of new technology, IT, including cyber security, AI (artificial  

intelligence), and automatization 

 

Rating agencies like Standard & Poor’s also utilize the business and financial risk 

side division – dating back to Modigliani and Miller – while considering for the latter one 

mainly profitability ratios from historical and projected operations, coverage ratios as 

cash flow from operations divided by outstanding principal and interest which has to be 

paid, leverage ratios, and further the common “quick and current liquidity ratios” (de 

Laurentis et al., 2010, p. 43; Modigliani & Miller, 1958). 

All these factors are regarded in a similar fashion when using internal ratings, as 

seen before (Daldrup, 2006). They are (again) given a kind of score or assigned value on 

a certain predefined scale then. The score is weighted by the impact and importance of 

the respective factor and finally, they are assembled into an overall rating (score). In some 

circumstances the score also includes supporting factorsCaffiliates or country caps, and 
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the rating is finally adjusted by an expert overwriting and possibly a rating transfer 

(Daldrup, 2006; Everling & Bargende, 2005; Izzi et al., 2011; Moody’s, 2022; Oyama & 

Yoneyama, 2005, pp. 13-15). 

 

 

Figure 34 Rating process as a whole, e.g., within a rating agency when rating a 

financial institute.  

Source: Own illustration. 

In rating agencies normally a rating committee finally decides about the rating 

decision, often including five to seven voting members (de Laurentis et al., 2010, p. 44; 

Moody’s, 2022). The result is transmitted to the company at the end, and it can decide 

whether to accept it or not (Moody’s, 2022; S & P, 2016, pp. 11, 21). 

In the event of a general rejection by the company, the rating process is terminated, 

and the rating is not published (Moody’s, 2022). Yet in many cases in practice, there are 

“unaccepted published ratings”, especially for re-ratings (Wieben, 2004). If the company 

objects to the result of the rating process because new information regarding the 

company's development may be available, a new analysis and evaluation of the company 

are carried out, taking into account the updated information, and a new rating assessment 
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is adopted by the Rating Committee (Everling & Bargende, 2005; Wieben, 2004; S & P, 

2016).  

If the rating assessment is accepted, it is published by the rating agency. At this 

point, however, the agency's activities are not finished yet, but the company as well as the 

development of the industry and the market are continuously monitored, such that an up- 

or downgrade of the rating assessment may occur (Bouteillé & Coogan-Pushner, 2021, 

pp. 55-63; S & P, 2016; Witzany, 2017). Regarding that context, the companies under 

review are expected to submit significant changes, monthly and quarterly reports as well 

as annual financial statements to the rating agency (Izzi et al., 2011; Naciri, 2015). In 

addition, new meetings are usually held at least annually between the company’s 

management and the agency’s analysts to discuss the company’s development and current 

industry trends (Witzany, 2017). If the agency discovers signs of a change in the credit 

rating of a company under its monitoring, a review process is initiated, and the company 

is placed on the so-called “watchlist” as described above (S & P, 2016). 

The use of (external) ratings as an indicator function is however not always 

(completely) fulfilled (Witzany, 2017). In many cases, the downgrading of a company is 

time-lagged and appears when the worsened creditworthiness and quality of a company 

is already obvious and known throughout the market, often even in a cycle through 

previous upgrades from other agencies, hence already included in the market prices 

(quotes) and thus in many cases not even influencing them further (Alsakka & Gwilym, 

2010; Kou & Varotto, 2008; Oyama & Yoneyama, 2005; Witzany, 2017). Especially 

between rating cycles of normally a year that might be the case and one should add further, 

timely information published by the company (ad-hoc reports and news, business figures), 

analysts (reports and recommendations like the holdCbuyCsell votes), regulators, or 

markets as important information included in credit spreads and credit default swap 

premiums of a company, to get a full picture (de Laurentis et al., 2010). Witzany describes 

credit spreads and their role as early warning indicators, e.g., in the case of the euro-crisis 

(Witzany, 2017, pp. 93-94, 161, 167). 

Furthermore, the rating updates may add further pro-cyclicality to the market and 

economic cycles especially through downgrades during recessions and might in extreme 

cases even contribute to credit crunches and further defaults (Auh, 2015; Kiff & Kisser, 

2018). 
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The incentives for companies to seek official ratings from agencies one hand 

consist of the fundamental possibility of gaining access to the capital markets and on the 

other hand the opportunity of being able to obtain more favorable funding conditions in 

the capital markets through a favorite rating (Aktan et al., 2019; Daldrup, 2006; Naciri, 

2015). A company’s investment decisions and capital structure are significantly 

influenced by ratings and rating changes (Aktan et al., 2019; Kisgen, 2019). 

However on the contrary, in less developed economies many companies might not 

consider getting a rating as useful as it may not serve as an advantage without developed 

capital markets or without the attraction of investors, or some companies simply cannot 

afford a (constant) rating fee. 

In analogy to external ratings, internal ratings have the goal of rather objectively 

assessing the creditworthiness of companies, with internal ratings showing the 

creditworthiness of bank borrowers and external ratings generally showing the 

creditworthiness of bond issuers on the capital market (Daldrup, 2006, pp. 13-15; de 

Laurentis et al., 2010; Oyama & Yoneyama, 2005). In contrast to external ratings, 

however, they do not increase market transparency due to their internal and non-public 

use by definition, nor do they serve potential investors as an indicator of the future 

viability of a company (Daldrup, 2006, pp. 13-15). Rather, they represent the central 

component in a bank’s overall credit risk management (Brusov et al., 2021; de Laurentis 

et al., 2010). Internal ratings are mainly used in the context of lending as a decision-

making aid for the acceptance and prolongation of loan applications and for the approval 

and review of credit lines, furthermore, to allow differentiation and prevent adverse 

selection of debtors (Daldrup, 2006, pp. 13-15; Oyama & Yoneyama, 2005). 

In the non-American world, banks will predominantly use the approaches based 

on internal ratings, as only a few larger companies, especially in the European market, 

have an assigned external rating and thus the necessity arises for banks to implement their 

own internal rating systems (de Laurentis et al., 2010; EBA, 2021c, pp. 6-7; Elsäßer, 

2015).  

In addition to these areas of application, which in principle relate to individual 

borrowers, internal ratings are also a prerequisite for a number of credit risk models for 

quantifying portfolio risk as illustrated later in the thesis (BCBS, 1999a; Daldrup, 2006; 

Gordy, 1998). The goal of these credit risk models is to quantify the credit portfolio risk 

by taking into consideration possible changes in creditworthiness during the lifetime of 
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the loan. Internal ratings tend to be less complex and cheaper compared to external ratings 

also being proportionate to the volume of a bond emission, many millions in 

denomination at least, versus an in most cases considerably smaller bank loan (Daldrup, 

2006, pp. 13-15). Internal rating systems are considered in the following. If an internal 

rating system must also have a component for a transaction rating for LGDs, which is 

volume-driven, in addition to a credit rating for PDs relating to the frequency of defaults 

and rating migrations-driven-relative frequencies, internal rating systems should adhere 

to the basic requirement of two-dimensionality 159  (Daldrup, 2006, p. 16; Oyama & 

Yoneyama, 2005, p. 8; Witzany, 2017, p. 112). These two-dimensional systems tend to be 

much more precise, granular and transparent, which is required by the Basel accords 

(BCBS, 2019). They have to further fulfill all the criteria defined at the beginning of the 

chapter as well, like neutrality, completeness, objectivity, and granularity (Daldrup, 2006, 

pp. 15-24; de Laurentis et al., 2010). At least seven living rating classes and one default 

class have to exist, and at least a certain minimum PD for some classes like 0.03 % and a 

PD for defaulted exposure of one have to be included (Daldrup, 2006, p. 17; European 

Commission, 2019, §160; Oyama & Yoneyama, 2005; Witzany, 2017, p. 112). The next 

graph shows and resumes an internal rating process in a bank with the development of a 

rating function. As already explained the validation process and the available tools 

concentrate on further steps.  

 

Figure 35 Setting up an internal rating function.  

Source: Own illustration. 

 

159 For non-retail exposures it is even required (Witzany, 2017, p. 112). 
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Generally, the process follows a typical analysis and design, data development 

and implementation, and test feedback loop (Daldrup, 2006; Witzany, 2017). The steps in 

the figure above are the following. 

 

1.  Requirement analysis and use casesCdesign 

2.  Data collection and cleansing, and generating a data set and sample  

3.  Development of the rating function 

3.1  Collection of quantitative risk factors –long-list 

3.2  Univariate analysis: discriminant analysis and correlations  

3.3  Multivariate analysis  

3.4  Selection and aggregation of the risk factors 

3.5  Soft facts, qualitative criteria 

3.6  Support and override, and overall risk function 

4.  Calibration of the rating model, assignment PDs to score or rating values  

5.  Quantitative and qualitative validation, using discriminatory power and 

calibration, stability tests in the first, quantitative case and a test of model 

design, use cases and applications, and data quality in the second, 

qualitative case 

 

The requirement analysis (RA) and the subsequent set-up of use cases and the 

rating system’s design include further steps. At first, an inventory of the existing risk 

classification procedures of the bank has to be created (Daldrup, 2006; Witzany, 2017). 

In the next step, areas of potential application (denoted as use cases) for the rating system 

have to be identified, the use cases are then written down precisely with the help of the 

employees intending to apply and use the model later (Oyama & Yoneyama, 2005, pp. 

32-34). These are the basics for the requirement analysis which also, besides requirements 

from the users, include regulatory requirements for rating systems as mentioned above, 

e.g., at least seven living classes and one default class. That is manifested in the CRR and 

CRD. The analysis also includes the requirements from the risk control unit for instance 

in terms of consistency with internal guidances and existing models, the internal audit 

team and eventually from the management board (Daldrup, 2006; European Commission, 

2019; Oyama & Yoneyama, 2005). The requirements are documented in a requirements 
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catalogue, streamlined and transformed into a form that is implementable (Izzi et al., 

2011). A methodological design of the scoring or regression procedures and their 

calibration is following (de Laurentis et al., 2010). For the final calibration the institute’s 

“master scale” is utilized, a single, integrating, binding reference rating scale of an 

institute, to which every subsystem needs to be transformed (Daldrup, 2006). This is 

accompanied by a review of already existing internal documentation, like the 

development documentation, general requirements for risk models and former validation 

results (Bouteillé & Coogan-Pushner, 2021; Daldrup, 2006; Izzi et al., 2011). 

Expert interviews with representatives of the market and back-office are 

conducted, with model development and validation units integrated into the process as 

well (Daldrup, 2006). Other stakeholders are questioned regarding their expectations of 

a new risk classification procedure (RCP). Finally, the determination of the design and 

methodology, the selection of relevant use cases and overall requirements as well as first 

possible rating criteria for a risk classification procedure to assess the rating takes place 

(de Laurentis et al., 2010; Izzi et al., 2011). These actions are well documented as part of 

the creation of a framework concept. 

The second overarching step concerns data collection (Oyama & Yoneyama, 2005, 

pp. 25-27, 37-38). The identification of high-quality data sources on creditworthiness 

relevant factors for the rating function is crucial (Oyama & Yoneyama, 2005). As 

mentioned before external as well as internal sources should be exploited (Oyama & 

Yoneyama, 2005, pp. 25-26). Therefore, the identification of internal institute data and if 

applicable data from peer groups have to take place, followed by a comparison of 

information sources (de Laurentis et al., 2010). A limitation of the relevant entities for the 

development sample is a further necessity and achieved, e.g., by considering a debtors 

sector and market cap, rating segment or exposure class160 (Witzany, 2017). The last sub-

step is the final preparation of a development sample (often labeled as development 

RDS 161 ) for further analysis, including the standardization of key figures, the 

determination of a specific reference period for historical data, and categorization of 

qualitative information (Izzi et al., 2011; Oyama & Yoneyama, 2005, pp. 25-27). 

 

160 In (European Commission, 2019, §147) at least seven exposure classes are considered for internal 

models, namely central governments and central banks, financial institutions, corporates, retail, equity, and 

securitizations (and other assets). Keep in mind that also the equity class is hence equipped with some 

default probability, exposure size, and potential loss given default. For the SA more exposure classes are 

differentiated, as in (European Commission, 2019, §112). 
161 Development record data set (RDS) 
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The main part of the rating system set-up process is the development of the rating 

function (de Laurentis et al., 2010, pp. 142-324; Witzany, 2017, pp. 36-63). 

At first, as stated before, a collection of quantitative risk factors and key figures 

for a long-list is executed, containing all factors that might be valuable for the rating (de 

Laurentis et al., 2010, pp. 209-216, 228-236, 303; Izzi et al., 2011; Oyama & Yoneyama, 

2005; Witzany, 2017, pp. 43-44). That process is done in a similar fashion as for external 

ratings as illustrated before and for instance in (Moody’s, 2022). In terms of companies, 

the fundamental business figures as the revenues and sales, the EBITDA162, the gross and 

net profit, the free cash flow, the leverage ratio, the equity and assets, the return on assets 

and return on equity, the turnover rate, the liquidity ratios and figures, the costs, CAPEX 

and wages, productivity if available, related growth rates, and other factors might be 

considered (Caouette et al., 2008; Witzany, 2017, pp. 33-34, 43-44). To decide in the next 

step, whether these factors fulfill the necessary requirements and help to quantify a certain 

debtors rating or probability of default a univariate analysis with every single risk factor 

is carried out (Daldrup, 2006, pp. 43-45; de Laurentis et al., 2010, p. 67; Giri, 2004; 

Scandizzo, 2016, p. 59; Witzany, 2017, pp. 44, 51). It includes a discriminant analysis 

and determining the accuracy ratio (AR) or AUROC for the risk factor, the associated p-

values of the individual risk factors assuming a given distribution like an asymptotically 

normal distribution (feasible) or Whitney-U distribution as seen before in the context of 

validation, which can be hence partly viewed as a “repetition (test) of the rating function 

construction” just out-of-sample (Daldrup, 2006; de Laurentis et al., 2010, pp. 67 - 76; 

Scandizzo, 2016, pp. 63-65). (Pre)selection of variables is made only if they turn out to 

be statistically significant usually with respect to a 95% confidence interval, i.e., a 5% 

level of significance. Some variables might be transformed, e.g., log-linearized or box-

cox-transformed to be suitable (Witzany, 2017, p. 52). It is important that not significant 

factors are excluded at that stage, as well as the ones which are economically 

counterintuitive (as with opposite sign of the coefficient) and contradict expert judgments 

as they might not perform well out-of-sample (Witzany, 2017, pp. 43-44). Generally, not 

more than 20-30 factors are selected at that point in the process (Witzany, 2017, pp. 43-

44). Furthermore, the Spearman rank correlation of a risk factor to the entire grading of 

obligors and to the other risk factors is calculated (de Laurentis et al., 2010; Scandizzo, 

 

162 Earnings before interest and taxes, (before) amortization and depreciation 
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2016, p. 66; Witzany, 2017, pp. 46, 52). A correlation cutoff is typically set at more than 

30 (50) -70 % depending often on expert judgment, somewhere at 50 - 70 % is a common 

bound (Witzany, 2017, p. 44). With the help of a principal component or factor analysis 

(PCACFA) redundant and highly correlated risk factors can be reduced or eliminated later, 

similar to other contexts, e.g., interest rate multi-factor models (de Laurentis et al., 2010, 

pp. 95-112; Hull, 2015, p. 230). As a result, a segmentation of the data due to statistical 

properties is carried out. 

Once this procedure is completed for all single risk factors, one obtains the “short-

list” of suitable factors, and these risk factors are grouped and multivariate discriminant 

analysis with ultimately all potentially relevant factors is carried out (Daldrup, 2006, pp. 

44-45; Scandizzo, 2016, p. 66). That can be achieved by a stepwise either forward or 

backward process and comparing the log-likelihoods or, e.g., AIC of the nested models 

against each other (Scandizzo, 2016; Witzany, 2017, p. 44). Therefore, a (linear) 

combination and logit regression analysis of the remaining risk factors to different 

components and with different weighting factors, if necessary, is executed to decide on 

the final factor set (max. 10), hence the final selection and aggregation of the risk factors 

(de Laurentis et al., 2010, pp. 85-91; Witzany, 2017, pp. 46, 52-53). The boundary 

condition is that risk factors are used as sparsely as possible while ensuring the broadest 

possible coverage and differentiation of risks across the entire rating scale (Daldrup, 

2006; Scandizzo, 2016). After the selection, scaling according to the master scale, 

weighting, and aggregation of the risk factors the quantitative rating or scoring function 

is the result. A “reject bias” in the sample, stemming from the fact that banks can only 

observe defaults on exposures that were approved before – though mainly of theoretical 

interest – can be further avoided by using reweighting and augmentation techniques as 

described in (Anderson et al., 2009; Crook & Banasik, 2004; Witzany, 2017, pp. 61-62). 

The quantitative approach however is also generally applied successfully (Witzany, 2017, 

p. 62). 

Having comprehensively regarded the quantitative factors further qualitative 

criteria and soft facts, which might influence a credit assessment, are taken into 

consideration (Brusov et al., 2021; Daldrup, 2006; Witzany, 2017, pp. 62-63). An 

aggregation of the qualitative rating module in particular by including soft facts such as 
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competition and market environment, commonly referred to as SWOT163  analysis or 

Porters Five analysis as seen, an investigation of the legal and political environment as 

well as of management quality follows (de Laurentis et al., 2010, p. 39; Porter, 1980; 

Porter, 1985; Wieben, 2004; Witzany, 2017). Additionally, the available (human) 

resources of a company, market sentiment toward it, public trust in the firm and its brands, 

and other criteria might be useful in many cases (Daldrup, 2006). Whenever achievable, 

the factors are weighted – possibly by expert judgments – and included in the entire model 

to form the own creditworthiness, hence the stand-alone-rating (SAR), otherwise they 

serve at least as a correction function or “add-on” (de Laurentis et al., 2010; Witzany, 

2017, p. 63). An examination of a support or burden component, e.g., with regard to 

obligations from equity investments, liability associations, government support factors, 

etc., and of overriding due to specific events or experts assessments again lead to the 

overall rating function, as in the external case (the ICR). 

Then a last calibration of the rating model is carried out (again similar to the 

backtesting ideas mentioned before) with a definition of PD limits for the individual 

obligors’ rating levels a final comparison and mapping of the rating levels to the internal 

master scale of the bank (de Laurentis et al., 2010; Witzany, 2017). A possible 

determination of “margins of conservatism” (MOCs) follows, due to calibration 

uncertainty (Daldrup, 2006, pp. 71-81; de Laurentis et al., 2010; Witzany, 2017, p. 64). 

Finally, an initial quantitative and qualitative validation as described above and 

performed on a validation sample or via cross-validation takes place and is documented 

in a first initial validation result report (Daldrup, 2010; de Laurentis et al., 2010, pp. 324-

357; Scandizzo, 2016). As an amendment to the third step, one should stress the following. 

The development of the rating (scoring) function can be implemented with the help of 

expert-based or rule-based models, heuristic-based models or shadow rating approaches, 

with statistical-based models, or with causal-based models (Daldrup, 2006, pp. 41-70; de 

Laurentis et al., 2010, p. 36; Witzany, 2017, pp. 36-39). The latter two are sometimes 

labeled under the common term mathematical-statistical models, and the last one 

sometimes also structural approach (de Laurentis et al., 2010, pp. 36-44, 57-62). Apart 

from special situations or projectCobject ratings, where often cash flow or simulation 

models are in use or limited information situations (like few defaults and sparse data), 

 

163 Strength and weaknesses, opportunities, and threats 
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where shadow ratings are utilized, modern models normally use statistical models like 

(linear or logistic) regression models – which were hence also described in the thesis (de 

Laurentis et al., 2010, pp. 114-118, 360-367; Witzany, 2017, pp. 36, 38-39). Alternatives 

to the mainly used probit or logit functions, often connecting multiple linear regression 

for example with a link function of Wilson-type, are AI-based techniques as K-nearest-

neighbors or artificial neural networks (Daldrup, 2006, pp. 66-70; de Laurentis et al., 

2010; Witzany, 2017, pp. 36-39, 73, 78, 81, 82, 85). 

 

 

Figure 36 Rating models – causal, mathematic-statistical, and heuristic models. 

Source: Own illustration. 

Rating models are a special sort of internal models for ratings respectively implicit 

finally PDs, and these ratings are also (re-)used as input for further internal models, 
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building on them to measure credit risk. The thesis aims to quantify the credit risk inherent 

in certain types of portfolios.  

To put it in context, the models are recalled which are generally used within the 

financial sector to assign a price and hence, by considering the fluctuation of the price 

movement and corresponding parameters, a risk to various assets. This is the quantitative 

foundation of managing the risk associated with assets in portfolios. In Chapter 4 the 

state-of-the-art models to quantify credit risk are presented then. 

3.3 The Applied Models for Different Risk Types in Finance 

Risk types typically appearing in banks were discussed at the beginning of 

Chapter 2 followed by (optimal) portfolio pricing models. Having introduced specifically 

credit rating models at the beginning of Chapter 3, other models in use to identify, control, 

and especially quantify various banking risks are hence described in the following 

paragraphs. As the Value-at-Risk measure is the most common risk measure the models 

generally calculate a Value-at-Risk (Hull, 2015, pp. 294-295; McNeil et al., 2015; 

Rutkowski & Tarca, 2015).  

A model by its nature should be as precise and as general as possible. Whereas for 

risk analysis several “simple” methods exist as just sensitivity analysis of certain risk 

factors, factor analysis or scenario analysis the concentration is on “complete” 

quantitative models here. These hence aim to be rather generalizable and many of them 

normally164  rely on multi-factor frameworks – though some are also combined with 

individual cash flow modeling techniques like discounted cash flow models, DCF (de 

Laurentis et al., 2010, pp. 114-118). A comprehensive overview regarding valuation 

(especially of firms) and DCF can be found in (McKinsey and Company, 2021). 

While some models have analytical solutions others also apply numerical 

approaches or simulations, like Monte Carlo simulations (Hull, 2015; Reinwald, 2022b). 

If no individual data is available sometimes proxy data and factors can be used as well as 

will be seen. 

Whereas risk models for all kinds of typical financial sector risks as credit risk, 

market risk, operational risk, interest rate risk, and liquidity risk are presented to have a 

 

164 Except, e.g., liquidity models as will be shown later. 
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comprehensive overview and reference, the ones which are not in the main scope of the 

thesis are just briefly touched on. 

In the area of credit risk – again the main risk area for most banks in terms of 

materiality and impact and the focus risk type of this thesis – the industry applies the 

following models. The model which is the foundation of internal credit risk models and 

of the IRB formula in the CRR framework is the so-called Gordy model also known as 

the asymptotic single risk factor model, briefly ASRF model (Gordy, 1998b; Gordy, 2002; 

Hull, 2015, p. 384). It was given its name by one of its inventors, director Gordy of the 

Federal Reserve Bank of the United States. The main underlying idea of one common 

economic single risk factor usually considered “the economic cycle” also traces back to 

Merton and Vašíček (Hull, 2015, p. 283). It should be yet noted that, while the economic 

cycle influences stock prices a lot, (aggregated) stock prices and indices themselves are 

on the other hand not necessarily a good predictor for recessions (Gómez-Cran, 2022). 

The Gordy model is directly feasible and straightforward to implement, and is 

mainly used for homogeneous, unrated, large retail portfolios and often as a 

benchmarking model for validation purposes, besides the required IRB formula 

calculation in Pillar 1 risk management as mentioned (Claessens et al., 2005; Gordy, 

1998). For internal risk measurement purposes and more sophisticated applications or 

complex portfolios one usually makes use of a more comprehensive model like 

CreditRisk+® 165 , CreditMetrics®, or CreditPortfolioView®. 166  The first one is an 

industrial implementation of a hazard rate model or actuarial model, the second one a 

structural model application and the third one an implementation of an econometric model. 

CreditMetrics® as later described in depth in this thesis relies on modeling the 

asset or firm value process – generally derived from the stock price as a proxy for listed 

companies – that is assumed to be governed by a normally distributed dynamic (Gordy, 

2002; J. P. Morgan, 1997, pp. 24-26; RiskMetrics Group, 2007, p. 37). It simulates the 

movements of correlated assets, discounted by corresponding forward rate measures and 

the joint probability of rating migrations and defaults (Gordy, 1998; Gordy, 1998b; J. P. 

 

165 Rarely also (wrongly) denoted as Credit Risk+® in the literature. 
166 CreditRisk+® is a commercial product by CreditSuisse®, CPV® by McKinsey®, and CreditMetrics® 

is a commercial product by J. P. Morgan®. There are further versions of credit risk models existing, e.g., 

another structural model called KMV® as will be shown later. Further implementations are, e.g.,  

RiskCalc® or RiskFrontier® or PortfolioManager® all by Moody’s® or CreditPortfolioManager® or 

CreditManager® as a further commercial implementation of CreditMetrics® by J. P. Morgan®. All of them 

can be traced back to the three model types hazard rate models, structural models, or econometric models, 

and refer to the proponents most in use and most developed that will be regarded later. 
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Morgan, 1997; RiskMetrics Group, 2007, pp. 36-38, 60-61, 81-101). To recall, a single 

company defaults at latest when its assets are worth less than its debt and its equity 

becomes negative. J. P. Morgan® with Gupton et al. implemented and offered the model 

since the late 1990s (J. P. Morgan, 1997, p. 1).  

CreditRisk+® was implemented around the same time by Wilde et al. from Credit 

Suisse First Boston® (Credit Suisse First Boston, 1997; Gundlach & Lehrbass, 2004; 

Gupton et al., 2001). Its foundation stems from actuarial mathematics and the insurance 

industry (Credit Suisse First Boston, 1997; Gordy, 1998b). In contrast to the endogenous 

asset-value model CreditMetrics® CreditRisk+® models defaults as exogenous random 

events, their frequency and appearance counted by a typical Poisson process with 

intensity parameter λ and the common joint risk and ultimately under circumstances 

prompting default factor modeled by a Gamma function (Diaz & Gemmill, 2002; Gordy, 

1998b; Hickman & Koyluoglu, 1998). It has a closed-form solution and is mainly used 

for retail portfolios, which constituents are often unrated and SME companies, whereas 

CreditMetrics® is used mainly for larger, listed, standard “blue chip” companies (Diaz & 

Gemmill, 2002; Engel, 2008; Gordy, 1998b; Kaltofen et al., 2006; Rösch, 2005). In most 

comparisons, as will be proven later in this thesis, CreditMetrics® outperforms 

CreditRisk+®. More banks got it deployed, though both are used very often in practice 

(Hull, 2015, p. 613; Resti, 2000). 

CreditPortfolioView® is more similar to CreditMetrics® but relies on a 

macroeconomic multi-factor linear combination of risk factors as the economic cycle, 

unemployment, inflation, and interest rates and their final transformation, e.g., via a 

Wilson type logistic link function to PDs (Frey & McNeil, 2001; Wilson, 1998). It is 

mainly used by savings and loans institutes like the German so-called Sparkassen or state 

banks and further local banks. Hence, structural models utilizing the asset and debt 

characteristics and dynamics of a company, as well as hazard rate models that employ 

actuarial-statistical methods and finally econometric models using multi-factor 

approaches exist to deal with credit portfolio risk. Default risk as well as migration risk 

are within the modelling objectives of those. Furthermore, there are also several credit 

spread models in use, e.g., the Das or the Nielsen and Ronn models. They are generally 

labeled two-factor models which model the risk-free (short-term) interest rate and the 

dynamics of a short-term credit spread (Bielecki & Rutkowski, 2004, p. 264; Das 1995; 

Downing & Covitz, 2007; Nielsen & Ronn, 1997). They are mainly used for specific –
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often market risk induced – questions and are not the method of choice when considering 

portfolio risk in most banks (Fons, 1987; Fons, 1994). 

All of the three other model types above and their corresponding methodologies 

are principally able to adequately cover the generally nonnormal, one-sided, or skewed 

and frequently heavy-tailed distribution function of credit losses (Bouteillé & Coogan-

Pushner, 2021, p. 237; Gordy, 1998b; Hickman & Koyluoglu, 1998).  

In the area of market risk, the institutes also mainly employ three general 

approaches and corresponding models. Market risk is often – as daily quotes and prices 

are commonly available through public exchanges, open platforms, and large financial 

data providers, most instruments are liquid and the market contains many arbitrageurs – 

relatively comfortable to measure (Hull, 2015; Szylar, 2013). Models are convenient to 

implement, in many cases a (log) normal or student-t distribution assumption of risks and 

returns is sufficient (Hull, 2015). 

Modern historical simulation, the variance-covariance model (VCM), that is also 

called delta-normal model, or the Monte Carlo simulation (MC) are the preferred methods 

of choice (Hull, 2015, pp. 184-341; Milanova, 2010; Szylar, 2013). 

The first one makes use of historical prices, connected risks and their paths and 

then applies and extrapolates them to current real portfolios (Hull, 2015, pp. 318-331; 

Milanova, 2010). Hence, this method is distribution-independent and flexible (Bohdalová 

& Greguš, 2016). However, it may lack, depending on the chosen historical time frame, 

rare but severe events and crises, like the great financial crisis when just considering the 

last ten years. In some particular cases, it might also lack representativeness overall (Hull, 

2015; Pritzker, 2001). Furthermore, additional information about current and possibly 

future prices cannot be implemented and exploited as again in (Hull, 2015). 

Another approach, the variance-covariance model, makes use of the underlying 

covariance (hence correlation) and variance (hence volatility) structure of the assets and 

risk factors and implements associated sensitivities (Milanova, 2010). Thus, information 

can be swiftly implemented, and hypothetical scenarios created and calculated. Especially 

for (approximative) aggregation of different market risks many banks employ that 

approach (Hull, 2015). However, the restrictive assumption of normally distributed risk 

factors is made. The model has analytical solutions (Hull, 2015; McNeil et al., 2015). 

A further powerful method, the Monte Carlo simulation – named after the largest 

borough of Monaco popularly linked with its casino gambling and “randomness” – 
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creates random scenarios, which are pseudo-random numbers technically (Metropolis, 

1987; Metropolis & Ulam, 1949). It generally uses normal distribution assumptions, may 

implement current information, and is not offering analytical solutions but various 

simulated paths which are then be probabilistically weighted and summed up (Hull, 2015; 

Milanova, 2010). It does not have to rely on an SND167 as by distribution transformations 

like Levy-Rosenblatt, Box-Cox, Yeo-Johnson, or uniform-to-normal other distributions 

are applicable as well (Box & Cox, 1964; Draper, 1952; Van Albada & Robinson, 2007). 

For complex and high-dimensional settings Monte Carlo simulation is the method of 

choice (Hull, 2015; Milanova, 2010). 

For market risk, the typical basis areas and assets are stocks, bonds, interest rates, 

foreign exchange rates (FX), currencies, and commodities as regarded before and 

commonly extended by real estate (European Commission, 2019; Hull, 2015; Milanova, 

2010). Upon them, different combinations, derivatives like forwards, swaps, and options 

and collections like baskets or funds might be set up in a second step. First, for the basis 

market risks, apart from the three named methods, tailored approaches exist. 

Especially for FX, a certain model denoted as the Garman-Kohlhagen model, a 

Black-Scholes derived approach, is used by banks (Garman & Kohlhagen, 1983). The 

Garman-Kohlhagen model utilizes Brownian motions for describing exchange rate 

dynamics (Garman & Kohlhagen, 1983). For currencies, Lustig described a suitable 

standard multi-factor approach and for cryptocurrencies, a novel multi-factor model was 

proposed by Liu et al. (Lustig et al., 2011; Liu et al., 2022). Regression on explanatory 

factors to model an asset price and its risk is an idea also employed in the realm of 

commodities, stocks, or even bonds. 

Regarding commodities and their pricing as well as risk valuation, the famous 

Fama-French-5 model, a model by Szymanowska, or the BCM model are the proponents 

most frequently used in practice (Schaeffer, 2008; Fama & French, 2014; Szymanowska 

et al., 2014; Blocher et al., 2016). The BCM model, named after its authors, also 

outperforms the so-called “FH approach” and the one by Gorton, Rouwenhorst and his 

colleagues (Fung & Hsieh, 2001; Rouwenhorst & Tang, 2012; Rouwenhorst et al., 2012; 

Blocher et al., 2016). 

 

167 Standard normal distribution 
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Considering stocks or shares the main model applied is the Carhart four-factor 

model which is an extension of the Fama-French-3 model adding a so-called momentum 

factor to the before-mentioned factors value168, market return and size (Fama & French, 

1993; Carhart, 1997; Ehsani & Linnainmaa, 2022). When modeling the price movement 

of a stock or derivatives on a stock also a geometric Brownian motion is often applied to 

describe the dynamics (Björk, 2009).  

Bonds can be directly valued via multi-factor approaches as well, however, also 

calculated using the coupons and discounted cash flow (DCF) methods, and their 

underlying interest rates, if variable, should be then quantified with special models for 

interest rates (Bai et al., 2019; Brigo & Mercurio, 2006). A comparable way can be 

implemented when dealing with IRDs – interest rate derivatives. For interest rates hence, 

e.g., for the IRRBB approach (interest rate risk in the banking book) or similarly for 

common interest rate risk in the trading book (CIRR) the following models are used then 

(Brigo & Mercurio, 2006; Hull, 2015). 

To simulate short (-term) rates, one-factor short rate models like the famous 

Vasicek model which allows for negative rates and is based on Ornstein-Uhlenbeck 

processes and the mean-reversion principle – which is saying that rates tend to return to 

their long-term mean from either side – are used (Brigo & Mercurio, 2006; Vašíček, 1984). 

The Black-76 or the exponential Vasicek model as an extension, which is forbidding 

negative interest rates through the use of logarithms in the unshifted version, or the Hull-

White model, forbidding negative interest rates through the application of square root 

processes, are the standard methods of choice (Bielecki & Rutkowski, 2004; Black et. al, 

1990; Black & Karasinski, 1991; Brigo & Mercurio, 2006). All of them build on and 

enhance the idea of mean-reversion. Other examples are the Hoo-Lee model, the Black-

Derman-Toy model, or the Cox-Ingersoll-Ross model (CIR) or even multi-factor 

extensions of short rate models hence possibly also including a credit risk component like 

the two-factor Hull-White model, the three-factor Chen model, or the Das model for credit 

spreads (Das, 1995; Ho & Lee, 1986; Hull, 2015; Hull & White, 1990; Hull & White, 

2015). Empirical studies show that a second factor is necessary for a real-world 

 

168 Value in terms of book-to-market factor or conversely stated price-to-book value (and later also price 

earnings ratio).  
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calibration of short rate models that possess high predictive performance (Das, 1995; Hull 

& White, 2015). 

For forward (term) rates, a very flexible model which is able to model 

instantaneous forward rates and to capture the whole dynamic (tenor) of the interest 

structure curve is the Heath-Jarrow-Morton framework (Heath et al., 1992; Schönbucher, 

2003). It includes many short rate models as special or limit cases. A solution for forward 

rates with adjustment to real rates – hence straightforward to calibrate – is another one. 

The industry standard which allows modelling of the whole interest structure curve and 

that can be directly calibrated with real market data is the BGM or LMM – LIBOR market 

model. A state-of-the-art version that includes the possibility of modeling sticky 

volatilities is called SABR LMM (Brace et al., 1997; Miltersen et al., 1997; Henry-

Labordere, 2005). The before-mentioned remaining market risk, real estate risk, is 

approached in a different fashion, again including multiple combined impact factors. 

Regarding real estate risk, in most cases a step-wise, hierarchical model 

describing the macro-economic environment like GDP, CPI, or unemployment rate which 

amounts to a multiple regressive factor model, a real estate (regional) market simulator 

containing regional vacancy rates, household income, etc., and a (discounted) cash flow 

model describing the individual idiosyncratic risk factors and may include factors like the 

condition of a certain building or the accumulated reserves can be assembled to a Monte 

Carlo cash flow simulation (Webb et al., 1988; Ziobrowski & Ziobrowski, 1997). 

Therefore, the multi-factor approach is combined with Monte Carlo simulation.  

For infrastructure investments, classified as alternative investment, similar 

approaches can be used to measure market risk – often multi-factor approaches with 

factors like illiquidity, investment thresholds, tangibility, leverage, diversification, and 

possibly given correlations169  to traditional asset classes are in place as described in 

papers by EDHEC among others (EDHEC, 2015; Hürlimann, 2018; RICS, 2018). 

Sometimes also proxy-time series where, e.g., the maximum drawdown equals another 

risk measure as for example a calibrated 99 % VaR profile and where the series is 

(linearly) regressed onto base risk factors with their given time series and in the 

optimization case possibly even with given volatilities and correlations are used (EDHEC, 

 

169 In the case of given correlations or other restrictions, instead of linear regression optimization, 

methods like (conjugate) gradients have to be exploited. 
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2015). Renewable infrastructure is a special kind of infrastructure and usually well-

tailored models are employed. 

With renewables, generally the renewable energy sort is modeled and the interest 

rate risk as well, e.g., with a SCCIR approach for discounting purposes. While energy 

(market) exchange prices, political and regulatory risks are systematic, the specific 

location and circumstances determining the speed of the wind, the solar intensity, etc. are 

idiosyncratic (Hürlimann, 2018, p. 192). Especially in Europe, thanks to the renewable 

energy laws such as the “Erneuerbare Energien Gesetz” EEG in Germany, the year-on-

year energy yields on the sources like solar or wind are well predictable, rather stable, 

and with an advanced project status like Brownfield or so-called turn-keys, well-insured 

technology like advanced solar cells with a high-efficiency rate, the remaining risk factor 

is just the available amount of the energy source (Bundesgesetzblatt, 2014; Kabel & 

Bassim, 2019; Kovacevic et al., 2013; Kunjumuhammed et al., 2020; Logan et al., 1994). 

In other cases, without guaranteed feed-in tariffs or 20 years fixations as common within 

the EEG, it is widespread to agree on minimum purchasing amounts, rather predictable 

(power) exchange prices, or hedged fixed rates (Hürlimann, 2018). The remaining energy 

factor can be further broken down to the intensity of the sun and sunshine days in the case 

of solar energy and wind speeds in terms of wind power – similar water power fluid 

intensity (RICS, 2018). For these factors – which are basically location factors and hence 

highly idiosyncratic – exact time series, historical (weather) data, and written expertise, 

dealing with the underlying physics-determined distributions and hence allowing for 

precise historical simulations, exist (Kunjumuhammed et al., 2020).  

Another kind of market-related risk yet often categorized as a risk in its own kind 

is liquidity risk. It is closely connected with market sentiment and especially important 

during times of crises as illustrated before (Hull, 2015). In liquidity risk mainly deposit-

drawing models by inter alia Kobayashi, Sakiyama, or Takemura are used and often again 

combined with Monte Carlo simulations for the liquidity maturity statement (Sakiyama 

& Kobayashi, 2018; Takemura et al., 2012, pp. 116-127). Regarding liquidity risk, 

historical events as the great financial crisis and the subsequent collapse of the interbank 

market, a so-called “credit crunch”, sudden regulatory or central bank action triggered 

shifts – cf. the “whatever it takes speech”-speech from Mario Draghi in (Alcaraz et al., 

2019) – as well as bank runs like in Argentina in the 2000s or in Russia 1998 should be 

considered for averse scenarios and downturn situation (Blustein, 2005; Bouteillé & 
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Coogan-Pushner, 2021; Brunnermeier, 2008; Feldstein, 2002). Realism and preciseness 

concerning model and scenario assumptions are the decisive factor in the area of liquidity 

risk (Hull, 2015; Takemura et al., 2012). In line with the CRR regulation, the availability 

of high-quality liquid assets of regulatory level I-III, the maturity structure, sell-ability, 

in-encumbrance, and central bank collateral-ability of assets have to be considered and 

the link of liquidity and solvency as essential nexus ought to be investigated (Martin et 

al., 2014; Takemura et al., 2012). 

The different kind of models mentioned are precisely adapted to their 

corresponding sub-category of market risk and to calculate its economic impact. An 

alternative is to utilize individual, project-specific or asset-specific information on cash 

flows and fee structures – if available. For this purpose, assumptions on cash inflows and 

outflows have to be made, e.g., extrapolation of historical cash flows, new scenarios and 

the cash flows have to be discounted employing DCF and simulated via the Monte Carlo 

method. This modeling can be very precise, but a lot of project information is needed, 

and the calculation quickly becomes relatively extensive (Hürlimann, 2018; RICS, 2018). 

In a “combined risks”- project like debt financing of a wind park where credit risk, 

market risk, and special project-specific operational risks are involved, the overall risk 

can be often measured directly by disassembling the involved components as sole 

underlying market risks, credit risks, or operational project risks and quantify them by 

using known models, e.g., historical simulation or for the MPR170 and CreditRisk+® for 

ADR171 (Hull, 2015; Kunjumuhammed et al., 2020). Afterward, for aggregation usually 

the risk measure is the Value-at-Risk VaR over 1 year in the 99.9 % quantile, often 

conservatively summed up of the single risk components like ADR and MPR without 

making use of diversification effects. Alternatively, for very volatile projects or expected 

heavy-tailed return distributions expected shortfall (ES) is applied as risk measure in the 

same way.  

Often, a top-down or cascaded approach is also possible, as in the case of project 

rating according to the IRB approach, in which first country risks and ratings, as well as 

macroeconomic influencing factors, then industry sector ratings, additionally regional 

factors and finally individual, idiosyncratic company or even in the general nonrecourse 

 

170 Market price risks 
171 Address (default) risks, a synonym for credit risk 



163 

 

case project-specific factors, are considered (Hull, 2015). This is crucial for the (credit) 

spread and thus the discount curve. 

If there is no sufficient data available, it is often possible to use deal and 

transaction data of similar investments or as the worst case to trust the pricing of third-

party target fund managers and their appraisal data (EDHEC, 2020; Lazzari & Bentley, 

2017). In case of doubt, this is yet an unreliable and often not verifiable method and proxy 

data should be preferred (Lazzari & Bentley, 2017). After describing the financial risks 

and related models, operational risks are regarded for reasons of completeness and 

classification. 

This third main risk area that is often briefly denoted as opRisk covers a broad 

range of risks (Hull, 2015, p. 538-553). Overall risks stemming from human errors or 

misconduct, system or IT failures (or manipulation, cyber risks), and environmental 

factors should be considered and researched (Hull, 2015, pp. 545-553; McNeil et al., 

2015; Moscadelli, 2005). Operational risks are important to be controlled for many 

business lines and directly influence various divisions, e.g., enterprise resource planning 

(ERP). A comprehensive overall enterprise risk management (ERM), including 

operational risk, is therefore crucial for the entire institute (Hull, 2015, p. 630). 

Increasingly important besides cyber risks and fraud is money laundering with a 

strong recent focus of supervisors on anti-money laundering and anti-terrorist financing 

processes coined AMLCATF (Behm et al., 2013; EBA, 2022d; Hull, 2015, p. 616; OCC, 

2019). As sustainability, green finance, and the fight against global warming become ever 

more important international issues – accompanied by the described climate stress tests 

of the ECB, the European Commission’s green taxonomy, the sustainable development 

goals (SDGs) of the United Nations and ESG ratings in the CRR – banks regard this area 

as major management and top implementation task and a potential operational risk (EBA, 

2022c; ECB, 2022; Oliver Wyman, 2022). Internal operational risk models for Pillar 1 

were used mainly by large banks in the past (Woodall & Bhollah, 2019b). The approach 

is known as advanced measurement approach (AMA) in the Basel terminology and 

existed besides the standard approaches which were labeled basic indicator approach 

(BIA) for the simplified case and standardized approach, and basically mainly used the 

gross profits multiplied with a certain classified indicator to account for opRisk losses 

(European Commission, 2013; Witzany, 2017, p. 14). 
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 In many cases, Gamma or Pareto-Type distributions and their convolutions 

describe operational risk events very well (Bousquet & Bernardara, 2021; Embrechts, 

2005). Generalized pareto distribution models (GPD) are the main class for opRisk and 

are often levered as a solver for peak-over-threshold problems (POTs) and in the area of 

extreme value theory known as EVT (Bousquet & Bernardara, 2021; de Haan & Ferreira, 

2006; Embrechts, 2005; Embrechts & Neslehová, 2006; Hull, 2015, pp. 330-334).172 

Generally, every bank has to set up a (near) accident database for opRisk events, 

reaching back at least 5-10 years, and to use scenario analysis and peer group data 

thoroughly discussed in their SA (self-assessments) procedure by opRisk analysts 

(European Commission, 2019; Witzany, 2017, p. 14). Maybe more than in any other risk 

category and adapted to the fact that risks like cyber risk and reputational risk are 

extremely hard to quantify and predict precisely, the implementation of clear and strict 

processes, human education, and training including whistleblowing and white-hat ethical 

hacking as well as a technical protection mechanism, counter strategies, and business 

continuity management (BCM) measures are a must (Hull, 2015). That complexity might 

be also a reason the regulators abolished the possibility to use internal measurement 

approaches (AMA) and since the finalization of Basel III only a standardized 

measurement approach (SMA) is allowed to be employed in the future for external opRisk 

reporting (BCBS, 2022; European Commission, 2019). There is furthermore a substantial 

need for proper insurance for the mentioned kind of operational risks where available and 

affordable, as well as tight control of outsourcing and risk-mitigating in that field 

(Hannemann et al., 2022; Hull, 2015).  

When considering the different risk models and their application suitability one 

should regard the general characteristics of the underlying risks as well (Bouteillé & 

Coogan-Pushner, 2021, p. 53; Hull, 2015). First, the relevant risk factors and drivers of 

risk have to be identified, for instance, interest rate risk and currency risk as well as 

counterparty credit risk when considering a dollar-denominated cross-currency swap. A 

thorough analysis of the impact of the various single factors has to be done, in an optimal 

case with quantitative incremental Value-at-Risk for position and risk changes as well as 

a selection of the data for them, e .g. a time series of a world-wide stock index fund like 

the MSCI® World All Countries as common market-wide risk driver in a multi-factor 

 

172 An introduction to opRisk and utilized concepts can be found in (Society of Actuaries in Ireland, 2015).  



165 

 

model for stocks, or on the other hand default data from the own loan portfolio (Bouteillé 

& Coogan-Pushner, 2021; p. 220; Hull, 2015). 

The number of risk factors should be high enough to explain and differentiate the 

risks – for unexplained components an item-specific idiosyncratic component, residual 

dummy variable or even a broader nonmodelable risk factor ought to be introduced – 

however unnecessary factors which solely add complexity and non-parsimonious 

components and possibly even further reduce interpretability should be omitted (Hull, 

2015; Witzany, 2017). This balancing act can be either done in an expert-based heuristic 

procedure or more quantitatively using principal component analysis (PCA), goodness-

of-fit measures or just a margin of conservatism for the models in use (de Laurentis et al., 

2010, pp. 95-112; Hull, 2015). Regarding rating models, the corresponding balancing 

approach for the risk factors was described in detail in Chapter 3 (de Laurentis et al., 2010, 

pp. 95-112; Hull, 2015). 

Data principally should be preferred from internal sources if available, 

representative and if they form a statistically sufficient large sample or otherwise highly 

attainable and validated price-liquid external sources like major public index ETFs, major 

stock exchanges with daily quotes like the NYSE or accredited credit rating agencies like 

Standard & Poor’s ® (de Laurentis et al., 2010). Nevertheless, even with assumed high-

quality external data internal due diligence and plausibility tests are recommended and 

also required by the CRR III for the use of ratings for banks concerning the use of credit 

risk models (European Commission, 2019). The second-best alternative is pooled data as 

common in mutual banks, sharing their loss data concerning such portfolios, which 

however requires a representative test or argumentation before applying them for one 

own’s case or peer group data with similar structures (Witzany, 2017). Sometimes also 

risk factors or parameters are attainable implicitly or indirectly which is for instance the 

case for implicit LGD rates for large, listed client companies stemming from bond spread 

market data – as opposed to directly handled cases after a default of a client (Daldrup, 

2006, pp. 91-93). The least preferable possibility is the use of pure expert or model-based 

estimated data, rare data possibly with gaps – as often the case with new alternative funds 

whose net asset values are composed of appraisals by fund managers on a low-frequent 

quarterly basis (Daldrup, 2006; de Laurentis et al., 2010). Thorough data management 

and coherent data quality processes have to be implemented, data and time series should 

be updated and validated, also, e.g., the handling of missing values or outliersCextremals 
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should be reviewed concerning for instance adjustmentsCrevisions of former GDP 

forecasts, and they ought to be synchronized (Guericke, 2018). Clear responsibilities for 

data steward- and ownership, as well as access management rights, are essential (Hull, 

2015). 

Depending on the model’s aim, the information available and the underlying data 

different model selections are possible. Regarding for example market risk models in the 

case of normally distributed data, linear risks as the main driver and stable, highly time-

independent markets one might consider a variance-covariance model as adequate. In the 

case of dealing with not normally distributed (log) returns, unknown prior distributions 

and an assumed representative past portfolio one would select a model making use of 

modern historical simulation. When considering new scenarios, e.g., market crashes not 

included in historical data or more extreme cases or a known distribution like the normal 

distribution or a uniform transformed one in high-dimensional cases a Monte Carlo 

simulation is frequently the model of choice (Hull, 2015). 

Concerning (single) risk factors and corresponding models thereof, additional 

structural characteristics have to be clarified and can be used in adapted models. This 

impacts for instance the question if a time series is or should be modeled as autocorrelated 

or not, e.g., by time series with i.i.d. random variables for a white-noise or even strictly 

white-noise process or on the other hand with, e.g., GARCH(1,1) or VARIMA processes 

if it shows volatility clustering as in stock markets (Engle, 1982; Bollerslev et al., 1992). 

Certain properties like Markov chain adherence or the mentioned autocorrelation – in 

practice deciding for (Vector-)ARIMA models for the task of pricing time series and for 

the GARCH models for volatility heteroscedasticity – should be utilized (Witzany, 2017). 

Furthermore, the stationarity property which is detected and used by the ARDL, the 

Watson-cointegration model, the Engle-Granger 173 , or the Johanssen-cointegration 

models and corresponding vector error-correcting models, as an alternative to VAR 

models by avoiding spurious regression, should be exploited (Bilgili, 1998; Engle & 

Granger, 1987, pp. 251-276; Hjalmarsson & Österholm, 2007; Johanssen, 1991; Pesaran 

et al., 2001). Also, the topic of considering conditional or unconditional factors and risk 

measures has to be decided (Brigo & Mercurio, 2006; Hull, 2015). This holds especially 

when regarding expectational values and variances or higher moments. 

 

173 As in https://warwick.ac.uk/fac/soc/economics/staff/gboero/personal/hand2_cointeg.pdf (Retrieved Mai 

14, 2022). 
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Undisputable is the exact calibration of the model – after one has chosen the risks 

and risk factors involved, their interplay, the data and time series used, including the 

structural characteristics as autocorrelation and impacts – with the help of a suitable IT 

implementation (e.g., in R or Java). 

As before an inter-department view from end-users and the market side to the 

model developers, the risk controller and validation side to the IT programmers and 

designers are crucial. Risks have to be considered front-to-end and human actions and 

attitudes, including knowledge and risk awareness, processes, systemic controls and 

limits as well as risk models and the risk cover capital provisioned ought to be optimized 

and streamlined in a coherent fashion. Furthermore, the execution performance and 

reliability are essential factors to be considered – apart from the necessary up-to-date 

hardware thus requiring fast programming languages suitable for the purpose (like 

Python®, Julia®, SAS®, or R®). These are accompanied by their matching GUI174-based 

studios like the R® studio with their libraries, installments, and (statistical) packages. 

Adequately educated, staffed, and equipped IT departments are therefore a must-have and 

distinction criterion among competitors (de Laurentis et al., 2010; Witzany, 2017). Of 

even higher importance than performance and execution speed is a proper calibration of 

the models and the setting of the right empirical variables and start parameters. Only a 

well-calibrated model yields the expected results and is reliable in other aspects. 

The calibration has to be challenged and backtested regularly (e.g., once a year in 

the ordinary validation cycle) and as well on certain occasions, like when major model 

changes have occurred, as outlined before. In this area, the quality and strict control of 

the calibration is essential and more important than formal, time considering or 

documentation issues. 

Apart from exact calibration of the models and a thorough validation they must 

be embedded in a bank. This means the models have to be an integrated part of the overall 

bank controlling and included in risk management processes and relevant frameworks 

(Reinwald, 2022b). Risk Management and model maintenance and policies, denoted as 

model change policies, are becoming an ever greater part of banking and – as already 

seen – have to be “lived” by the whole organization (Witzany, 2017). 

 

174 Graphical user interface 
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Generally, in respect to the quantitative model, structural or empirical derived 

stochastic processes, multi-factor models with factor (proxy) time series and Monte Carlo 

methods, especially for exotic risk areas and instruments like path-dependent Asian 

barrier options, are the chosen utilities able to price (test, forecast) and risk-quantify 

nearly every asset. 

For very advanced purposes, copula linked models employing for instance d-vine 

copulas might be utilized (Martin et al., 2014; Witzany, 2017, pp. 190-202). 
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CHAPTER 4 

DEFINITION AND CLASSIFICATION OF THE 

"CLASSICAL" CREDIT PORTFOLIO RISK MODELS 

4.1 Modeling of Default Correlations in CPMs and Hazard Rate 

Models (Reduced Form Models)  

In this chapter classical credit portfolio models (CPM)175 are presented. Following 

the literature in the field, it is mainly differentiated between two state-of-the-art types of 

models and hence their most prominent representatives are introduced. This view is 

shared by regulators as the Bank of England (e.g., Chatterjee) or the Federal Reserve (e.g., 

Gordy) as well as in the academic field of credit risk research (Bielecki & Rutkowski, 

2004; Chatterjee & Chatterjee, 2015; Embrechts, 2003; Gordy, 1998b; Rutkowski et al., 

2003). In the late 1990s (1997/1998) most of these models were developed or brought to 

industrial application176 – shedding light on a (whole) portfolio context and incorporating 

correlations not to be considered by classical scoring and credit risk models like Altman’s 

before (Altman & Saunders, 1998; Credit Suisse First Boston, 1997; Elizalde, 2005; 

Gordy, 1998b; J. P. Morgan, 1997; Wilson, 1998). By regulatory terms, an institute 

possesses freedom of choice concerning the selection of internal credit risk models, as 

long as the general regulatory requirements are fulfilled (BCBS, 1999a; European 

Commission, 2019). 

Unlike in the case of market risk, where daily, liquid price observations offer a 

convenient possibility to calculate the (historical) Value-at-Risk (VaR), in the area of 

credit risk one needs to construct what one often cannot directly observe – namely the 

“loss of value” (VaR) due to credit quality migration or even default (Giesecke, 2003; J. 

P. Morgan, 1997). The first common step among all the credit portfolio risk models is to 

construct the credit risk framework for a single obligor and its bond177 and then, in the 

 

175 The terms credit portfolio risk (CPR) models and credit portfolio models are, as usual, also used 

interchangeably here. 
176 Yet some structural model versions like Merton’s already existed in the academic literature since 1976 

and KMV® was also already founded in 1989. 
177 In the primary case the synthetically totally aggregated debt incorporated in one synthetical bond is 

regarded, an alternative is to consider the (time-and-money-weighted average of the) Senior Unsecured 

Bonds which long-term ratings are normally considered equal to the issuer’s rating as in (Bielecki & 

Rutkowski, 2004, pp. 77, 85-86). 
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second step, to extend it to a whole portfolio, i.e., a collection of multiple obligors 

connected through default correlations (Frey & McNeil, 2001; Gordy, 1998b; Hickman 

& Koyluoglu, 1998; Li, 2016). This implies defaults that are (generally) not independent 

of each other and therefore considering correlations and “concentration” of obligors as 

well as marginal contributions to portfolio risk are necessary (de Laurentis et al., 2010, 

pp. 25-26). 

Furthermore, in the area of credit risk, a normal distribution of losses cannot be 

expected as opposed to an assumption often credible for market price risks, which makes 

the risk type “credit” generally more complex (Chatterjee & Chatterjee, 2015, p. 6; Di 

Biase, 2017, p. 102; J. P. Morgan, 1997, p. 6; Wilson, 1998, pp. 72–79). 

As shown, credit risk can arise from ordinary loans and bond holdings, as well as 

from, e.g., leasing contracts, receivables in trade finance, or from securitizations or 

derivative contracts (Bouteillé & Coogan-Pushner, 2021; Hull, 2015; J. P. Morgan, 2017, 

pp. 17-20). The models are generally applicable to all kinds of credit, however originally 

intended for loans and bonds and that use case is implicitly (overall) also assumed here 

(Hull, 2015; J. P. Morgan, 2007, pp. 17-20). 

At first, the origins and developments of the decisive models are briefly discussed, 

followed by a thorough examination in own sub-chapters. 

One type of credit portfolio risk models are the so-called hazard rate models. In 

the literature they are also referred to as actuarial models, intensity rate models, or (more 

general as) reduced form 178  models (Bielecki & Rutkowski, 2004; Chatterjee & 

Chatterjee, 2015, p. 13). As their name indicates they emerged from an insurance 

(actuarial) background and insurance mathematics, where damaging events or accidents 

are often described by Poisson models and the linked common factor is modeled with the 

help of a Gamma distribution (Chatterjee & Chatterjee, 2015, p. 21; Credit Suisse First 

Boston, 1997). These credit risk models are also called default models as they (originally) 

just model defaults and jumps-to-default not credit migration changes, e.g., from a rating 

class Aa to A179. Default in that regard is defined as in Chapter 2, as the first case when a 

company cannot fully pay back its outstanding debt at the originally agreed time deadline 

 

178 Sometimes also denoted reduced-form models. 
179  According to Moody’s ® terminology. For more on Moody’s ® terminology and ratings refer to 

(Moody’s, 2022; Moody’s, 2022b). 
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and conditions anymore. However, the formal 90-days-past due criterion or bank internal 

unlikeliness to pay conditions (UTP) are not primarily considered here.  

It is possible to extend these models further to include rating migration changes 

and intensities, though not originally feasible, cf. later in this chapter and see (Bielecki & 

Rutkowski, 2004, p. 90). The defaults are assumed to occur randomly and are modeled 

by stochastic (non-)survival processes similar as in insurance mathematics (Bielecki & 

Rutkowski, 2004; Stepanova & Thomas, 2002). The aim is to determine the likelihood of 

a default on credit obligations from a corporation or sovereign entity and even a whole 

portfolio thereof. The most famous commercial representative of a default model is 

CreditRisk+®, which was created by Wilde and his team in a branch of the bank Credit 

Suisse® (Credit Suisse First Boston, 1997; Gundlach & Lehrbass, 2004). The original 

academic developers of this type of credit risk model are Jarrow in the year 1995, together 

with Lando and Turnbull (Jarrow, 2009; Jarrow et al., 1997). Jarrow was a student of 

Merton. Later Duffie and Singleton, as well as Hull and White, influenced the further 

development of reduced form models (Duffie & Singleton, 1998; Geyer et al., 2004; Hull 

et al., 2000). 

The second type of credit portfolio models constitutes the class of structural 

models or enterprise-value-based models, occasionally also in a simplified fashion 

referred to as Merton models, named by its original founder Merton (Merton, 1974). 

However, also Galai and Masulis made – often forgotten – important early contributions 

(Bielecki & Rutkowski, 2004, p. 27; Galai & Masulis, 1976). Later, there were extensions 

and further developments by Black and Cox resulting in the Black-Cox model and 

furthermore mainly by Leland, Jarrow, Vašíček, Kealhofer, Longstaff, and Schwartz 

(Black & Cox, 1976; Kealhofer, 1997; Leland & Toft, 1996; Longstaff & Schwartz, 1995; 

Vašíček, 1991). The underlying idea in all cases is to assess credit risk by modeling the 

company's value as an option on its asset price (Bielecki & Rutkowski, 2004; Merton, 

1976). If the company’s value falls under a certain threshold, e.g., the debt of the company, 

in the basic version artificially accumulated in one single bond V, it may default or 

migrates at least to a worse rating grade (Bielecki & Rutkowski, 2004). Therefore, in 

Merton’s original model a company defaults if, at the point in time of its debt service, its 

assets have a lower value than the outstanding debt (Elizalde, 2006, p. 1; Merton, 1974). 

The correlation of assets can be dependent on just one or on more factors, in which case 

the models are labeled multi-factor models. The most prominent example of an 

https://www.investopedia.com/terms/c/calloption.asp
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implementation of a structural model is called CreditMetrics®, and was developed by 

Gupton, Finger, and Bhatia from J. P. Morgan Chase®180 (Gordy, 1998; J. P. Morgan, 

1997; RiskMetrics Group, 2007). Another example is KMV® by Kealhofer, McQuown, 

and Vašíček, presented in more detail later (Kealhofer, 1997; Vašíček, 2012). 

A less sophisticated model is o. a. the already mentioned Gordy model. It is a 

special case of a one-factor Merton-based model, this factor is representing, e.g., the 

business cycle (Gordy, 1998). The single-factor model is hence, as mentioned, also 

known as an ASRF model (Gordy, 1998; Gordy, 1998b; Gordy, 2002). In its original 

form, it requires infinite granularity within the portfolios, which in reality can only be 

achieved asymptotically when dealing with large portfolios. However, this prerequisite 

may be weakened by using a Herfindahl-Hirschman-Index(HHI)-based extension, an 

index that measures and considers the concentration of a portfolio (Gordy, 2003; Gordy 

& Lütkebohmert, 2007; Kaltofen et al., 2006; Kelly Jr., 1981; Martin & Wilde, 2003). In 

contrast to CreditMetrics® the Gordy model181 and the HHI-extended version both do not 

take rating transitions or multi-factor ideas into account (Márquez Diez-Canedo, 2002). 

They are denoted as default models only modeling the default component of credit risk 

(Gordy, 1998). Therefore, hazard rate (reduced form) as well as structural models, can 

appear in the form of default mode models. As mentioned before, the Gordy model is 

implemented in the “IRB formula”, which has to be used by IRB-F/A institutes182 within 

the finalizing of Basel III framework and also the European version in the CRR III (BIS, 

2017; BIS-Statement 2020; European Commission, §153 f.; Hull, 2015, p. 384; Wilde, 

2001). 

There are various kinds of extensions and improved versions of these models. 

CreditRisk+® is extended by also taking rating migrations into consideration and by 

adjusting the default correlation considering heavy (“fat”) tails (Diaz & Gemmill, 2002, 

p. 1; Engel, 2008, p. 93; Wilson, 1998). CreditMetrics® is extended by multi-factor 

extensions or recently in an important fashion by Li, who incorporates the default 

dependencies of asset values and returns and by various mixed-method forms, which are 

commonly used for pricing CDOs (Koopman & Lucas, 2005; Li, 2016). Tasche also 

extended the Gordy model by a multi-factor approach (Tasche, 2005). 

 

180 The same source as (J. P. Morgan, 1997) is hence (Gupton et al., 1997). 
181 Introduced then by Gordy but building on works of Vašíček as well (Hull, 2015, p. 283). 
182 Used synonymously to (F)AIRBA 
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A newer and slightly extended version of a structural credit portfolio risk model, 

known as Zero Price Probability (ZPP), was introduced by de Giuli, Fantazzini, and 

Maggi (de Giuli et al., 2007). 

There exist also macro-econometric parameter-based models like 

CreditPortfolioView® (CPV®), which is used by the DSGV® 183  – the German 

association of the Sparkassen, hence the regional loans and savings institutions 

(McKinsey and Company, 1998). CPV® is built on a multi-factor regressive approach, 

though operating in a similar fashion as Merton-based ones (Hickman & Koyluoglu, 

1998). The three models are the most established ones in the market (Diaz & Gemmill, 

2002, pp. 7–8). 

In addition, validation techniques of ratings and of credit portfolio models (CPMs) 

like accuracy measurements (applying the discriminatory measures CAP, ROC, and AR, 

Gini respectively, from Chapter 3 to see how precise obligors defaults and migrations are 

differentiated) and backtesting 184  are state-of-the-art, when checking the models’ 

performances (Blöchwitz, 2016; Coppens et al., 2010; Scandizzo, 2016; Sobehart et al., 

2000; Tasche, 2003; Tasche, 2006). They are briefly touched on in this chapter as well. 

There is a problem with backtesting with sparse data and low-default portfolios as there 

are not enough data points available for statistical purposes, preferring models which are 

not purely default-mode-based and (also) in that context the unique and decisive role of 

correlation of defaults is mentioned in that chapter (BCBS, 2005; Flórez-López & 

Ramón-Gerónimo, 2014). The most important performance criterion for model 

benchmarking, later utilized in Chapter 5, will be the VaR difference or root mean square 

error185 (RMSE), when compared to a given real portfolio, its VaR and its real loss 

distribution. 

On the following pages hazard rate models and hazard rate model-based 

frameworks are first introduced more precisely. The terminology is in accordance with 

for instance Brigo or sometimes Bielecki (Bielecki & Rutkowski, 2004; Brigo & 

Mercurio, 2006; Brigo et al., 2011). 

 

183 Deutscher Sparkassen- und Giroverband ® 
184 with various statistical tests as binomial tests, t-tests, and Hosmer-Lemeshow tests, rank correlation tests 

like again Spearman’s rank correlation or Kendall’s tau and stability tests (PDs and migrations over time, 

Kullback-Leibler method). 
185 By some researchers also denoted as root-mean-square error. 
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One can also find a comprehensive overview and introduction to credit portfolio 

models, including both structural and hazard rate models, in Lando’s monograph “Credit 

Risk Modeling” or by Duffie and Singleton186, who especially focus on reduced form 

models and their own groundbreaking contributions to these theories (Duffie & Singleton, 

2003; Lando, 2004). Further contributions were achieved by Jarrow and Turnbull (Heath 

et al., 1992; Jarrow et al., 1997; Jarrow & Turnbull, 2000a; Jarrow & Turnbull, 2000b). 

These two researchers moreover discussed interesting (general) approaches to link market 

and credit risk and to differentiate them (Jarrow & Turnbull, 2000b). Bielecki, Jeanblanc, 

and Rutkowski probably present the most mathematically rigorous approach to credit 

portfolio risk models in their book and publications (Bielecki & Rutkowski, 2004; 

Rutkowski et al., 2003). Wilde and his colleagues at Credit Suisse® developed the most 

famous commercial version of a hazard rate or reduced form model, namely 

CreditRisk+® (Credit Suisse First Boston, 1997; Emmer & Tasche, 2016). 

In the most elementary form of a hazard rate model, the default time is modeled 

as the “first jump” of a time-homogeneous Poisson process (Brigo & Mercurio, 2006; 

Bielecki & Rutkowski, 2004, p. 123; Elizalde, 2006, p. 6). Hence, the idea is to model the 

default event as an exogenous factor that follows a random process (Bielecki & 

Rutkowski, 2004). The Poisson process is suitable as it is also used in survival analysis 

and actuarial mathematics, in the CPM context utilized to model the “survival” of a 

company over time instead of individuals as in life insurance applications (Bielecki & 

Rutkowski, 2004, p. 123; Stepanova & Thomas, 2002; Witzany, 2017, p. 68). With the 

help of a Poisson process the number of defaults – the same company might default 

multiple times in this modeling approach – are counted. The (general) counting process 

hence follows the special form of a Poisson process (Credit Suisse First Boston, 1997; 

Frey & McNeil, 2001). One can heuristically imagine it as a company being in a “living 

state” throughout the time in the first phase and then “suddenly” jumping to a default 

state. As it is also possible that after a default or even without a default, after a 

restructuring process, a company (and its debt) is cured one might also consider cures in 

intensity processes, e.g., with the help of mixture cure models and survival analysis, as in 

(Tong et al. 2012, Wycinka, 2015). In the thesis, cure processes are not taken into account 
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(apart from potential multiple defaults) and the concentration is on a pure Poisson process 

in the following. 

As this process describes certain one-dimensional points in time it is also known 

as a Poisson point process and considered homogeneous first, which means the points are 

being uniformly distributed in any given set (Kingman, 1993). It is then finally called a 

homogeneous Poisson (point) process - HPP (Credit Suisse First Boston, 1997; Habibi, 

2018; Kingman, 1993). Consider a counting process {Nt, t ≥ 0},  

 𝑁𝑡 =  ∑ 𝐼𝑛𝑑(𝑆𝑘 ≤ 𝑡)

∞

𝑘=1

 (119) 

where Ind denotes the indicator function where the value of the indicator function 

is equal to one, if the argument in parentheses (…) is true, else it is equal to zero (Bielecki 

& Rutkowski, p. 123). One can consider that as an (infinite) series of number of defaults 

k, and Sk denoting the first point in time when k defaults have occurred. If at some point 

t in time k defaults already happened until t or exactly at t, then Sk is equal to one otherwise 

zero (“counting if a default occurred for it up to time t ”). Hence, the total number of 

defaults up to and including time t is summed up through the formula by adding “one-

after-one”. Then one can additionally write 

 𝑆𝑁 =  𝑇1 + ⋯ 𝑇𝑛 ;   𝑇1 , 𝑇2  … : Ω →  [0, ∞) (120) 

with the Ti denoting the time (difference) after which the i-th default occurs, when 

i-1 defaults are already counted and happened up to time Si-1 (Credit Suisse First Boston, 

1997; Gupton et al., 2001). Therefore, SN is a sequence of independent, identically 

distributed (i.i.d) random variables Ti summed up until TN. As all the T-components map 

to nonnegative numbers as “time-distances” the time SN is increasing with N, as 

heuristically expected when considering an increasing number of defaults.  

If further Tn ~ exp(λ), for a α > 0 then the process {Nt, t ≥ 0} is called a 

homogeneous Poisson (counting) process (HPP) with intensity rate λ (Bielecki & 

Rutkowski, 2004, pp. 155, 186; Kingman, 1993; Witzany, 2017; p. 68). In short form: Nt 

~Poi(λt). This means the counting process follows a homogeneous Poisson process with 

intensity λ. This intensity (rate) λ is also known as hazard rate (Bielecki & Rutkowski, 

2004, p. 155). This induces that {Nt} has independent and stationary187 increases, and  

 

187 (Nt(i)  – Nt(i-1)) , i  ≥ 1 are independent. Stationary: Nt(i)+s – Nt(i-1)+s  = Nt(i)  – Nt(i-1) for all i. 0 ≤ t0 < t1 < ··· 

< tn. 
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 E[𝑁𝑡]  =  λ𝑡 (121) 

as the expectation value just integrates to t or sums up in the discrete case (Bielecki 

& Rutkowski, 2004). Hence, the expectation value of the counting process at time t equals 

t times the intensity. For all t  ≥ 0, {Nt} is a Poi(λt) distributed random variable. 

Technically {Nt} is right-continuous and counts the “jumps” (e.g., from zero to one). 

For the distribution at point t or the probability of the random variable N(t) of 

being equal to n, with n denoting the number of accidents or defaults in this case, one can 

write (Bielecki & Rutkowski, 2004, pp. 186-187, 193): 

 P (𝑁(𝑡)  =  𝑛 )  =  
(λ𝑡)𝑛

𝑛!
 𝑒−λ𝑡 (122) 

Evidently, the cumulative probability distribution is then  

 F(𝑛; 𝑡) = ∑
(λ𝑡)𝑘

𝑘!
 𝑒−λ𝑡

𝑛

𝑘=1

 (123) 

This again shows the expectation by the Taylor expansion definition of e,  

 

E[𝐻𝑃𝑃] =  ∑ 𝑘 ( 
(λ𝑡)𝑘

𝑘!
 𝑒−λ𝑡)

∞

𝑘=1

= ∑  
(λ𝑡)𝑘−1

(𝑘 − 1)!
 𝑒−λ𝑡λ𝑡

∞

𝑘=1

= ∑
(λ𝑡)𝑘

𝑘!
 λ𝑡 𝑒−λ𝑡

∞

𝑘=0

= 𝑒λ𝑡 λ𝑡 𝑒−λ𝑡 = λ𝑡 

(124) 

(Kingman, 1993). In the same way  

 Var(𝑁𝑡)  =  λ𝑡  (125) 

by the definition of the variance and hence 

 λ =
Var(𝑁𝑡)

𝑡
 (126) 

For the special case t = 1 the variance and mean are both λ. An alternative way to 

define a Poisson counting process can be reached by the requirement that the time 

differences between the events of the counting process are exponential variables having 

a mean of 1 C λ (Jorda, 2010; Kingman, 1993). 

If one defines the default time τ188 as before as the first jump of a Poisson process, 

one can calculate its survival probability as in (Jorda, 2010, p. 3): 

 𝑄(τ >  𝑡) = 𝑒− λ𝑡   (127) 

 

188 More formally: A default time τ is assumed to be an arbitrary positive random variable that is defined 

on an underlying probability space (Ω, A, P) as in (Bielecki & Rutkowski, 2004, p. 222). 
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This result yields that survival probabilities have the same structure as continuous 

discount factors in finance (Brigo & Mercurio, 2006, p. 698). The default intensity λ as 

shown, e.g., by Jorda or Bielecki hence astonishingly plays a comparable role as interest 

rates do (Bielecki & Rutkowski, 2004; Jorda, 2010, p. 7; Lan, 2011; Lando, 2004). 

This observation makes it reasonable to view default intensities as some kind of 

credit spreads – coming back later on that in the thesis when introduced as a means for 

calculating implied PDs from credit spread data. Kusuoka and Laurent further enhanced 

reduced form models also in the credit spread (and swaps) regard (Kusuoka, 1999; 

Laurent, 2020). Generally, higher default intensities (rates) are correlated with higher 

credit spreads and hence when the interest rate curve including these spreads is used for 

discounting purposes of future cash flows to receive a present (fair) value, this value is 

consequently lower – which is intuitively logical: Because of the higher risk, the risk 

premium is higher and the present value ceterus paribus hence “worth less”. 

The inhomogeneous (nonhomogeneous) Poisson point process then is a Poisson 

point process, where the Poisson parameter is set as a location/time-dependent function 

(Bielecki & Rutkowski, 2004). That means the intensity depends on the time t and the 

points are in many cases not uniformly distributed. As a result, “extra dynamic” can be 

illustrated through the process. The same results as above however are still true for a time-

varying intensity λ(t), when defined in the way 

 λ(𝑡) ∶= ∫  γ(𝑢)𝑑𝑢
𝑡

0

 (128) 

as the cumulated intensity, cumulated hazard rate, or Hazard function (Garcia et 

al., 2005, p. 2; Jorda, 2010). A similar result is true for Cox processes (Black & Cox, 

1976). 

A Cox Process {Nt, t  ≥ 0} is defined as a Poisson process with stochastic intensity 

λt, i.e., {λt, t  ≥ 0} in that setting defines a stochastic process. Hence, whereas the intensity 

of a nonhomogeneous Poisson process depends deterministically on the time and is time-

dependent the Cox Process even assigns a random variable for the intensity at every point 

in time, hence is a random process with also random intensity process λt in it (Drazek, 

2013; Lando, 1998). In practice, an intensity process can be chosen and calibrated to 

various settings, when one, e.g., intends to illustrate a process in which the intensity at 

some point in time is dependent on former intensities it is natural to use an autoregressive 

approach and an AR(1) model as for instance Duffie (Duffie, 1999). 
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An equivalent introduction of these processes, yet mathematically founded on so-

called martingale measures and the connected valuation of assets, is available in the 

monograph “Credit risk modeling” by Bielecki and Rutkowski (Bielecki & Rutkowski, 

2004, pp. 166, 222).  

Until here the number of defaults up to a time t was considered. The second factor 

which has to be taken into account is, similarly to accidents in insurance cases, modeling 

the “severity” of the defaults, e.g., the exposure at default and ultimately the absolute 

recovery rates. This aim can be directly achieved by modifying the formula above with 

the desired EAD numbers or functions while if necessary – and common – building 

segments of obligors (Credit Suisse First Boston, 1997; Gupton et al., 2001). Hence, 

certain “bands of obligors” with the same EAD are considered and grouped.189  The 

grouping is extended by further including correlations between different obligors to 

measure the default impact of obligors on other ones (Gupton et al., 2001; Tasche et al., 

2004). Especially during times of economic crisis, it is essential that these correlations 

and hence contagion risks are quantified in a correct manner (Brunnermeier, 2008; 

Schiavone, 2018). One can also formulate the ideas described in this paragraph by 

switching from a single asset or obligor perspective to a multi-asset- or portfolio-based 

one. 

There are mainly three ways of introducing default correlations among obligors 

into intensity models in the literature (Hickman & Koyluoglu, 1998; Huschens, 2004). 

The first one – conditionally independent defaults (CID) models – generate credit risk 

dependence among the various obligors through the “dependence of the firms’ intensity 

processes on a common set of state variables” (Bielecki & Rutkowski, 2004, pp. 265-282; 

Elizalde, 2006, p. 2). Hence the default rates (themselves) can be treated as independent 

when the realizations of state variables are fixed (Elizalde, 2006, p. 2). The problem of 

CID models explicitly regarded when comparing the various credit portfolio risk models 

in that chapter, are the low levels of default correlation resulting from the models 

compared with empirical levels (Diaz & Gemmill, 2002). Duffie and Singleton, therefore, 

tried to extend CID models by introducing common default events (with common 

triggers) or “joint jumps” in the default processes of the different companies (Duffie & 

Singleton, 1999; Elizalde, 2006, p. 2). A problem with these extensions is the correct 

 

189 To divert the distribution of loss for a diversified portfolio with many different assets, the losses are 

simply divided into different bands with the level of exposure in every band.   
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calibration of these models and again a tendency of underestimation of correlations as the 

authors’ state (Duffie & Singleton, 1999; Elizalde, 2006, p. 2; Geyer et al., 2004). 

The second way – contagion models – include the empirical observation of default 

clustering. They change default intensities by adding clustering functions, but appear 

rather arbitrary and adjusted to very specific settings and are hence not useful for 

generalized settings (Davis, 2011; Davis & Lo, 2001; Hickman & Koyluoglu, 1998; Jiang 

et al., 2018; Schönbucher & Schubert, 2001). Davis and Lo also coined the term infectious 

defaults for contagions (Bielecki & Rutkowski, 2004, p. 294). 

The latest and most sophisticated approach is the use of copula functions (Nelsen, 

1999; Witzany, 2017, pp. 188-202). This type of model separates the estimation of the 

individual default probabilities, i.e., the default intensity processes from the estimation of 

the function that incorporates the credit risk dependence (correlation) and links the 

obligors, this link is done with the mentioned so-called copula function (Embrechts et al., 

2008; Frey & McNeil, 2001; Martin et al., 2014; Sempi, 2011). Also other approaches, 

which are able to model marginal default probabilities, such as the structural approach 

mentioned before and detailed in the following, can use copulas to model the joint 

probabilities then (de Giuli et al., 2007). While these functions are quite powerful tools, 

the calibration and application of the “right” copula function is far from easy and difficult 

to generalize (Frey & McNeil, 2003; Panchenko, 2005; Zeevi & Mashal, 2002). The most 

important theorem concerning copulas is the one of Sklar (Sklar, 1959; Witzany, 2017, 

pp. 191-192). 

Sklar’s Theorem: 

Let y1,..., yn be random variables, having marginal distribution functions F1,…, Fn 

and a joint distribution function F such that  

 F(𝑦1, … , 𝑦𝑛) = 𝐶(F1(𝑦1), … , F𝑛(𝑦𝑛)) for all (𝑦1, … , 𝑦𝑛) in ℝ𝑛 (129) 

If each Fi, 1 ≤ i ≤ n, is continuous, then the copula C is even unique  

(Elizalde, 2006, p. 29; Martin et al., 2014; Sempi, 2011; Sklar, 1959). 

 

Hence, the joint distribution can be completely defined by the marginal 

distributions. This is an immensely powerful theorem as it suffices to use marginal 

distributions for every dimension and then connect them via a central dependence 

structure, the copula C (Martin et al., 2014).  
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Copulas that are commonly used are so-called elliptic copulas, Archimedean, 

Gaussian, Clayton or t-copulas, Frank or Gumpton ones, and the Fréchet-Hoeffding-

copulas (Elizalde, 2006; Martin et al., 2014; Meyer & Strulovici, 2015). The Frank, 

Gumpton and t-copula are especially feasible for credit risk structures (Frey & McNeil, 

2001; Witzany, 2017). 

Generalization problems, the (missing) quantity of available data and “the 

nonexistence of a liquid and transparent market for default correlation products which 

would allow [to distil] the dynamics of default contagion mechanisms, either through a 

copula or through a contagion model”, as Elizalde points out, are leading to the preferred 

use of CID models in the class of reduced form models (Elizalde, 2006, p. 45). However, 

the use of copulas also in other settings became increasingly popular during the last 25 

years (Meyer & Strulovici, 2015; Nelsen, 1999). 

As described, a Poisson distribution X is used to model the number of defaults k 

and besides bands for different exposures or losses given defaults are introduced and then 

aggregated. Furthermore, it is common to produce X with the help of a generative function, 

which is a series such that 

 𝐺(𝑧) = ∑ P(𝑋 = 𝑘) 𝑧𝑘

∞

𝑘=0

 (130) 

where P(X = k) is the probability that X = k (Bielecki & Rutkowski, 2004). Hence, 

the function G is generated by the base function P, forming a series that is converting 

under certain assumptions (similar to the well-known Taylor series). One necessary 

assumption from analysis, that  

 |P(𝑋 =  𝑘)|  ≤  1 (131) 

 is fulfilled as probabilities by definition always have values between zero and 

one. On the other hand, to obtain P(X = k) one may write: 

 

 P(𝑋 = 𝑘) =
1

𝑘!

𝑑𝑘(𝐺(0))

𝑑𝑧𝑘
  (132) 

d denoting the derivative and dk the k-th derivative, which is simply the Taylor 

expansion for G in zero. So, for the Poisson distribution, one gets again the scheme 

(Bielecki & Rutkowski, 2004)  



181 

 

 𝐺(𝑧) = ∑ 𝑒−λ 
λ𝑘

𝑘!
 𝑧𝑘 = 𝑒−λ𝑒𝑧λ = 𝑒(𝑧−1)λ

∞

𝑘=0

 (133) 

As the exponential function is multiplicative for several obligators one can 

represent  

 𝐺(𝑧)  =  Π 𝐴 𝐺𝐴(𝑧),  (134) 

where GA(z) is the generative function of a portfolio with just a single bond A 

without any correlations. This result is grounded in the fact, that for independent events 

common probabilities may be multiplied. It can be therefore applied to the mentioned 

homogeneous bands which are roughly independent. Yet it only yields for independent 

ones. 

But credit risks are generally not independent, as just described with the three 

options of linking defaults and hence in the one-factor model one assumes that there is a 

certain common macro-economic impact that influences all obligators and their bonds in 

the same way. As shown before, one normally chooses a common CID type of link. 

Conditioned on the macro-economic-factor the model behaves then as independent 

treatments (Credit Suisse First Boston, 1997; Gupton et al., 2001). As a result, one ought 

to model the following assumptions: 

 

(1)  The macro-economic factor is normally chosen as a Γ(α, β) distributed 

random variable X, a so-called Gamma distribution with two parameters, as that 

turned out to be empirically feasible as within insurance mathematics (Credit 

Suisse First Boston, 1997). With this function, one has a defined density 

 𝑓α,β(𝑥) =
1

Γ(α)
 βα𝑥α−1𝑒−β𝑥 (135) 

where 𝑥 >  0, α > 0, β > 0 and 

 E[𝑋] =
α

β
 , (136) 

 

 Var[𝑋] =  
α

ß2

 

 (137) 

 

(2)  The different losses L1,…, Ln are conditionally stochastically independent 

given X = λ with the “conditional distribution”  
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 P(𝐿𝑖|𝑋 = λ)  =  𝑃𝑜𝑖  ( λ𝑖

λ

E[𝑋]
),  (138) 

for all 1 ≤ 𝑖 ≤ 𝑛, λ >  0. 

Hence, the intensity parameter is in a sense “random” and is defined by the 

random variable X, which follows a Gamma distribution modeling the macro-

economic factor. 

 

As a result, one deduces the unconditional loss distribution by “mixing” the 

constituents with the distribution of X. Therefore, the model is called “the Poisson mixture 

model” or “the Poisson-Gamma mixture” (Credit Suisse First Boston, 1997; Fischer, 

2019). The result is a negative binomial distribution (NBD), which is an analytically 

closed solution and can be regarded as a Poisson distribution for which the Poisson 

parameter is itself again a random variable with a Gamma distribution (Credit Suisse First 

Boston, 1997; Gupton et al., 2001). 

The underlying steps from above can be summarized in a compact form as follows, 

e.g., preceding a possible implementation in the programming language R 190 . The 

parameter λ is regarded as a random variable X.  

 

1. The conditional distribution of the random variable Nt (conditional on  

X = λ) can be written as: 

 P(𝑁 = 𝑛|𝑋 = λ) = 𝑒−λ
λ𝑛

𝑛!
 (139) 

𝑛 = 0, 1, 2 … . λ >  0 

2.  Now X is Gamma distributed with shape parameter α and scale parameter 

β. The probability density function of X is: 

 𝑔(𝑥) =
1

Γ(α)
  βα𝑥α−1𝑒−β𝑥 (140) 

Thus, the joint density of Nt and X is: 

 P(𝑁 = 𝑛|𝑋 = λ)𝑔(λ) = 𝑒−λ
λ𝑛

𝑛!

1

Γ(α)
 βαλα−1𝑒−βλ (141) 

3. The unconditional distribution of Nt is therefore – as calculated similarly in 

(Witzany, 2017, pp. 134-135).  

 

190 Or any other (statistical) programming language, e.g., SAS®, Matlab® or Python®. 
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   P(𝑁 = 𝑛) = ∫ P(𝑁 = 𝑛|𝑋 = λ)𝑔(λ) 
∞

0

𝑑λ

= ∫  
∞

0

𝑒−λ
λ𝑛

𝑛!

1

Γ(α)
 βαλα−1𝑒−βλ𝑑λ = ∫  

∞

0

1

𝑛! Γ(α)
 βαλ𝑛+α−1𝑒−(β+1)λ𝑑λ

=
1

𝑛! Γ(α)
 βα Γ(𝑛 + α)

(β + 1)𝑛+α
∫  

∞

0

(β + 1)𝑛+α

Γ(𝑛 + α)
 𝜆𝑛+α−1𝑒−(β+1)λ𝑑λ

=
1

𝑛! Γ(α)
 βα Γ(𝑛 + α)

(β + 1)𝑛+α
=  (

𝑛 + α − 1

𝑛
) (

β

β + 1
)

α 1

(β + 1)𝑛
   

(142) 

 

𝑛 = 0, 1, 2 …  

Using the fact that the cdf from zero to infinity of the Gamma function (with ß* 

:= ß + 1 and α* := α + n) equals one in equation line three and the functional property of 

the Gamma function that  

 α Γ(α) = Γ(α + 1) (143) 

 (Bielecki & Rutkowski, 2004; Credit Suisse First Boston, 1997; Hickman & 

Koyluoglu, 1998). This formula, the “Poisson-Gamma mixture”, is hence the exact form 

of the probability function of a negative binomial distribution (Credit Suisse First Boston, 

1997). 

Finally, by having derived a closed-form analytical solution for credit risk, it is 

possible to calibrate a suitable portfolio default model by setting the intensity rate through 

the Gamma function and its parameters α and β. This is further covered on empirical 

examples by Li (Li, 1998). 

4.2 Structural Models (Asset-Value Models) 

The structural models in credit portfolio management were first introduced by 

Merton (1974) and later developed by Leland, Anderson, and Jarrow among others as 

already shown (Anderson & Sundaresan, 1996; Jarrow, 2009; Leland, 1994; Merton, 

1974). Jarrow, influenced by Merton, was interestingly also one of the founders of 

reduced form or hazard rate models as seen. 

The term “structural” was coined by the fact that there is an underlying economic 

structure characterizing the movements of an asset of an obligor and, in contrast to hazard 

rate models, a default or migration event is not something entirely random but pre-

determined by a company’s value, its movement and volatility and its debt (Hickman & 

Koyluoglu, 1998; Merton, 1974). It is hence considered an endogenous model. This 
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restriction and the fact that the original model just allowed for default at the time of a 

debt’s maturity were however solved through techniques labeled first-passage time 

approaches by Cox (Bielecki & Rutkowski, 2004, p. 65). Hence, default could be also 

considered exogenously and as unpredictable within that same framework, Zhou 

introduced, e.g., geometric jump-diffusion processes extending the normal price process 

by jumps, which model the possible “jump-to-default” (Hanson, 2008; Lamba, 2018; 

Zhou, 1997). The structural model is also intricately linked to the capital structure and the 

relation of assets and debts of a company as will be seen in this sub-chapter. Therefore, it 

sets a spotlight to (the occasionally conflicting interests and) the relationship of creditors 

and shareholders of a company, especially the different risk averseness levels (Bouteillé 

& Coogan-Pushner, 2021). Management and the board of directors (installed by 

shareholders and executing largely their interests) are more incentivized to take risk than 

creditors, who are more interested in a stable, conservative running of a company without 

taking too much risk as then the risk of losing the given creditCloan is lower, whereas they 

do not profit from higher dividends or stock prices directly, from which shareholders 

profit, while not caring too much about not being able to serve creditors once they might 

have lost their shares already and being the first ones taking losses with their equity 

anyway (Bouteillé & Coogan-Pushner, 2021; Galai & Masulis, 1976). The different return 

and risk distribution of equity (and normal market risk) versus not normally distributed 

credit returns and risk comes here into play again.  

Especially short-term interest or expansion interest (e.g., shifting plants in a more 

risky yet more yield-promising emerging market country or a hostile takeover or risky yet 

promising appearing acquisition of another company) can differ substantially between the 

two groups of the liability (funding) side of a company (Bouteillé & Coogan-Pushner, 

2021). 

There are some crucial preconditions for the structural models. The structure of 

the liabilities of the company and the management of its assets is a priori known by all 

participants in the market. This is called full information in efficient markets (Fama & 

MacBeth, 1973). The markets are additionally – at first – assumed to be frictionless, i.e., 

there are no transaction costs, fees, dividends, or taxes and the market is liquid (Bielecki 

& Rutkowski, 2004, p. 51; Brigo & Mercurio, 2006). Furthermore, the daily 
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assetCenterprise191  value returns of the company follow a certain structure like, most 

commonly, a normal distribution (J. P. Morgan, 1997). In practice, as company values and 

their volatility are not directly observable, one is using stock returns as a proxy for the 

assets as they are daily observable and fully transparent; this proxy is working often 

astonishingly well empirically (Anderson & Sundaresan, 2000; Diaz & Gemmill, 2002; 

Gordy, 1998; J. P. Morgan, 1997; RiskMetrics Group, 1997). 

The problem of unobservable asset prices or lack of tradability of the firm’s value 

(bonds and stocks) can be simplified under feasible market completeness circumstances 

or by including further economic factors (such as profits and defaultable bonds 

characterized in terms of the state variables firm value and profit) to the case were at least 

one of them is traded (Bielecki & Rutkowski, 2004, p. 64; Buffett, 2000; Ericsson & 

Reneby, 1999). A further approach by mainly Fantazzini, de Giuli, and Maggi using 

copulas is described later (de Giuli et al., 2007). 

All the debt of a company is further synthetically, by replicating (the duration of) 

the bonds and loans portfolio of the firm, held in one bond D, the “value of its debt” 

(Bielecki & Rutkowski, 2004; J. P. Morgan, 1997; RiskMetrics Group, 2007). Hence, the 

company defaults, as regarded before, when the value of its assets is lower than the value 

of its total debt or equivalently when the (accumulated) returns are lower than a certain 

transformed threshold (the mentioned exogenous extensions are not considered in that 

case). 

One can think of this setting as an European option192193 (Bielecki & Rutkowski, 

2004; p. 52; Geske, 1977, pp. 541-552; Gordy, 1998b; Pitts & Selby, 1983, pp. 1311-

1313). Thus, the credit risk component of a company’s debt can be valued like a put option 

on the value of the underlying assets of the company (J.P. Morgan, 1997). It is imagined 

to be bought and just exercised at maturity when the company’s assets value falls below 

the debt value which equals the so-called strike price (Geske, 1977; Gordy, 1998b). 

Then the probability of default of a single asset, equals the probability that the  

 

 

192 Contrary to an American option which can be exercised at every time in (0,T], T denoting the maturity, 

a European option can just be exercised at maturity T. An option with many discrete possible exercising 

dates during (0,T] is called a Bermudian option as it lies “in-between” these two possibilities, cf. for 

example (Bingham & Kiesel, 2004). 
193 Even the possibility of vulnerable claims in that context, e.g., options with a counterparty default risk 

were modeled in the literature (Hull & White, 1995, pp. 299-322; Klein & Inglis, 2001). 
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value of the assets (V) is lower than the value of the debt (D) of the company. The price 

movement or motion of the assets, or stocks in the case of listed companies and their 

proxy-view, is generally described by a (geometric) Brownian motion (GBM), the 

“normal distribution equivalent” for exponential stochastic processes. This means when 

the returns or (dynamic relative) changes in price are normally distributed, the movement 

itself is log-normal distributed. Formally, this stochastic differential equation (and price 

change dynamic) is written as (with payout ratio first assumed to be zero): 

 𝑑𝑉𝑡 = 𝜇 𝑉𝑡 𝑑𝑡 +  𝜎 𝑉𝑡 𝑑𝑊𝑡  (144) 

(Bielecki & Rutkowski, 2004, p. 51)  

This for non-zero Vt equals  

 
𝑑𝑉𝑡

𝑉𝑡
= 𝜇 𝑑𝑡 +  𝜎 𝑑𝑊𝑡 (145) 

with mean μ, often equals the risk-free interest rate r to prevent arbitrage in the 

market, volatility or statistically the standard-deviation σ, and a fluctuation which is 

known in the area of financial mathematics as Wiener process Wt (Gordy, 1998b; J. P. 

Morgan, 1997; RiskMetrics Group, 2007). It means that the relative change in Vt, 

incorporating the dynamics of it, denoted as dVt C Vt can be expressed as a trend 

component changing with time t (multiplied) by the mean factor μ and a random process 

component and its dynamic dWt with multiplied volatility σ (Bielecki & Rutkowski, 2004). 

The Wiener process is adding “randomness” to the stock or asset price movement 

and encrypts an equivalent of the Brownian motion of particles in physics. In this case, 

instead of particles, just the typical “shacking”-motion of stocks is illustrated with that 

process. One then derives  

 𝑑 (ln 𝑉𝑡)  =  (μ – 
σ2

2
)  𝑑𝑡 +  σ 𝑑𝑊𝑡  (146) 

by Itô’s Lemma cf. (Hassler, 2007, pp. 191-192; Itô, 1951; Zhang, 2015). Itô’s 

Lemma can be seen as a chain rule for stochastic calculus and hence as known from 

(standard) calculus applied, e.g., when taking the derivation from a (natural) logarithm, 

in standard calculus  

 ln 𝑓(𝑥) ′ =
1

𝑓(𝑥)
  𝑓’(𝑥)  (147) 

hence the product of the outer and inner derivative, by the chain rule. In stochastic 

calculus, it can be seen in a similar way and be heuristically derived by taking the Taylor 

series expansion of the function up to its second derivatives. The resulting terms are then 

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Taylor_series
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the ones seen in the formula above and the correcting factor σ2 C 2 for the defining solution 

is explained directly by that expansion and the Itô integration definition (Bielecki & 

Rutkowski, 2004; Itô, 1951). 

The solution of the formula above is then by first (stochastically) integrating the 

right-hand side to “get rid of d” and then taking the exponential process to “get rid of ln”. 

In the graph A0 := V0 and 

 𝑉𝑡 =  𝑉0𝑒∫(μ – 
σ
2

2
) 𝑑𝑡 + σ 𝑑𝑊 𝑡  (148) 

 

 

 

Figure 37 Asset value path in asset-value models (structural models). 

Sources: Own graph according to: (Vašíček, 2012, p. 16). 

Hence by the definition of the variance and expectation value (integration) as in 

(Bielecki & Rutkowski, 2004, pp. 51-55):  

 

Var[ln 𝑉𝑡] =  σ2 and σ2(𝑇 − 𝑡) ≔ σ2[ln 𝑉𝑡] and E[ln 𝑉𝑡] =

ln 𝑉0 + (μ −
σ2

2
)(𝑇 − 𝑡) 

(149) 

Furthermore then applying the normal distribution 

 ln 𝑉𝑡 ~ N[ln 𝑉0 + (μ −
σ2

2
) (𝑇 − 𝑡), σ2(𝑇 − 𝑡)] (150) 

Thus the conclusion is: 
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 P (𝑉𝑡  <  𝐷𝑡)  =  ϕ(
𝐷𝑡 − E[𝑉𝑡]

σ[𝑉𝑡]
) = P(ln 𝑉𝑡  <  ln 𝐷𝑡)  (151) 

as the ln function is monotone increasing. One gets 

 𝑃𝐷 = ϕ(
ln 𝐷𝑇 − ln 𝑉𝑇 − (μ −

σ2

2 )(𝑇 − 𝑡)

σ √𝑇 − 𝑡
) (152) 

(Bielecki & Rutkowski, 2004, p. 53). 

So, one could derive the PD once one would get to know the parameters VT, DT, 

σ and μ = r (Bielecki & Rutkowski, 2004). Yet, all these parameters are already known in 

advance by the company’s capital structure and market data (σ, r) and VT is substituted 

by the stock price motion.  

More precisely the following relationship, which links equity and asset (start) 

values, is exploited, utilizing their volatilities and “the ‘hedge ratio’ of the Black Scholes 

formula” (de Laurentis et al., 2010, p. 60; Itô, 1951): 

 σ𝑒𝑞𝑢𝑖𝑡𝑦 𝐸0 = σ𝑎𝑠𝑠𝑒𝑡  N(𝑑1) 𝑉0 (153) 

For the volatility normally the historical standard deviation of returns is chosen, 

which can be directly seen from price information (Anderson & Sundaresan, 2000; 

Merton, 1974). 

One can hence, as shown, directly draw the link to option price theory, which was 

also introduced in the early 1970s by Merton, Black and Scholes, and the structure of the 

capital of a company, cf. the original works in (Black & Scholes, 1973; Merton, 1973; 

Merton, 1973b). 

Furthermore, as in CAPM, the company’s credit risk is decomposed into two 

components. One is the systematic risk, which is depending on the industry sector and the 

country of the obligor, and the other one is the non-systematic or idiosyncratic risk, which 

depends solely on the specific company itself. One should not confuse systematic risk 

with systemic risk, the risk which lies in the entire financial system (“systemically”) and 

is an observation object for prudential regulation. 

These systematic risk and common systematic risk (and asset price) factors for 

various assets are also connected with a joint default probability (Lando, 2000a; Lando, 

2000b), as will be explained. 

By construction, Merton’s first model does not allow for default before the 

maturity of the claim (Bielecki & Rutkowski, 2004; Black & Cox, 1976). As mentioned, 

however, various structural models were developed – inter alia a famous variant by Black 
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and Cox – for a valuation of corporate debt where this restriction was eliminated and the 

default is defined as the first time the debt threshold is crossed as in (Black & Cox, 1976; 

Briys & de Varenne, 1997; Li, 2016). 

The original motivation of Cox was to find an optimal capital structure of a 

company in terms of debt service and (choice of an) optimal default (Bielecki & 

Rutkowski, 2004, p. 82). The work was extended by Leland in the context of levered 

firms on an infinite time horizon and by Leland and Toft on a finite time horizon, taking 

bankruptcy costs and tax issues into account (Leland, 1994; Leland & Toft, 1996). 

Strategic debt service in that regard and debt negotiations are an important part before (or 

once starting) restructuring or defaulting in practice. Hence, also these components were 

further included with ideas, e.g., from the Scandinavian researchers Anderson, 

Sundaresan, and Ericsson (Anderson & Sundaresan, 1996; Ericsson, 2000). 

Many other restrictions and assumptions could be lifted and extensions with 

subordinated debt capital, dividends paid, safety covenants for the debt, optimal 

permanent capital, or variable interest rates have been incorporated in structural models 

(Black & Cox, 1976; Goldstein et al., 2001; Ho & Singer, 1982; Ho & Singer, 1984, pp. 

315-336; Jou & Lee, 2009; Leland, 1994; Lettau & Wachter, 2011; Longstaff & Schwartz, 

1995; Vašíček, 1984). An overview is also given by Bielecki and Rutkowski in (Bielecki 

& Rutkowski, 2004, pp. 58, 88-89). 

Even a variable time-dependent threshold of default as by Collin-Dufresne and 

Goldstein and the risk of the events of defect were introduced leading to realistic, well-

calibrated models (Collin-Dufresne & Goldstein, 2001; Driessen, 2005). 

The most important improvement was that the original model was soon extended 

from defaults to credit migrations depending on, e.g., ratings of a company, related to 

their assets by Jarrow et al. (Jarrow & Protter, 2015; J. P. Morgan, 1997; RiskMetrics 

Group, 2007, pp. 60, 62, 65-76). Mathematically, the migrations are often described by 

Markov chains and Markovian models (Bielecki & Rutkowski, 2004, pp. 352-385; Jarrow 

et al., 1997). It is a stochastic process for which a state at time t just depends on the one 

at time t-1 and inherent factors (i.e., the “history of the process” and a memory is not 

needed). As these migrations are leading to higher credit spreads through the means of 

higher credit migration and default risks once a downward rating appears, empirically 

different forward rate curves for discounting the bond value have to be applied (J. P. 

Morgan, 1997; RiskMetrics Group, 2007). This implies lower (present) values of the 
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future (discounted) cash flows and ultimately migrations downward also lead to portfolio 

losses. 

One can collect default probabilities from historical default rates of similar 

companies, i.e., within the same industry, country, market cap and rating. Then 

supplementary calibrating the threshold of the described structural models as described 

before as  

 𝑃𝐷 = P(𝑉 < 𝐷) (154) 

where V is again the face value of the assets and D the value of the debt of a 

company, one can also get historical transition matrices (Gordy, 1998b; J. P. Morgan, 

1997; RiskMetrics Group, 2007). These are called “rating migration matrices” and denote 

the probability of (similar) assets of a certain class and rating to migrate to another rating. 

 

Figure 38 Rating transition matrix.  

Source: Own illustration (from the empirical comparison calculation in Chapter 5). 

Similar as before, one then links the returns of a stock and the migration 

probabilities. However, not only the default threshold is set, but also the different rating 

migration thresholds. Technically, as returns are modeled by a normal distribution, the 

inverse cumulative normal distribution and its quantiles are considered. To exemplify this 

one may take a bond with rating BBB and get: 
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Figure 39 Quantiles of the normal distribution with corresponding ratings (example).  

Source: Illustration from CreditMetrics® Technical Document (RiskMetrics Group, 2007, p. 67). 

The different quantiles show the probability of a rating migration to that class. 

One can see that in this example and the related figure above. The probability of the bond 

to stay in the BBB rating is the highest, the second-highest probability is an upgrade to 

grade A, BB (down) or AA (two notches up) are a bit less likely, etc. When implementing 

a structural model in, e.g., CreditMetrics® one then has to look at simultaneous migration 

matrices of many assets – as the probability that for three stocks S1, S2, S3 with initial 

ratings R(S1) = AAA, R(S2) = BB, R(S3) = C after one period the ratings are R*(S1) = 

AA, R*(S2) = BB (same), R*(S3) = BBB, this has to be done for all possible rating and 

migration combinations. As a consequence, in the case of very many assets, Monte Carlo 

simulations are performed in practice instead of analytical calculations as the former are 

less complex and much faster (Erlenmaier & Gerbach, 2000). However, in either case the 

correlation of assets and corresponding joint movements have to be included in the model 

(Lando, 2000a; Lando, 2000b; J. P. Morgan, 1997; RiskMetrics Group, 2007, pp. 85-91, 

92-102). Especially for low-default portfolios, the modeling of migration risk is even the 

most important component in practice, e.g., for bond portfolios that are containing high-

rated obligors (J. P. Morgan, 1997; RiskMetrics Group, 2007). 

Apart from the probability of default and of migration (PD, PM), CreditMetrics® 

allows for convenient classification of the losses which occur in case of a default. These 

are the LGDs or the recovery rates RR (or R, which again equals one minus the LGD). 

They denote the rate of a bond that is (typically) possible to receive back after a default. 

As for the rating classes, a segmentation of loan and debt types is made according to the 

collateralization or securitization and seniority class of credit and tables of average 
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recovery rates are considered then (J. P. Morgan, 1997; RiskMetrics Group, 2007). 

Intuitively the higher ranked (in case of seniority) and more secured or collateralized a 

loan is the higher the recovery rate is as well. For the individually different so-called 

workout-LGD, first, the collateralization structure has to be regarded, and the amount 

after bringing the collateral into the market is considered (Daldrup, 2006, pp. 91-93; de 

Laurentis et al., 2010). Afterward, the loss in book or market value is included. Finally, 

direct costs, e.g., for lawyers or incisor services and indirect ones residing in the NPL194 

or loan resolution department of a bank as administration, IT, workout-related costs, etc., 

are taken into account. An empirical analysis of recovery rates and hence LGD was, e.g., 

done by Altman et al., Gupton, and by Grunert and Weber (Altman et al., 2004; Grunert 

& Weber, 2005; Grunert & Weber, 2007; Gupton, 2005; Privara et al., 2013; Witzany, 

2009). CreditMetrics® is using an LGD classification of different classes of debtors like 

the following table from (Paulsen, 2009, p. 6). A very similar one with recovery rates is 

to be found in (Witzany, 2017, p. 122). 

Table 2 LGDs for certain classes of debt with mean and standard deviation.  

Class of debt LGD mean LGD standard deviation 

Senior Secured 46.20  26.86 

Senior Unsecured 48.87  25.45 

Senior  

Subordinated 

51.48  23.81 

Subordinated 67.26  20.18 

Junior  

Subordinated 

82.91  10.90 

Source: (Paulsen, 2009, p. 6). 

As the table shows the loss given default (on average) increases with less seniority 

of the debt and the variability in terms of the standard deviation becomes less, i.e., 

individual recovery factors are less important. 

Furthermore, similar to the intensity rate for reduced form models it is possible to 

use deterministic, time-dependent LGDs (or RRs) – hence a function LGD(t) – or even 

stochastic recovery rates (Böttger et al., 2008; Witzany, 2009b). Time-dependent or 

 

194 Non-performing loan 
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stochastic interest rates are commonly involved in the model already (Bielecki & 

Rutkowski, 2004; pp. 51, 59; Jamshidian, 1989; Shimko et al. 1993). Models by Kim or 

similar Longstaff and Schwartz regard interest rate and credit risk in their models together 

(Bielecki & Rutkowski, 2004, pp. 96, 98; Kim, 1993a; Kim, 1993b; Longstaff & Schwartz, 

1995). The observation of stochastic interest rates may also include special forms like 

credit spreads, e.g., dealt with in a structural framework by Shirakawa or dispense 

independence assumptions between the value process and stochastic interest rates 

altogether (Bielecki & Rutkowski, 2004, p. 58; Saa-Requejo & Santa-Clara, 1999; 

Shirakawa, 1999, pp. 83-97; Szatzschneider, 2000). 

Even extensions of CreditMetrics® which model dependence between the 

(stochastic) LGD and the default indicators, commonly called “PD-LGD correlation”, 

within a factor model were developed recently. First ideas in this regard were developed 

by Altman et al. (Altman, 2002). Frye later finds that different approaches in that by 

Pykhtin, Giese, Tasche, and Hillebrand yield remarkably similar results (Frye, 2013, pp. 

3-4; Giese, 2005, pp. 79-84; Hillebrand, 2006, pp. 120-125; Pykhtin, 2003, pp.74-78; 

Tasche, 2004). Frye introduces a certain LGD function and concludes risk managers are 

better served by using the LGD function as by utilizing (noisy) statistical models which 

are calibrated to the available data (Frye, 2013, p. 2, 12). The LGD function “connects 

the conditionally expected LGD rate (cLGD) to the conditionally expected default rate 

(cDR)” treating conditionality the same way that underlies the conditional default in 

hazard rate models and using a Vasicek model for the dynamic (Frye, 2013, p. 2). Tasche, 

by improving Pykthin and others, models the LGD on the basis of a single risk factor 

modeling of the LGD and the default event using a Vasicek process and integration via 

Legendre polynomials (Emmer & Tasche, 2016, p. 10). Witzany improved these models 

by introducing a further systematic LGD-factor and hence a two-factor PD-LGD model, 

with ARIMA(p, q) processes describing the (autocorrelated) PD and LGD time series and 

subsequently solves the equations via Markov chain Monte Carlo simulations (MCMC) 

as shown in (Witzany, 2011; Witzany, 2017, pp. 130-132). He showed that an increase of 

the unexpected loss (economic capital) of 30 % might occur (Witzany, 2011; Witzany, 

2017, p. 132).  
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Ozdemir and Miu show that the lack of correlation can be controlled, as common 

in risk management, by utilizing a higher degree of conservatism195 in the cyclical LGDs 

when employing their PIT framework. (Davis, 2011; Miu & Ozdemir, 2016). Interestingly, 

they extend the one-year horizon of A-IRB models for PD, LGD, and EAD to a three-

year horizon and different scenarios, the methodology expected from the IFRS 9 

framework – for IFRS stage 2, hence the expected (credit) loss over lifetime (ECLCELL) 

– in their paper (Miu & Ozdemir, 2016). Whereas differences are generally small and 

ought to be completely ruled out by consistent standards over time one should mention 

that there still exist minor differences in the accounting point of view (IFRS and GAAP) 

concerning loan provisions and the economic capital or Basel III-based point of view 

(Witzany, 2017, pp. 6-7, 90). 

Another intuitive possibility to model the PD and LGD correlation would be by a 

straightforward differentiating of the various components of correlations in question, e.g., 

when modeled by a linear multi-factor framework, and then adding again the mentioned 

margins of conservatism. This means the mean PD and LGD need to be increased for not 

taking the correlations into account (Miu & Ozdemir, 2016). 

Lee, Rösch, and Scheule examined the “smile formed” dependency, especially for 

mortgages (Lee et al., 2014). Another model extension of Ozdemir and Miu by German 

researchers was – instead of capturing “only” the dependence between the default 

indicator and the LGD and here also including the secured and unsecured recovery rates 

– additionally taking into account the remaining risk parameter EAD by means of the 

utilization rate at default and hence models all dependencies (Eckert et al., 2016). 

Each of these variables in the model is driven by an individual risk driver, which 

in turn again depends on systematic factors as well as on idiosyncratic factors. Risk 

factors are coupled within a multi-factor framework, then connected through a linear 

regressive structure and equipped with their individual (and in general a priori unknown) 

weights. A multivariate extension of Heckman’s selection model of 1979 was developed 

for the model in order to estimate the unknown parameters in an unbiased fashion within 

a maximum likelihood framework (Eckert et al., 2016). 

As a conclusion the Tasche model, having the advantage of a not necessary 

empirical calibration, and especially the latest extension by Fischer, Eckert, and Jakob, 

 

195 Cf. MoCs as mentioned in Chapter 1. 
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which is empirically calibrated, however, covers all risk parameters, are the most 

developed extensions in the recent years. To summarize, for structural credit portfolio 

models with rating transitions as in CreditMetrics®, the following steps have to be 

executed. 

 

1. Determination of the PD and PM for every single credit of the portfolio  

and the derivation of the (rating) transition matrix.  

2. The valuation of the assets of the portfolio according to the correlated  

scenarios, normally using empirical stock correlations, and hence proxy 

joint probabilities of transition from one rating to another finally using the 

different rating-corresponding forward curves for discounting, is done. 

The applied scenarios are, e.g., for big portfolios, then created with Monte 

Carlo simulations and in that case not analytically traceable. 

3. The calculation of the CreditVaR as the unexpected loss is  

executed. 

 

If feasible then the steps are accompanied by a PD-LGD link as in the Tasche or  

Eckert models.  

The most common industry implementations of structural models are KMV® by 

the mentioned authors Kealhofer, McQuown, and Vašíček of KMV® (founded in 1989, 

later acquired by Moody’s ®) and the CreditMetrics® model of J. P. Morgan® in 1997 (J. 

P. Morgan, 1997; Kealhofer, 1997; Vašíček, 2012). The original proposal and the technical 

document on CreditMetrics® are valuable sources for learning how the ideas for 

constructing CreditMetrics® were developed and how it was assembled (J. P. Morgan, 

1997; RiskMetrics Group, 2007). 

KMV® is a slight modification of CreditMetrics®, where especially the default 

threshold is set in a different manner (Lu, 2005). It uses a so-called distance to default (in 

terms of asset price minus debt price as well as time) originally introduced by Vašíček 

and an empirical relationship between that distance and estimated default rates or 

frequencies, the Expected Default Frequency EDF (Kealhofer, 1997; Vašíček, 1984). It 

was the first popular industrial implementation of a structural model and was sold to 

Moody’s ® after some time (Bouteillé & Coogan-Pushner, 2021). For the empirical 

relationship to be built it needed samples from firms. 
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KMV® has observed in an empirical fashion from a sample of companies that 

these are generally more likely to default in case their asset values breach a critical level. 

This level generally lies at some point between the value of its total liabilities and total 

short-term debt (Alexander & Sheedy, 2014; Ong, 2005). For the KMV® model the 

Default Point (DPT), in some terminologies the default threshold, is approximated as 

follows (Bouteillé & Coogan-Pushner, 2021; Kealhofer, 1997; Witzany, 2017, pp. 143-

148): 

 𝐷𝑃𝑇 =  𝑆𝑇𝐷 +  0.5 𝐿𝑇𝐷 (155) 

where it is declared STD: Short-Term Debt and LTD: Long-Term Debt. The 

default point amount is hence approximated via the total sum of short-term debt and half 

of the long-term one. 

Furthermore, before computing the probability of default KMV® models 

calculate an index called Distance to Default (DD) as in (Bouteillé & Coogan-Pushner, 

2021). 

 𝐷𝐷 =
E[𝑉𝑇] − 𝐷𝑃𝑇

σ
 (156) 

This is the difference between the expectation value of a firm’s assets and the 

Default Point, normalized by the standard deviation of the firm’s future asset returns 

(Bielecki & Rutkowski, 2004; Ong, 2005; Vašíček, 1984). As the expected value is taken, 

it is a forward-looking measure. 

A further difference is that KMV® models use historical sets of frequencies of 

default (the mentioned EDF, Expected Default Frequencies) instead of a theoretical 

normal or log-normal distribution and are therefore slightly more flexible when 

calibrating the models (Bouteillé & Coogan-Pushner, 2021, pp. 88-90; Kealhofer, 1997; 

Witzany, 2017, pp. 143-148). This plays especially out for special small companies 

(SMEs) as shown by Zhang et al. (Zhang et al., 2007). However, it is economically less 

feasible, and the exact calibration is a business secret. Bohn together with Crosbie 

introduced some extensions of the KMV® model that soften the condition that the 

relationship between asset volatility and equity volatility is fixed, and they justify the use 

of a KMV model in that regard (Crosbie, 2002; Kamali et al., 2020, p. 35). A further 

enhancement of the Merton model was done by estimating volatility directly from market-

observable returns on a company’s value (Charitou et al., 2013). 
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Differences between the model KMV®196  and the CreditMetrics® model are 

generally of minor importance, in practice CreditMetrics® is preferred by much more 

banks and better to calibrate empirically (Frey & Mcneil, 2003; Hahnenstein, 2003; 

Hickman & Koyluoglu, 1998; Kealhofer & Kurbat, 2001). Various researchers like Su & 

Huang, or Li et al. also showed the superiority of the “CreditMetrics®-extension” ZPP 

compared to the KMV® approach and similar variants (Fantazzini & Zimin, 2020, p. 1; 

Li et al., 2016; Su & Huang, 2010). ZPP is based on a copula approach to link stock and 

bond prices in the asset-value model (de Giuli et al., 2007). It also uses a Monte Carlo 

simulation for generating the results. It assumes that a company defaults, once the price 

level is nonpositive (≤ 0), as a price process the authors used however a (student-t process 

including) GARCH method (de Giuli et al., 2007; Kamali et al., 2020). Fantazzini further 

found a method to include his ZPP model for credit risk in a general multivariate 

framework to measure market and credit risk simultaneously, e.g., for cryptos (Fantazzini 

& Zimin, 2020). 

Another possibility to measure the migrations in credit risk is to measure the credit 

spread change occurring directly after a migration ceterus paribus. It is useful to predict 

credit spreads with the help of so-called credit spread models (CSM). 

As mentioned, several credit spread models exist, are however considerably less 

often employed than CPMs and are mainly related to problems arising in traded markets. 

Fons and Foss mainly contributed to the early development of spread models (Fons, 1987; 

Fons, 1994; Foss, 1995). The most famous proponents are however the Das or the Nielsen 

and Ronn model (Das & Tufano, 1996; Das 1997; Nielsen & Ronn, 1997, pp. 175-196). 

Both types of models are two-factor models, which describe the stochastic default-free 

(short-term) interest rate and the stochastic movement of a short-term credit spread, which 

are usually both correlated via Brownian motions (Bielecki & Rutkowski, 2004, p. 264; 

Das 1995; Nielsen & Ronn, 1997). 

There is literature for structural as well as reduced form models linking them to 

credit spreads data and subsequently full credit spread models (Das & Tufano, 1996; 

Giesecke & Goldberg, 2005; Jarrow et al., 1997). In a similar context, Das and Tufano 

 

196  Moody’s ® derived and developed further versions like RiskCalc® (Kocagil et al., 2001). Also 

RiskFrontier® and other variants were built, the newest one being the cloud-based software 

PortfolioManager ® from 2021 (Moody’s, 2021). 
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also introduced model extensions of CPMs with stochastic recovery rates (Bielecki & 

Rutkowski, 2004, p. 269; Das & Tufano, 1996). 

The most promising approach is extracting the credit spreads via the payout ratio 

(Grass, 2013). The utilized measure CSPOR then denotes the increase in continuous 

interest payments to creditors which is necessary to exactly offset the impact of an 

increase in the asset variance on the option value of the debt (Grass, 2013, p. 28). The 

measure used by Grass in his work is applied to the credit spreads of corporate bonds and 

credit default swaps (CDS) and clearly outperforms the used benchmark. Its associated 

predictors outperform the ones from a powerful reduced form model (Grass, 2013). 

Before that result, Mason and Rosenfeld (1984) showed how these types of credit 

risk models “systematically underestimated observed spreads” (Arora et al., 2005, p. 1; 

Mason & Rosenfeld, 1984; Zhu et al., 2005). Their research observed companies during 

the period 1977 to 1981, as described in (Arora et. al, 2005, p. 1; Mason & Rosenfeld, 

1984). Ogden later also confirmed that, finding that the structural models “under-

predicted spreads over U.S. treasuries by an average of 104 basis points” (Arora et al., 

2005, p. 1; Ogden, 1987). Furthermore, Lyden and Saraniti executed a comparative 

analysis of the Merton and the Longstaff-Schwartz models, which are an extension of the 

Merton model with stochastic interest rates, and find that both models still under-

estimated the credit spreads by around 50-100 basis points (Lyden & Saraniti, 2001; 

Ogden, 1987). 

The later introduced KMV® model, as explained before, “appears to produce 

unbiased, robust predictions of corporate bond credit spreads” (Agrawal et al., 2004; 

Arora et al., 2005, p. 2). 

Hence as a result, structural (Merton) models were also modified. Until then, the 

typical structural models estimated a “corporate-risk-free reference curve” instead of 

utilizing the treasury curve (Arora et al., 2005, p. 2). Arora, Bohn, and Zhu found that the 

under-prediction which seemed to appear for the Merton model resulted from the 

selection of a “wrong” benchmark curve,  

in the sense that the spread over U.S. treasuries includes more than compensation 

for just corporate credit risk. The assumption here is that the appropriate corporate 

default risk-free curve is closer to the U.S. swap curve (typical estimates are ten 

to twenty basis points less than the U.S. swap curve.). (Arora et al., 2005, p. 2) 
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Correcting for that choice and selecting the appropriate curve yields plausible 

results for Merton models as well (Arora et al., 2005, pp. 3, 19). Further extensions for it 

were, e.g., the assumption of a liquidity or funding premium in connection with a 

company’s direct access to capital markets, time-varying market confidence premiums 

and an expected recovery amount which is time-varying – the latter already described 

before (Arora et al., 2005, p. 3; Bielecki & Rutkowski, 2003; Bielecki & Rutkowski, 

2004; Grass, 2013; RiskMetrics Group, 2007). 

All these modifications, of which many are commonly used today as a post-crisis 

multi-curve approach are state-of-the-art in current CreditMetrics®-implementations, 

contributing to finally realistic credit spread (CS) estimates as shown by Grass. Reduced 

form models on the contrary are generally worse in that regard on a broader scale (Grass, 

2013). The advantage however is, as they are atheoretic (economically), they are quite 

abstract and flexible in their functional form and application. Unfortunately, however, as 

Duffie proved, this flexibility results in a model fitting rather strong in-sample, if carefully 

calibrated to a certain set of obligors and spreads, but with poor out-of-sample properties 

and hence general predictive ability (Arora et al., 2005, p. 4; Duffie, 1999). Duffie further 

showed that the parameter estimates can be fairly unstable (Duffie, 1999; Geyer et al., 

2001). 

These results are already shedding some light on the overall picture when 

structural and reduced form models are compared. 

Before comparing these two models the third type of Credit Portfolio models used 

in the industry is briefly introduced, which is known as the econometrically-based model 

approach, like CreditPortfolioView®. As econometric models are fairly similar to 

structural models, solely a brief, compact overview is provided. In the banking industry, 

many savings and loans associations like the (rating) service providers S-Rating® and 

RSU® 197  for the German Sparkassen and Landesbanken 198  or American S&L 199 

associations apply that model. 200  The econometric models’ aim is to provide an 

empirically estimated connection between each obligor’s default rate and a normally 

 

197 Which is the RSU Rating Service Unit GmbH & Co. KG in Munich.  
198 State-owned banks in Germany, shareholders are mainly the connected federal states like the free state 

of Bavaria for the Bayern LB®, Baden-Württemberg for LBBW®, Lower-Saxony for NORD/LB® and 

further Sparkassen associations of the states. 
199 Savings & loans 
200  As can be seen (in German) on https://www.s-rating-risikosysteme.de/Unser_Aufgabenspektrum/ 

CreditPortfolioView.html?msclkid=fb215a49ac1c11ec8c29519f390b0b7d (Retrieved Mai 7, 2022) 

https://www.s-rating-risikosysteme.de/Unser_Aufgabenspektrum/%20CreditPortfolioView.html?msclkid=fb215a49ac1c11ec8c29519f390b0b7d
https://www.s-rating-risikosysteme.de/Unser_Aufgabenspektrum/%20CreditPortfolioView.html?msclkid=fb215a49ac1c11ec8c29519f390b0b7d
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distributed index of macroeconomic parameters linked by a “link function”. Standard 

parameters include, e.g., inflation, GDP growth, or unemployment figures (Bluhm et al., 

2003; Bucay & Rosen, 2001; Wilson, 1998). 

As common in the rating industry the index yi,t of macro-parameters can be 

transformed to a default probability utilizing a Logit (or Probit) function (Wilson, 1998; 

Witzany, 2017, p. 138): 

 𝑝𝑖,𝑡 =
1

1 + 𝑒𝑦(𝑖,𝑡)
 (157) 

The macroeconomic index yi,t is composed of different normally distributed 

macro-variables with lagged dependency zj,t , such that for all j (in the index) and discrete 

times t: 

 𝑧𝑗,𝑡 = 𝑎𝑗,0 +  𝑎𝑗,1𝑧𝑗,𝑡−1 + 𝑎𝑗,2𝑧𝑗,𝑡−2 + ⋯ + ε 𝑗,𝑡 (158) 

with εj,t denoting a normally distributed random shock (or innovation). This is due 

to the fact that macro-economic shocks might transfer to the target variable with a certain 

lag in time (Wilson, 1998). So, the macro-variables are autoregressive as in other ARIMA 

models (Witzany, 2017, p. 139). As result, one derives 

 𝑦𝑖,𝑡 = 𝑏𝑖,0 +  𝑏𝑖,1𝑧1,𝑡 + 𝑏𝑖,2𝑧2,𝑡 + ⋯ + ε 
𝑗,𝑡

∗ (159) 

with ε*j,t being a normally distributed random shock, also called “innovation” in 

economics (Bluhm et al., 2003; Witzany, 2017). 

The factor loadings for the index are then completely determined by the empirical 

relationship between the default rates and the macroeconomic variables calculated by – 

as the formula further above indicates – logistic regression (Hickman & Koyluoglu, 1998; 

Wilson, 1998). The macro variables’ sensitivities (“betas”) themselves are also calculated 

by regression of the empirical model. A test for the calibration of the logistic regression 

can be the Hosmer-Lemeshow one as seen before.  

The use of the model and the calculation of the loss distribution by Monte Carlo 

(MC) simulation is summarized by the following five steps (Wilson, 1998): 

 

1. Depending on their covariance structures, random innovations are drawn  

to both, each macroeconomic variable and the index value, by using 

empirical time series and hence include the covariances of the data 

2.  Calculation of: 

2.1  the macroeconomic variables’ results received from the lagged (past)  
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values as well as random shocks (building it up from past values and 1.) 

2.2  index values from the macroeconomic values and the index random shocks 

(like in 2.1) 

2.3  The default probabilities are derived as a result. 

3.  The distribution of defaults is calculated by convoluting each debtor’s 

distribution of results (consisting of two states, which are then used for 

convolution). This is done for every iteration. 

4.  A distribution of portfolio losses by calculating ten thousand of paths for 

the MC simulation is executed as next step four. 

5.  Extraction of the VaR for a given time interval and confidence level is 

implemented finally. 

 

The original founder of CreditPortfolioView® is Wilson and the company 

McKinsey® (Wilson, 1998). It is now widely used in various derivative forms within the 

banking industry. Apart from the empirical regression and link function via logistical 

regression, which has to be estimated at the beginning, it is quite similar to structural 

models also exploiting a Monte Carlo simulation for calculating the VaR (Bielecki & 

Rutkowski, 2004; Witzany, 2017, p. 140). However, such a forecast model induces 

additional uncertainty (Hamerle et al., 2003, p. 14). Furthermore, it is not as widely used 

in the industry and with more shortcomings regarding, i.e., the parameter estimations and 

regressions as will be shown in the following sub-chapter.  

4.3 Reduced Form Versus Structural Models in Measuring and 

Managing Credit Portfolio Risks  

Both types of Credit Portfolio models structural and reduced form models have 

their inherent strengths and shortcomings. There is extensive literature comparing these 

models as shown in this chapter and many different ways of categorization. 

The first and most evident differences are inherent in the models themselves and 

are encoded in the way a default is described and on the assumptions the models have. 

The following table is featuring these differences in a direct manner, stemming from a 

literature review and practical use-cases (Bélanger et al., 2003; Bluhm et al., 2003; Diaz 

& Gemmill, 2002; Gordy, 1998b; Hickman & Koyluoglu, 1998; Jarrow & Protter, 2015): 
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Table 3 Differences between hazard rate models and structural models, with 

different properties.  

Model: type and equivalent 

used names 

Intensity rate models 

(or hazard rate models or 

reduced form models, 

actuarial models, (mixed) 

Poisson-Gamma 

distribution models, credit 

default models201) 

Structural models 

(or Merton models, 

EV/Enterprise-value 

models, asset-value models, 

credit migration (portfolio) 

models) 

Economic background, 

accessibility 

No direct economic 

derivative, harder to access 

and imagine, atheoretic but 

flexible 

Direct economic derivative, 

dependence on one (in case 

of a one-factor model, 

“business cycle”) or more 

economically feasible factors, 

good to access 

Default characteristics Defaults appear randomly, 

exogenously defined, no 

prior hypothesis on the 

causes of default of a 

company 

Defaults and its causes are 

(totally) pre-defined by a 

company’s debt, its asset 

structure and its value’s 

movement 

Information (requirement) No further information more 

than general market 

information is required 

(Full) information about the 

company’s capital is required 

and transparent in the market 

in the standard version 

Origins Valuation of companies’ 

assets and capital-structure, 

option price theory 

Insurance mathematics, 

actuarial, and stochastic 

background 

Generality Not too general, often 

“overfitting” 

Very high and general 

 

201 Which is however not entirely correct as also, e.g., structural models can be assembled as pure default 

(mode) models as the Gordy model or CreditMetrics® in a simplified version without migrations, etc. As 

seen on the other hand also extended migration mode versions of, e.g., CreditRisk+® exist, yet both not in 

its standard version. 
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Calibration Very exactly  Very exactly 

Extensions (as illustrated in 

detail in the sub-chapters 

above) 

Migration mode models, 

stochastic interest rates, 

correlations – in the basic 

version the number of 

defaults over a period is 

independent from that of any 

other period, stochastic 

recoveries and linkage 

through copulas (though not 

common and CID is still the 

most popular) 

Multi-factor models, 

randomness in defaults, 

multi-curve approaches, 

stochastic interest rates, 

correlations – in the basic 

version the number of 

defaults over a period is 

independent from that of any 

other period, stochastic 

recoveries and linkage 

through copulas as, e.g., in 

ZPP (though not common 

yet) 

Source: Own illustration, based upon an own collection including the named sources in parentheses above. 

Having laid out these differences one can directly derive the following results: 

• The structural models are more approachable and economically feasible compared 

to reduced form models whereas 

• Reduced form models are easier to implement, they need less data, storage, and 

computer performance. 

 

The first important comparison of credit portfolio models, enriched by ideas from 

Gordy, was done by Hickman and Koyluoglu (Gordy, 1998b; Hickman & Koyluoglu, 

1998). The primary aim of this comparison was to show that the underlying ideas, theories 

and results of the three credit portfolio models CreditMetrics®, CreditRisk+® and 

CreditPortfolioView® are similar and by putting them within a single general framework 

and harmonizing them, as well as adjusting their parameters, Koyluoglu and Hickman 

could prove that. Wong and later Bélanger developed similar ideas of generalization and 

unification (Bélanger, 2001; Wong, 1998). They also use these three components 

(indirectly) and utilize a generalized default time (Bélanger, 2001; Bielecki & Rutkowski, 

2004, p. 250; Wong, 1998). 
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The core principle is to set up a generalized framework consisting of three main 

components, in which regard the division of conditional defaults and joint defaults is 

similar to CreditRisk+®: 

The joint default distribution is again describing the correlation in the portfolio, 

i.e., how strongly obligors’ conditional default rates vary together in various cases or 

“states” (Lando, 2000b). It is also referred to as dependent defaults (Bielecki & 

Rutkowski, 2004, pp. 293- 313). 

The second is the conditional distribution of the portfolio default rate. For 

each ”case” and its corresponding obligors’ conditional default rates, one can derive the 

common conditional distribution of a homogeneous sub-portfolio default rate in the same 

way as if individual defaults would be independent (Bielecki & Rutkowski, 2004; 

Hickman & Koyluoglu, 1998). One speaks of conditionally independent defaults 

(Bielecki & Rutkowski, 2004, pp. 265-292). 

The third component is then the final aggregation of the data. The aim is to receive 

the unconditional portfolio default distribution. This distribution is calculated by 

aggregating and averaging the homogeneous sub-portfolios’ conditional distributions of 

defaults in each “state” weighted by the corresponding probability of the given state 

(Wong, 1998). 

This heuristically direct feasible scheme can be represented as follows: 
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Figure 40 Common framework for structural, hazard rate and econometric credit 

risk models.  

Source: Own illustration. 

The default rate distribution is given explicitly in hazard rate models and 

implicitly in structural (or econometric) ones. All three models mentioned above further 

link their defaults rates to variables describing the economic cycle or state (“systematic 

factors”), and this fact can be described by an underlying transformative conditional 

default rate function (Hickman & Koyluoglu, 1998; Wong, 1998). 

For deriving the transformative function in the structural model the asset value 

change has to be disassembled, as common in the context of multi-linear models, into a 

set of orthonormal systematic factors xk, which are all governed by a normal distribution 

in the same way as the further idiosyncratic factor εi (Hickman & Koyluoglu, 1998, p. 5). 

 ∆𝑉𝑖 =  𝑎𝑖,1𝑥1 + 𝑎𝑖,2𝑥2 + ⋯ + √(1 − ∑ 𝑎𝑖,𝑘
2ε𝑖

𝑘

)   (160) 

with factor loadings ai,k and xk, εi iid ~ N [1,0], and ΔVi  i.i.d ~ N [1,0] (Hickman 

& Koyluoglu, 1998, p. 5). Hence, the complete asset value change is normally distributed. 
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The mean of the distribution is determined by the factor loadings and values, the standard 

deviation as a second necessary parameter for a normal distribution is further determined 

by the weight of the idiosyncratic factor (Hickman & Koyluoglu, 1998, p. 5). 

This transformation resembles the multi-factor approach of the econometric 

models as will be discovered soon. 

In practice, the systematic factors and their loadings introduced above are chosen 

in such a manner that they are able to replicate the empirically given asset correlations 

(Gordy, 1998b). The correlations are generally derived by a Cholesky decomposition or 

principal components analysis – PCA (Hull, 2015, p. 230; RiskMetrics Group, 2007, p. 

115). For uniqueness, as known from linear algebra, N one-dimensional factors for N 

obligors are required, otherwise less. 

Given a default threshold c and the condition ΔVi  ≤  c for defaults as before 

(Gordy, 1998b). Then the unconditional default probability, denoted as p*, is given by the 

calibration p* = Φ(c), where Φ is labeling the cumulative density function (cdf) of the 

normal distribution as common in statistics (Gordy, 1998b; Hickman & Koyluglu, 1998; 

J.P. Morgan, 1997). The default rate, which is “conditioned on the values of systematic 

factors”, is then by the arguments of factor loadings defining mean (m) and deviation (d) 

directly written as 

 𝑝𝑖|𝑋 =  Φ (
𝑐−∑ 𝑎𝑖,𝑘

 x𝑘)𝑘

√1−∑ 𝑎𝑖,𝑘
2

𝑘

)= Φ (
𝑐−𝑚

𝑑
) (161) 

 (Bluhm et al., 2003; Hickman & Koyluoglu, 1998, p. 5). 

For a homogeneous portfolio, the systematic factors can be conveniently 

expressed by one single variable y, with μ = ∑k ai,k
2
  describing the asset correlation in the 

homogeneous portfolio (Hickman & Koyluoglu, 1998, p. 5). Then the searched 

probability density function for the default rate f (p), which is related to the probability 

density function of normally distributed systematic factors ϕ(y) as seen, can be derived 

by means of using the Radon-Nikodym-derivative (Björk, 2009, pp. 478-479). That yields 

 
𝑓(𝑝) =

√1 − μ  ϕ (
𝑐 − Φ−1(𝑝)√1 − μ

√μ
)

√μ ϕ(Φ−1(𝑝))
 

(162) 

as seen in (Björk, 2009; Hickman & Koyluoglu, 1998, p. 5). 
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The RN-derivative is basically a means and accompanying theory to change 

(substitute) different measures and densities of probability distributions in a pre-defined 

way to simplify them (Björk, 2009). 

In the hazard rate model, the default rate distribution f (p; μ; σ) is Gamma 

distributed as described before. Hence, to account for a normally distributed systematic 

factor the following equation for the transformation function and all points (a; b) must be 

upheld (Hickman & Koylugolu, 1998, p. 6; Wong, 1998): 

 ∫ Γ(𝑝;  α;  β) 𝑑𝑝 = ∫ ϕ(𝑚) 𝑑𝑚
∞

𝑎

𝑏

0

 (163) 

Hence, the function for the transformation is  

 𝑝|𝑚  =  Θ−1(1 −  Φ(𝑚);  α;  β)  (164) 

In that expression, Θ is denoting the cumulative density function of the Gamma 

function. While the approach is described with respect to normally distributed systematic 

factors, the normal distribution is not a necessary assumption as seen in the derivation of 

formulas – nonnormality would still make them comparable in the same manner, as long 

as standard conditions like the existence of inverse CDFs is upheld, it may just change 

the specific results (Hickman & Koyluoglu, 1998, p. 7). 

After describing the joint default behavior in the three models the next step as 

referenced above is the conditional distribution of portfolio default rates (Wong, 1998). 

Conditional means again that a homogeneous sub-portfolio is considered, in which all 

borrowers’ debts are independent when fixed (conditional) default rates are given as 

described above. As already illustrated the probability of k defaults in an n obligor-

portfolio then follows a Binomial distribution. While some models explicitly use a 

Binomial distribution, e.g., econometric ones, and some implicitly like structural ones the 

use of the distribution in the various models can be summed up as follows, see also (Wong, 

1998): 

In structural models, one calculates asset value change for each obligor and is then 

checking for default (with result yes/no), which is at the end equivalent to the two states 

yes/no of a Binomial distribution.  

CreditPortfolioView and other econometric models convolute the individual 

obligor’s distributions in an iterative procedure as mentioned and these individual ones 

are all directly Binomial distributions. 
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CreditRisk+® approximates the Binomial with the Poisson distribution as 

described before and as the Poisson distribution is the limiting distribution for the 

Binomial distribution as shown in (Eberlein, 2007), for reasonable portfolios with few 

defaults, hence where the probability that multiple defaults occur is low, there is no 

significant difference as shown by Stuart and Ord (Stuart & Ord, 1994). 

Therefore, one can describe the conditional probability (CP) of default rates by a 

uniform Binomial setting and finally needs an aggregation function as the third necessary 

part of the framework. As shown before, the unconditional probability distribution of 

defaults is derived by aggregating, i.e., by “averaging across the conditional distributions 

of portfolio defaults” for all various “states of the world”, which are weighted by the 

probability of a given state with the help of a convolution integral (Frey & McNeil, 2001; 

Hickman & Koyluoglu, 1998, p. 7). 

For a homogeneous sub-portfolio with n obligors and with a single systematic 

factor, which is (roughly) normally distributed, in a structural or econometric model one 

subsequently obtains for the convolution integral the formula below (Duffie & Singleton, 

1999; Hickman & Koyluoglu, 1998; Wong et al., 1998). 

 P (𝑘 𝑑𝑒𝑓𝑎𝑢𝑙𝑡| 𝑛 𝑜𝑏𝑙𝑖𝑔𝑜𝑟𝑠) =  ∫ B(𝑘;  𝑛; 𝑝|𝑚) ϕ(𝑚)
∞

−∞
 𝑑𝑚  (165) 

For a homogeneous sub-portfolio in the case of a hazard rate model the integral, 

as shown before, is consisting of Poisson distributed independent obligor default rates 

convoluted with a Gamma function: 

 P (𝑘 𝑑𝑒𝑓𝑎𝑢𝑙𝑡| 𝑛 𝑜𝑏𝑙𝑖𝑔𝑜𝑟𝑠) =  ∫ P(𝑘; 𝑛𝑝) Γ(𝑝; α; β)
∞

0

 𝑑𝑝 (166) 

Here the convolution of the Poisson distribution with the Gamma distribution 

yields the Negative Binomial Distribution as mentioned in the CreditRisk+® description 

in this chapter. 

The integrals are directly calculable and in all of the three modeling approaches 

“the procedures are (theoretically) exact in the limit”, using enough Monte Carlo 

simulations in the structural or econometric cases respectively iterations and small band 

sizes in the hazard rate case of models (Hickman & Koyluoglu, 1998, p. 8). The extension 

is straightforward. 

An overview of the 3-step-process executed can be seen in the following figure: 
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Figure 41 Unified framework and components of commercial credit portfolio models.  

Source: Own illustration in line with (Hickman & Koyluoglu, 1998, p. 9). 

As all models rely on the parameters of unconditional default probability and 

joint-default behavior the last parameter is the decisive one diverging in the different 

models and appearing in various forms. Structural models utilize asset correlations, 

econometric models calculate regression coefficients for macroeconomic factors 

incorporating correlations amongst the factors and actuarial models exploit the default 

rate volatilities of different sectors (Frey & McNeil, 2001; Gordy, 1998b; RiskMetrics 

Group, 2007, pp. 92-102). An extension of CreditRisk+, the CreditRisk++ model by Han 

and Kang mentioned again later, exists which uses explicit asset correlations (with a risk 

factor decomposition to a systematic and an idiosyncratic factor) as well and is in that 
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case classified with structural ones, yet performs very similar as CreditRisk+ (Han, 2014; 

Han & Kang, 2008). 

All these parameters for joint-default behavior are related and yield equivalent 

information for describing joint-default behavior (Bélanger et al., 2003; Wong, 1998). 

To link coefficients and correlations, as described before, the “joint-default 

behavior” is represented in structural models as an asset correlation matrix of the pairwise 

asset correlations, or in an equivalent fashion represented by a set of asset factor loadings 

in the following way (Hickman & Koyluoglu, 1998, p. 9; RiskMetrics Group, 2007, pp. 

92-102): 

 ∆𝑉𝑖 =  𝑎𝑖,1𝑥1 + 𝑎𝑖,2𝑥2 + ⋯ + √(1 − ∑ 𝑎𝑖,𝑘
2ε𝑖

𝑘

)    (167) 

with factor loadings ai,k and xk, εi i.i.d ~ N[1,0], and ΔVi  i.i.d ~ N[1,0]. In the next 

step, because the systematic factors were defined above to be orthonormal202, one can 

obtain: 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛[𝛥𝑉𝑖, 𝛥𝑉𝑗 ]

=
(E[Δ𝑉𝑖 Δ𝑉𝑗] −  E[Δ𝑉𝑖]E[Δ𝑉𝑗])

√(E[Δ𝑉𝑖
2] −  E[Δ𝑉𝑖

 ]2) − (E[Δ𝑉𝑗
2] − E[Δ𝑉𝑗

 ]
2

)

= 𝑎𝑖,1𝑎𝑗,1 + 𝑎𝑖,2𝑎𝑗,2 +  …  

(168) 

Hence, a correlation matrix is directly calculated given the factor loadings of 

assets and on the other hand, factor loadings are derived from the correlation matrix 

(Bluhm et al., 2003; Hickman & Koyluoglu, 1998, p. 9; Wilson, 1998). 

The econometric models’ logistic regression coefficients, characterizing the 

relationship of the default rate “index” to macroeconomic variables, apparently have a 

very strong similarity to the asset factor loadings of the structural models and therefore 

an index correlation is described in the same fashion (Bluhm et al., 2003). 

Now the default rate volatility s is just calculated by the standard integral formula 

for the variance s2: 

 𝑠2 = ∫ (𝑝 − 𝑝∗)2𝑓(𝑝)𝑑𝑝
∞

0

 (169) 

and for a structural model (with r: asset correlation): 

 

202 This means orthogonal (the scalar product is equal to zero) and normalized with Euclidean norm 

(“length”) one. 
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 𝑠2 = ∫  (Φ(
Φ−1(𝑝∗) − 𝑚√𝑟

√1 − 𝑟

∞

0

) − 𝑝∗) 2ϕ(𝑚) 𝑑𝑚 (170) 

Consequently, the default rate volatility is calculated as a function of r 

(correlation) and p* (unconditional default rate) (Gordy, 1998b; Hickman & Koyluoglu, 

1998). 

For the special case of a homogeneous sub-portfolio, the correspondence between 

default correlation and variance of the default rate is even directly feasible and approaches  

 𝑠2 =  (1 − 𝑝∗)𝑝∗𝑟𝑑𝑒𝑓𝑎𝑢𝑙𝑡  (171) 

 (Hickman & Koyluoglu, 1998, p. 11).  

Generally, all models utilize a two-parameter-defined default rate distribution. 

Therefore, the mean and standard deviation (or first and second moments or respectively 

here the unconditional default rate and the standard deviation of the unconditional default 

rate) are “sufficient statistics to define the parameters for any of the models” (Hickman 

& Koyluoglu, 1998, p. 12; Witte & Witte, 2010). 

Hence, by setting the unconditional default rate p* and standard deviation of 

default rates, one can derive the necessary parameters for all three kinds of models to 

describe them within the same presented framework and transform them into each other. 

The structural model needs the parameters c (threshold) and r (asset correlation) 

as seen. With  

 𝑐 = Ф−1(𝑝∗) (172) 

and then 

 𝑠2 = ∫  (Φ(
Φ−1(𝑝∗) − 𝑚√𝑟

√1 − 𝑟

∞

0

) − 𝑝∗) 2ϕ(𝑚) 𝑑𝑚  (173) 

one can derive c and r by setting p* and s. 

For the econometric model, the factor loadings and coefficients are defined and 

by regrouping and setting 

 
 

𝑦𝑖,𝑡 = 𝑈𝑖 + 𝑉𝑖𝑚, 
(174) 

where  

 𝑈𝑖 = 𝑎𝑖,0 + ∑ 𝑎𝑖,𝑘
 

𝑘  

(𝑏𝑘,0 + ∑ 𝑎𝑘,𝑗𝑥𝑘,𝑡−𝑗
 )

𝑗

 (175) 

and Vi is the residual parameter  
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𝑉 = 

 √𝑣𝑎𝑟(ζ𝑖,𝑡) + ∑(2 𝑎𝑖,𝑘
 𝑐𝑜𝑣(𝜁𝑖,𝑡 ,  𝑒𝑘,𝑡) + 𝑎𝑖,𝑘

 2 𝑣𝑎𝑟(𝑒𝑘,𝑡) + ∑ 𝑎𝑖,𝑘
 𝑎𝑖,𝑚

 𝑐𝑜𝑣( 𝑒𝑚,𝑡 , 𝑒𝑘,𝑡 
)

𝑘≠𝑚

)

𝑘

 
(176) 

with m ~ N[0,1], condensing the macroeconomic variables and index into a single 

equation for the index yi,t, such that 

 𝑦𝑖,𝑡 = (𝑎𝑖,0 + ∑ 𝑎𝑖,𝑘
 

𝑘  

(𝑏𝑘,0 + ∑ 𝑎𝑘,𝑗𝑥𝑘,𝑡−𝑗
 )) + ∑ 𝑎𝑖,𝑘

 

𝑘𝑗

𝑒𝑘,𝑡 + ζ𝑖,𝑡 (177) 

it is required to derive just U and V (Engel, 2008; Hickman & Koyluoglu, 1998, 

p. 10; Wilson, 1998). 

This can be achieved with the two equations (given p* and s): 

 𝑝∗ = ∫
1

1 + 𝑒𝑈+𝑉𝑚
ϕ(𝑚) 𝑑𝑚

∞

−∞

 (178) 

 𝑠2 = ∫ (
1

1 + 𝑒𝑈+𝑉𝑚
− 𝑝∗)

2

ϕ(𝑚) 𝑑𝑚
∞

−∞

 (179) 

The parameters of the actuarial model are directly derived from p* and s by 

definition (cf. above) by 

 α =
𝑝∗2

𝑠2
  (180) 

and 

 β =
𝑠2

𝑝∗
 (181) 

For all of the presented models the probability density functions which are 

describing the default rate look “very similar”, with only minor discrepancies at the tail 

within extreme rates (Hickman & Koyluoglu, 1998, pp. 13–18; Wong, 1998). 

Hickman and Koyluoglu conclude that “the models are virtually indistinguishable 

when the systematic factor is greater than negative two standard deviations, which 

accounts for almost 98% of the probability mass” (Hickman & Koyluoglu, 1998, p. 13). 

All models then finally belong to a single general framework, which consists of 

three components  

• the (joint) default rate distribution  

• the conditional default distribution 

• the convolution/aggregation technique to receive an unconditional default 

distribution 
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Differences between the various models only “arise from differences in modeling 

joint-default behavior which manifest in the default rate distribution” (Hickman & 

Koyluoglu, 1998, pp. 17-20; Overbeck & Schmidt, 2009). Hence, after the joint default 

parameters are harmonized (by setting p* and s) the default rate distributions are 

remarkably similar and comparable. This fundamental result is apparently mathematically 

replicable and was confirmed by many studies like Wahrenburg and Niethen, by Schwarz, 

or Gordy (Gordy, 1998b; Schwarz, 2006; Wahrenburg & Niethen, 2000, pp. 14 - 20). 

Differences in the results of the three models can therefore be attributed to 

parameter value estimates implicating the default rate behavior.  

These estimates, however, can induce significant differences between the models 

with factors or multiples larger than 3, as Wahrenburg and Niethen showed with an 

example of n homogeneous loans, all from the German building sector (Wahrenburg & 

Niethen, 2000). They made use of same sized-loans, as to avoid size concentration effects 

on the VaR estimator, with estimators for empirical input data derived from the 

insolvency time series (1980-1994) of the German official federal statistics office for the 

building sector (“Statistisches Bundesamt für das Baugewerbe”) as well as stock returns 

from building companies in the German stock index DAX 100® from that time 

(Wahrenburg & Niethen, 2000). Gordy in another study, which was concentrating on 

default correlations, assumes that all loans are ordinary term loans, the distribution in size 

and S & P ® (covering a 17 year period from 1981 to 1997) as well as Moody’s ® (it 

covers the 29 year period from 1970 to 1998) rating grades are used; the loans are further 

characterized according to data from two large samples consisting of middle-sized and 

large-sized corporate loans from the Federal Reserve Board surveys of large bank 

organizations (Gordy, 1998b; Gordy & Heitfield, 2002). The number of obligors is 

increasing in three different scenarios, and the concentration is calibrated by dividing the 

number of obligors across the rating grades and then determining how the exposure within 

these grades is distributed across the number of all obligors in this grade – denoted as 

“brackets” (Gordy & Heitfield, 2002). 

The models also perform in a similar way for average quality commercial loan 

portfolios when σ is small for CreditRisk+®. Gordy generally stresses the extreme 

sensitivity of CreditRisk+® to σ and in these cases seems to prefer CreditMetrics® as 

more robust (Gordy, 1998b, pp. 23-24). 
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Also in other respects, especially for so-called low-default portfolios203 and large 

obligors, structural models seem to perform better with the result of systematically higher 

default rates, and hazard rate ones may underestimate default correlations as shown in the 

following (BCBS, 2005; Gordy, 1998b; Kolman, 2010). 

For instance, Diaz is extending the analysis carried out by Koyluoglu and 

Hickman. As seen before, their framework – similar unified frameworks were also 

developed by Bélanger et al. and Wong – allowed comparing the default distributions of 

both models under equivalent parameters (Bélanger et al., 2003; Gordy, 1998b; Hickman 

& Koyluoglu, 1998; Wong, 1998). Diaz is extending this study by comparing an enhanced 

CreditRisk+® and the full version of CreditMetrics® considering migration risks for both 

and by setting up a slightly extended mathematical framework to compare the loss 

distributions. The conclusion is that for internal purposes CreditMetrics® is more precise 

and thus preferred, the CVaR difference is up to 19 % (Diaz & Gemmill, 2002; Diaz & 

Gemmill, 2011, pp. 3, 33-37). Han found that for Han’s and Kang’s proposed CreditRisk+ 

extension CreditRisk++, which allows for explicit asset correlation modeling and has high 

flexibility, the result is still similar (not better for CreditRisk++) for standard risk weights 

even when just compared to a two-state CreditMetrics® (Han, 2014, p. 16; Han & Kang, 

2008). 

Just for low-quality retail portfolios, when migration risk accounts for a truly little 

proportion of the overall CVaR or ratings are not available, the results between 

CreditMetrics® and CreditRisk+® are similar, then CreditRisk+® is in some cases a 

faster and less expensive choice (Diaz & Gemmill, 2011 p. 35).  

Hamerle et al. consider both models valuable and comparable (rather equivalent) 

in their empirical analysis (Hamerle et al., 2004; Hamerle et al., 2003). 

Two of the most comprehensive studies on the subject of comparing credit 

portfolio models, an older one by Crouhy, Galai, and Mark and a more recent one by 

Kollár and Gondžárová, also conclude that CreditMetrics® is the preferred choice, with 

the latter (study) saying that the “biggest disadvantage of CreditRisk+® model comes 

from Poisson distribution, because it underestimates the probability of default for all 

 

203 Were the probability of default being << 1 % and therefore so low that it is hard to measure and observe 

(as for high-quality triple-A companies or states like Norway or Germany) and hence nearly impossible to 

historically backtest as mentioned before. 
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rating grades” (Crouhy et al., 2000; Kollár & Gondžárová, 2014, p. 346). A similar 

concern is shared by Stein (Stein, 2002). 

A study by Arora, Bohn, and Zhu confirms the preference for structural models 

citing that “a[sic] (HW) reduced-form model largely underperforms a sophisticated 

structural model like that of the VK model (as implemented by MKMV)” and also 

confirms that the “performance of the VK model is more consistent across large and small 

firms, while the performance of the HW and Merton models worsens considerably across 

larger firms” (Arora et al., 2005, p. 13). In another large study, with an empirical part as 

well as based on a supervisory credit risk model applied in practice, Hamerle et al. showed 

the superiority of models with economic (structural) factors and furthermore that PDs and 

default correlations can be linked as lagged variables (Hamerle, 2004). In terms of 

realistic default correlations structural models – even though they appear in few cases to 

be slightly too conservative, while hazard rate ones too less – seem to clearly outperform 

hazard rate ones (Zhang et al., 2008; Zeng & Zhang, 2001). A further advantage of 

CreditMetrics® is visible, when considering low-default portfolios with high ratings. As 

the main part of the credit VaR is then attributed from the migration component and much 

less from the defaults, the inherently rating migration focused CreditMetrics® can play 

out its strength (Kollár & Gondžárová, 2014; RiskMetrics Group, 2007; Zhang et al., 

2008). 

As mentioned before, however, CreditRisk+® is convenient to implement and 

requires fewer data.  

One can also compare the models from an informational point of view, i.e., in 

terms of the information which is assumed to be known a priori by the modeler or market. 

Structural models generally assume that the modeler has complete information 

concerning all the debtor’s assets and liabilities, i.e., similar to the management of the 

company (Jarrow & Cenit, 2004). Hence, one derives a predictable default time (Merton, 

1974). That is a distinctive characteristic of structural models at first. Contrary to that, 

hazard rate models operate under the assumption that the modeler has just the same 

information set as the market has – in practice thus an incomplete knowledge of the 

company’s assets and liabilities (Duffie & Lando, 2001). This leads to an inaccessible 

default time (Credit Suisse First Boston, 1997). 

Hence, the distinction between structural and hazard rate models, in this case, 

takes place along the information set criterion, whether the information set is observable 
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by the market participants or whether this is not the case (Jarrow & Protter, 2004; Jarrow 

& Protter, 2015). Therefore – at first – according to Jarrow and Protter, for pricing and 

hedging purposes in incomplete markets, reduced form models might be regarded as the 

method of choice (Jarrow & Protter, 2004). 

However, Giesecke and Goldberg showed in 2004 that “it is possible to develop 

a structural model in which the modeler also has incomplete information about the default 

point, making the time-to-default inaccessible even in a structural model” (Arora et al., 

2005, p. 24; Giesecke & Goldberg, 2004). Duffie and Lando 2001 proposed a hybrid 

model204, which is incorporating noisy accounting information, leading to an inaccessible 

default time in the realm of structural models as well (Duffie and Lando, 2001, p. 633-

664). Later Jarrow himself proved the result in an alternative form (Jarrow, 2004). Madan 

and Unal and later Davydov et al. also developed hybrid models, which contain structural 

and actuarial/hazard rate components exploiting the Feynman-Kac formula205 (Davydov 

et al., 1999; Madan & Unal, 1998, pp. 43-65; Madan & Unal, 2000, pp. 141-160). 

Finally, Kolman showed in a large and realistically calibrated empirical study that, 

when the models CreditRisk+®, KMV® and CreditMetrics® are applied to a portfolio 

containing a rather limited number of bonds or rated or large corporate exposures as in 

the study, the latter two clearly outperform the first method and yield similar and more 

realistic results, not underestimating the VaR (Kolman, 2010; Witzany, 2017, pp. 149-

151). 

Table 4 Results of the comparison of CPMs by Kolman. 

Model 99 % quantile Unexpected Loss 

CreditMetrics® 180.755 45.931 

CreditRisk+® 168.000 24.867 

KMV® 174.506 39.827 

Source: (Kolman, 2010). 

 

204 Hybrid models are models combining structural and actuarial, hazard rate elements. Furthermore, as 

described before also CreditRisk+® is extensible by introducing multiple migration stages instead of a pure 

default modeling and CreditMetrics® by multi-factor modeling – yielding comparable results. Cf. Li as 

shown. 
205 The famous formula is linking parabolic partial differential equations of deterministic functions with the 

expectation value of stochastic processes. The Black-Scholes formula can be derived from a straightforward 

application (Björk, 2009). 
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Hence overall and in reply to the crucial question, which modeling approach is 

better in terms of identifying relative value in the predicted VaR compared to real 

portfolio data and its related credit losses, CreditMetrics® (or similar KMV®) as a 

structural model is the preferred choice for a credit portfolio model in general. It 

especially achieves to discriminate defaulters from non-defaulters more precisely than the 

alternatives, as seen. CreditRisk+® is, regarding its straightforward implementation and 

equivalent results for the segment of homogeneous unrated (unscored) retail portfolios, 

only preferred for these retail portfolios. 

 

As it is the case for specific copula-based models with their data-fitted marginal 

distributions like the ZPP, also multi-factor extensions of CreditMetrics® coupling all 

risk parameters or hybrid models can be yet – as shown – further valuable for specific 

tasks and special situations. 
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CHAPTER 5 

AI TECHNIQUES, THE SVM IN CREDIT PORTFOLIO 

RISK AND COMPARISON WITH TRADITIONAL 

MODELS 

5.1 Categories of Artificial Intelligence, Artificial Neural Networks 

In Chapter 5 a new approach to credit portfolio risk measurement with the help of 

support vector machines (SVM) is represented in a detailed fashion. While techniques 

such as the SVM (not the SVR) are already in use for single customer scoring and pre-

classification, they are not applied to portfolios and dependent structures of debt yet. 

Support vector Machines are denoted as a classifier or regressor technique in the field of 

machine learning, and the aim is to categorize data in two (or iteratively more) classes 

like “0”C“1” or in the case of credit risk in “default”C“non-default” or, e.g., “VaR > 

5%”C“VaR < 5 %”. In the regressor case, SVM regression minimizes the distance between 

“observations” and calculated values, it acts in that regard like a “normal” regression 

(Schölkopf et al., 1998). A kind of tube having minimal radius is put – primarily 

symmetrically – around the estimated function, where all points outside it are penalized 

and all within a smaller radius not, hence minimalizing errors (Awad & Khanna, 2015, p. 

67; Glover et al., 1990). SVM regression is the method and concept used for the final 

model in this thesis, it is often abbreviated as SVR, support vector regression (Awad & 

Khanna, 2015; Smola & Schölkopf, 1998b; Vapnik, 1998). The classifier-related idea is 

to put hyperplanes into the point space to separate the (two or more) point sets. This, 

under optimization conditions, ultimately leads to the “support(ing) vectors” of the 

hyperplanes and the name of the technique (Boser et al. 1992). If separation is not possible 

in the present dimension a transformation in higher dimensions (up to infinity) followed 

by separation of the point sets and backtransformation to the original dimension (space) 

is performed (Awad & Khanna, 2015b; Boser et al., 1992; Schölkopf et al., 1998). To 

prevent the calculations to run for too long, but instead to be suitable for computers and 

to perform a special kind of “re-transformation” needed, a form of scalar products and 

so-called kernels are utilized (Schölkopf et al., 1998; Vapnik, 1998). These kernels are 

well known in functional analysis and similarly also in nonparametric statistics and 

decode “density” in a certain sense (Conway, 2019; Hollander et al., 2015; Werner, 2007). 
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At the decisive stage, much training data is necessary to be found and with the help of 

penalty variables or so-called slack variables and a suitable kernel function an SVM is 

then separating as many point sets as exact as possible (Vapnik, 1998). Thus, the aim is 

to avoid over- as well as underfitting (Schölkopf et al., 1998). Overfitting means that the 

model is particularly good calibrated to the specific training data but performs much 

poorer when applied to new, different out-of-sample data. Hence, the method is not 

general enough in such a case. The other (extreme) case is a too general model like just a 

linear kernel approach, which is not precise enough (calibrated) for the training set. A 

“middle-ground” has to be found as will be shown later – directly linked with the so-

called “bias-variance” trade-off (Dixon et al., 2020; Vapnik, 1998). A brief (general) 

introduction to machine learning and basic concepts is given now, to see which important 

approaches exist and in which area of AI the SVM belongs. 

Especially since the 2010s AI-based techniques and herein mainly machine 

learning and deep learning techniques experienced a revival as computing power (cf. 

“Moore’s law” 206 , though meanwhile disputed) and the amount of available data 

enormously increased. It is commonly labeled as the rise of “big data” (Dixon et al., 2020, 

pp. 4-6). Furthermore, research breakthroughs as a seminal paper by Hinton, Krizhevsky, 

and Sutskever, practical applications and software tools such as IBM’s Watson® by 

Ferrucci et al., Amazon’s AlexaCEcho® box originally by Osowski207, Google Analytics® 

by Chen and Clifton, self-driving cars like the ones from Waymo®208 inspired by Thrun209 

and Levandovski, or traffic control research by Bayen210 et al., lead to a rapidly evolving 

interest in artificial intelligence methods (Bayen et al., 2022; Clifton, 2008; Ferrucci et 

al., 2013; Harris, 2014; Krizhevsky et al., 2012).  

The original ideas of artificial intelligence were already researched in the 1950s, 

inter alia by McCarthy or Samuel in his 1959 paper (Nilsson, 1998, Samuel, 1959).211 

 

206 Stating that computing power doubles nearly every two years and was “valid” until the mid-2010s. 

Afterward, technological limits of leaking currents, lithography and sub-atomic structures made it 

impossible to uphold for the time being. 
207 Lukasz Osowski from the University of Gdańsk founded the company IVONA®, developing the text-

to-speech and speech recognition engines that now run Alexa®. The company was later bought by and 

integrated into Amazon®. Cf. (Westerby, 2020). 
208 See Waymo® ‘s website at https://waymo.com/ (Retrieved Mai 12, 2022). 
209  See Harris, M. (2014). The Unknown Start-up That Built Google's First Self-Driving Car. IEEE 

Spectrum: Technology, Engineering, and Science News. 
210 Much of his research on autonomous cars and trucks as well as traffic control was initially developed 

from general fluid dynamics control techniques and also applied to river flows and air traffic control as 

seen in https://bayen.berkeley.edu/research/overview 
211 See (Gabel, 2019). 
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Ideas to connect a neuron’s activity with logical functions were even already introduced 

by McCulloch and Pitts a decade before (McCulloch & Pitts, 1943). Rosenblatt built on 

that work and introduced the first “supervised learning” classifier as an artificial neural 

network, the perceptron, in 1957 (Rosenblatt, 1957). In 1955 Newell, Simon, and Shaw 

programmed the “Logic Theorist” commonly regarded as the first implementation of an 

“AI program” (Russell & Norvig, 2010). All of the named researchers, along with further 

scientists as especially Minsky, but also More, Rochester, or Shannon took part in the so-

called Dartmouth Workshop of 1956 and shaped the development of AI for the next 

decades (Newquist, 1994, pp. 91-104). 

The general idea of AI is the use of machines to solve problems with some kind 

of – to some degree – “replicated human intelligence” and by “learning”, i.e., sensitivity 

to the data. This is distinct from mechanical automation, which is a machine following a 

set of pre-programmed static algorithms on (pre-defined) data to accomplish a rather 

repetitive task (Russell & Norvig, 2010). 

AI happens in a spectrum ranging from “weak” or “narrow” AI to “strong” AI –

with the goal of strong AI being a total or even better replication of human intelligence 

and reasoning. A test for “intelligence” for machines the so-called Turing test, abbreviated 

TT and originally labeled “imitation game”, which is now a special case of a TT, dates 

back to the 1950s (Traiger, 2000, p. 99; Turing, A., 1950, p. 433). To date and obey the 

enormous progress made during the last years all AI is still considered “weak” (Rebala et 

al., 2019). It is widely used in (quantitative) asset and risk management firms and also in 

the Robo advisory (portfolio management) and fintech or insurance fintech (“insurtech”) 

market (Blackrock, 2019; Dixon et al., 2020). Many models stem from hedge funds 

originally (Dixon & Halperlin, 2019, p. 1; Dori et al., 2018). 

Machine learning (ML) as a special form of an AI technique means “extracting 

knowledge from data by identifying correlated relationships or patterns without receiving 

prior information about what causal dependencies to look for” (Dori et al., 2018, p. 3). 

Hence, as patterns and dependencies are detected which are not known before, this 

technique can be fruitful when applied to a sizeable portion of previously unordered data 

stemming, e.g., from automatized processing with the aim of categorizing them and 

“learning more” about their inherent structures (Dixon et al., 2012; Shanmuganathan & 

Samarasinghe, 2016). 
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Classification algorithms as a discrete sort of ML divide observations into a finite 

number of categories, and regression algorithms in ML estimate outcomes to problem 

settings that have an infinite (countable, overcountable or continuous) number of 

solutions (Dixon et al., 2020). 

When thinking of rating classes and grades, PD ranges, and loss distributions these 

methods intuitively might work for credit risk as well. This is indeed shown later in that 

chapter. Furthermore, a common classification of the distinct types of machine learning 

can be done as follows (Dori et al., 2018; Rebala et al., 2019): 

 

 

Figure 42 The three types of machine learning.  

Sources: Own illustration in line with (Dori et al., 2018). 

Supervised learning means that an algorithm learns based on training data (input 

and output) that expose known “relationships” (Dori et al., 2018). Those formalized 

relationships (denoted as models) are subsequently applied to test data and if applicable 

validation data, e.g., in k-fold cross-validation212  (Dixon et al., 2020, pp. 140, 213). 

Unsupervised learning means that algorithms only learn from input data but have no 

further information about the output data or relationships (Dixon & Halperlin, 2019, pp. 

 

212 A validation technique where a certain set is divided (equally and) randomly into k chunks and first the 

training is done on 1-(k-1) and the test on k, then training on 1-(k-2) plus k and test on (k-1) and so forth, 

iteratively k times. Then one has k validation samples (and can, e.g., take the average results). 
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3-4). Therefore, these algorithms “detect patterns in the data by identifying clusters of 

observations that depend on similar characteristics” (Dori et al, 2018, p. 4). Combining 

in a certain sense such methods of unsupervised and supervised learning is known as 

reinforcement or reinforced learning (Shanmuganathan & Samarasinghe, 2016). It can be 

also viewed as “in-between” unsupervised and supervised learning, within the extremes 

of no output data and the exact output data label (Dixon et al., 2020, p. 22). These 

algorithms first detect patterns on their own, then additionally receive feedback from an 

exogenous source (e.g., a “teacher”, “trainer”, or “instructor”) to further validate the 

learning process (Dori et al., 2018). 

Therefore, one can regard the learning processes as guided by feedback. Hence, a 

reward feedback impulse for the algorithm is a necessity to learn the desired behavior 

(Dixon et al., 2020, p. 22). 

A general trade-off exists between “optimising the fit of a model on the in-sample 

training and the true out-of-sample prediction” – the mentioned over-Cunderfitting balance 

(Dori et al., 2018, p. 3; Rebala et al., 2019). 

In research as well as practical applications, most time and effort are indeed spent 

on properly selecting, preparing, using, and interpreting data (Ng et al., 2012; Ridzuan & 

Zainon, 2019). The models themselves are efficiently implemented in many statistical 

programming languages like Matlab®, SAS®, Python®, or R® and their corresponding 

packages and are readily available (Innes et al., 2018). 

Especially the interpretation in statistical interference and the conclusions drawn 

by the samples have to be carried out in a prudent, conservative, and replicable manner. 

As usually in statistics, a (traditional) frequentist estimation, as well as Bayesian 

estimations, are possible (Dixon et al., 2020, p. 48). However, whereas in traditional 

statistics measures like R2 (or goodness-of-fit generally), p-value, and t-value are crucial 

for statistical significance (and often unbiased estimators at hand) in terms of AI-based 

statistics and methods the focus (while also trying to minimize the error measure like 

MSE) lies on balancing out the Bias-Variance trade-off (Dixon et al., p. 112). Some of the 

differences can be found in the following tables, as well as an overview of differences 

when regarding dynamical processes and (time series) econometrics (AI in Orange). 
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Table 5 Statistical interference vs. AI-based methods as supervised learning 

compared.  

Property Statistical interference AI-based methods as 

supervised learning 

Goal  Causal (or at least 

correlated) models with 

explanatory power 

Prediction performance, 

and explainability is of 

limited importance (though 

explainable AI exists and 

increases) 

Data  The data is generated by a 

model (mostly parametric) 

The data generation 

process is “unknown” 

Framework Probabilistic Algorithmic and 

Probabilistic 

Diagnostics Extensive Differs  

Robustness Prone-to Overfitting Designed for out-of-

sample usage 

Model selection Based on information 

criteria (e.g., AIC; BIC) 

Numerical optimization 

Expressabilty, 

Scalability 

Often linear, best for low-

dimensional data 

Nonlinear, prone to high-

dimensional data 

Source: Own illustration in line with (Dori et al., 2018). 

Sometimes traditional techniques like multivariate regression or logistic 

regression are denoted as (simple) AI as well – this is not true generally and only in (the 

rare) case of an unknown (nonparametric) error process – as can be seen from the table 

above (Dixon, 2020). 

Different methods within one modeling framework might be applied by 

“widening the amount of available data” (e.g., through bootstrapping methods) and 

especially averaging them through changed settings (e.g., the use of distinct kernels in the 

case of SVMs and taking the arithmetic average of the results) to improve performance – 

the latter one called bagging. Bagging methods proved to be fruitful in several scientific 

areas, also for instance in the realm of financial applications (Witzany, 2017). 

Furthermore, boosting approaches, procedures that are applied sequentially and one 

model learns from the results of the former one, might be exploited (Bhavsar & Ganatra, 
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2012; Dixon, 2020; Witzany, 2017). The possibility to use several different AI-based 

models, apply them to the same problem, and then take an average or weighted result of 

them is finally known as ensemble, is even more sophisticated, and increasingly applied 

in the area of AI as well (Dixon, 2020).  

 

 

Figure 43 Overview of model types in econometrics and machine learning.  

Source: Own illustration, directly based on (Dixon, 2020, p. 18). 

For credit risk, (historical) data and expected results (labels) in regard to it are 

available and can be structured, hence supervised learning methods may be preferably 

utilized, instead of a “passive” unsupervised one, which is, e.g., already the case for 

individual scoring (de Laurentis et al. 2010; Dixon et al., 2020). Therefore, as this 

“information advantage” still exists and can be exploited for the realm of credit portfolios, 

supervised methods appear to be superior for portfolios as well and are chosen for the 

scope of the thesis. 

When selecting a specific AI method in many complex applications for supervised 

learning most researchers might tend to choose between artificial neural networks (ANNs, 

often in the form of deep neural networks, DNNs, with many layers) and SVMs as in fault 

detection (Fuqing et al., 2013, p. 49; Lessmann et al., 2008). 

The question of which one is “better” in terms of classification performance is 

highly debated in recent years in the literature and as often the answer is: It depends on 

the application. 
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For IT purposes like intrusion detection systems and classification of malware, 

etc. The SVM method seems to outperform the ANN one, as Chen, Hsu, and Shen showed, 

in mammography and some other clinical environments the ANN concept first seemed to 

outperform the SVM approach– as later studies yet showed a balanced data approach 

combined with the SVM seems to be even more promising (Chen et al., 2004; Huang et 

al. 2017; Ren, 2012; Shen et al., 2008). In detecting food contamination and public health 

risks SVMs outperformed ANNs in a big cross-border Nature study (Bisgin et al., 2018). 

Generally, SVMs performs rather well (Meyer et al., 2003). When different data-mining 

techniques (also in individual credit scoring) are compared the SVM approach (and also 

the ANN one) is among the very best techniques compared with other AI techniques and 

the industry standard (benchmark) logistic regression (Baesens et al., 2003; Bhavsar & 

Ganatra, 2012; Witzany, 2017, pp. 2, 85). A similar though less mild finding for the case 

of defect detection in software and the case of credit scoring – thereby showing the still 

very good results of logistic regression – is proven by Lessmann et al. (Lessmann et al., 

2008; Lessmann et al., 2015). The latter study is revisiting credit scoring and roughly 

confirms Baesens et al. support vector machines are hence a very fruitful AI technique 

and will be utilized for CPM in this chapter. 

The support vector machine further is a technique, which is solving an 

optimization problem in an analytical form, as it gives back exactly the same optimal 

hyperplane each time – other than genetic algorithms (GAs) or perceptrons (as a form of 

an ANN), which depend heavily on the initialization and the termination parameters in 

place (Awad & Khanna, 2015, p. 39). 

In the last years in academic research in general, the ANN approach might seem 

to be slightly more popular and more articles were published related to ANNs, so it is 

introduced here as well (Jeeva, 2018; Shanmugathan & Samarasinghe, 2016). However, 

it was not until the 1980s before ANN algorithms reappeared (again) in active research, 

and as late as 2012, when Hinton proved that it is possible to apply generalized 

backpropagation algorithms to train multi-layer neural nets and with his paper, dealing 

especially with image recognition, thus finally reviving the field of deep learning 

(Krizhevsky et al., 2012). Since then, the use of ANNs became immensely popular within 

the scientific world (Hinton et al., 2012; Jeeva, 2018; Krizhevsky et al., 2012; 
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Shanmuganathan & Samarasinghe, 2016). His original work on backpropagation dates 

back to 1986 (Hinton, 1986; Plaut et al., 1986).213  

As the name indicates ANNs are networks composed of artificial neurons – in 

contrast to the biological neurons of the human brain (Kandel et al., 2012). The ANN 

concept hence simulates the way the human brain processes information and ultimately 

learns (Rosenblatt, 1958; Shanmuganathan & Samarasinghe, 2016; Zou et al., 2008). The 

neurons or axions (or unitsCnodes) are interconnected and hence build up a “web” or 

network of connections (Rebala et al., 2019). 

The neurons of an artificial neural network are arranged in layers and are usually 

interconnected in a fixed and given hierarchy (Dixon, 2020). The neurons are in most 

cases connected between two layers the so-called inter-neuron layer connection, but in 

rare cases also within a layer, denoted as intra-neuron layer connection (Kurková et al., 

2018; Shanmuganathan & Samarasinghe, 2016). 

These artificial neurons and layers are also lined up between input and output units 

(Dixon et al., 2020, pp. 114-119; Shanmuganathan & Samarasinghe, 2016). The input 

units receive information based on an internal system of weights, then the neural network 

learns from that presented information in order to produce the output (Shanmuganathan 

& Samarasinghe, 2016). An artificial neural network then makes use of a set of learning 

rules called backpropagation, more precisely: During the supervision phase, the neural 

network compares its real, actual output with the one it was supposed to produce - it is 

then adjusted during backpropagation (Barhoom et al., 2019, p. 8; Rebala et al., 2019; 

Dixon et al., 2020). In 1985, the “Backpropagation of Error learning procedure” was 

developed (separately) as a generalization of the delta rule (or chain rule in the context of 

gradient procedures), mainly by the Parallel Distributed Processing (PDP) Research 

group and Rumelhart et al. (Dixon et al., 2020; Rumelhart et al., 1986). As a consequence, 

nonlinearly separable problems are solvable by multilayer perceptrons214 and not only, 

 

213 Interestingly, as shown in (Rumelhart et al., 1986) the backpropagation algorithm – similar to Itô’s 

Lemma in stochastic calculus in Chapter 4 of the thesis – can be regarded as a generalization or form of the 

chain rule as well. 
214 The perceptron is a simplified artificial neural network. In its basic version (simple perceptron), it is 

built of a single artificial neuron that contains adjustable weights and a threshold function. Today, this term 

is used to refer to various combinations of the original model, distinguishing between single-layer and 

multi-layer perceptrons (MLP). Perceptron networks can be viewed as representing a so-called (simple) 

associative memory by its functionality and the ability “convert an input vector into an output vector” 

(Osterrieder et al., 2021, p. 7; Rosenblatt, 1958). 
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for instance, by means of SVMs as will be illustrated later (Kurková et al., 2018; 

Shanmuganathan & Samarasinghe, 2016). Generally, as briefly mentioned, the idea is to 

minimize the error between the output received and the correct, expected output and to 

adapt the weights of the neurons of the last layer accordingly, this procedure is done 

(neurons-layer-wise) backward until the input layer is reached. Then the network is 

executed again in the forward direction with the new, optimized weights and the new 

output is repeatedly minimized against the correct one, etc. (Dixon et al., 2020; 

Shanmuganathan & Samarasinge, 2016). Therefore, the “true solution” is approximated 

iteratively better under reasonable assumptions (Dixon et al., 2020). By the idea of further 

including all possible neurons in layers and then if needed setting them to zero in all 

directions (i.e., neuron deletedCno weight) or resetting them to a weight larger than zero 

neurons can be “deleted” or “added” and thresholds be updated by so-called on-neurons 

(Shanmuganathan & Samarasinge, 2016). Hence, the update of the weights is the decisive 

parameter (apart from the form of the activation function). 

 

 

Figure 44 Layers of an artificial neural network.  

Source: Own illustration, similar as in (Dixon et al., 2020). 

The mentioned rearmost layer of the network, whose neuron outputs are usually 

the only ones visible outside the network apart from the input neurons and its layer, is 
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commonly called the output layer (Shanmuganathan & Samarasinghe, 2016). The layers 

in front of it are called the hidden layer (Dixon et al., 2020; Shanmuganathan & 

Samarasinghe, 2016). If there is just one hidden layer one sometimes denotes that as 

shallow ANN (Dixon et al., 2020, p. 115; Dixon & Halperlin, 2019). If there are more, 

the ANN is considered a deep neural network – DNN (Dixon et al., 2020, p. 115). The 

fundamental mathematical theorem in terms of ANNs is the universal representation 

theorem, which states that the set or more precisely the functional space of all continuous 

functions (from an n-dimensional real-valued domain to the one-dimensional real-valued 

image space) can be arbitrarily approximated by ANNs and even by a one-layer ANN 

(Dixon et al. 2020, p. 119; Hornik et al., 1989). 

In mathematical terms, the corresponding ANNs are dense in the functional space 

of continuous functions named above (Dixon et al., 2020, p. 119). While DNNs are thus 

not “necessary”, they are often much better in terms of performance and much better 

explainable (Dixon & Halperlin, 2019; Došilović et al., 2018; Samek et al., 2019). 

Therefore, DNNs and parallelization techniques like convolutional neural networks 

(CNNs) are heavily employed in practice (Dixon et al., 2020; Yamashita et al., 2018). The 

superiority compared to linear models (and linear additive models as linear regression or 

linear multi-factor models) is stated for instance in (Dixon et al., 2020, pp. 127, 177). 

Regarding the network structure again the inputs are often weighted (for each set 

of neuronCnode input) already at the beginning and then – the wij – aggregated to a net 

input and often further processed by an activation function before reaching another layer 

or the output itself (Hornik et al., 1989; McCulloch & Pitts, 1943). 
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Figure 45 Activation function of an ANN.  

Source: Own illustration. 

These activation functions are generally just “activated” when a certain numeric 

threshold or sum is reached and often form multiple cascades of lines of data processing.  

Mathematically, activation functions are simply the equations that determine the 

specific output of the neural network (Dixon et al., 2020; Hornik et al., 1989; 

Shanmuganathan & Samarasinghe, 2016). They encode the overarching form of such a 

network. Activation functions further have a decisive impact on a neural network’s ability 

to converge and they normalize the output – between zero and one usually (Dixon et al., 

2020). The activation function can be broadly classified into two main categories. There 

are on the one hand linear and on the other hand nonlinear activation functions 

(Shanmuganathan & Samarasinghe, 2016). Within linear functions, one differentiates 

further between: 

Binary step functions (BSF) and (traditional) linear activation functions (LAF) as 

in (Dixon et al., 2020; Shanmuganathan & Samarasinghe, 2016). A binary step function 

is generally used in the perceptron linear classifier (Rosenblatt, 1957; Rosenblatt, 1958). 

It thresholds the input values to one and zero, if they are greater or less than zero, 

respectively. The step function is mainly used in binary classification problems and works 

well for linearly severable problems. It cannot classify the area of multi-class problems 

(Dixon et al., 2020). 
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The equation for the Linear activation function in contrast is a basic function of 

the form:  

 𝑓(𝑥)  =  𝑎𝑥  (182) 

as known from normal real-valued analysis (Shanmuganathan & Samarasinghe, 

2016). This yields just a linear regression and as the aggregation of linear functions is 

again linear additive linear functions can be modeled – and with only one layer (Dixon et 

al., 2020, pp. 114, 119). As however, the application of linear regression is quite limited 

– and backpropagation is not possible as no nonconstant derivativeCgradient exists 

mathematically – modern neural network models utilize nonlinear types of activation 

functions. These nonlinear activation functions possess the ability to create more complex, 

high-dimensional mappings between inputs and outputs of a deep neural network (Dixon 

et al., 2020). These are the most important nonlinear activation functions. 

 

• Rectified linear units abbreviated as ReLU 

• Sigmoid activation functions 

• Tanh or hyperbolic activation functions 

• Complex nonlinear activation functions  

 

It is widespread to employ a ReLU (rectified linear unit) as the chosen activation 

function for input and hidden layers in artificial neural networks (Jeeva, 2018; Sharma, 

2017). 

Mathematically, it has the form  

 
𝑓(𝑧) = 𝑧, 𝑧 > 0 

𝑓(𝑧) = 0, 𝑧 ≤ 0 
(183) 

hence  

 𝑓(𝑧) = max (𝑧, 0) (184) 

as in (Dixon et al., 2020, p. 116). Again (as with SVM) one can think of each 

manifold as a certain hyperplane where “the neuron gets activated when the observation 

is on the ‘best’ side of the hyperplane” and “the activation amount is equal to how far 

from the boundary the given point is” (Dixon et al., 2020, p. 116).  

Different extensions of ReLU exist as will be seen. Regarding the output layer, 

one often employs either a softmax function for activation, if the task is a classification 

one, or the actual value if it is used for the purpose of prediction (Dixon et al., 2020, p. 
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157; Jeeva, 2018). Softmax for the i-th node has the form (as often in softmax context, 

exp instead of e is written for the Euler exponential function, both forms are equivalent): 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
exp(zi)

∑ exp (zj)
j

  (185) 

as in (Dixon et al., 2020, p. 141).  

When the ReLU activation function is applied for a deep neural network, the 

backpropagation signal – by taking again the gradient to see the slope and direction of the 

signal – will either diminish to zero or it may “explode into a large number when it reaches 

back the input layer” – however, in case there is no properly received backpropagation 

signal, the weights can never adjust in the lower layers 215  (Jeeva, 2018). That 

circumstance is known in the literature as vanishing and exploding gradients problems or 

not saturating activation functions (Dixon et al., 2020, pp. 20, 468-470). Variants of ReLU 

were introduced to overcome this obstacle. Among these are the so-called leaky ReLU, a 

further extension known as randomized leaky ReLU, the parametric leaky ReLU, and 

finally the exponential linear unit, which is commonly abbreviated as ELU (Dixon et al., 

2020; Shanmuganathan & Samarasinghe, 2016; Trottier et al., 2017). Leaky ReLU 

substitutes the side  

 𝑓 (𝑧)  =  0 for 𝑧 ≤  0  (186) 

with  

 𝑓(𝑧) = ß ⋅ 𝑧 (187) 

for a “very small” beta ß, hence making differentiation (and a gradient application) 

possible and barely changing the result values. 

The sigmoid or logistic activation function is a logistic function, and the output is 

ranging between zero and one (Saul et al., 2016). It has the form  

 𝑓(𝑧) =
1

1 + 𝑒−𝑧
 (188) 

and is useful to assign probabilities (as output) to a certain input, e.g., default 

probabilities in credit risk (Saul et al., 2016). 

 

215 For a quick (informal) overview see (Sharma, 2017). Because the Gradient descent is used as algorithm 

for the weight updates, if the parameter itself is zero (the derivative of the constant zero is equal to zero), 

then the gradient of the weight will be also zero and that weight will henceforth never be updated. The 

gradient is “dying” (sometimes denoted “Dying ReLU” in that context) or “vanishing”. 
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Hyperbolic functions yield a similar concept using hyperboles (Dixon et al., 2020). 

They also suffer from the so-called vanishing or exploding gradients problem in their pure 

versions. 

 

 

Figure 46 Most common activation functions (and their graphs and formulas).  

Source: Own plot and illustration, similar as in (Yamashita et al., 2018), online retrieved Mai 22, 2022 

from https://link.springer.com/article/10.1007/s13244-018-0639-9#citeas, figure 5. 

An alternative, extended sigmoids, which perform even better than leaky or 

parametric leaky ReLU is the swish function by Google (Ramachandran et al., 2017). It 

simply has the form 

 𝑓(𝑧) = 𝑧 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(β𝑧) (189) 

with a “very small” beta (Ramachandran et al., 2017). 
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The softmax function is sometimes also labeled as soft argmax function or multi-

class logistic regression (Bishop, 2006). This is grounded in the fact that the softmax 

function is a generalization of logistic regression, which is suitable for multi-class 

classification. Its formula further resembles the sigmoid function, which is employed for 

logistic regression (Bishop, 2006; Dixon et al., 2020; Jeeva, 2018, p. 3). 

Hence as a summary, the softmax function (often for the output) and mainly 

leakyCparametric leaky ReLU and the swish function are the advanced activation 

functions used (without suffering from vanishing gradients) in the industry. 

The structure of a network is furthermore directly related to the learning method 

used and vice versa; thus, only a single-layer network can be trained (directly) with the 

delta rule, while a slight modification is required for multiple layers (Dixon et al., 2020). 

Networks do not necessarily have to be homogeneous: there are also combinations of 

different models in order to combine different advantages. 

There are pure feedforward networks (single-or multi-layer), in which layers are 

always connected to the next higher (hidden) layers (Dixon et al., 2020, p. 111). They are 

the most common types of networks. In addition, there are networks in which connections 

are allowed in both directions (and include feedback loops). The appropriate network 

structure can be found, e.g., by evolutionary algorithms or error feedback measures 

(Rebala et al., 2019). 

(Highly-)Multi-layer neural networks are called deep neural networks (DNN) as 

seen and hence learning algorithms using DNN are called deep learning algorithms 

(Dixon et al., 2020). They are, as an application, used in hand-writing recognition (or 

similar pattern recognition tasks) and also in nonstationary settings with so-called LSTMs 

(Graves et al., 2009). 

Having absorbed the concept, components, structure and working (via activation 

functions) of neural networks some applications in finance will be further considered now. 

In finance, ANNs are due to their structure also useful when one has to deal with 

big data and with some sort of classification or prediction task (Dixon et al. 2020, p. 16). 

Natural applications are hence customer search processes like finding an “ideal” customer, 

i.e., a certain pre-defined risk profile admitting client, who is also having certain 

behavioral patterns over time (resulting in large “user dataCpatterns”), which might then, 

e.g., be used for scoring or rating purposes for credit card companies, for loan applications 

as well as for BI (business intelligence) analytics and customer strategy (Dixon et al., 
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2020; Roa et al., 2021). Artificial neural networks are increasingly used in fraud detection 

(patterns), evaluating secondary information or digital footprints for future company 

performances like sociological data, shopping patterns or cookies histories, etc. (Dixon et 

al., 2020; Roa et al., 2021). Combined with smart contracts and documents (blockchain-

based in the optimal case) it might revolutionize document process management as well 

(Sandner et al., 2020). Mentioning blockchain, a natural application of ANNs are also 

cryptocurrencies (Dixon et al., 2020, p. 7). Furthermore, the main applications of ANNs 

in finance are in the “classical areas” of asset and derivative pricing, hedging as well as 

in risk management as detailed in (De Spiegeleer et al., 2018; Dixon et al., 2016; Dixon 

et al., 2020, p. 111; Dixon & Halperlin, 2019; Feng et al., 2018; Hornik et al., 1989; 

Hutchinson et al., 1994; Roa et al., 2021). The artificial neural network concept regarding 

risk and credit risk measurement is mainly used in the area of scoring, rating, and pre-

selection not in portfolio risk, however. An introduction to ANNs and their application to 

scoring is also given in (Witzany, 2017, p. 78-81). A good overview of financial 

applications is presented by Soramäki and Cook in their new book “Network Theory and 

Financial Risk” from April 2022 (Soramäki & Cook, 2022). 

The software packages most often used for machine learning and ANNs in 

Python® are PyTorch® and TensorFlow® respectively mnet®Cneuralnet or ANN2® 

within the CRAN-project216 in R®. 

By their nature, all of the applications above are destined to be exploited by 

machine learning in general and not (necessarily) limited to ANNs (Bishop, 2006; Dixon 

et al., 2020, p. 117). 

Hence – after having shown its superiority in regard to ANNs in many 

circumstances, as in grading and scoring applications, at the beginning of the chapter – 

SVMs might be a further valuable candidate for credit risk. Support vector regression was 

already successfully applied in research to forecast stock returns and real estate prices, so 

it is utilized in the financial field of credit risk now (Henrique et al., 2018; Li et al., 2009). 

Therefore, having introduced machine learning (ML) in general and artificial 

neural networks (ANNs) as a prominent case of it, as well as some basic ideas and 

comparisons related to support vector machines (SVMs), these SVMs are now described 

in a detailed fashion in the following sub-chapter. 

 

216 See https://cran.r-project.org/web/packages/ANN2/index.html (Retrieved Mai 7, 2022). 
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5.2 Background and History of the SVM and Related Concepts 

Support vector machines are so-called supervised learning models utilizing 

learning algorithms that analyze data destined for classification as well as regression 

analysis (Dixon et al., 2020, p. 139; Schölkopf & Smola, 2001; Smola & Schölkop, 

1998b). While both applications are widely used, they are quite similar in their underlying 

ideas and hence especially the most common one – classification – is presented here at 

first. As the last part of the name already indicates, the SVM is a technique from machine 

learning (and pattern recognition).  

The algorithm was originally invented by Vladimir Naumovich Vapnik at AT & T 

Laboratories and builds on the 1963 grounding of the Vapnik-Chervonenkis theory (VC 

theory) of machine learning – later popularized by him and extended for nonlinear 

classification in 1992C3 (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1964; Vapnik, 

1998).217 Vapnik also contributed to related fields like clustering unlabeled data – which 

is just possible with unsupervised learning methods – he wrote the support vector 

clustering algorithm together with Siegelmann and others (Ben-Hur et al., 2001). 

Furthermore, the method of Platt scaling is a means of transforming the resulting classes 

of the SVM classifier then into a corresponding probability distribution over these classes 

and hence even a probabilistic extension of an SVM is available (Platt, 1999). Finally, the 

so-called "soft margin" implementation (including linearly inseparable classes as will be 

shown), which is used in most statistical software packages, e.g., in R, was originally 

introduced by Cortes and Vapnik in 1993 and then published in 1995 (Cortes & Vapnik, 

1995). 

The mentioned VC theorem and inequality are mathematically equivalent to an 

empirical process formulation and the VC inequality can be also proven by applying 

symmetrization and the Hoeffding inequality (Ben-Hur & Weston, 2010; Hoeffding, 

1963; Van der Vaart & Wellner, 2013; Vapnik, 1998). 

For binary classification, the VC inequality is stating that with increasing sample 

size, provided that the filtration F used has a finite VC dimension (cf. next paragraph for 

a definition), the empirical classification serves as a good proxy (bound) for the expected 

one (Gyorfi et al., 1996; Vapnik, 1998). 

 

217 Large parts of this idea of the “kernel-trick” however date back to Aizerman in the year 1964 (Aizerman 

et al., 1964). 
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An alternative introduction to the VC dimension can be found in (Dixon, 2020, 

pp. 120-124). Vapnik (in line with Chervonenkis) gave name to this dimension, a kind of 

“learning capacity”: 

One may regard a set of functions f (x, α) ∈ {-1,1}. Consider then a given set of l 

points, these can be naturally labeled in 2l ways (Cuiping & Tung, 2021, p. 80; Vapnik, 

1998). If any member of that set {f (α)} can be found, which is able to correctly assign 

the labels for all labelings, then the set of functions is said to “shatter” the point set 

(Cuiping & Tung, 2021, p. 80; Schölkopf & Smola, 2001; Vapnik, 1998). The VC 

dimension dimVC of {f (α)} is then the maximum number of training points the set {f (α)} 

may shatter (Cuiping & Tung, 2021, p. 80; Dixon, 2020, pp. 120-124). In the case of an 

n-dimensional real vector space ℝn the VC dimension of a set of oriented hyperplanes is 

n + 1 (Dixon, 2020, pp. 120-124; Vapnik, 1998). 

Further academic research has generalized these foundational concepts from inter 

alia Vapnik, Smola, and Schölkopf, has illustrated connections to regularization theory, 

and shown how SVM-based methods are “incorporated in a wide range of other related 

algorithms” (Burges, 1998, p. 122; Girosi, 1998; Schölkopf et al., 1998; Schölkopf et al., 

1998b; Smola et al., 1998; Smola & Schölkopf, 1998a; Wahba, 1998). A good overview 

of different SVM methods and applications is also given in (Schölkopf et al., 1999). 

The SVM algorithm is now classifying a set of objects into different classes with 

the aim of maximizing the marginCspace around those classes – hence denoted as large 

margin classifier LMC (Schölkopf & Smola, 2001; Vapnik, 1998). Classification means, 

that given some points and each of them labeled with either zero or one, the algorithm 

decides for a new point which label it will get according to the ones already labeled and 

a “labeling rule” with maximal distance, hence maximal generality. More precisely: A 

support vector machine at first builds on a set of training objects, for which it is a priori 

known which class they are classified or assigned to (Harrach, 2019, p. 23; Vapnik, 1998). 

The training objects are “represented by a vector in a vector space” (Harrach, 2019, p. 23; 

Schölkopf, 1997; Vapnik, 1998). The idea of the support vector machine is to fit a 

hyperplane in the vector space, which is serving as a “separating surface” and thereby 

dividing the training objects into two or iteratively more classes (Cortes & Vapnik, 1995; 

Schölkopf et al., 1998). The distance between those vectors that are closest to the 

hyperplane is maximized (Cortes & Vapnik, 1995). As not all vectors are needed to 

describe the hyperplane uniquely, but only the “nearest” ones which hold the hyperplane, 
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the second part of the methods name – presenting these “support vector(s)” – is explained 

(Dixon et al., 2020; Vapnik, 1998). However, a clear and clean separation is – at first – 

just possible if the objects are linearly separable, e.g., by a line in two dimensions or by 

a plane in three dimensions, which is in the general case not possible (Aizerman, 1964; 

Boser et al., 1992; Vapnik, 1998). Hence, one uses a transformation – the idea behind the 

so-called “kernel trick” – of the vector space and thus also the training vectors contained 

in it to a higher-dimensional space (Aizerman, 1964; Boser et al., 1992; Cortes & Vapnik, 

1995). In a space with a sufficiently high number of dimensions, in case of doubt also 

infinite and the mathematics of functional analysis is applied then, even the most nested 

set of vectors can be linearly separated (Dixon et al., 2020; Schölkopf & Smola, 2001). 

In this higher-dimensional space, the separating hyperplane is therefore determined 

(Schölkopf & Smola, 2001). During the following back-transformation into the lower-

dimensional space, the linear hyperplane becomes a nonlinear, possibly even 

noncontinuous hypersurface, which separates the training vectors into two classes (Cortes 

& Vapnik, 1995). Hence, nonlinear separation is possible of any given (discrete) set 

(Werner, 2007). The problem is the high cost-intensive – time and memory-wise – 

calculation and computational power needed for the (back-)transformation to higher 

dimensions (Smola et al., 1998). As a consequence, the functions utilized by the SVM 

method are designed in a way that ensures that just dot products of pairs of input data 

vectors need to be applied (Vapnik, 1998). These dot products then can be used in a 

straightforward way and evaluated directly in terms of the variables in the original space 

without calculating them completely out (Cortes & Vapnik, 1995; Schölkopf & Smola, 

2001). A so-called kernel function that suits the original problem is used for that purpose 

(Cortes & Vapnik, 1995; Vapnik, 1998). Furthermore, “slack variables” are introduced to 

punish wrong classification, limit the number of support vectors needed and avoid 

overfitting of the model (Vapnik, 1998). The selection of the right kernel – at its core idea, 

a function for measuring the density of the classes and re-transforming them into higher-

dimensional spaces and back – and of the right slack variables and their “punishing” 

values is the key to solving underlying classification problems (Schölkopf & Smola, 

2001; Vapnik, 1998). 

https://en.wikipedia.org/wiki/Dot_product
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With observations as before and the SVM approach one can define more 

formally:218  

Consider l observations consisting of a pair (xi, yi), with x i ∈ ℝd, i = 1, ..., l and 

the associated “label” yi ∈ {-1,1} (Ciuping & Tung, 2021, p. 84). In the linearly separable 

case, one may suppose there is a (separating) hyperplane  

 𝑤𝑥 +  𝑏 =  0  (190) 

 that separates the positive (≥ +1) from the negative (≤ -1) points (Ciuping & 

Tung, 2021, p. 84; Vapnik, 1998). Hence,  

 𝑤𝑥𝑖  +  𝑏 ≥  1         when   y𝑖 =  +1 (191) 

 and  

 𝑤𝑥𝑖  +  𝑏 ≤  −1      when   y𝑖 =  −1 (192) 

 Equality holds for the nearest points, as shown in (Vapnik, 1998). The distance 

between these hyperplanes is therefore 2C||w||, the margin m 

 𝑚 =
1

||𝑤||
 (193) 

 This expression has to be maximized. The SVM method therefore now 

calculates the hyperplane minimizing ||w||, the corresponding w-norm is normally just 

||w||2 the usual Euclidean distance (Schölkopf & Smola, 2001).  

Minimizing ||w|| then maximizes the distance 2C||w||. 

Hence, formally the idea can be expressed as follows – the factor ½ is convenient 

for derivative purposes and does evidently not change the minimization result (Platt, 1998, 

pp. 3-4): 

 
𝑚𝑖𝑛𝑤,𝑏   

1

2
 || 𝑤 ||2  

subject to (s. t. )  𝑦𝑖(𝑤𝑥𝑖  –  𝑏) ≥  1, for all 𝑖 

(194) 

 Using the usual Lagrangians from economics, this optimization is transformed 

into a so-called dual form (“just min max and max min are changed”), which is a standard 

quadratic programming problem and the objective or target function Ψ is only dependent 

on the set of Lagrange multipliers αi (Platt, 1998; Vapnik, 1998). 

 

218See also http://www.stat.columbia.edu/~madigan/DM08/svm.ppt.pdf (Retrieved Mai 8, 2022). 
 

http://www.stat.columbia.edu/~madigan/DM08/svm.ppt.pdf
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 𝑚𝑖𝑛α Ψ(α) = 𝑚𝑖𝑛α   
1

2
 ∑ ∑ 𝑦𝑖 𝑦𝑗 (𝑥𝑖𝑥𝑗)α𝑖

𝑁

𝑗=1

𝑁

𝑖=1

α𝑗 −  ∑ α𝑖

𝑁

𝑖=1

 (195) 

 where N is the number of training points, s.t. the (linear) inequality constraints, 

 α𝑖 ≥  0,   ∀i (for all i) (196) 

 and just one linear equality constraint, 

 ∑ α𝑖𝑦𝑖 = 0

𝑁

𝑖=1

 (197) 

 As one can directly see in the equation above, a one-by-one relationship 

between each Lagrange multiplier and each training point exists (Platt, 1998). 

Hence, once Lagrange multipliers are calculated the normal vector w, as well as 

the threshold b, can subsequently be derived from the Lagrange multipliers (Platt, 1998; 

Schölkopf & Smola, 2001): 

 
∑ α𝑖𝑦𝑖𝑥𝑖 = 𝑤

𝑁

𝑖=1

  

𝑏 = 𝑤𝑥𝑘 − 𝑦𝑘 

(198) 

 for some αk > 0, k in 1,…, n. As w might be already calculated with this equation 

from the training data before the application of the SVM optimization, the amount of 

computation needed for a linear SVM is constant in the number of just the non-zero 

support vectors (Cortes & Vapnik, 1995; Smola & Schölkopf, 1998a; Vapnik, 1998). 

Sometimes for the SVM approach one further denotes d+ (d-) as “the shortest distance 

from the separating hyperplane to the closest positive (negative) example” – it is however 

not used in the thesis (Ciumag & Tung, 2021, p. 85; Vapnik, 1998). 

As indicated before, Cortes and Vapnik introduced an extension of the original 

optimization method, which allows, yet penalizes, the failure of points to be off the 

margin and hence generalizes the SVM method by allowing “soft margins” (Platt, 1998). 

To reach that goal, one needs further positive slack variables ξi, such that  

 𝑤𝑥𝑖  +  𝑏 ≥  1 −  ξ 𝑖 when y𝑖 =  +1 (199) 

  𝑤𝑥𝑖  +  𝑏 ≤ −1 + ξ 𝑖 when y𝑖 =  −1 (200) 

and finally (in the same way as above) a modified objective function  

 ½ ||𝑤|| +  γ ∑ ξ𝑖

𝑖

 (201) 
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where γ = ∞ is the not separable case (Cortes & Vapnik, 1995). Hence, also the 

penalties ξi have to be minimized.  

γ thereby is the decisive setting parameter that controls the trade-off between a 

large margin and a small sum of “margin failures” (Platt, 1998, p. 3). When the 

Lagrangian for the dual problem is derived in the same way as above, only the constraint 

αi ≥ 0, ∀i changes to the box constraint  

 𝛾 ≥  α𝑖 ≥  0, ∀𝑖  (202) 

and is hence independent of the single ξi s (Platt, 1998). 

This yields the final Lagrangian for the linear case, allowing (but penalizing) for 

misclassification. 

 

 

Figure 47 Example of an optimal hyperplane in SVM.  

Source: Own illustration 
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For the nonlinear SVM (the point set is always separable in higher dimensions in 

the extreme case in a functional infinite-dimensional space), however, one replaces xi xj 

with k(xi; xj) and k is denoting the crucial kernel function as in (Boser et al., 1992; Cortes 

& Vapnik, 1995).  

These kernels and transformations in higher dimensions allow (linear) separability 

in the target space then and the Lagrangian is also derived in the same way, by just 

replacing xi xj with k (xi; xj) (Cortes & Vapnik, 1995; Platt, 1998; Vapnik, 1998). 

That therefore formally denotes as: 

 𝑚𝑖𝑛α Ψ(α) = 𝑚𝑖𝑛α   
1

2
 ∑ ∑ 𝑦𝑖 𝑦𝑗 𝑘(𝑥𝑖; 𝑥𝑗)α𝑖

𝑁

𝑗=1

𝑁

𝑖=1

α𝑗 −  ∑ α𝑖

𝑁

𝑖=1

             (∗) (203) 

 (where N is the number of training points), s.t. the (linear) inequality constraints,  

 γ ≥ α𝑖 ≥  0,  ∀i (for all i) (204) 

 and just one linear equality constraint, 

 ∑ α𝑖𝑦𝑖 = 0

𝑁

𝑖=1

 (205) 

 as shown again in (Platt, 1998, p. 4). 

 

Prominent examples of these kernel functions are the following ones, cf. (Dixon 

et al., 2020; Schölkopf & Smola, 2001; Vapnik, 1998): 

 𝑘(𝑥𝑖; 𝑥𝑗) = 1 +  < 𝑥𝑖; 𝑥𝑗 >𝑑 (206) 

- is the d-fold dot product or Polynomial kernel (for d = 1: linear kernel) 

 𝑘(𝑥𝑖; 𝑥𝑗) = 𝑒
||𝑥𝑖−𝑥𝑗||2

2σ2  (207) 

- is the radial basis function kernel, RBF, with volatility parameter σ 

  𝑘(𝑥𝑖; 𝑥𝑗) = tanh( 𝑎 𝑥𝑖𝑥𝑗  + Θ) (208) 

- is the sigmoid kernel with parameters a and Θ 

 

As a reminder in that context, the Karush-Kuhn-Tucker (KKT) conditions possess 

a significant role in the area of constrained optimization (i.e., constrained linear and 

nonlinear programming) and hence also SVMs (Jarre & Stoer, 2019; Kuhn & Tucker, 

1951; Ruszczyński, 2006). 
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The KKT conditions 219  are satisfied at the solution of any constrained 

optimization problem (being it convex or even not) if “the intersection of the set of 

feasible directions with the set of descent directions coincides with the intersection of the 

set of feasible directions for linearized constraints with the set of descent directions” 

(Burges, 1998, p. 131; Fletcher, 1987; McCormick, 1983).  

Those regularity assumptions always hold for SVMs, because the constraints in 

the equations above are, as one directly sees, linear constraints. The tasks posed for 

support vector machines are even convex – and for convex problems under the regularity 

condition, the presented KKT conditions are exactly necessary and already sufficient at 

the same time (Burges, 1998, p. 131; Fletcher, 1987). Therefore, solving the SVM 

problem is truly equivalent to the task of finding a solution for the KKT conditions, which 

is an interesting mathematical identity (Burges, 1998). 

For the SVM the KKT conditions simplify to (Platt, 1998, p. 4): 

 γ >  α𝑖 >  0  if and only if (iff, ⇔)   𝑦𝑖 𝑜𝑖 = 1  (209) 

  (where oi denotes the output of the SVM method of the i-th point) 

 γ =  α𝑖 ⇔  𝑦𝑖  𝑜𝑖  ≤ 1 (210) 

    γ = 0  ⇔   𝑦𝑖 𝑜𝑖  ≥ 1   (211) 

 Finding the solution to the quadratic programming in (*) above (or equivalently 

the KKT conditions) is reached, after having applied the “kernel trick” to the dual 

Lagrangian problem as seen, by finally using stochastic (Sub-)Gradient methods (SGM) 

or the Sequential Minimal Optimization (SMO) algorithm as solvers (Platt, 1998, pp. 6-

9; Vapnik, 1998). 

The main advantages of the SVM approach, also compared to the ANN approach 

as stated, can be summarized: 

• High-Dimensionality: The SVM approach is known as a very effective  

tool for high-dimensional spaces and the kernel trick combined with scalar 

product representation allow for efficient computing (Boser et al., 1992; 

Dixon et al., 2020; Halls-Moore, 2017, p. 263; Schölkopf & Smola, 2001; 

Vapnik, 1998). High-performance methods such as Sub-Gradients can be 

applied as solvers (Wilmott, 2007). 

 

219 These conditions are primal feasibility, dual feasibility, complementary slackness, and stationarity. A 

good introduction and overview can be found, e.g., in (Ghojogh et al., 2021). 
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• Flexibility: The possibility to test and apply various SVM kernels allows  

for extreme flexibility regarding the actual decision boundaries. This leads 

to versatility and a superior classification performance as mentioned 

(Awad & Khanna, 2015b; Burges, 1998; Schölkopf & Smola, 2001; 

Witzany, 2017). 

• Memory-Efficiency: There is only a subset of the training points which are  

used in the actual decision process of assigning new members necessary 

(Cortes & Vapnik, 1995; Schölkopf & Smola, 2001; Vapnik, 1998). Hence, 

also only these points have to be stored in the computer’s memory when 

applied for decision making (Halls-Moore, 2017, p. 263). 

• Availability in all common statistical software packages like Python and  

R, hence “ready to use” tool with various fine-tuning possibilities. 

 

In practice, the SVM is used, e.g., in the programming language R® with the 

libsvm library, and as mentioned the decisive choice is the factor gamma, which is 

balancing margin width and penalized errors and the kernel function. An SVM 

introduction and application of SVMs in (solely) credit scoring is shown in (Witzany, 

2017, p. 82). 

SVR finally just extends the SVM by regression instead of classification, which 

means that a kind of tube having minimal radius is put – normally symmetrically – around 

the estimated function (which can be seen as the separator analog to classification), where 

all points outside it are penalized and all within a smaller radius not, hence minimalizing 

errors (Awad & Khanna, 2015, p. 67; Smola & Schölkopf, 2004). This is specified also 

in (Smola & Schölkopf, 2004). 

Hence the algorithms in use are basically very similar. For the linear regression 

case, one needs to find the linear function 

 𝑓(𝑥) = 𝑥𝑇β + 𝑏 (212) 

as usual and to make sure it is “as flat as possible,” hence the norm βT β is 

minimized. As a reminder xT denotes the transposed x (Awad & Khanna, 2015). 

This can be seen (again) as a convex optimization problem as well: 

 minβ β𝑇 β (213) 

subject to all residuals having a value less than ε, therefore:  
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 ∀𝑛: ∣ 𝑦𝑛 − ( 𝑥𝑛
𝑇  β + 𝑏) ∣ ≤  ε (214) 

Again slack variables can be introduced such that the inequality does not need to 

hold for all points (Awad & Khanna, 2015; Smola & Schölkopf, 2004). Furthermore, the 

transformation with a kernel to nonlinear cases is possible in the same way (Smola & 

Schölkopf, 1998b). 

Then, the mentioned Lagrangian duality problem can be formulated in ways of 

SVR (sometimes denoted ε-SVR) as : 

 

𝐿(α) =
1

2
 ∑ ∑(

𝑁

𝑗=1

𝑁

𝑖=1

α𝑖 − α𝑖
∗)(α𝑗 − α𝑗

∗)𝐾(𝑥𝑖; 𝑥𝑦)

+ ε ∑(α𝑖 + α𝑖
∗) −

𝑁

𝑖=1

∑  𝑦𝑖(α𝑖 − α𝑖
∗)

𝑁

𝑖=1

 

(215) 

again subject to the constraints 

 ∑(α𝑖 − α𝑖
∗) = 0,

𝑁

𝑖=1

 (216) 

 0 ≤  α𝑖   ≤  C    ∀i, (217) 

  0 ≤  α𝑖
∗   ≤  C    ∀i (218) 

The problem is (again) solved iteratively via SGM or SMO (Smola & Schölkopf, 

2004). The function used to predict new values is then 

 𝑓(𝑥) =  ∑  

𝑁

𝑖=1

(α𝑖 − α𝑖
∗)𝐾(𝑥𝑖; 𝑥) + 𝑏 (219) 

 As SVM regression has many applications and advantages compared to other 

ML methods, it might be especially useful for credit risk as well. Considering the fact that 

it is generally able to capture nonlinear and nonnormal (even nonparametric) structures 

and dependencies as shown, it might be even better suitable for credit portfolio risks and 

to model its dependency structures than, e.g., the normal asset return distribution-based 

CreditMetrics® (where of course the credit risk returns are also nonnormal but 

correlations are often taken from that asset returns and therefore strongly restricted 

methodologically) or the Poisson-Gamma distribution-based CreditRisk+®. The idea of 

the thesis is to apply it to CPR. 
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5.3 Application of SVR to Bond Portfolios. Empirical Test and 

Comparison with Linear Models 

In the empirical part of the thesis, the portfolios used are described as the 

underlying data base, as well as the process of comparing the SVM regression model to 

industrial models and the results thereof. Hence, the usual (data) scientific path of first 

explaining the data base, its sources, structure and possibly descriptive statistical 

properties and then illustrating and comparing the models operating on that data in terms 

of their design, implementation (cf. annex of the thesis with program code) and 

underlying methods is generally followed in this thesis as well (Greene, 2003; Dixon et 

al., 2020). In terms of comparing the SVR model, it is benchmarked against a linear model, 

first to show the overall usability and superiority in that case and then compared to the 

industrial models CreditMetrics® and CreditRisk+®. As these two models – their 

methodical, mathematical background as well as their design and use cases – were already 

described in detail in the previous chapters it is herewith referred to the corresponding 

parts to avoid redundancy and preserve a coherent structure and smooth readability. 

As outlined above, the first focus is on the data used. 

According to common empirical studies’ standards (e.g., by SciDAC and by 

Greene)220 and programming best practice, the corresponding files are divided into a data 

file – namely “Portfolio_Data” – in which on the front page the data content and exact 

formatting is described as well as containing the raw data and formatted data on further 

tabs in Excel®, then the code files by using the standard data science language R® and 

finally output files.221  

The data process cycle or operating scheme can be therefore described as I-P-O, 

i.e., input, processing, output, where in the input part the data is explained with its steps 

from raw data to finally formatted data. 

The portfolio data used are original raw data extracted from Thomson Reuters 

Refinitiv® systems at the University of Gdańsk lab. Refinitiv® and Bloomberg® are the 

 

220 See, e.g., SciDAC Scientific Data Management Center (lbl.gov); Risk Assessment for Scientific Data 

(codata.org) (Retrieved Mai 17, 2022).  For a general overview, see (Greene, 2003). 
221 All these files are supplemented (and made available with) to the thesis and/or in the annex.  

https://sdm.lbl.gov/sdmcenter/
https://datascience.codata.org/articles/10.5334/dsj-2020-010/
https://datascience.codata.org/articles/10.5334/dsj-2020-010/
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standard and most reliable data providers in the financial industry, and prime use for 

academic studies in finance (Dixon et al., 2020).222  

For reasons of representativeness and to achieve rather general results 

diversification among the most important economic regions (and bond issuance locations) 

– hence the U.S. and the combined E.U. markets – and among risk structure profiles – 

measured as volatility, i.e., the standard deviation of returns which is the square root of 

the variance and binary ordered as low vs. high volatility – is applied (BIS, 2022; ICMA, 

2020; McEnally & Ferri, 1982; Worldbank, 2022a; Worldbank, 2022b). Considering 

liquidity concerns and excluding high premia, which could potentially bias the bond 

spreads solely large cap, high liquid portfolios were selected – hence, e.g., excluding 

emerging markets or shaping more granular risk structures as the binary ones (BIS, 2022; 

DeJong & Driessen, 2012; Euroclear, 2020; Goldstein et al., 2017; Kou & Varotto, 2008). 

This results in four high-liquid, representative portfolios for bond markets to 

measure credit risk in (correlated) bonds. A U.S. portfolio with high historical volatility, 

one with low historical volatility and the same division for European counterparts is 

employed. 

A further reason for excluding emerging markets, apart from liquidity, spreads, 

and survivorship bias concerns, is the lack reliable data history as a direct Bloomberg 

terminal search shows. Recent geopolitical developments such as the Russian invasion of 

Ukraine and the following economic sanctions are a further argument for the necessity of 

liquidity and deeply developed financial markets as in the EU – considering the way to 

an ECMU223 – and the US for bond portfolios. As the thesis further aims to compare credit 

risk models for large-to-mid-size listed companies and their liquid bonds, emerging 

countries and BRICS224 are consciously not in scope. In credit risk management a time 

period of at least three to optimal ten years (3-10 or 5-10 yrs.) should be considered and 

for these markets, such a long track period is rarely existing or for the constituents missing 

values and pricing errors appear too frequently. Coupon bonds, i.e., no zero-bonds with 

common maturity profiles (5-7 years) and structures are used within the portfolio indices, 

as they are a common standard and highly available. 

 

222  As on https://www.refinitiv.com/en/about-us#our-data, https://www.bloomberg.com/professional/ 

expertise/the-terminal-on-campus/  (Retrieved Mai 16, 2022). 
223 European capital market union 
224 BRICS: Brazil, Russia, Indonesia, China, and South Africa – a term coined by Goldman Sachs analyst 

Jim Reed. 

https://www.refinitiv.com/en/about-us#our-data
https://www.bloomberg.com/professional/%20expertise/the-terminal-on-campus/
https://www.bloomberg.com/professional/%20expertise/the-terminal-on-campus/
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Therefore, the named geographical regions and their corresponding bond markets 

with described bond profiles were chosen. Considering the volatility, the historical rolling 

five-year volatility (with volatility again as standard deviation) is selected as it is the most 

common type, the industry standard also for index risk measurement and explicit 

volatility indices like VIX®, VDAX®, additionally also in contrast to measures like VaR 

(Value-at-Risk), implicit volatility (only available for options on bonds and stocks) or 

maximum drawdown, directly available and verifiable from the provider. Therefore, the 

historical volatility with attribute settings “high” and “low” with a predefined constant 

threshold range by the provider (i.e., in a “middle-range” some corporate bonds can be 

ordered in low as well as high vola portfolios stemming from a binary decision process) 

and the corresponding E.U. and U.S. markets are chosen. The currency and denomination 

are the standard ones for the domestications, e.g., EURO for the European Union and the 

U.S. dollar ($) for the United States. Currencies from non-eurozone E.U. members like 

the Złoty (PLN) in Poland or the Koruna česká (CZK) would be converted by the midday 

actual conversion rate published by the ECB – however, as the current constituents are all 

large eurozone corporations like Allianz®, Deutsche Telekom®, SAP®, Telefonica®, 

Axa®, LVMH® or Philips® a conversion is not even necessary in the thesis’ setting. 

Following the extraction of these four raw, high-liquid U.S and E.U. bond 

portfolios ranging from 09C28C2009 to 09C26C2019 – hence a ten-year period – primary 

formatting is applied. This procedure is executed according to strict data scientific 

standards and utilizing a minimalistic approach. Hence, the data is kept original and raw, 

and only the following selections are made to make them statistically feasible. 

Bonds from companies with inconvenient time series, because of series which are 

starting too late or finishing too early compared to the common sub-time frame of the ten-

year period, or with an inadequate number of missing values (more than 10%) are 

excluded. This guarantees a common, synchronous time series data set. As credit risk is 

measured mainly in terms of rating changes also constituents without ratings or unregular 

updates are excluded. This yields the pre-formatted portfolios then. For constituents with 

fewer missing values the gaps are filled conservatively with the last prices available, later 

similarly with ratings, which is standard practice and preferable to other methods as this 

method is not depending on further – possibly error containing – calculations or pre-

assumptions. Examples of these calculations include the arithmetic mean of pre-

Csuccessor values, extrapolation rules or peer benchmark values. Furthermore, the ratings 
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are filled equivalently for a coherent full history and mapped to a common standard 

master rating scale as usual. The original portfolios have the following constituents 

(less the constituents without ratings or price quotes): 

Table 6 Tables of constituents (companies) of the selected portfolios with low 

volatility (U.S. and E.U.).  

1.1 and 1.2 USLV (U.S. 

low volatility) 
  

1.3 and 1.4 EULV (E.U. 

low volatility) 
 

Company/Constituent Ticker/ID 
 

Company/Constituent Ticker/ID 

SOUTHERN CO      842587CM7= 
 

AMADEUS IT GROUP ES187819105= 

DUKE ENERGY      26441CAF2= 
 

DELHAIZE         24668PAE7= 

NEXTERA ENERGY   65339F796= 
 

FRANCE TELECOM   35177PAW7= 

CONSTELL ENERGY  210371AL4= 
 

ESSILOR          FR0011842939= 

ALTRIA GROUP     02209SAL7= 
 

MUNICH RE        DE060839255= 

MCDONALDS        58013MEJ9= 
 

VIVENDI          FR047096715= 

WAL-MART         931142CU5= 
 

IBERDROLA FIN IE ES073630363= 

PROCTER GAMBLE   742718DY2= 
 

ENEL             IT101499707= 

VERIZON COMMS    92343VAX2= 
 

DEUTSCHE TELEKOM DE164448282= 

COCA- COLA       191216AR1= 
 

ADIDAS           DE111415528= 

AT AND T INC     00206RAX0= 
 

DANONE           FR063036137=R 

PEPSICO          713448BN7= 
 

VINCI SA         FR0011225127= 

HJ HEINZ FIN UK  US010768101= 
 

LOREAL           FR0125763344= 

ELI LILLY        532457BC1= 
 

GDF SUE          FR0011147305= 

TARGET           87612EAV8= 
 

ENI              IT052100097= 

ALLSTATE         020002AZ4= 
 

SANO             80105NAG0= 

STARBUCKS        855244AD1= 
 

FRESENIUS FINANC DE087343251= 

PHILIP MORRIS    718172AH2= 
 

AIR LIQUIDE      FR089930723= 

PHILIP MORRIS    718172AH2= 
 

ALLIANZ          DE085787250= 

MERK             58933YAA3= 
 

TOTAL            FR119520193= 

BRISTOL MYERS    110122AT5= 
 

SAP              DE085325329= 

JOHNSON JOHNSON  478160AW4= 
 

SAFRAN           FR105689217= 

UNITEDHEAL GRP   91324PBM3= 
 

DEUTSCHE POST    DE086294150= 

CVS CARE         126650BW9= 
 

NOKIA            654902AC9= 

LOCKHEED MARTIN  539830AY5= 
 

SIEMENS FINANCRG DE082605029= 

WALGREENS BOOTS  US113835869= 
 

TLEFONICA EMISNS 87938WAM5= 
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PFIZER           717081CY7= 
 

BAYER            DE102326857= 

   
LVMH             FR114511315= 

Source: Refinitiv® 

As intuitively reasonable the low volatility portfolios (LV) contain more 

conservative branches like provider bonds (energy provider, telecommunication provider 

or postal services, etc.), consumer staples (less discretionary) and other consumer brands 

which are (largely) noncyclical like Procter & Gamble® or nutrition brands and chains 

like McDonalds® and CocaCola®, health and care products like L’ Oreal® or 

pharmaceuticals like CVS®, Pfizer®, or Johnson & Johnson® (Adam & Merkel, 2019; 

Boudoukh et al., 1994; Yuksel & Bayrak, 2012). A further advantage is that these branches 

and corporations are relatively stable over time and hence the index or portfolio 

composition does not have to be adopted often (Adam & Merkel, 2019; Barber & Odean, 

2000; Boudoukh et al., 1994). In contrast to that, one expects newer, more tech-affine and 

– in general, more pro-cyclical – branches like internet streaming and movie platforms 

(Netflix®), tech companies (Amazon®, Alphabet® as the Google® mother holding 

company, Intel®, Nvidia®), and banks (MorganStanley®, Bank of America (BofA)®) to 

be of higher volatility (HV) (Buchbinder et al., 2018; Chaudhary et al., 2020). The same 

holds for pro-cyclical branches like the car industry (VW®, Daimler®, etc.). Volatile 

markets and commodities in practice rapidly lead to a contagion (cf. betas and correlations 

on Bloomberg) of the whole production and supply chain – including sub-contractors and 

pre-suppliers – of, e.g., car manufacturing (Brunnermeier, 2008; Filbeck et al., 2016; 

Yuksel & Bayrak, 2012). 

Table 7 Tables of constituents (companies) of the selected portfolios with high 

volatility (U.S. and E.U.).  

1.5 and 1.6 EUHV (E.U. 

high volatility) 
  

1.7 and 1.8 USHV (U.S. 

high volatility) 
 

Company/Constituent Ticker/ID 
 

Company/Constituent Ticker/ID 

BBVA             ES41321145= 
 

INTEL            458140AJ9= 

AIRBUS GROUP     NL125458459= 
 

BOEING           097023AZ8= 

BANCO SANTANDER  ES41390029= 
 

GENERAL MOTORS   37045VAB6= 

INTESA SANPAOLO  IT048645453= 
 

JPMORG CHAS      46625HHZ6= 
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VW 

XS1984518867=

TE 
 

TEXAS INSTRUMENT 882508AW4= 

DAIMLER          DE085720546= 
 

CHEVRON          166764AB6= 

ING GROEP        456837AE3= 
 

ADOBE SYST       00724FAB7= 

SCIET GENRLE     FR052681448= 
 

ALPHABET         02079KAA5= 

KON PHILIPS      500472AE5= 
 

AMAZON.COM       023135AJ5= 

BMW FINANCE      DE096831625= 
 

CISCO SYSTEMS    US046683838= 

BNP PARIBAS      FR053516335= 
 

BIOGEN           09062XAC7= 

ABINBEV          BE063302678= 
 

PRICELINE GROUP  741503AS5= 

AXA              FR050366529= 
 

CELGENE CORP     151020AE4= 

KERING           FR111686661= 
 

GOLDMN SACHS     38141E5N5= 

CRH FIN SERV     FI098144293= 
 

BANK OF AM       06048WBC3= 

ASML HOLDING NV  NL097253056= 
 

CAPITAL ONE FNCL 14040HAY1= 

BASF             DE086068311= 
 

EL PASO          28336LBV0= 

NOKIA            654902AC9= 
 

EMERSON ELECTRIC 291011BE3= 

LVMH             FR114511315= 
 

FEDEX            31428XAS5= 

TLEFONICA EMISNS 87938WAM5= 
 

CITIGROUP FUNDNG US049852797= 

BAYER            DE102326857= 
 

BLACKRCK         09247XAH4= 

AIR LIQUIDE      FR089930723= 
 

CONOCOPHILLIPS   20825CAQ7= 

ALLIANZ          DE085787250= 
 

CATERPILLAR      149123BJ9= 

TOTAL            FR119520193= 
 

METLIFE          59156RBF4= 

SAP              DE085325329= 
 

NETFLIX          64110LAE6= 

   
NVIDIA           67066GAD6= 

   
MORGAN STANLEY    61747YCS2= 

     

Source: Refinitiv® 

As all of the entities described are high liquid frequently issued and traded 

corporate bonds with common or comparable bond structures (profiles), they seem to be 

an appropriate data base for the selected portfolios. Furthermore, the companies listed – 

especially the low volatility ones – possess rather strong balance sheets with high equity 

ratios and rather low debt profiles. 225  Common financial statement data like 

 

225 E.g. utilizing p. 9 of the manual, retrieved Mai 15, 2022, from 

https://www.scranton.edu/academics/ksom/alperin/Equity-Fundamental%20Analysis.pdf at a 

Bloomberg® terminal. 
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turnoverCsales figures, cash flows and earnings (EBITDA) are strong, often further 

growing and indicate rather stable company choices over the next time (cf. Bloomberg® 

or Refinitiv® queries on the companies). Many of the companies, as commonly known, 

are holding a quasi-monopoly or oligopoly in their areas and entry barriers for new market 

participants are relatively high as CocaCola® in the area of soft drinks, McDonalds® in 

the fast-food industry or SAP® in business software (Blackstone & Darby, 2020; Esch et 

al., 2019). 

Adding the broad range of branches and industry sectors involved in the bond 

portfolios, they appear rather representative and build a common financial industry choice 

for the desired requirements. 

Furthermore, the spread – as highly liquid titles were selected – can be attributed 

to credit risk and merely to liquidity risk as also suggested by academic research and 

supported by the fact that a rather “normal” and timid macro-economic timeframe was 

chosen, excluding times of extreme market anxiousness, (liquidity) crisis as during the 

GFC or insecurity in light of the COVID-19 pandemic (Breckenfelder & Ivashina, 2021; 

Chaudhary et al., 2020; Covitz & Downing, 2007; Ericsson & Renault, 2000; Ericsson & 

Renault, 2006; Shirakawa, 1999).  

Table 8 Rating agencies scales and the master scale for the empirical comparison. 

   

 Moody's S & P Fitch Master scale (ordinary number) 

Top bonds Aaa AAA AAA 19 

Very good 

quality 

bonds 

Aa1 AA+ AA+ 18 

 Aa2 AA AA 17 

 Aa3 AA-  AA-  16 

     

Good 

quality 

bonds 

A1 A+ A+ 15 

 A2 A A 14 

 A3 A- A- 13 



252 

 

Middle 

quality 

Baa1 BBB+ BBB+ 12 

 Baa2 BBB BBB 11 

 Baa3  BBB-  BBB-  10 

     

Speculative 

grade/NIG 

Ba1 BB+ BB+ 9 

 Ba2 BB BB 8 

 Ba3 BB- BB- 7 

 B1 B+ B+ 6 

 B2 B B 5 

 B3  B-  B-  4 

     

Very bad   

(highly 

junk) bonds 

Caa CCC CCC 3 

 Ca CC CC 2 

 C C C 1 

Defaulted - D D 0 

Short-term 

ratings -

"P"-

terminology 

P1   15 

 P2   12 

 P3   10 

 F1+   18 

 F1   15 

 F2   14 

 F3   13 

 A-1+   18 

 A-1   15 

 A-2   14 

 A-3   13 

 A1+   18 

 A1   15 
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 A2   14 

 A3   13 

 P-1   15 

 P-2   12 

 P-3   10 

Source: Own table, combined of short-term and long-term ratings of S & P ®, Moody’s ® and Fitch®. 

Disassembling of the components (with an average empirical ratio) by the author 

further yielded basically the same results showing no need for separation. The portfolios 

are then the finally formatted ones – with ratings according to the master scale, missing 

values coherently filled, synchronized time series and portfolios for the SVR (training 

and) testing. They are identified as “SVMTest” (=1),…, “SVMTest 4”. In terms of ratings, 

the corporations selected were regularly rated by the presented major three accredited 

rating agencies in the world, Standard & Poor’s ®, Fitch Ratings®, and Moody’s®. The 

rating methodology and terminology of these agencies are rather similar, with details that 

might exceed the content already described in the thesis to be found on their websites and 

regular methodological publications. While the role of these rating agencies was 

discussed in the aftermath of the great financial crisis the trial to establish an independent, 

foundation-based European rating agency (then empowered by the European 

Commission and promoted, e.g., by the consulting company Roland Berger®) or other 

alternatives failed as mentioned before. Apart from required due diligence on their ratings 

the regulators still allow – and expect – the remaining “three big” agencies and their 

ratings to be used for regulatory and official purposes (European Commission, 2019; SEC, 

2022c; Sinclair, 2005; Witzany, 2017). Besides certain agencies (like Hermes Euler for 

accreditives, etc.) being allowed for some specific credit types, the named ones are the 

only ones to be used overarchingly and across different areas of credit (SEC, 2022c; 

Witzany, 2017, p. 35). Their rating codes are – by their definition of an ordinal number 

encoding and categorizing the creditworthiness of a company and their description 

(economical meaning) of the single stagesCgrades – one-to-one transformable into each 

other and hence the result is a common ordinal scale utilizing rating master scale. This 

master scale for the thesis ranges from zero to nineteen (0-19) in ascending order, with 

zero meaning a company defaulted on its debt and nineteen the highest possible triple-A 

highest-solvency rating. Short-term ratings are generally coded by the P-CF-terminology 

as presented in the table above, however, can be transformed to an ordinal number in a 
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similar fashion and combined – with the risk of minimal maturity mismatches – to the 

common (short- and long-term) master rating scale (Moody’s, 2022). 

Therefore, four portfolios with representative constituents and attached, rather 

widely distributed ratings are available. 

An intuitive model in econometrics and in measuring credit risk would be a linear 

or multi-factor model. As indicated by the name it models the underlying (economic) risk 

factors in a linear way or a linear combination of basis risk factors (Witzany, 2017). 

As linear models are rapidly approachable and commonly used for first 

comparisons, they are employed to show that a support vector machine AI approach is 

superior and hence principally usable for measuring credit portfolio risk.226 

The statistical programming language R® is used (the code can be found in the 

annexCattached) to select an (optimal) linear model (LM) and to train the SVR with the 

SVM e1071 library.  

Running the linear model LM and the SVR model in R on the same four described 

portfolios yielding a general volatility- and geography-overarching result, random 

training and test subsets of the portfolios for the SVR are selected (allowing cross-

validation). The standard data partition with sizes of 80 % for training and 20 % for testing 

is utilized for the SVR approach. This is common practice in the data science field, 

guarantees proper training with a sufficient amount of data and would allow for cross-

validation with five same-sized parts. Furthermore, the parameters epsilon for the steps 

with 0.1 equidistance from zero to one (0-1) and the cost function (ranging from 4 to 1024 

= 210) are standard values. The step is fine enough to cover relevant changes yet not too 

small to generate performance issues. However, the author additionally experimented 

with various smaller steps in the grid, that indicated no significant deviation at all. 

Different kernel functions are applied with very similar results (except as expected for the 

linear kernel which is trivial) – hence using a frequently used radial kernel consequently 

made sense.  

At first, a Kruskal-Wallis rank sum test for the predictions of LM and SVR 

concerning the four portfolios is performed, because (a priori) nonrelated nonparametric 

empirical distributions are considered (“distribution-free” approach). Therefore, 

 

226  Another standard comparison in credit risk is utilizing logistic regression in logit models. As 

econometric models are founded on these and the PD-barriers of CreditMetrics® implicitly as well (and 

even extended) this comparison, yielding similar results, is not further detailed here as the SVM approach  

is compared to CreditMetrics® in the following. 
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parametric tests as a t-test or even normality tests as an Anderson-Darling, Shapiro-Wilk, 

Doornik-Hansen, or Kolmogorov-Smirnov test are naturally not suitable, the same is true 

for related-sample tests as the nonparametric Wilcoxon signed-rank test. The first null 

hypothesis H0 states LM and SVR generated “similar predicted distributions” stemming 

from “the same group”, formally a p-value > 0.05 for the Kruskal-Wallis (rank sum) test. 

The operationalized version of the research hypothesis into a formal null hypothesis 

writes: 

H0: The predicted distributions of values from LM and SVR are equal (stemming 

from the same population). LM ~ Kruskal-Wallis SVR.  

The results for all four portfolios and the corresponding out-of-sample predictions 

(“Test Sets”) clearly indicate, that the underlying (predicted) distributions are 

significantly different and p << 0.05 for the Kruskal-Wallis Tests. Hence, the first null 

hypothesis is denied and the generated distribution results differ significantly. 

Table 9 Test result of the Kruskal-Wallis rank sum test, comparing the out-of-sample 

predictions (test partition predictions) of LM and SVR for the four portfolios. 

 Portfolio 1 

(U.S. LV) 

Portfolio 2 

(E.U. LV) 

Portfolio 3 

(E.U. HV) 

Portfolio 4 

(U.S. HV) 

Kruskal-Wallis 

rank sum Test 

on data:  

modelValY and 

modelValY2 

from LM and 

SVR 

(chi-squared, df 

and p-value 

result) 

  

Kruskal-Wallis 

chi-squared = 

175, df = 58, p-

value = 1.136e-

13 

Kruskal-Wallis 

chi-squared = 

343, df = 114, 

p-value < 2.2e-

16 

Kruskal-Wallis 

chi-squared = 

343, df = 65, p-

value < 2.2e-16 

Kruskal-Wallis 

chi-squared = 

419, df = 88, p-

value < 2.2e-16 

Source: Own illustration from own R code results. 

However, in the next step it is interesting to determine which one is “better” in 

regard to the real four portfolio distributions and “how much better”. 

As a comparison, a measure of the “distance to the real output”, i.e., a sort of 

“goodness-of-fit” or “minimalizing of errors to the real data” is needed. A standard 



256 

 

indicator to achieve this aim is the root mean square error (RMSE), which is therefore 

applied here (Dixon, 2020; Greene, 2003; Martin et al., 2014). The RMSE metric 

possesses useful mathematical properties (as differentiability, subadditivity etc.) and is 

naturally a nonparametric error measure, i.e., distribution-independent (Greene, 2003). It 

always yields larger or equal resulting values than, e.g., the corresponding mean absolute 

error values and is therefore prudent (Greene, 2003). Circumstances and data which 

would prefer another measure like that absolute mean error or weighted means are not 

applicable here, hence the RSME is the method of choice. The second null hypothesis can 

be formulated as: 

H0: RMSE (LM, real portfolio data) ≤ RMSE (SVR, real portfolio data) 

It is also denied. The RMSE results – applied already to the training set as well as 

to the out-of-sample test set for both approaches – in a much smaller RMSE (number) for 

the SVR case. 

Results for the Test Subset for the four portfolios, where the columns denote the 

portfolios as described above and the rows constitute the model applied, are shown below: 

Table 10 Results of the LM-SVR comparison on the test set. 

Method/Portfolio U.S. LV E.U. LV E.U. HV U.S. HV 

LM 21.44766  22.305105 20.484721 32.83905 

SVR 16.16686                  7.821679              7.101168             16.97299 

Source: Own illustration from own R code results. 

Results for the (less important) Training Subset for the four portfolios, where the 

columns denote the portfolios as described above and the rows constitute the model 

applied: 

Table 11 Results of the LM-SVR comparison on the training set. 

Method/Portfolio U.S. LV E.U. LV E.U. HV U.S. HV 

LM 21.94749                              21.426613 19.902117 32.36669 

SVR 16.81485                   6.764679              7.428752             15.08635 

Source: Own illustration from own R code results. 

The result tables show that the SVR model performs much better than the intuitive, 

feasible linear model LM with an RMSE number which is ~ 23 % to 68 % less. The null 
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hypothesis H0 that RMSE(LM) ≤ RMSE(SVR) on average is denied – even not true at 

all, for all four portfolios. Especially for portfolios 2.-3. and higher volatility the method 

of SVR performs significantly better and clearly outperforms the linear model. 

Furthermore, as accompanying information, an additional distribution-

independent Kruskal-Wallis Test of the SVR results with the original portfolio data was 

indicating success for all portfolios (H0 that the SVR model output inherits the same 

distribution structure as the real portfolio was clearly not denied). 

Hence, the support vector machine AI - model is superior to the linear model and 

principally useful and effective to measure credit portfolio risk. This is the first part to be 

proved. It is furthermore of high practical relevance. As AI-based models become more 

frequently used in banking also the regulators (supervisory bodies) set up standards 

regarding their use. The German BaFin published its guideline on BDAI (Big Data and 

Artificial Intelligence) this year, and the ECB and EBA published guidelines for the use 

and validation of AI models as in November 2021 (EBA, 2020; EBA, 2021f; ECB, 2021b). 

Regulators therein acknowledge the frequent use and spread of AI-based models, 

define terminology, principles, and limitations to their use and make best-practice-type 

recommendations. In the coming years even more activity in this realm is to be expected 

with different task forces, working groups, and impact studies set up for this purpose by 

supervisory bodies (as well as within banks and insurance themselves).  

Among other trends like decentralized finance (“defi”) based on blockchain type 

technologies of different layers, layer one is again a pure cryptocurrency like Bitcoin® 

(BTC) or Ethereum® (ETH), whereas layer two builds on that and sets up smart contracts 

or processes like staging crypto-credits upon it as seen, are platform-based approaches 

utilizing AI (Dixon, 2020). Furthermore, the areas of Robo advising and investing employ 

AI methods, and the sophisticated use of artificial-intelligence-based models in credit risk 

and also valuation and execution of deals might become a cutting-edge distinction 

criterion between competitors (Dixon, 2020).  

5.4 Comparison of the SVR approach to Industrial Credit Portfolio 

Models  

The main objective of the thesis is to show that the SVR model can perform better 

than traditional credit portfolio models. That means that the SVR-predicted VaR in such 

a case is closer to the real portfolio VaR in comparison to the ones predicted by classical 
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models. As described before, that is a crucial point, since a more precise credit risk model 

improves credit risk management and risk-bearing capital allocation, hence optimizes 

riskCreturn metrics for portfolios and for the pricing of bonds and loans. Ultimately, it may 

lead to higher profits for a financial institute.  

As shown in Chapter 4 two types of credit portfolio risk models are industry 

standards in the financial industry. The first ones are hazard rate or actuarial models 

modeling the default as a random exogenous stochastic process using a Poisson process 

as usual to count the number of (rare) default events and a Gamma function as a common 

risk (impact) factor resulting in a negative binomial distribution type function at the end. 

This risk model type with its widely used proponent CreditRisk+® is implemented and 

well-tested in an R package called CRP and hence used to compare it with the SVR 

method. The second type of credit portfolio risk models are structural or asset-value 

models introduced by Merton and with its main proponent being the extended migration 

model CreditMetrics®. For CreditMetrics® not being available as a common standard in 

R, an Excel-VBA-based standard version programmed by the author and previously used 

(license-free) and validated by clients in the banking industry is applied. The third type, 

econometric models, are principally convertible and reducible to structural settings with 

comparable results as shown in Chapter 4, hence they are not separately considered. As 

CreditMetrics® is superior to CreditRisk+® in most portfolio contexts (especially for 

rated, listed companies as dealt with in the four portfolios) the comparison of the SVR 

with the first one is the (far) most relevant in practice. 

As CreditRisk+® models credit risk by an exogenous stochastic Poisson mixed 

process, the intensity parameter lambda of the Poisson process and the parameters (alpha, 

beta) of the Gamma function are normally empirically calibrated, and can be transformed 

to other default variables. In the case of the thesis standard parameters (in line with the 

CreditMetrics® settings) – finally even optimized by the R package in use – were chosen. 

CreditMetrics® is founded on the asset price movements – derived or simplified 

from stock prices in practice – and underlying returns of a company as seen. As a reminder, 

they are assumed to move statistically in a normal distributed way and a company defaults 

once its debt D is higher than the assets V resulting in negative equity capital. The related 

subsequent quantiles of the normal distribution hence represent the rating grades. One has 

to keep in mind that the companies are not independent and isolated but connected and 

thereby bear a common (industrial or economic) risk factor and an individual 
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idiosyncratic one. 227 Hence the returns and asset prices as well as the potential defaults 

are correlated via asset price correlation proxies, empirically calibrated. Furthermore, by 

applying the correct (periodical) discount factors the bond prices have to be re-calculated, 

especially discounted with the proper forward rates, after each period. 

For CreditMetrics®, therefore, certain input parameters are needed and named in 

the corresponding tabs of the Excel® file for a well-calibrated model. These are the  

• Transition matrices describe the probability of a bond migrating from  

one rating to another – where a bond time series consistent 2019 public 

version from S & P ® is selected  

• The spot and forward rates (extracted from Refinitiv® for the same  

periods) for risk-adjusted discounting purposes and 

• Plausibilized sector correlations (U.S. banks, U.S. tech, German banks  

as proxy for E.U. banks, 2019 from Refinitiv®, see also (Leske et al.,  

2004)) 

 

Furthermore – as computations and cross-correlations are too complex or not 

available otherwise in CreditMetrics® – an industrial standard is applied, where five 

random (by dice) constituents are taken from each of the portfolios instead of taking the 

whole portfolios themselves. The selected bonds are – as constraint, otherwise implying 

a redraw – distributed among the ratings real range and industries and have 20 initial 

stable ratings at the beginning of their time series as explained later. In the input sheet all 

bonds are equipped with unit 1 (here equal to one million) nominal amount, 7228 years 

maturity and 5 %229 coupon as in line with the Refinitiv® bonds and standard data and a 

standard recovery rate of 40 %230 for senior unsecured bonds (hence a 60 % LGD – loss 

given default) is assumed.  

Subsequently, further parameters are calculated directly standard-wise by the 

program as the product of the transition matrix, the discount rates (as reciprocal of the 

spot and forward rates), the thresholds (as the inverse of the normal distribution of the 

 

227 For a good overview of systematic and idiosyncratic risk factors see, e.g., (Moody’s, 2013, p. 16).  
228 As medium-term notes (MTN) have a normal maturity of 5-7 years, 10 years is a standard longer-term 

bond. Therefore, 7 years is a suitable standard (and “average”/“middle ground”), see also (CFI, 2022e). 
229 Also the most common standard (5%, in some applications 10%) in law see, e.g., (Upcounsel, 2020) and 

practical textbook examples, as in https://www.investopedia.com/terms/c/couponbond.asp (retrieved Mai 

14, 2022) or mainly in (Hull, 2015). 
230 Industry standard as in ISDA, cf. (ISDA, 2009) or collected by S & P ®: (S & P, 2021b). 

https://www.investopedia.com/terms/c/couponbond.asp
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different ratings’ boundariesCPDs), the Cholesky-decomposition of the covariance matrix 

or the correlated random variables per Monte Carlo simulation (multiplied with the 

weighting of sectors plausibly chosen and correlations). The report and also the 

“CEO_report” tab then show the result as Value-at-Risk with a holding period of 250-

days (i.e., one standard trading year) and confidence intervals of 95 % and 99 % (i.e., 

level of significance 5 % and 1 %). This result (95%) is then benchmarked with the SVR 

result for all four portfolios. 

To apply SVR to the portfolios, for all four of them the five bonds (distributed 

over different branches and ratings, starting at the same PIT as mentioned), for each with 

20 stable initial ratings (as one out of twenty corresponds to a VaR 95 % later) at the 

beginning of the time series are selected. This guarantees synchronous, coherent data and 

long data history. 

After choosing T0…T19 – ordered from the beginning of the common time series 

period – the 20 matching changes in T-250 (trading days) hence T250…T269 are selected 

for the five bonds to calculate the real Value-at-Risk (VaR, 250 days, 95 % CI) and testing 

set base. These are also consistently used for CreditRisk®, its initial ratings and 

calibration, with results of the calculations in the four CreditMetrics®-Excel-Files.  

The SVR model is furthermore trained with the whole residual portfolio (naturally 

except the T250-269 record sets) in the “SVMTest”-files. Therefore, enough data is 

available for a calibrated, well-fitting model. The parameters are standard ones as selected 

for the comparison with the linear model, hence again a radial base function kernel, with 

epsilon (preciseness) from zero to one in 0.1 steps, the cost function (balancing the width 

and penalty in SVR as regarded before) ranging from four to 1024 and tuned for the best 

optimized choice. 

The trained SVR model is applied to the before-mentioned test set and the VaR 

results are to be found in VaRTest, Test file. Well-calibrating of CreditMetrics® yields a 

closer result than with CreditRisk+®, the latter one being analogously well-calibrated 

with LGD of 60 %, weights and PDs as in CreditMetrics® and 100 (%) EAD, hence, e.g., 

without any drawn credit lines as plain-vanilla bonds. The LGD of 60 % is an empirical 

industry standard for senior unsecured loans as shown before. It represents a solid choice 

throughout different branches, sectors, and company sizes while avoiding over-

specification (or over-fitting) to a certain industry or company profile. Higher losses are 

especially common for subordinated loans, high-yield loans, or in terms of small 
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companies or venture capital-backed start-ups. As these types of loans and companies are 

not within the scope of this thesis, the average of 60 % seems appropriate. On the other 

hand, also secured or collateralized bonds are not considered, and extremely well-handled 

recoveries of conveniently liquidated companies are rare – therefore the 60 % also seems 

to be well-chosen as an upper bound for the purpose of the thesis. The weights and PDs 

are – with PDs directly linked with the corresponding ratings – empirically (historically) 

chosen and are of typical height (and well replicable). One can therefore speak from an 

industry typical, empirically replicable setting for the test. The product of the unexpected 

distribution part of the default probability with (a normalization factor 12.5 and) the 

conservative loss given default again combines to the risk weight RW in regulatory 

settings:  

 𝑅𝑊 =  (𝑉𝑎𝑅𝑞𝑢𝑎𝑛𝑡𝑖𝑙(𝑃𝐷) − 𝑃𝐷) ⋅  12.5 ⋅  𝐿𝐺𝐷  (220) 

To calculate the expected loss EL, as shown before, one has to multiply PD and 

LGD by the exposure at default, i.e., the amount which is relevant and “in danger of loss” 

once a default occurs:  

 𝐸𝐿 =  𝑃𝐷 ⋅  𝐿𝐺𝐷 ⋅  𝐸𝐴𝐷 (221) 

Therefore, the EAD is chosen in this thesis as the standard unit amount of one 

(million) for each company and bond in the underlying currency unit as mentioned and is 

hence not impacting (or even give a reason for a biased approach) the results (VaR). The 

third null hypothesis states that the SVR model is not performing significantly better for 

the majority of chosen portfolios than classical credit portfolio models when predicting 

the Value-at-Risk (VaR) of the portfolios. It can be operationalized as:  

H0: Min (CreditMetrics® VaR – real VaR; CreditRisk+® VaR - real VaR) ≤ (SVR 

VaR - real VaR) – for the majority of the portfolios. That null hypothesis is clearly denied. 

CreditRisk+® generally leads to (far) worse results compared to the real VaR and 

SVR regression is superior in every case. For portfolios 1.-3. CreditRisk+® predicted 

VaRs of roughly 35-40 % less (2.4-2.6) than CreditMetrics® and for portfolio four it was 

better than CreditMetrics® yet still too low with absolute value 12, compared to a real 

VaR of 31. CreditMetrics® is underestimating the real VaR less and is superior (as 

expected), yet not as precise as the SVR for most of the portfolios. For portfolio 1 

CreditMetrics® yields the best result, the SVR approach however is far more accurate for 

portfolios 2 and 4 and at least even for portfolio 3, both – also the SVR one – have 

underestimated the real VaR here for the European high volatility portfolio. 
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Table 12 Final result of comparing CreditMetrics® and the SVR approach. 

Portfolio of Bonds | 

VaR, 1 year (250d), 

95 % 

CreditMetrics® SVR Real Scores (+1,0,-1) for SVR 

Portfolio 1 4 5.1 4.2 -1 

Portfolio 2 4.1 18.4 15.8 +1 

Portfolio 3 4.1 4.1 13.5 0 

Portfolio 4 4.3 31.7 31.3 +1 

Source: Own illustration own R code results and aggregation. 

This results here in a score of 2:1 for the SVR model in comparison to 

CreditMetrics®, the superiority of the SVR method in terms of VaR calculation is implied 

for representative portfolios. 
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CONCLUSIONS 

The research hypotheses of the thesis dealt with the applicability of support vector 

regression for measuring credit portfolio risk and the question of how precise it may 

measure it for standard bond portfolios compared to industrial credit portfolio models. 

Therefore, the necessity for banks to quantify credit portfolio risk precisely was 

presented in the first chapters of the thesis, while having introduced the target objects 

assets (asset classes), portfolios, and funds with their underlying characteristics as well 

as measures for riskCreturn, optimal portfolio models, and models currently available to 

determine the specific risks in the banking industry. The inherent form of appearance of 

credit risk in various asset classes or project investments and its crucial role within a 

bank’s risk management framework was discussed. 

A comprehensive overview first treated single obligor credit risk and ratings by 

the inclusion of internal as well as external rating approaches rarely regarded in academic 

research so far, combined with current regulatory requirements and a review of the entire 

rating process. The preference for mathematical-statistical models was illustrated, and 

state-of-the-art validation techniques were summarized and presented. In the next step, 

multiple obligors and their correlated credit risk structure within a credit portfolio were 

regarded as the thesis aimed to compare SVR with thoroughly analyzed industrial credit 

portfolio models.  

Therefore, the most comprehensive literature review in that area to date and 

(meta-)analysis of current credit portfolio models, their underlying assumptions, strengths, 

shortcomings as well as preferred portfolio type applications were given. The results show 

that apart from homogeneous retail portfolios where the hazard rate proponent 

CreditRisk+® is prone due to its feasible implementation, execution speed and analytical 

closed-form solution, CreditMetrics® (and equivalently the structural model variant 

KMV®) is currently the best performing credit portfolio model regarding VaR estimation 

overall and especially for listed companies and rated entities. This result is for instance in 

line with (Arora et al., 2005; Diaz & Gemmill, 2002; Gordy, 1998; Gordy, 2000; Kollár 

& Gondžárová, 2014; Kolman, 2010; RiskMetrics Group, 2007; Witzany, 2017). 

Structural models as illustrated thus outperform hazard rate or reduced form models in 

general; especially when utilized for out-of-sample predictions, as formerly already 

exemplified in (Duffie, 1999; Geyer et al., 2001; Kolman, 2010). Reduced form models 
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further tend to underestimate common default rates, credit spreads, and thus VaRs 

whereas structural models’ results seem to be more conservative – as also the thesis’ 

results for the four test portfolios show, confirming (Arora et al., 2005; Crouhy et al., 

2000; Diaz & Gemmill, 2002; Elizalde, 2006; Gordy, 1998b; J.P. Morgan, 1998; Kollár 

& Gondžárová, 2014; Kolman, 2010; Stein, 2002; Witzany, 2017). The similar 

econometrical models perform also considerably well in practice and are especially 

convenient when the VaR ought to be linked with and explained by macro-economic 

factors, as known from (Bluhm et al., 2003; Wilson, 1998). Such an approach, as 

implemented in CreditPortfolioView®, is frequently used by mutual and savings banks 

relying on pooled data available from common service units in the umbrella association 

or holding company. The thesis outlined in Chapter 4 that the three model types can be 

transformed into each other within a common theoretical framework utilizing mainly 

methods from (Bélanger et al., 2003; Hickman & Koyluoglu, 1998; Wong, 1998). 

Nevertheless, the literature review of the empirical research generally showed stronger 

performance metrics for structural models, referencing inter alia (Arora et al., 2003; 

Gordy, 1998b; Gordy, 2000; Grouhy et al., 2000; Kollár & Gondžárová, 2014; Kolman, 

2010; Schwarz, 2006; Wahrenburg & Niethen, 2000; Witzany, 2017; Zhang et al., 2008). 

The model comparisons for the test portfolios in the thesis, employing E.U. and U.S. 

liquid bond portfolios and each of them within two different regimes of volatility, proved 

that aspect as well. Furthermore, CreditMetrics® as the primary structural model choice 

was shown to have several extensions and specialized applications, by using ideas of 

(Bielecki & Rutkowski, 2004; Black & Cox, 1976; Duffie & Lando, 2001; Giesecke & 

Goldstein, 2004; Goldstein et al., 2001; Ho & Singer, 1982; Ho & Singer, 1984; Jou & 

Lee, 2009; Leland, 1994; Leland & Toft, 1996; Lettau & Wachter, 2011; Longstaff & 

Schwartz, 1995; Madan & Unal, 2000; Vašíček, 1984). Model enhancements that even 

capture risk parameter dependencies as the PD-LGD nexus like a concept introduced by 

Emmer and Tasche, an empirically calibrated approach by Eckert et al., and an alternative 

variant from Witzany were presented in the thesis (Eckert et al., 2016; Emmer & Tasche, 

2016; Witzany, 2011). 

The most innovative one, however, was probably the CreditMetrics® extension 

ZPP that is utilizing copulas and is further achieving to outperforming the other CPMs, 

e.g., KVM® (de Giuli et al., 2007; Kamali et al., 2020).  
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Apart from that extension, there was less research regarding credit risk models 

and it brought few model innovations during the last ten years. While parts of credit risk 

research were however revived through AI-based methods and SVM has been already 

used for individual, single obligor scoring methodologies and showed superiority in 

comparison to some traditional methods in that area, it was not applied to assets in 

portfolios and credit portfolio risk yet (Baesens et al., 2003; de Laurentis et al., 2010; 

Lessmann et al., 2015; Roa et al., 2021). 

The thesis introduced a novel approach for quantifying credit portfolio risk, 

namely support vector machines and support vector regression, and bridged the gap to a 

portfolio view. Various other artificial intelligence techniques as ANNs were presented in 

a detailed fashion, and applications of AI in the realm of finance were discussed, like in 

(De Spiegeleer et al., 2018; Dixon, 2020; Dixon & Halperlin, 2019; Dori et al., 2018; 

Feng et al., 2018; Hornik et al., 1989; Hutchinson et al., 1994; Roa et al., 2021). Certain 

superior SVR characteristics were outlined in the thesis which could be utilized for credit 

risk as well, building on works of (Halls-Moore, 2017; Schölkopf & Smola, 2001; Vapnik, 

1998; Wilmott, 2007; Witzany, 2017).  

The first research question considered the applicability of SVR to credit portfolio 

risk. To answer it, four realistic, representative portfolios in the liquid bond markets of 

the EU and USA with low and respectively high volatility for each geographical 

destination were selected. According to common data science standards, those were 

synchronized, ratings unified on a common ordinal master scale, it was conservatively 

dealt with missing values and non-ratings, and the files were adequately formatted. The 

statistical programming language R within RStudio®, besides Microsoft Excel®, was 

employed to implement the SVR model for the four standard portfolios. 

The thesis proved the applicability by showing that SVR outperforms multi-factor 

linear models by far – in terms of a general Kruskal-Wallis test indicating a different 

generated distribution of outcomes, and concretely in terms of measuring the RMSE. This 

test is the standard statistical tool for comparing nonparametric independent sample 

distributions. By utilizing the Kruskal-Wallis test the null hypothesis of similar predicted 

distributions stemming from the same group in regard to the linear and support vector 

regression models’ outcomes was clearly denied, with a p-value that was smaller or equal 

than 1.136 ∙ 10−13 for randomized samples and out-of-sample predictions for all four 

portfolios. The second null hypothesis stated that the RMSE of the multi-factor linear 



266 

 

model (LM) is smaller than the one of the support vector regression (SVR) approach for 

the majority of selected portfolios. Since the RMSE measure has feasible mathematical 

properties, is generally applicable and nonparametric, and is more conservative (≥) than 

e.g. the mean absolute error (MAE) it was the method of choice to compare the LM and 

the SVR in the thesis. In terms of the root mean square error values, SVR outperformed 

the LM in each case, by more than 20 % in the worst case up to nearly 70 % in the best 

one, and on average by roughly 50 % across all four portfolios on training as well as out-

of-sample test sets. Hence, the second null hypothesis could be denied, and the superiority 

of the SVR method compared to the LM method was proven.  

After having shown the usefulness for measuring credit risk, the objective was to 

benchmark the SVR approach against the industrial models CreditRisk+® and especially 

CreditMetrics®.  

Therefore, the third research hypothesis dealt with the comparison of SVR to 

industrial credit portfolio models, and the null hypothesis in the formalized, negated form 

of the corresponding research hypothesis stated that the latter are superior. To decide that 

research problem, the industrial proponents of structural models and hazard rate ones, 

CreditMetrics® and CreditRisk+®, as well as the novel applied SVR were calibrated to 

the same sub-portfolios of the four standard portfolios and equipped with the usual 

assumptions from academic literature. Afterward, the code implementations and VaR 

calculations followed. 

As a result, CreditMetrics® performed well for a small real VaR and low volatility 

portfolios, however overall for the four portfolios it underperformed in terms of 

prediction accuracy compared to the SVR approach. The SVR’s predicted VaRs were 

more precise and the error metric as distance to the real portfolio VaR was overall 

considerably smaller. Whereas SVR outperformed CreditRisk+® for all four portfolios 

and the latter one also only showed superior results compared to CreditMetrics® in the 

case of the last U.S. bond portfolio, SVR still equaled or even outperformed the former 

front-runner CreditMetrics® for three portfolios. Only in the case of the European high 

volatility portfolio, SVR was inferior, maybe due to the portfolio structure and the 

preselected kernel type of a radial base function. Especially for the E.U. and U.S. high 

volatility portfolios, SVR was able to capture the default and migration correlations of 

the bonds and the portfolio dynamics in a more precise fashion and yielded far superior 

results. The last research question was hence answered, and it was proven that SVR is not 



267 

 

only applicable and useful for the area of credit portfolio risk in theory and practice but 

on average even shows superiority to currently employed industrial models for the 

selected portfolios.  

Therefore, not only in general but especially for volatile portfolios, trend branches 

like tech, biomedicine, and parts of the finance sector, or for modeling portfolios in times 

of crises, an AI-based model like the support vector machine regression approach can be 

more accurate in terms of quantifying the adequate amount of credit risk-bearing capacity 

needed to cover the Value-at-Risk of a portfolio and might be the preferred method of 

choice. As profit margins are narrow, especially in a lower zero bound environment (LZB) 

with inherently thin interest margins and not foreseeable to rise extremely quickly as only 

moderate, time stretched231 interest rate hikes by the Federal Reserve Bank in the United 

States took place and in case of the European Central Bank in the eurozone not before 

summer 2022 after ending the PEPP232 and asset purchase program (APP), a superior risk 

model which calculates the Value-at-Risk and corresponding risk cover capital more 

precisely is, therefore, a competitive edge (ECB, 2022e; ECB, 2022f; ECB-Statement, 

2022). Applying SVR for measuring credit portfolio risk is hence a potential tool that may 

help to decrease loss reserves and provisions and as a consequence increase profits for 

banks. The model is readily available and directly implementable since programming 

libraries and packages for all major statistical languages as SAS®, Python ®, or R exist. 

An additional argument is that the credit portfolio is traditionally forming the 

major part of the risk for almost all banks, except a few investment banks or large trading 

book institutes, and constitutes the highest portion of risk-weighted assets (EBA, 2021b, 

p. 46). Post-pandemic economic recovery in the EU and its corresponding rise in the 

amount of loans reached out to corporations, and even already increased loan offerings, 

especially from state (backed) banks during the pandemic, makes a calculation of credit 

risk that is as exact as possible even more essential from a risk management perspective 

as well as from a macroprudential stability point of view (ECB, 2020, box 7; ECB, 2020b; 

KfW, 2020). 

 

231 Though considerably faster than assumed a year ago due to a rapidly rising inflation. 
232 The ECB council declared on December 16, 2021, that net purchases within the  PEPP are ending by 

March 2022. Reinvestments of the principals due from PEPP holdings ought to be done by the end of 

2024. However, in an emergency meeting on June 15, 2022 (the last day of the thesis’ finalization), the 

European Central Bank declared that it will use proceeds from expiring bonds from the PEPP to reinvest 

them in a flexible manner and potentially asymmetrically in issuances from countries with high bond 

credit spreads (e.g., from Italy) to prevent a “fragmentation” of the market and ensure an ordered 

transmission of their monetary policy measures (ECB-Statement, 2022b). 
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Furthermore, regulatory reforms, e.g., the Volcker-rule and Dodd-Franck act in 

the US or the revised CRR and the introduction of the FRTB in Europe, as well as a scale-

back of investment banking activities within most banks, underpin the predominant role 

of credit risk for banks’ risk-weighted assets as laid out in the thesis. The trend is 

accompanied by the increasing need of companies and consumers to get credit access 

more rapidly, in a more flexible manner, more automatized and to compare loan 

conditions more intensively (“credit shopping”, “real-time loan comparison”) – resulting 

in an even higher necessity of precise risk control (Camba-Méndez & Mongelli, 2021; 

GDS, 2021; Jorda et al., 2015).233 Often credit lines, however most frequently smaller 

ones, and loans are offered directly via an app on a smartphone or via platforms, 

sometimes even in the form of peer-to-peer (P2P) or crowd lending (GDS, 2021). That 

trend might even accelerate in the future. 

An automatized, AI-based, flexible, and accurate calculation approach is, 

therefore, a valuable tool in that environment. As the regulatory focus changed to more 

dynamic and stress-test-based approaches which banks need to fulfill in the recent years 

– extended by the presented climate stress tests with physical and transitory scenarios 

introduced by the EBA and ECB in 2021– risk models that can adapt to swiftly changing 

environments and extreme or stress scenarios are of ever more importance (ECB, 2021b; 

Witzany, 2017). Generally, there is the precept of technical neutrality for regulators and 

methodological freedom of choice for a bank, as long as a model fulfills legal 

requirements and supervisory standards. From a regulator’s perspective, it was indicated 

that authorities view the use of AI-based quantitative models in a more positive light than 

in the past, and standards were set under which the employment of such a method is 

allowed (EBA, 2020; EBA, 2021f; ECB, 2021b). Since in the field of credit scoring 

regulators have already allowed the use of for instance ANNs or SVMs under some 

restrictions, the same will probably hold true for artificial-intelligence-based credit 

portfolio models in the future as well. Furthermore, as banks have built up their AI-based 

model inventory in other pricing, hedging, and risk quantification areas during the last 

years, it might be conveniently extended by an SVR CPR component. It is therefore fitting 

in the enhanced model inventory which itself is integrated into the entire risk management 

framework of a bank, fulfilling the requirements of the European internal capital 

 

233 Closely monitored by the regulators such as the ECB and FED.  
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adequacy assessment process (SSM ICAAP) and the internal liquidity adequacy 

assessment process (SSM ILAAP) for significant institutes, respectively the risk-bearing 

capacity regulations by the national competent authorities. 

SVM-based regression models are a suitable option for an artificial intelligence 

model in the area of credit portfolio risk as the test results showed its strong performance 

for assets with high volatility. The performance and flexibility of SVR in adapting to 

different data sets and distribution densities, represented by the kernel functions, to 

nonlinear circumstances and special situations as well as the ability to fine-tune its 

calculations by exact settings of the penalty parameters to avoid under- as well as 

overfitting are essential features. The SVR method should be employed in practice to 

measure credit portfolio risks more precisely, help to improve predictions, portfolio 

riskCreturn profiles, and risk management, and thereby potentially increase profits.  

Support vector machines further have the advantage that they “learn” from 

patterns in data that are available and can be therefore calibrated well to historical settings. 

As neither underlying a priori distribution assumptions nor potentially non-realistic 

constraints regarding asset price movements nor common parametric default intensities 

are necessary for SVR, not even an economically feasible model framework, the support 

vector regression can be applied to the given real portfolio data in a remarkably flexible 

manner. The flexibility of various kernel functions captures the credit risk dynamics very 

well, is able to accurately illustrate the dependency structures, and is suitable for highly 

nonlinear and nonnormal distributed circumstances. As a method that is exploiting 

artificial intelligence and “big data”, the results further improve with more data sets and 

longer time series available, hence automatically “over time”. Common kernel functions 

like radial base kernels (RBF, radial base functions) or exponential smoothed kernels, 

Gaussian kernels, and polynomial kernels are accessible for that purpose as presented, as 

well as optimization methods in the corresponding packages, for instance in R, for their 

step-width adjusted grid and balancing parameter to guarantee a sufficient generality of 

the results. Therefore, increasing amounts of data and powerful kernel functions in line 

with state-of-the-art implementations will favor AI-based methods such as SVR even 

further in the future. 

As a result, approaches exploiting AI and especially SVR, are not only useful for 

the pre-categorization of customers like automated scorings and ratings but also for the 

illustration of marginal risks and the underlying dependency risk structure in a whole 
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standard portfolio and thus the quantification of its Value-at-Risk. AI-based methods can 

hence extend the existing structural models, hazard rate approaches, and econometrical 

models for standard corporate bond portfolios by a further model type employed in future 

credit risk research. Historically, as illustrated in Chapter 4, the structural models or 

Merton models are built on the assets and debts of a company and the movement of their 

values over time and are linking corporate finance and option pricing theory with credit 

risk. Hazard rate models stem from a different, actuarial background and utilize 

exogenous Poisson Gamma mixture processes from insurance mathematics to describe 

credit risk. Finally, econometrical models are employing a multi-factor approach with 

common macro-economic motivated indicators to derive credit risk values. Support 

vector regression, however, neither requires certain internal assumptions of the asset or 

debt structures of companies and their motions nor a pre-defined external stochastic 

process or macro parameters to value assets and the corresponding credit portfolio risk, it 

is more flexible and learns from previous patterns in bond and portfolio prices “as they 

are”. The same holds true for dependencies between obligors. 

The thesis showed that the research topic of dependency and credit correlation 

structures in a portfolio can be successfully treated and improved by utilizing SVR. 

Overall, SVR is a precise credit portfolio VaR estimator. 

The SVR approach proved to be successful as an AI “pioneer” for credit risk 

management and is supposed to be among the most efficient artificial-intelligence-based 

methods when referring to illustrated comparisons with other methods for similar 

applications in the past. Apart from the RMSE measure also other advanced goodness-of-

fit measures (AGOFs) might be used for such a benchmarking purpose. Additionally, 

combinations of different kernel functions could be investigated and setting-adapted 

kernels for special credit or funding structures and types, e.g., considering hybrid debt 

instruments or project finance investment, might be imagined well for future research.  

Quantum SVR is a method that may be employed at some point as well, 

potentially accelerating calculations. These approaches utilize the phenomenon of 

quantum annealing in quantum physics to “parallelize” and accelerate the optimization 

problem in SVR as presented by Kadowaki (Kadowaki & Nishimori, 1998). Dalal et al. 

in their research connected with facial-landmark-detection, Li et al. in a Nature study 

dealing with a biological problem, and Willsch et al. by applying a standard D-wave 

quantum annealer to assist the “traditional” SVR showed the superior accuracy of 
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quantum assisted methods compared to classical AI and SVR approaches (Dalal et al., 

2021; Li et al., 2018; Willsch et al., 2020). Therefore, Quantum SVR seems to have 

further potential to improve SVR.  

The thesis scope, due to liquidity considerations, was limited to developed credit 

markets. These, as shown in the thesis, reside – apart from South East Asia, partly 

China234  and several other single countries like Canada, Australia or New Zealand – 

largely in the United States and in Europe, regarding the latter, especially within the 

Eurozone area (BIS, 2022). Access to the bond issuances is generally considered to be 

fairly transparent and open, with professional surveillance and regulation, unlike in many 

emerging market countries (European Commission, 2022b). However, with time, more 

widespread trading technologies, regulatory adoptions, and improving liquidity in 

emerging markets more research in terms of applying SVR to emerging market portfolios 

might be valuable as well.  

 Furthermore, the research of smaller, unlisted companies or consumer portfolios 

with higher default rates may lead to an indication of the (very probable) usefulness of 

AI-based risk management methods like the SVR method as well in these areas of credit. 

Since SVM was useful for default prediction accuracy and credit scoring for single 

obligors and as pointed out in the thesis SVR is effective for corporation portfolios, one 

assumes that support vector regression may work similarly well for small exposure size 

retail portfolios. As analyzed within the thesis, for banks a cost-effective approach and a 

high degree of automatization are especially crucial in the area of retail credit risk. As the 

size of loans is frequently rather small in that specific field, an individual, human resource 

intensive due diligence process is too expensive as well as a long expert-based calibration 

of standard models. Additionally, due to the fact that these retail portfolios are commonly 

treated within the advanced internal ratings-based approach by banks and are structure 

and size-wise often prone to “big data” algorithms the application of SVR seems to be a 

natural step.  

For some companies in the field of listed corporations, apart from their bond credit 

spreads, also CDS spreads might be investigated utilizing SVR-based methods, thus 

incorporating even more “real-time” information. The principal method would be similar 

 

234 The Chinese bond emissions amount to the second highest worldwide, after the United States, and the 

third highest when regarding the EU cumulatively, as shown in the thesis (BIS, 2022). However, the 

access is not completely open for foreign investors and the Chinese yuan not freely convertible. 
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to the one used in the thesis, where bond prices and their spreads were included in the 

applied credit portfolio risk models like CreditMetrics® or SVR – only substituted with 

the corresponding single name credit default swap spread of the respective bond, at point 

of issuance represented in the premium leg contribution, and taking CDS correlations into 

account. As a consequence, the application could then also serve as a rapidly visible early 

warning indicator for individual default risks, sector-wise widening spread structures, or 

upcoming crises on a broader scale.  

Additionally, other AI-based models like artificial neural networks, bagging 

methods, or maybe even reinforced machine learning models might be adequate for such 

scenarios – those might be interesting areas for future investigations. As mentioned before, 

one can apply bootstrapping methods within an SVR framework for widening the amount 

of useful data, and further utilize bagging methods by employing various different kernel 

functions for the support vector regression and averaging them to improve performance. 

The kernels might be chosen due to individual properties and pre-assumed distribution 

characteristics of the credit portfolio. In the case of support vector regression one could 

for instance exploit sigmoid kernels, radial base function kernels, and Gaussian kernels 

for the specified calculations and subsequently take the arithmetic mean of the 

corresponding predicted VaRs as averaged final VaR estimation.  

Another common method in the field of machine learning was to combine distinct 

artificial intelligence models, as opposed to only different functions within the same 

model framework, and subsequently take some sort of average of them in a so-called 

ensemble. That method is increasingly used in AI-based research areas. In the case of 

credit portfolio risk, it would be an opportunity to combine support vector regression with 

for instance random forests, k-nearest-neighbors, neuro-fuzzy inference systems, or 

artificial deep neural networks for the task of calculating the Value-at-Risk of a portfolio. 

Since these distinct approaches have their own, unique techniques to model correlation 

structures, portfolio dynamics, and overall credit portfolio risk, one could analyze their 

individual strengths within various portfolio settings, weight them, and exploit them in 

the final aggregated ensemble. As a consequence, the method of ensemble predictors 

might be a promising topic for further artificial-intelligence-based credit portfolio risk 

research.  

Until then the results as stated in the thesis are implying for certain standard 

portfolios the superiority of the support vector regression approach compared to industrial 
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credit portfolio models like CreditRisk+® and CreditMetrics® – hence justify the primary 

future usage of SVR in measuring credit portfolio risk. 
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LE – Large Exposure 

LEL – Lifetime Expected Loss 

LGD – Loss Given Default 

LGF – Loss Given Failure 

LIBOR – London Interbank Offered Rate 

LIS – Low Interest Survey 

LLC – Limited Liability Company 

LLP – Limited Liability Partnership 

LM – Linear Model, or: LM – Lagrange Multiplier 

LME – London Metals Exchange® 

LMC – Large Margin Classifier 

LMM – LIBOR Market Model 

LN – Logarithmus Normalis (Logarithm to the Base of the Euler Number e) 

LP – Limited Partner 

LR – Logistic Regression, or (Rarely): Linear Regression, or: Leverage Ratio 

LPM – Lower Partial Moments  

LS – Least Squares, or: L/S – Long-/Short 

LSE – London Stock Exchange® 

LSI – Less Significant Institute(s) 
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LSTM – Long Short-Term Memory 

LTA – Long-Term Average 

LTD – Long-Term Debt 

LTRO – Long-Term Refinancing Operation 

LV – Low Volatility 

LVAR – Liquidity Value-at-Risk 

LVMH – Louis Vuitton Moet Hennessy® 

LZB – Lower Zero Bound 

M – Maturity  

MA – Moving Average 

M & A – Mergers and Acquisitions 

MaRisk – Mindestanforderungen an das Risikomanagement von Banken,  

German guidance accompanying the CRD 

MATLAB – Matrix Laboratories® 

MBI – Management Buy-In 

MBO – Management Buyout 

MBS – Mortgage Backed Security 

MC – Monte Carlo 

MCMC – Markov Chain Monte Carlo 

MDA – Maximum Distributable Amount, or: MDA – Multivariate  

Discriminatory Analysis 

MDD – Maximum Drawdown (also MaxDD) 

MICA – Markets in Crypto-Assets 

MIP – Monthly Income Plan 

ML – Machine Learning  

MLE – Maximum Likelihood Estimator 

MLP – Multi Layer Perceptron 

MMF – Money Market Fund(s) 

MMI – Money Market Instrument 

MOC – Margin of Conservatism 

MPR – Market Price Risk 

MPT – Modern Portfolio Theory 

MRB – Model Risk Buffer 
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MR – Market Risk 

MREL – Minimum Requirement on Own Funds and Eligible Liabilities 

MSCI – Morgan Stanley Capital International® 

MSE – Mean Square Error 

MTN – Medium-Term Note 

MWRR – Money-Weighted Rate of Return 

NA – No-Arbitrage, or: NA – Not Available 

NAREIT – North American Real Estate Investment Trust® 

NASDAQ – National Association of Securities Dealers Automated Quotations® 

NAV – Net Asset Value  

NCA – National Competent Authority(-ies) 

NCWO – No Creditor Worse Off 

NFT – Non-Fungible Token 

NGAAP – National GAAP 

NII – Net Interest Income 

NMA – National Mining Association® 

NMR – Nonmodelable Risks (British English: Non-Modellable Risks) 

NMRF – Nonmodelable Risk Factors (British English: Non-Modellable Risk  

Factors) 

NNA – National Numbering Agency 

NPE – Non-Performing Exposure 

NPL – Non-Performing Loan 

NRSRO – Recognized Statistical Ratings Organization 

NSFR – Net Stable Funding Ratio 

NYSE – New York Stock Exchange® 

NZU – Niedrigzinsumfrage (=LSI Stresstest in Germany) 

OA – Outstanding Amount 

OBO – Owners Buyout 

OCR – Overall Capital Requirement, or: OCR – Office of Credit Ratings 

OECD – Organisation for Economic Co-operation and Development 

OGAW – German: Organismen für Gemeinsame Anlagen in Wertpapiere  

OIS – Overnight Indexed Swap 

OPR – Op(erational) Risk 
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OS – Operating System 

O-SIB – Other Systemically Important Bank 

OTC – Over-the-Counter 

P.A. – Per Annum 

P & L – Profit and Loss 

PCA – Principal Component Analysis 

PCRI – Private Credit Risk Insurance 

PD – Probability of Default, or: PD – Private Debt 

PDF – Probability Distribution Function 

PE – Private Equity, or: PE – Price Earnings 

PEPP – Pandemic Emergency Purchase Programme 

PIIGS – Portugal, Ireland, Italy, Greece and Spain 

P1 – Pillar 1, Pillar One 

PIT – Point-in-Time 

PL – See P & L 

PLC – Public Limited Company  

PLN – Polish Złoty 

PM – Probability of Migration, or: Portfolio Management 

PMPT – Post-Modern Portfolio Theory 

PNL – Promissory Note Loan 

POT – Peak Over Threshold 

PP – Paginae (pages) 

PPP – Public Private Partnership 

PR – Public Relations 

P2 – Pillar 2, Pillar Two 

P2G – Pillar 2 Guidance 

P2R – Pillar 2 Requirement 

PPP – Public Private Partnership 

P2P – Peer-to-Peer 

PU – Partial Use 

PV – Present Value 

Q – Quarter 

QML – Quantum Machine Learning 
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QIS – Quantitative Impact Study 

QP – Quadratic Programming 

QRRC – Qualified Retail Revolving Credit 

R – Correlation, or: (Statistical) Programing Language and Toolkit “R”, or:   

R – Recovery Rate, cf. RR  

RA – Risk Appetite, or: RA – Requirement Analysis 

RAF – Risk Appetite Framework 

RAR – Risk-Adjusted Return 

RAROC – Risk-Adjusted Return on Capital 

RARORAC – Risk-Adjusted Return on Risk-Adjusted Capital 

RBC – Risk-Bearing Capacity 

RBF – Radial Base Function 

RC(U) – Risk Control (Unit) 

RCP – Risk Classification Procedure 

REIT – Real Estate Investment Trust 

RELU – Rectified Linear Unit 

REPO – Repurchase Agreement 

RF – Risk Factor, or: RF – Risk Framework 

RFR – Risk-Free Rate 

RICS – Royal Institution of Chartered Surveyors 

RM – Risk Measure, or: RM – Risk Metrics, or: RM – Risk Model 

RMBS – Residential Mortgage Backed Security 

RMSE – Root Mean Square Error 

RNIV – Risks Not in VaR 

RNN – Recurrent Neural Network 

ROC – Receiver Operating Characteristic, or: ROC – Return On Capital 

ROE – Return on Equity 

ROI – Return on Invest 

RORAC – Return on Risk-Adjusted Capital 

ROW – Rest of The World 

RR – Recovery Rate 

RSU – Rating Service Unit® 

RT – Random Tree 
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RTF – German: Risikotragfähigkeit (=RBC) 

RV – Random Variable 

RW – Risk Weight 

RWA – Risk-Weighted Assets 

SA – Standardized Approach (e.g., for Credit Risk) 

SAA – Strategic Asset Allocation 

SABR LMM –Stochastic Alpha Beta Rho Libor Market Mode 

S & L – Savings and Loans 

S & P – Standard & Poor‘s ® 

SAP – Systemanalyse Programmentwicklung® 

SAR – Stand-Alone Rating 

SAS – Statistical Analysis Systems, or: SAS – Software as a Service® 

SB – Systemic Buffer 

SBP – Supervisory Benchmarking Portfolio 

SCC – Standard Cost of Credit 

SCHUFA – Schutzgemeinschaft für Allgemeine Kreditsicherung® 

SCL – Security Characteristic Line 

SCP – Stand-Alone Credit Profile 

SCRA – Standardized Credit Risk Assessment Approach 

SD – Standard Deviation 

SDR – Special Drawing Right 

SE – Société Européen 

SEC – Securities and Exchange Commission 

SEM – Structured Equational Model 

SGD – Stochastic Gradient Descent 

SGM – Stochastic Gradient Method, or: SGM – Sub-Gradient Method 

SI – Significant Institute(s)  

SIB – Systemically Important Banks 

SIC – Schwarz Information Criterion 

SICAF –Société d'Investissement à Capital Fixe 

SICAV – Société d'Investissement à Capital Variable 

SIRR – Standard Interest Rate Risk 

S&P – Standard & Poor’s ® 
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SLP – Single Layer Perceptron 

SMA – Standardized Measurement Approach 

SME – Small and Medium (Sized) Enterprises 

SMO – Sequential Minimal Optimization 

SNA – System of National Accounts 

SND – Standard Normal Distribution 

SOFR – Secured Financing Offered Rate 

SONIA – Sterling Overnight Index Average 

SPC – Special Purpose Company 

SPV – Special Purpose Vehicle 

SQL – Structured Query Language 

SRB – Single Resolution Board 

SREP – Supervisory Review and Evaluation Process 

SRMR – Single Resolution Mechanism Regulation 

SRM – Single Resolution Mechanism 

SRT – Securitization for Risk Mitigation 

SSA – Supranationals, Sub-Sovereigns and Agencies 

SSD – Schuldscheindarlehen, engl.: PNL – Promissory Note Loan 

SSD-IO – SSD Initial Offering 

SSM – Single Supervisory Mechanism 

ST – Stress Test 

S.T. – Subject to 

STA – Standardized Approach for Credit Risk 

STD – Short-Term Debt 

SVaR – Stressed Value-at-Risk 

SVD – Singular Value Decomposition 

SVM – Support Vector Machine 

SVR – Support Vector (Machine) Regression 

SWOT – Strength and Weaknesses, Opportunities and Threats 

T 1 – Tier 1 (capital) 

T 2 – Tier 2 (capital) 

TAA – Tactical Asset Allocation 

TB – Trading Book 
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TBTF – Too Big to Fail 

TC – Total Capital 

TCE – Tail Conditional Expectation 

TCO –Total Cost of Ownership 

TER – Total Expense Ratio 

TFP – Total Factor Productivity 

TITF – Too Interconnected to Fail 

TLAC – Total Loss Absorbing Capacity 

TPR – True-Positive-Rate 

TREA – Total Risk Exposure Amount (=RWA. TREA Term is Mainly Used by  

the EBA) 

TRIM – Targeted Review of Internal Models 

TRS – Total Return Swap 

TSCR – Total SREP Capital Requirement 

TT – Turing Test 

TTC – Through-the-Cycle 

TTM – Time to Maturity 

TVAR, TVaR – Tail Value-at-Risk (=ES) 

TMWRR – Time- and Money-Weighted Rate of Return 

TWRR – Time-Weighted Rate of Return 

UCITS – Undertakings for Collective Investments in Transferable Securities 

UCL – Undrawn Credit Line 

UDA – Univariate Discriminatory Analysis 

UDR – Unexpected Default Rate 

UL – Unexpected Loss 

UPM – Upper Partial Moments 

U.S. – United States (as adjective use, for the country itself: the US) 

U.S.A. – United States of America (as adjective use, for the country itself: the  

USA) 

UTP – Unlikeliness to Pay 

VA – Value Added 

VAR, VaR –Value-at-Risk, or: VAR – Vector Autoregressive 

VARIMA – Vector Autoregressive Integrated Moving Average 
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VC – Vapnik-Chervonenkis, or: VC – Venture Capital  

VCM – Variance-Covariance Model 

VDAX – Volatilitäts DAX® 

VEC(M) – Vector Error Corrected (Model) 

VIX – Volatility Index 

VK – Vašíček Kealhofer, See KMV® 

VNAV – Variable NAV 

WDCC – Write-Down and Capital Conversion 

WEF – World Economic Forum 

W.L.O.G – Without Loss of Generality 

WTI – West Texas Intermediate 

XVA – Otherwise/X Value Adjusted 

YTD – Year-to-Date 

ZPP – Zero-Price Probability  
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ANNEX A: R CODE FOR THE COMPARISON LINEAR 

MODEL VS. SVM MODEL  

 

library(e1071)#SVM working library 

# Load the data from the csv file 

dataDirectory <- "C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/"  

#define rmse function which calculates the root of the mean square error (with vector 

“error”) 

rmse <- function(error) 

{ 

  sqrt(mean(error^2)) 

} 

 

#package to read in excel-file 

library(readxl) 

# the tidyverse standard package to perform the necessary data manipulation   

# and visualization   

library(tidyverse)   

 

# package to compute the utilized  

# cross - validation methods  (for cross-validation techniques cf. the source 

geeksforgeeks) 

library(caret)  

library(xlsx) 

#i as a counter variable for the loop 

i=0 

#setting up the  2*4 output matrices for the test set and training set results 

resultsTest=c(0,0,0,0,0,0,0,0) 

dim(resultsTest)=c(2,4) 

resultsTrain=c(0,0,0,0,0,0,0,0) 

dim(resultsTrain)=c(2,4) 

 

dataset<-0 

#writing the Excel result file 

write.xlsx(dataset, "C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx", sheetName = "Sheet1",  

           col.names = TRUE, row.names = TRUE, append = FALSE) 

#following code part used before, not needed in the final version 
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#library(openxlsx) 

#workbk <-loadWorkbook("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx") 

#addWorksheet(workbk,"Sheet2") 

#addWorksheet(workbk,"Sheet3") 

#addWorksheet(workbk,"Sheet4") 

 

#loop for reading in the four portfolios (0-3) 

for (i in 0:3) 

  { 

   

  if (i == 0) #first portfolio 

    {SVMTest <- read_excel("SVMTest.xlsx")} 

  else #second to forth portfolio 

  { 

   

      SVMTest <-read_excel(paste(dataDirectory,"SVMTest",i+1, ".xlsx",sep="")) 

      } 

 

# reproducible random sampling   

set.seed(123)  

 

# creating partition with training data as 80% of the dataset  (20% testing data set) 

random_sample <- createDataPartition(SVMTest$Wert,    

                                     p = 0.8, list = FALSE)   

 

# generating training dataset   

# from the random_sample   

training_dataset  <- SVMTest[random_sample, ]   

training_dataset 

# generating testing dataset   

# from rows which are not    

# included in random_sample   

testing_dataset <- SVMTest[-random_sample, ] 

 

#Creating the SVM model and Linear Model and assign them to the correspondingly named 

variables 

#Created with the training data, “trained” 

modelsvm <- svm(Wert ~. , training_dataset ) 

modellin <- lm(Wert ~ ., training_dataset ) 
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#predictedY with SVM model on testing set (directly) 

predictedY <- predict(modelsvm, testing_dataset) 

#fine tuning the SVM model on the training data by using a radial base function as 

kernel, an #epsilon increasing by standard 0.1 steps from zero to one and a cost 

parameter(from 4 to 1024) 

tuneResult <- tune(svm, Wert ~ .,  data = training_dataset, kernel="radial", 

                   ranges = list(epsilon = seq(0,1,0.1), cost = 2^2:10) 

)  

#the result of the tuning, i.e., the best model is assigned to the tunedModel variable 

tunedModel <- tuneResult$best.model 

#output (“print”) of the tuning 

tuneResult 

#the residuals of the tuned model are assigned to the error variable 

error <- tunedModel$residuals   

#counter i and variables for the Root Mean Square Error of the models’ predictions on 

the #training set (where RMSE2 refers to the linear model RMSE to SVM) 

i 

predictionRMSE2 <-rmse(modellin$residuals) 

predictionRMSE2 

predictionRMSE <- rmse(error) 

predictionRMSE 

#results of RMSE on training set is assigned to the results variables 

resultsTrain[1,i+1]=predictionRMSE2 

resultsTrain[2,i+1]=predictionRMSE 

 

#test dataset out-of-sample with the testing data for the linear model  

#modelValY 

modelValY <-predict(modellin, testing_dataset) 

rmse(modelValY-testing_dataset$Wert) 

 

#and for the SVM model in the same way 

#modelValY2 

modelValY2 <-predict(tunedModel, testing_dataset) 

rmse(modelValY2-testing_dataset$Wert) 

#Kruskal-Wallis Test between output of LM and SVM, hence modelValY and modelValY2 

Kruskal.test(modelValY, modelValY2) 

#safe the results of the RMSE on the testing data set in the result variables 

resultsTest[1,i+1]=rmse(modelValY-testing_dataset$Wert) 

resultsTest[2,i+1]=rmse(modelValY2-testing_dataset$Wert) 
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#create a combined dataset  

dataset <-data.frame(testing_dataset$Wert,modelValY2) 

 

#load Excel workbook for comparison 

wb <- loadWorkbook("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx") 

sheets <- getSheets(wb) 

sheet <- sheets[[1]]  # or another 

# data to put into A1,C1,E1,G1 

s=1+2*i 

# modify contents 

addDataFrame(dataset, sheet, col.names = FALSE, row.names = FALSE, 

             startRow = 1, startColumn = s) 

# save to disk 

saveWorkbook(wb,"C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx") 

 

 

} 

#execute a Kuskal-Wallis test for all portfolios/values of real output compared with SVM 

kruskal.test(W2~W1,read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx")) 

kruskal.test(W4~W3,read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx")) 

kruskal.test(W6~W5,read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx")) 

kruskal.test(W8~W7,read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/LinearerVergleich/TestVert.xlsx")) 

 

#print the RMSEs of Linear vs. the SVM model on the training and testing set 

resultsTest 

resultsTrain 
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ANNEX B: R CODE FOR THE COMPARISON 

CREDITRISK+® (CREDITMETRICS® IN EXCEL 

ATTACHMENT) VS. SVM MODEL 

 

library(e1071)#SVM working library 

# Load the data from the csv file 

dataDirectory <- "C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/VergleichCreditMetrics/" 

#RMSE function to calculate the Root Mean Square Error of an error vector 

rmse <- function(error) 

{ 

  sqrt(mean(error^2)) 

} 

 

#package to read in excel-file 

library(readxl) 

# tidyverse is a package to perform the necessary data manipulation   

# and also visualization   

library(tidyverse)   

 

# package to compute the 

# cross - validation methods   

library(caret)  

i=0 

#setting up the  2*4 output matrices for the test set and training set results (filled 

by zeros) 

resultsTest=c(rep(0,8)) 

dim(resultsTest)=c(2,4) 

resultsTrain=c(rep(0,8)) 

dim(resultsTrain)=c(2,4) 

 

#again going through all four portfolios by a for-loop 

 

for (i in 0:3) 

{ 

   

  if (i == 0)  

 



367 

 

  { #read in the test for SVM and VaR calculation (comparison) for portfolio 1 

    VaRTest <- read_excel(paste(dataDirectory,"VaRTest.xlsx",sep="")) 

    SVMTest <- read_excel(paste(dataDirectory,"SVMTestV.xlsx",sep="")) 

    } 

  else #read in the test for SVM and VaR calculation (comparison) for portfolio 2-4 

  { 

    VaRTest <-read_excel(paste(dataDirectory, "VaRTest", i+1, ".xlsx",sep="")) 

    SVMTest <-read_excel(paste(dataDirectory,"SVMTest",i+1, "V.xlsx",sep="")) 

  } 

   

  

  #Create an SVM model on the specified portfolio selection (SVMTest is training data!) 

  modelsvm <- svm(W6 ~. , SVMTest) 

   

  #predictedY 

  predictedY <- predict(modelsvm, SVMTest) 

  #Tune the SVM model with a radial base function used (RBF), with epsilon in 0.1 steps 

from zero   

  #to one and cost parameter ranging from 4 to 1024 

  tuneResult <- tune(svm, W6 ~ .,  data = SVMTest, kernel="radial", 

                     ranges = list(epsilon = seq(0,1,0.1), cost = 2^2:10) 

  )  

  #safe the best tuned model in the tunedModel variable 

  tunedModel <- tuneResult$best.model 

  #print the result of the tuning 

  tuneResult 

  #assign the residuals of the tuned model to the error variable 

  error <- tunedModel$residuals   

  #counter i 

  i 

  #calculate the RMSE of the error vector and print it 

  predictionRMSE <- rmse(error) 

  predictionRMSE 

 #this result is also stored in the results variable of the training set 

 resultsTrain[1,i+1]=predictionRMSE 

  

   

  #test dataset out-of-sample (VaRTest) and prediction on it  

  modelValY2 <-predict(tunedModel, VaRTest) 

  modelValY2 
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  #rmse(modelValY2-Test$W6) #for internal control purposes, not used 

  #modelValY2 

   

  #store the result of the SVM on the testing data set in the variable resultsTest 

  resultsTest[,i+1]=modelValY2 

   

} 

 

#include library tidyverse again 

library(tidyverse) 

 

#install packages for credit risk (CreditRisk+®) 

install.packages("GCPM") 

library(GCPM) 

help(GCPM) 

 

sec.var <- c(0.02, 0.02, 0.02) #sector variances calibrated as in CreditMetrics® 

names(sec.var) <- c("A","B","C") #"USBANKS", "USTECH", "GBANKS" 

#setting the model type (CreditRisk+®) loss unit, etc. 

Testmodell <- init(model.type = "CRP", loss.unit = 1, alpha.max = 0.9999, 

                    sec.var = sec.var) 

 

#read in the data for the equivalent portfolio 

portfolioX=data.frame(read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/VergleichCreditMetrics/PortfolioCRP1.xlsx")) 

#print it 

portfolioX 

#calculate the 95 % CI VaR 

CRP.classic <- analyze(Testmodell, portfolioX, 0.95) 

#repeat that for portfolio 2 

portfolioX=data.frame(read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/VergleichCreditMetrics/PortfolioCRP2.xlsx")) 

portfolioX 

CRP.classic <- analyze(Testmodell, portfolioX, 0.95) 

 

#repeat it for portfolio 3 

portfolioX=data.frame(read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/VergleichCreditMetrics/PortfolioCRP3.xlsx")) 

portfolioX 
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CRP.classic <- analyze(Testmodell, portfolioX, 0.95) 

 

#repeat it for portfolio 4 

portfolioX=data.frame(read_excel("C:/Users/Raphael Reinwald/Documents/SVM-Test/SVM-in-

R/VergleichCreditMetrics/PortfolioCRP4.xlsx")) 

portfolioX 

CRP.classic <- analyze(Testmodell, portfolioX, 0.95) 

 

#alpha <- c(0.95, 0.99) #levels for tail measures, not used here 

#VaR(CRP.classic) 

#print the tuned model and the results on the training and test sets (comp. with the CR+ 

above) 

tuneResult 

resultsTrain 

resultsTest 
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ANNEX C: STOCHASTIC FOUNDATIONS 

 

Filtration of a probability space (cf. Björk, 2009, pp. 43, 462, 491): Let  

(Ω, A, P) be a probability space and let I be an index set 235  (totally ordered  

by ≤ , i.e., for each two elements x, y in I one can clearly say if x  ≤  y is true (or false) 

and y  ≤  x is true (or false)) and Fi a sub-σ-algebra of A for all i ∈  I (i.e., a subset of A 

and σ-algebra in itself). If Fi ⸦ Fj ⸦ A für alle i, j ∈  I then one says (Fi)i := ℱ is a filtration 

and (Ω, A, ℱ, P) a filtered probability space (Björk, 2009, p. 491). 

In finance filtrations with σ-algebras are commonly used for the amount of 

information (or prices e.g.) available at a time t, cf. (Björk, 2009, pp. 487, 489). Utilizing 

filtrations, over the time the information increases and old information does not get lost. 

The thesis makes use of filtrations in connection with sets of random variables. These as 

well as further stochastic terms are defined in the following paragraphs. 

Random variable (Björk, 2009, p. 484): Let (Ω, A, P) be a probability space with 

σ-Algebra A and probability measure P. Mℬ (Ω, ℝk) is defined as the space of ℝk-valuable 

(k-dimensional vector in the field of real numbers ℝ) random variables  

𝑋: 𝛺 →  ℝ𝑘, 𝜔 ↦ 𝑋(𝜔) 

 

A-measurable mapping (Björk, 2009, pp. 461-463): Hence, referring to A and the 

Borel σ-algebra, measurable mappings are also called A-measurable mappings. Vice 

versa a random variable is defined as the above mapping which is A-measurable.  

 

Stochastic independence cf. (Bingham & Kiesel, 2004; Björk, 2009, p. 492): Two 

random variables X1, X2 are called (stochastically) independent if  

𝑃({𝜔 ∈  Ω: 𝑋1(𝜔 )  ∈  𝐵1 , 𝑋2(𝜔 )  ∈  𝐵2})  =  𝑃({𝜔 ∈  Ω: 𝑋1(𝜔 )  ∈  𝐵1}) 𝑃({𝜔 

∈  Ω: 𝑋2(𝜔 )  ∈  𝐵2}) 

for all B1 ∈ A1, B2 ∈ A2, where A1, A2 are the corresponding σ-algebras. 

 

 

235 An index set is one whose members index (“label”, ”name”) the members of another set 

https://en.wikipedia.org/wiki/Probability_space
https://en.wikipedia.org/wiki/Index_set
https://en.wikipedia.org/wiki/%CE%A3-algebra
https://en.wikipedia.org/wiki/%CE%A3-algebra
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Random/Stochastic Process (Bingham & Kiesel, 2004; Björk, 2009, p. 486): A 

stochastic (or random) process is hence a collection of random variables indexed by a 

(possibly infinite or even continuous) set of numbers, normally representing the time-axis, 

e.g., {At, t in [0,1], At a random variable for all t}.236 

 

State space (Bielecki & Rutkowski, 2004): Let (Ω, A, P) be a probability space 

with σ-Algebra A and probability measure P. Further let I be an index set (ordered by ≤ ) , 

ℱ filtration of A, (ℝk, ℬ), k ∈ ℕ, a measurable space called “state space” and  

𝑋: 𝐼 × 𝛺 →  ℝ𝑘 , (𝑡, 𝜔)  ↦ 𝑋(𝑡, 𝜔) a stochastic process. 

 

Adapted process (Björk, 2009, p. 43): The process is called an adapted process 

(or non-anticipative) process (to the filtration ℱ) if the random variable 𝑋𝑡: 𝛺 →  ℝ𝑘 is  

(Ft, ℬ)-measurable for each t ∈ I. Hence, for every realization and every t, Xt is known 

exactly at time t – it is not possible to anticipate (look into) the “future”. 

 

Martingale Process (Björk, 2009; p. 504): A (discrete) time stochastic process  

Y1, Y2…. is said to be a (discrete) martingale with respect to the stochastic process  

X1, X2… (possibly X = Y) if for all t 

1. E[|𝑌𝑡|]  <  ∞ (i. e. , finite) 

2.   E[𝑌𝑡+1|𝑋1, 𝑋2 … 𝑋𝑡]   =   𝑌𝑡 

 

A probability measure Q is called a martingale measure (risk-neutral probability 

measure, equilibrium measure) if the stochastic (price) process of any tradable 

security/claim (which for now pays no coupons or dividends) in the state space becomes 

an F-martingale under Q, when discounted by the savings account (also risk-free account 

or numeraire) B, given by  

𝐵𝑡 =  𝑒∫ 𝑟𝑢𝑑𝑢
𝑟

0  

 

as in (Bielecki & Rutkowski, 2004; Björk, 2009). 

 

 

236 Sometimes random function is used to coin a random process as a stochastic process is also 

interpretable as a (random) element in a function space. 
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Risk measures: Coherent risk measure (cf. Embrechts & Wang, 2015, p. 2; Hull, 

2015, p. 299): A risk measure ρ is called coherent if it upholds the following properties: 

 

• ρ(𝑋 +  α)   =  ρ(𝑋)  +  α , for all X ∈ M(Ω, ℝ) and all α (translation 

invariance) 

• ρ(α𝑋)  =  αρ(𝑋) , for all X ∈ M(Ω, ℝ) and all positive α  

(positive homogenous) 

• 𝑋1   ≥  𝑋2  almost everywhere ⇒  ρ(𝑋1)  ≥  ρ(𝑋2) for all X1, X2 ∈   

M(Ω, ℝ) (monotone) 

• ρ(𝑋1 + 𝑋2) ≤  ρ(𝑋1) +  ρ(𝑋2) for all X1, X2 ∈ M(Ω, ℝ) (sub-additivity) 

 

The VaR measure upholds the first three properties but not sub-additivity. 

 

Convexity (Embrechts & Wang, 2015; Hull, 2015, pp. 299f., 702; McNeil et al., 

2015): Another property is called convexity. A risk measure is convex if for all α ∈[0,1] 

and for all X1, X2 ∈ M(Ω, ℝ) the following inequality upholds: 

ρ(α𝑋1 + (1 − α)𝑋2) ≤  α ρ(𝑋1) + (1 − α) ρ(𝑋2)   

 

The spectral measure (Raskin, 2006, p. 3): Let (Ω, A, μ) denote a probability space 

with σ-Algebra A and probability measure μ. Then an integrable function φ: 𝐴 →  ℝ is 

called weighting function, if φ fulfills: 

 

• φ(α)  ≥  0 for almost all α ∈ A, 

• ∫ φ(α)𝑑μ(α)
 

𝐴
  =  1 

 

So given a weighting function φ ∈ L1([0,1])237. Then the risk measure  

𝑀φ (𝑋) = ∫ 𝑉𝑎𝑅𝑝(𝑋) φ(𝑝)
1

0
𝑑𝑝    

is the spectral (risk) measure of φ – the term referring to the spectrum of an 

operator and its functional analysis background. It generalizes the VaR measure (Adam 

 

237 L1([0,1]) denotes the class of all (Lebesgue-)measurable functions in the real interval [0,1]. 
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et al., 2008; Raskin, 2006). Similarly, a stressed VaR (SVaR) can be extended to a spectral 

type measure in the analogous integral formula. 

 

 

 


