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Streszczenie

Wraz z rozwojem kuantowych technologii, technik eksperymentalnych i postępem technologicznym w

ogóle splątanie kwantowego światła jest (i najprawdopodobniej będzie również w przyszłości) bardzo ak-

tualnym zagadnieniem badawczym. Taka jest również tematyka niniejszej rozprawy doktorskiej, w skład

której wchodzą cztery artykuły naukowe (wymienione w bibliografii PhD Series) opatrzone wstępem.

Wstęp zawiera zwięzły opis badań przeprowadzonych w czasie studiów doktoranckich, których wyniki zo-

stały umieszczone w wyżej wspomnianych publikacjach. Przeprowadzone badania dotyczą nieklasycznych

korelacji kwantowych stanów optycznych o nieustalonej ilości cząstek analizowanych za pomocą pomiarów

intensywności w kontekście polaryzacji i pomiaru homodynowego. Publikacje są ze sobą powiązane.

Artykuł ”General mapping of multiqudit entanglement conditions to nonseparability indicators for

quantum-optical fields” stanowi podstawę cyklu. Praca opisuje ogólną metodę tworzenia pewnej okre-

ślonej klasy kwantowo-optycznych indykatorów splątania, które wykorzystują korelacje oparte na inten-

sywnościach. Tego typu metody wykrywania splątania są obecnie eksperymentalnie wykonalne. Nasza

metoda jest oparta na istnieniu odwzorowania pomiędzy wskaźnikami splątania i nierównościami Bella

dla quditów, a analogicznymi indykatorami nieklasyczności dla pól optycznych. W sensie operacyjnym

polega to na zamianie prawdopodobieństw koincydencyjnej detekcji cząstki w danym końcowym kanale

przez stosunek lokalnie rejestrowanych intensywności pola. Matematycznie rzecz ujmując odwzorowanie

polega na zastąpieniu wartości średnich obserwabli Pauliego, lub ich korelacji, średnimi standardowych

lub znormalizowanych obserwabli Stoksa, lub ich korelacji. W pracy zaznaczone jest, że w przypadku

nierówności Bella nasza metoda nadaje się jedynie dla obserwabli o spektrum pomiędzy [−1, 1]. Strategia
konstruowania nierówności Bella dla standardowych operatorów Stokesa musi być diametralnie inna i nie

jest tu dyskutowana. Tak otrzymane identyfikatory nieklasyczności są testowane dla czteromodowej jasnej

ścieśnionej próżni (BSV) oraz jej generalizacji na stany o większej ilości modów optycznych.

Artykuł ”Simplified quantum optical Stokes observables and Bell’s theorem” również przedstawia nowe

narzędzia do wykrywania nieklasycznych korelacji pól optycznych. Zaproponowaliśmy tam nowe obserwa-

ble - uproszczone operatory Stokesa - do przeprowadzania eksperymentów Bellowskich. Koncepcja nowych

obserwabli jest bardzo prosta i polega na na porównaniu, w którym z lokalnych detektorów zarejestrowano

większą intensitywność padającego światła. W zależności od tego takiemu pomiarowi nadawane są wartości

±1. Gdy oba detektory zarejestrują taką samą częstotliwość przypisywane jest 0. Okazuje się że używając
naszych obserwabli można uzyskać lepsze łamanie nierówności Bella niż w przypadku znormalizowanych

operatorów Stokesa dla jasnej ścieśnionej próżni oraz stanów otrzymanych w wyniku parametrycznej

konwersji trzeciego rzędu tzw ”makroskopowego stanu GHZ”. Również warto zwrócić uwagę, że zapro-

ponowane obserwable są realizowalne eksperymentalnie, a ich znaczenie fizyczne jest intuicyjne. Niestety

nasze obserwable nie nadają się do konstrukcji świadków splątania.

Prace ”Can single photon excitation of two spatially separated modes lead to a violation of Bell inequ-

ality via weak-field homodyne measurements?” i ”Wave–particle complementarity: detecting violation of

local realism with photon-number resolving weak-field homodyne measurements” dotyczą analizy i wery-

fikacji kontrowersyjnych stwierdzeń dotyczących nieklasyczności pojedynczego fotonu nazywaną w litera-

turze ”niekolalnością pojedynczego fotonu” wykrywalną przy użyciu pomiaru homodynowego dla słabych

stanów koherentynych lokalnych oscylatorów. Zostały przeanalizowane dwa emblematyczne eksperymenty

myślowe odnośnie tego zagadnienia: eksperyment Tana, Wallsa i Colletta (TWC) oraz tzw. paradoks Har-
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dy’ego. Obecnie, w czasach gdy jest możliwa eksperymentalna realizacja tych eksperymentów, wyjaśnienie

kontrowersji dotyczących łamania nierówności Bella przez pojedynczy foton nabiera znaczenia nie tylko

w sensie fundamentalnym, ale też w odniesieniu do rozwoju kwantowych technologii. Eksperyment Har-

dy’ego jest niepodważalnie poprawny, choć nieoptymalny. Natomiast w przypadku TWC teza okazała się

być błędna. W ostatnim z przytoczonych artykułów został zawarty opis modelu ukrytych zmiennych dla

doświadczenia TWC, co jednoznacznie zamyka możliwość użycia schematu TWC do bezwarunkowo bez-

pieczniej kryptografii kwantowej. Ponadto zostały przedstawione eksperymenty, będące zmodyfikowanymi

wersjami eksperymentów TWC i Hardy’iego. Okazuje się, że łamanie nierówności Bella przez pojedynczy

foton występuje jedynie przy bardzo specyficznych ustawieniach płytek światłodzielących i zmiennych

amplitud stanów koherentnych użytych do pomiaru homodynowego.

Wstęp do publikacji jest zorganizowany w następujący sposób. Pierwsze cztery rozdziały wstępu za-

wierają ogólne uwagi na temat jasnej ścieśnionej próżni i obserwabli używanych do opisu pola optycznego.

Rozdziały 5-7 omawiają ogólny zarys prowadzonych badań i wnioski zawarte w wyżej wspomnianych pu-

blikacjach. W sekcji 5 została przedstawiona metoda otrzymywania indykatorów nieklasyczności dla pola

optycznego. Rozdział 6 omawia uproszczone operatory Stokesa. W rozdziale 7 jest opisana analiza ekspe-

rymentów (TWC) oraz Hardy’ego. Również zostały przytoczone zaproponowane przez nas eksperymenty,

pozwalające na zaobserwowanie prawdziwej nieklasyczności Bella pojedynczego fotonu.

Ostatnia część wstępu jest krótkim opisem możliwej kontynuacji przedstawionych badań.
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Abstract

With emerging quantum technologies and the progress in detection schemes it is nowadays of a broad

scientific interest (and most probably it will be so in the future) to investigate the phenomena of entan-

glement of quantum light. This PhD dissertation is a contribution to this endeavour. It comprises of four

papers preceded by an introduction. The papers are listed in PhD Series and contain results to which I

contributed during my PhD studies. The introduction gives a brief description of new concepts proposed

in aforementioned papers. The subject of the research is focused on analyzing nonclassical correlations

of quantum optical states using the intensity measurements in context of polarisation and homodyne

measurements. The papers are related with each other.

The first one ”General mapping of multiqudit entanglement conditions to nonseparability indicators

for quantum-optical fields” opens the series. The paper describes a general method that allows to con-

struct a certain class of quantum-optical nonseparability indicators that use intensity-based correlations.

The method is based on mappings between entanglement witnesses and Bell inequalities for qudits and

analogous nonclassicality indicators for optical fields. The main idea of this concept is to replace the pro-

babilities of the coincidence detection of a particle in a given detection channel by the ratio of intensity of

the optical field registered in analogous channel divided by total local intensity. Mathematically speaking,

the mapping replaces average values of Pauli observables, or of their correlations, by averages of standard

and normalized Stokes observables, or of their correlations. In such a way we obtain methods of quantum-

optical entanglement detection that nowadays are experimentally feasible. Also, it is noted in the paper

that in the case of Bell’s inequality our method is suitable only for normalized observables. The strategy

for constructing Bell’s inequalities for standard Stokes operators must be radically different, and is not

discussed in the dissertation. The nonclassicity identifiers obtained in this way are tested for four-mode

bright squeezed vacuum (BSV) and its generalization to states with a greater number of optical modes.

Results presented in this paper make a significant contribution in the investigation of problems discussed

in the three following papers.

The second paper ”Simplified quantum optical Stokes observables and Bell’s theorem” also presents

new tools for detecting nonclassical correlations of optical fields. We proposed new observables – simplified

Stokes operators – for Bell experiments. The idea of new observables is very simple and consists of on a

comparison in which local detector related e.g. with the measurement of horizontal and vertical polarisation

a higher intensity of light was recorded. Depending on the result, the value of ±1 is assigned to such a
measurement. When both local detectors register the same intensity, 0 is assigned. The new observables

turn out to perform better than the normalized Stokes operators in the case of BSV and for the third-

order radiation from parametric source i.e. so called ”macroscopic GHZ state”. It is worth noting that the

proposed observables are experimentally realizable and their physical meaning is intuitive. Unfortunately,

our observables are not useful for entanglement witnesses,

Papers ”Can single photon excitation of two spatially separated modes lead to a violation of Bell

inequality via weak-field homodyne measurements?” and ”Wave–particle complementarity: detecting vio-

lation of local realism with photon-number resolving weak-field homodyne measurements” concern the

analysis and verification of statements regarding the nonclassicality of a single photon, aka ”single-photon

non-locality”, using weak field homodyne measurements. We analysed two emblematic thought experi-

ments: one proposed by Tan Walls and Collett (TWC) and the so called Hardy paradox. The general
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mapping from the first paper was used to check the validity of TWC and Hardy’s claims. Now, when

such experiments are not only gedanken anymore and turned real, it is relevant to clarify the controversy

concerning the violation of Bell’s inequalities by a single photon Solving this problem once for all has,

apart from fundamental, also practical consequences. Single photon nonclassical properties could be used

in device-independent quantum protocols. Hardy’s experiment is indisputably correct, while in the case

of TWC the hypothesis turned out to be erroneous. We present a model of local hidden variables for the

TWC experiment, which means a no-go statement for unconditionally secure quantum cryptography with

the setup and closes the problem of TWC experiment once for all. Still TWC correlations can be used to

derive entanglement witnesses, that is done using the general mapping from the first paper. Apart from

that, we present schemes enabling witnessing of non-locality of single photon that are modified versions

of the TWC and Hardy experiments. It turns out that the violation of the Bell inequality by a single

photon occurs only with very specific settings of tunable beamsplitters and also tunable amplitudes of the

coherent states of the local oscillators.

The introduction to the papers is organized as follows. First four sections contain general remarks

about observables for optical fields and bright squeezed vacuum. Sections 5-7 summarise new results

from aforementioned publications. In section 5 is about the general mapping betwwen non-separability

indicators for qudits and optical fields. Section 6 discusses simplified Stokes observables. Section 7 analyzes

gedankenexperiments of Tan, Wall and Colett (TWC) and Hardy. Last section contains short description

of possible continuation of the research line presented in this thesis.
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1 Entanglement in physics

Quantum mechanics revolutionized our understanding of the universe and has led to the development of

numerous technologies, including transistors, lasers, and superconductors. The term itself was introduced

in 1924 by Born, who later in his autobiographic notes wrote “we became to be more and more convinced

that a radical change of the foundations of physics was necessary i.e. a new kind of mechanics [...] quantum

mechanics”. A new approach to fundamental phenomena was proposed by some of the greatest minds

of XX-th century. In 1900, Planck proposed the hypothesis of discrete energy emissions of an radiating

system. Five years later Einstein introduced “the light quanta” to describe the photoelectric effect. In 1913

Bohr postulated his model of atom. Later, in 1925 Heisenberg formulated basic ideas of matrix quantum

mechanics and Schrodinger postulated the famous evolution equation. In 1927 Heisenberg introduced the

uncertainty relation. The mathematical formalism of quantum mechanics was coined in terms of matrix

mechanics by Heisenberg, Born, and Jordan and wave mechanics by Schrodinger. These two approaches

turned out to be equivalent “pictures” of the same theory.

During this cascade of new theories the bold concepts of quantum mechanics and its different inter-

pretations were subjects of controversy e.g. the famous Einstein-Bohr debate. In 1935 Einstein, Podolsky,

and Rosen (EPR) presented a thought experiment that questioned the completeness of quantum mecha-

nics [Ref1]. The so called EPR paradox is nowadays mainly known in the scenario proposed by Bohm in

which a particle of spin 0 decays into two spin 1/2 particles that are sent faraway in opposite directions

[Ref2]. As expected EPR hypothesis inspired comments, among others the famous Bohr’s reply [Ref3] and

Schrodinger’s paper [Ref4] where for the first time the term “entanglement” was introduced to describe

a very particular type of EPR (nonclassical) correlations. Unfortunately, at that time EPR experiment

was very far from being feasible and the debate about the completeness of quantum mechanics remained

inconclusive. Still, most physicists accepted Bohr view.

The nature of quantumness was investigated again by Bell, who in 1964 showed that quantum pheno-

mena cannot fit into a local realistic description [Ref5]. Since then, the study of nonclassical correlations

has slowly entered the core of scientific research [Ref6, Ref7, Ref8, Ref9, Ref10, Ref11].

In 1990’s the concept of a qubit – i.e. quantum bit – heralded the birth of quantum information theory.

A qubit, mathematically associated with a two-dimensional Hilbert space, can be physically implemented

e.g. as a spin 1/2 particle, or photon polarisation. Such systems can be characterized using dichotomic

observables. Such measurements provide binary results, useful to quantum information, quantum algori-

thms, and quantum key distribution [Ref12]. Entanglement started to be considered useful for quantum

information theory. After all, a system composed of two qubits can exhibit nonclassical correlations.

Nowadays the study of non-separability of physical systems have a significant impact not only on

our understanding of Nature but also on the development of modern technology. It underpins quantum

information, quantum communication, and quantum computing [Ref13, Ref14, Ref15, Ref16].

Facing these facts it is not surprising that entanglement of qubits and their generalisations to higher

dimensional objects, have been widely studied. There is a vast literature about classifying nonclassica-

lity in finite dimensional spaces. Let us concentrate on entanglement witnesses. Already a multitude of

entanglement witnesses have been proposed [Ref17, Ref18]. Nevertheless these indicators are only suffi-

cient conditions for entanglement and thus they are specially tailored for only for given classes of states.

Also, most of finite dimensional entanglement witnesses are efficient only for states of defined number of
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particles.

When the study of entanglement started to be analyzed experimentally within quantum optics [Ref19,

Ref20] new types of entanglement indicators needed to be considered see e.g. [Ref21]. Nowadays, quan-

tum optical entanglement finds multiple applications in implementing quantum information processing

protocols within the branches of quantum computing [Ref22], quantum metrology [Ref23] and quantum

cryptography in the discrete and continuous variables regime [Ref24]. However, it is worth noticing that

in quantum optics, as a second quantized theory, one can consider states of undefined number of photons.

Thus, the description of entanglement of quantum optical systems compared to entanglement of qudits

poses additional challenges. For photons – bosons – the specifics of Bose-Einstein statistics must be taken

into account, as well as the fact that many measurements are based on observations of intensities. We will

focus on detection of entanglement of photonic states by examining the correlations of intensities with

respect to polarization.

The attribute of polarization allows considering quantum optical phenomena in the discrete variable

regime. Photon’s polarization is an example of a qubit degree of freedom. Also, the conceptual simplicity

of polarisation is worth noticing. It is intuitive and can be experimentally realized and analysed using

standard polarising analyzers. Nevertheless, as we shall see the detection of such entanglement of optical

fields often requires photon number resolving detectors. Fortunately, recent advancements of experimental

techniques make it possible, see the pioneering experiments [Ref25, Ref26].

2 Observables for quantum optical fields involivng intensity me-

asurements

2.1 Standard Stokes operators

To describe the polarisation of a quantum optical field one uses Stokes observables. They are quantum-

optical analogues of the parameters introduced in XIX-th century by George Stokes for the classical

description of a polarisation of light. They are represented by self-adjoint operators denoted here as:

Θ̂i = Îi − Îi⊥ (1)

where i = 1, 2, 3. The operator Îi(⊥) stands for the light intensity related with an i-th polarisation basis

{i, i⊥}. Indices i = 1, 2, 3 denote three complementary, mutually unbiased bases of a given polarisation
triad. Here the following identifications will be used:

• i = 3 for horizontal/vertical basis {H,V },

• i = 2 for diagonal/anti-diagonal basis, {D,A},

• i = 1 for right-handed/left-handed circular polarisation basis, {R,L}.

Additionally, Θ̂0 describes the total intensity of the light. We do not make any assumptions about the

definition of the intensity of light. If, for simplicity we assume that the intensity of light is proportional

to the photon number, we have Îi = n̂i = â
†
i âi and Stokes operators take form Θ̂i = â

†
i âi − â

†
i⊥âi⊥ . The

zeroth operator is simply total photon number operator Î = â†i âi + â
†
i⊥âi⊥ = N̂ [Ref27].
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The degree of polarisation is specified by the parameter p =
(∑

i
⟨Θ̂i⟩2
⟨Θ0⟩2

)1/2
, which takes values 0 ¬

p ¬ 1. Then, it is tempting to introduce the following correlation function: E(a, b) = ⟨Θ̂
A
a Θ̂

B
b ⟩

⟨Θ̂A0 Θ̂B0 ⟩
where a and

b denote local settings chosen by Alice (A) and Bob (B) to test local realism. This approach was used as an

attempt to derive Bell inequalities for fields in [Ref28] and then in e.g. [Ref29]. From now on we are going

to call these type of inequalities CHSH-like inequalities because they are not “real” Bell-type inequalities.

Note that the CHSH-like inequalities hold if one imposes an additional assumption of non-enhancement of

intensity on the local hidden variable models tested in a Bell experiment. The form of correlation function

E(a, b) implies that the total intensity of the light variable within this local-realistic approach does not

change with the change of local settings. Thus, the violation of CHSH-like inequality might imply either

the violation of local realism or the violation of the non-enhancement assumption [Ref30]. This problem

will be discussed in further sections.

As below we shall discuss a different approach to quantum optical Stokes parameters, from now on we

call the operators defined above ”standard” Stokes observables.

2.2 Observables based on intensity rates

In order to provide a correct formulation of Bell inequalities based on Stokes parameters for optical fields

one can introduce e.g. new observables based on intensity rates observed in each run of the experiment

[Ref30, Ref31].

In case of two mode optical field they can be put as follows:

R̂(s) = Π̂
Î(s)

Î(s) + Î(s⊥)
Π̂, (2)

where Î(s) and Î(s⊥) are the intensities of a light beam in mode s and respectively in an orthogonal mode

s⊥. The operator Π̂ = 1−|Ω⟩⟨Ω| is a projector that neutralizes the vacuum component |Ω⟩ in a given beam.
The pair {s, s⊥} refers to any two orthogonal modes, e.g. two exclusive detectors in homodyne detection,
or a measurement of two orthogonal directions of a polarisations. The normalized Stokes operators of

[Ref31] read

ŜAi = R̂(i)− R̂(i⊥) = Π̂
n̂i − n̂i⊥
n̂i + n̂i⊥

Π̂. (3)

One defines the zeroth normalized Stokes operator Ŝ0 = Π̂. It gives the probability of a non-vacuum event.

Note that the above definition is fully analogous to the one for standard Stokes operators (1) with

the only difference that intensities are replaced with intensity rates (2). The spectra of normalized Stokes

operators are all rational numbers between [−1, 1] which makes them suitable for Bell inequalities [Ref30].
Several examples show that normalized Stokes operators enable better entanglement detection see e.g.

[Ref31], [Other1], although their advantage over the traditional approach depends on the given states.

Sometimes standard Stokes observables are better [Other2].
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3 Bright squeezed vacuum

An emblematic example of non-classical light of undefined photon number is 2× 2 mode bright squeezed
vacuum (BSV) discovered as a “by product” in parametric down conversion (PDC) of type II [Ref32]. It is

a non-linear process that underpins most of experiments aiming to demonstrate entanglement of quantum

optical states [Ref33]. It is a robust source of single photons [Ref34], entangled photon pairs [Ref35], three,

four-photon entangled states [Ref36, Ref37, Ref38, Ref39] and so called “bright” entangled states of light

[Ref40, Ref41, Ref42].

Bright squeezed vacuum that we consider here is emitted into two distinct optical beams. Each beam

carries polarisation optical modes (as our working polarisation basis we choose: horizontal-H and vertical-

V ). As an expansion in Fock states it reads:

∣∣Ψ−〉 = 1

cosh2 Γ

∞∑
n=0

tghn Γ
n∑
r=0

(−1)m |(n− r)AH , rAV , rBH , (n− r)BV ⟩ , (4)

where Γ is the amplification gain. Subscripts A and B stand for two beams that reach two observers A

and B.

Bright squeezed vacuum is sometimes called “ macroscopic singlet” because of its perfect EPR-like

anticorrelations of Stokes observables. Also it has perfect correlations in number of photons between

the beams [Ref43].[Ref44]. Similarly to EPR singlet state BSV is rotationally invariant with respect to

the same rotations of the observers’ polarisation analyzers. Its form remains unchanged in any other

polarization basis {i, i⊥}.

4 The research presented of this thesis

Given the development of quantum technologies and the continuous progress of experimental techniques,

exploring nonclassical properties of quantum light becomes nowadays of broad scientific interest. The

research undertaken during my PhD studies was focused around nonclassical correlations. It contributed

to the following publications [PhD1, PhD2, PhD3, PhD4], see the list PhD Series. In order to distinguish

between nonclassical correlations revealed by entanglement witnesses and the ones revealed in tests of

Bell inequalities, I will call the correlations revealed with entanglement witnesses – entanglement and

the second ones – Bell-nonclassicality. Still, the considered non-classical correlations occur due to the

entanglement of quantum optical states. Entanglement and Bell nonclassicality have the same root, e.g.

see [Ref45].

In the aforementioned four papers nonclassical aspects of optical fields are described in context of

intensity correlation measurements. These papers are strongly related to each other. In [PhD1] we present

a general approach enabling to construct a class of entanglement indicators for optical fields. The method

is based on the mapping from entanglement conditions and Bell inequalities for qudits to analogous

nonseparability indicators for optical fields. Our method is effortless: take an entanglement condition for

qubits and replace the averages of Pauli operators or of their correlations with the respective averages of

standard and normalized Stokes operators or of their correlations. Also the generalization of the mapping

is given in [PhD1]. Such entanglement conditions are experimentally realisable and thus find applications
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in quantum technologies. However, in case of Bell inequalities only normalized Stokes operators fit to the

mapping. Next, in [PhD2, PhD3, PhD4] it is shown how the mapping form [PhD1] can be useful to detect

entanglement of quantum optical states and also to clear up some controversies related to nonclassicality

of single photon detected in weak field homodyne regime.

In [PhD2] another approach to detect entanglement of optical fields is proposed: we introduced new

simplified sign Stokes observables for better tests of nonclassicality. This observables assign a value of ±1
accordingly to the fact which of two complementary local detector registered more intensity of light. We

assign 0 when the intensity registered by both detectors are the same. The observables are experimentally

feasible and have intuitive physical meaning. We showed the cases when they are more efficient compared

to normalized Stokes operators. However, sign Stokes operators are not useful for entanglement witnesses.

The papers [PhD3] and [PhD4] investigate the nonclassical behavior of single photons using weak-

field homodyne measurements. They analyze the TWC and Hardy thought experiments. We verified that

Hardy’s experiment is correct although it is optimal. However, TWC’s thesis is erroneous. A hidden

variables model for TWC correlation is presented, which rules out their possible use in secure quantum

cryptography. Still, TWC correlations can be used to derive an entanglement witness. We construct an

entanglement condition using the general mapping from [PhD1]. Also, we show that after modifying TWC

setup the violation of Bell inequality can occur for single photon when specific settings of beamsplitters

and amplitudes of coherent state are used. This kind of research has implications for device-independent

quantum protocols.

The further sections of this introduction are organized as follows. Sections 5-7 give the description of

new results presented in [PhD1, PhD2, PhD3, PhD4] The secton 5 describes results from [PhD1]. Section 6

is dedicated to simplified Stokes operators introduced [PhD2] for better tests of Bell inequalities. Section

7 is dedicated to concepts given in [PhD3, PhD4]. Moreover in sections 5 and 7 the examples of the

straightforward application of the mapping from [PhD1] are given.

5 General mapping from qudit entanglement conditions to non-

separability indicators for optical fields

This section introduces the concepts covered in [PhD1] where the new method to construct entanglement

witnesses and Bell inequalities for optical fields is given. The method is based on the mapping that implies

already derived non-separability indicators for qudits and transform them to respective non-separability

indicators for optical fields. The revers mapping exists as well. Such a mapping comes in handy, especially

that there is plenty of entanglement indicators for qudits, the mapping is straightforward and precise

intensity measurement is nowadays feasible. For quantum-optical entanglement witnesses standard or

normalized Stokes operators can be used. This is not the case of Bell inequalities for which standard

Stokes operators do not have properties required for the mapping, as their spectra are not between 1 and

-1. Still, by using the mapping and normalized Stokes, it is possible to obtain proper Bell inequalities for

fields without the non-enhancement assumption mentioned in the previous sections and discussed further

on (section 6 and 7.1) .

Our mapping applies between the averages of Pauli and Stokes operators. In the following lines the

general intuition will be given.

10



Any separable state of two qubits is a convex combination of product i.e. factorizable states:

ρABsep =
∑
λ

pλρ
A
λ ⊗ ρBλ , (5)

where λ is any index (continuous or discrete), ρAλ and ρ
B
λ can be pure, pλ ­ 0 and

∑
λ pλ = 1.

An arbitrary entanglement witness for two qubits, as a quantum observable operator, can be expanded

in the following way:

ŵ =
3∑

µ,ν=0

wµν σ̂
A
µ σ̂
B
ν , (6)

where wµν are real coefficients and witness ŵ is defined as an operator, which for every separable state

ρABsep fulfills the relation: ⟨ŵ⟩ρABsep ­ 0 [Ref46].
In the case of quantum four mode optical fields, with two modes propagating to observer A and the

other two to B, the general bipartite separable state of an optical field takes the form:

ρABsep =
∑
λ

pλf
†
λ(â, â⊥)g

†
λ(b̂, b̂⊥) |Ω⟩⟨Ω| fλ(â, â⊥)gλ(b̂, b̂⊥), (7)

where fλ(â, â⊥) and gλ(b̂, b̂⊥) are polynomial functions of annihilation operators acting on modes related

with parties A and B respectively. The index λ plays the same role as earlier. To put it in a more intuitive

way e.g.: fλ(â, â⊥) |Ω⟩ is any pure state of modes a and a⊥, and we have analogous states for B.
Entanglement indicators (witnesses) for intensity correlations will be denoted by ŴΘ̂ and ŴŜ depen-

ding on which type of Stokes observables we use. Note that as we assumed here two modes per observer,

essentially the situation can be thought of a representing the problem of detecting polarization entan-

glement of the beams propagating to the two observers. Note further, that all that we show here can be

straightforwardly generalized to many parties, and more than two modes per beam, see the generalizations

in [PhD1].

The mapping is the following substitution: σ̂Aµ σ̂
B
ν → Θ̂Aµ Θ̂Bν for standard Stokes operators and σ̂Aµ σ̂Bν →

ŜAµ Ŝ
B
ν for normalized Stokes operators. We take any entanglement witness for qubits ŵ, replace Pauli

matrices with standard, or normalized Stokes operators and obtain ŴΘ̂ or ŴŜ respectively.
For the sake of clarity, before proving of the correctness of the mapping, it is worth to outline the

relation between Stokes (standard and normalized) and Pauli observables. Pauli matrices σ⃗ = (σx, σy, σz)

span the space of qubit observables represented by Hermitian 2 × 2 matrices. Stokes operators refer to
2-dimensional polarisation basis and similarly to Pauli matrices, each of the operators is related to one

out of three complementary settings of polarisation analyzers. Stokes operator averages can be given as

Stokes vectors: ⟨⃗̂Θ⟩ = (⟨Θ̂1⟩, ⟨Θ̂2⟩, ⟨Θ̂3⟩) for standard ones and ⟨ ⃗̂S⟩ = (⟨Ŝ1⟩, ⟨Ŝ2⟩, ⟨Ŝ3⟩) for normalized
Stokes operators.

Standard Stokes observable corresponding to an arbitrary polarisation, specified by a unit real vector

m⃗ (if one uses Bloch representation), has the following representation: m⃗ · ⃗̂Θ =
∑2
k,l=1 â

†
k(m⃗ · σ⃗)klâl, where

k, l ∈ {1, 2} represent polarisation directions H and V respectively. The total number of photons is given
by N̂ =

∑
kl â
†
kδklâl. For normalized Stokes operators we have analogously: m⃗ · S⃗ =

∑
kl Π̂

â†
k
(m⃗·σ⃗)klâl
N̂

Π̂,

and Ŝ0 reads
∑
kl

Π̂â†
k
δklâlΠ̂

N̂
.
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5.1 Standard Stokes operators and the mapping σ̂Aµ σ̂
B
ν → Θ̂Aµ Θ̂Bν

For standard Stokes operators the mapping reads:

ŵ =
3∑

µ,ν=0

wµν σ̂
A
µ σ̂
B
ν → ŴΘ̂ =

3∑
µ,ν=0

wµνΘ̂Aµ Θ̂
B
ν , (8)

where coefficients wµν stay unchanged. The proof of the correctness of the mapping, which reduces to the

proof that ŴΘ̂ in (8) is indeed an entanglement witness for any bipartite state of the optical field, goes
in two steps. First it is enough to show that for any mixed state ρ of the four-mode field one can always

find a two-qubit density matrix P̂ABρ such that:

⟨ŴΘ̂⟩ρ
⟨N̂AN̂B⟩ρ

= Tr ŵP̂ABρ . (9)

As mixed states (7) and (5) are convex combinations of pure states we proceed with the proof for

pure states. With any pure state of the optical field
∣∣φAB〉 the following set of states can be associated:

{
∣∣ΦABkm〉 = âj b̂k

∣∣φAB〉}k,m=1,2. Using the idea to represent Stokes operators in arbitrary direction using
Pauli matrices the expectation value for standard Stokes operators and

∣∣φAB〉 can be expanded as follows:
〈
φAB
∣∣Θ̂Aµ Θ̂Bν ∣∣φAB〉 = 2∑

k,l=1

2∑
m,n=1

σklµAσ
mn
νB

〈
ΦABkm
∣∣ΦABln 〉 = Tr σ̂Aµ σ̂Bν P̂AB , (10)

where
〈
ΦABkm
∣∣ΦABln 〉 are elements of matrix P̂AB . The matrix P̂AB is a Gram matrix so it is Hermitian. Its

trace is Tr P̂AB = ⟨N̂AN̂B⟩. Thus, P̂AB = P̂AB/⟨N̂AN̂B⟩ is a proper two-qubit density matrix. Therefore
P̂AB always exists for

∣∣φAB〉 and (10) holds for any pure state. Note that pureness of ∣∣φAB〉 does not
guarantee pureness of P̂AB .

We need now to show that the separability of the state of the field guarantees the separability of P̂ABρ .

Let us assume that
∣∣φAB〉 is a product state ∣∣φAB〉prod = ∣∣φA〉 ∣∣φB〉. Such a structure of ∣∣φAB〉 implies

that
〈
ΦABkm
∣∣ΦABln 〉 = 〈ΦAk ∣∣ΦAm〉 〈ΦBl ∣∣ΦBn 〉 i.e. P̂AB = P̂AP̂B is also factorizable. Thus ⟨ŵ⟩P̂AB ­ 0 and

⟨ŴΘ̂⟩φAB ­ 0.
For the reverse map the reasoning is trivial. As ⟨ŴΘ⟩prod ­ 0, this is also true for two-photon separable

state and this is mathematically equivalent with ŴΘ being an entanglement witness for two qubits.
As mixed separable states are convex combinations of pure states, the proof remains valid also for

mixed states.

5.2 Normalized Stokes operators and σ̂Aµ σ̂
B
ν → ŜAµ ŜBν

The outline of the proof for normalized Stokes operators follows the same lines as the proof for the standard

ones so its description will be more concise. The map reads as follows:

ŵ =
3∑

µ,ν=0

wµν σ̂
A
µ σ̂
B
ν → ŴŜ =

3∑
µ,ν=0

wµν Ŝ
A
µ Ŝ
B
ν . (11)
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The expectation value
〈
ψAB
∣∣ŜAµ ŜBν ∣∣ψAB〉 can be put as:

〈
ψAB
∣∣ŜAµ ŜBν ∣∣ψAB〉 = 2∑

k,l=1

2∑
m,n=1

σklµ σ
mn
ν

〈
ΨABkm
∣∣ΨABln 〉

= Tr σ̂Aµ ⊗ σ̂Bν R̂AB , (12)

where R̂AB is Gram matrix which after the normalization R̂AB = R̂AB/⟨Π̂AΠ̂B⟩ becomes a proper density
matrix for two qubits. Again, the separability of the state of the field |φ⟩ warrants the factorisation of
Gram matrix R̂AB .

In [PhD1] we give several generalizations of the mapping. We demonstrate its applicability for observa-

bles from unitary operator bases for qudits introduced in [Ref47] for multiport interferometry. Moreover,

the mapping remains valid for any general intensity operators. Note, that this allows to reformulate optical

coherence theory, see [PhD1] An application of the mapping is shown in [PhD2], [PhD3]. In [Other1] we

apply it in multi party case to classify nonclassical correlations of 3 been GHZ-like radiation.

5.3 Robustness with respect to photon losses

Entanglement conditions from the classes of ŴS and ŴΘ are highly resistant to losses. The photon losses
are usually modelled with a unitary transformation Û(η) which is operationally equivalent to placing a
beamsplitter of transmission coefficient

√
η in front of a perfect detector i.e.

Û(η)â†j = â
†
j(η) =

√
ηâ†i +

√
1− ηĉ†j (13)

where â†j stands for the detection channel and ĉ
†
j for the loss channel related with j-th mode.

Let us start with standard Stokes operators. Inserting the transformation Û(η) we get:

〈
ψAB(η)

∣∣ŴΘ∣∣ψAB(η)〉 = 〈ψAB∣∣ŴΘ(η)∣∣ψAB〉 , (14)

where
∣∣ψAB(η)〉 = Û(η) ∣∣ψAB〉 and ŴΘ(η) = Û†(η)ŴΘÛ(η). We denote as 〈ψAB∣∣ŴΘ∣∣ψAB〉 the expecta-

tion value of given component of ŴΘ not affected by losses.
By analysing the structure of

〈
ψAB
∣∣ŴΘ(η)∣∣ψAB〉 i.e. applying Û(η) to photon number operators

present in the standard Stokes operators, one can show that ⟨Θ̂Aµ (η)Θ̂Bν (η)⟩ is always proportional to
ηAηB i.e. 〈

ψAB
∣∣ŴΘ(η)∣∣ψAB〉 = ηAηB 〈ψAB∣∣ŴΘ∣∣ψAB〉 , (15)

where ηX for X = A,B is Alice’s and Bob’s detector efficiency. Thus, we have entanglement detection

with a full resistance with respect to the losses.

For normalized Stokes operators and ŴS the dependence on losses does not cancel out as in the case
of ŴΘ. Having regard to the structure of separable state (7) it is enough to consider pure product state
in the Fock basis |F ⟩ = |nAi , nAi⊥ ,m

B
i ,m

B
i⊥
⟩. Stokes operators (standard and normalized) are diagonal in

their eigenbasis and each pure product state
∣∣FAB〉 can be put as a superposition of eigenstates related

to a given Stokes operator. That is why, the dependence of efficiency ηX for X = A,B must be related

with the behaviour of
∣∣FAB〉 in the eingenbasis of given ŜAµ ŜBν . Following that intuition it is enough
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to analyse the average value of a rate observable (2) for its eigenstate |FA⟩ = |nAi ,mAi⊥⟩ in presence of
efficiency ηA. The following dependence of total number of photons in the given beam is obtained

⟨FA(η)|Ri|FA(η)⟩ =
nAi

nAi + n
A
i⊥

(
1− (1− η)n

A
i +n

A
i⊥
)
= rAi
(
1− (1− η)n

A
i +n

A
i⊥
)
. (16)

|FAB(η)⟩ is the state |FAB⟩ after introducing the losses in both channels.
Thus, for the expectation value of normalized Stokes operators for Alice and Bob we get

⟨FAB(η)|ŜAµ ŜBν |FAB(η)⟩ = HF ⟨F |ŜAµ ŜBν |F ⟩, (17)

where

HF =
∏
X=A,B

[1− (1− ηX)n
X
tot ] = ⟨F (η)|ŜA0 ŜB0 |F (η)⟩

is in fact the joint probability of coincident non-vacuum events in presence of losses and nXtot is the total

number of photons in X-th channel without considering the losses.

This simple but widely accepted model of photon losses and the considerations about the efficiency de-

pendence for standard and normalized Stokes operators have an interesting consequence. As the threshold

detectors’ efficiency becomes irrelevant, an arbitrary number of photons can be lost from the incoming

beam and still entanglement conditions of the type of ŴS and ŴΘ remain applicable. Then if e.g. the
measurement of three mutually complementary Stokes observables is needed, the light beam incoming to

the local detection station can be divided into three beams by cascade beamsplitters. Thus, it is enough to

prepare the whole setup with three settings at once and perform all needed measurements simultaneously.

All statistics can be collected without changing the settings of local analyzers - the idea is depicted in

Fig. 1.

5.4 A separability condition for optical fields based on the mapping – example

Consider the following observable ŵ = σ̂A0 σ̂
B
0 +
∑3
k=1 skσ̂

A
k σ̂
B
k , where sk = ±1. For any separable state

ρAB the expectation value ⟨ŵ⟩sep ­ 0 because ⟨σ̂Ak σ̂Bk ⟩prod = ⟨σ̂Ak ⟩⟨σ̂Bk ⟩ and
∑3
k=1⟨σ̂k⟩2 = 1. As sk can be

arbitrary, the following entanglement indicator for two qubits emerges

3∑
k=1

|⟨σ̂Ak σ̂Bk ⟩sep| ¬ ⟨σ̂A0 σ̂B0 ⟩sep. (18)

Condition (18) mapped to normalized and standard Stokes operators reads:

3∑
j=1

|⟨ŜAj ŜBj ⟩sep| ¬ ⟨Π̂AΠ̂B⟩sep. (19)

and
3∑
j=1

|⟨Θ̂Aj Θ̂Bj ⟩sep| ¬ ⟨N̂AN̂B⟩sep. (20)

For states for which local correlations vanish condition (18) is straightforwardly derivable from the
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Rysunek 1: Schematic picture of simultaneous measurement of three complementary Stokes observables
while testing entanglement of optical fields using entanglement conditions ŴS and ŴΘ. At each measu-
rement station the beam of incoming light is divided in three by a multi-port beamsplitter (MPBS) of
three exists. In each of the exits we measure one of three complementary Stokes observables. There is no
need to switch between settings.

family of inequalities which are a consequence of the positive partial transpose conditions of Yu et.al. from

[Ref48] and therefore it is optimal for such states. Bright squeezed vacuum (4) has this property. It is a

consequence of the fact that ⟨Ψ−|ŜAj |Ψ−⟩ = ⟨Ψ−|Θ̂Aj |Ψ−⟩ = 0 and the same for the observer B.

5.5 Resistance with respect to a distortion noise

We introduce the following noise model:

ρnoise =
1
4

(∣∣Ψ−〉〈Ψ−∣∣+ ∣∣Ψ+〉〈Ψ+∣∣+ ∣∣Φ−〉〈Φ−∣∣+ ∣∣Ψ+〉〈Ψ+∣∣) , (21)

where |Ψ−⟩ , |Ψ+⟩ , |Φ−⟩ , |Φ+⟩ are 4 bright squeezed vacuum states. They read respectively:

∣∣Φ±〉 = 1

cosh2(Γ)

∞∑
n=0

tghn(Γ)
n!
(a†Hb

†
H ± a

†
V b
†
V )
n |Ω⟩ , (22)

and ∣∣Ψ±〉 = 1

cosh2(Γ)

∞∑
n=0

tghn(Γ)
n!
(a†Hb

†
V ± a

†
V b
†
H)
n |Ω⟩ . (23)

Our noise shares some similarities with white noise. It is uncorrelated: ⟨ŜµŜν⟩ = 0 and ⟨Θ̂µΘ̂ν⟩ = 0
for all µ and ν. Also Tr Π̂AΠ̂Bρnoise = ⟨Ψ−|Π̂AΠ̂B |Ψ−⟩. One has Tr N̂AN̂Bρnoise = ⟨Ψ−|N̂AN̂B |Ψ−⟩,
because all noise components have the same amplification gain.
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The noisy state reads

ϱAB = v
∣∣Ψ−〉〈Ψ−∣∣+ (1− v)ϱnoise, (24)

where 0 ¬ v ¬ 1 is the visibility.
The robustness with respect to noise can be analyzed by comparing the threshold visibilities above

which the separability conditions are violated for the quantum state in question. Thanks to technical

lemmas derived for Stokes operators and BSV we have the following identities:

3∑
i=1

|
〈
Ψ−
∣∣ŜAi ŜBi ∣∣Ψ−〉 | = 〈Ψ−∣∣Π̂A + Π̂A 2

N̂A
Π̂A
∣∣Ψ−〉〈

Ψ−
∣∣Π̂AΠ̂B∣∣Ψ−〉 = 〈Ψ−∣∣Π̂A∣∣Ψ−〉

3∑
i=1

|
〈
Ψ−
∣∣Θ̂Ai Θ̂Bi ∣∣Ψ−〉 | = 〈Ψ−∣∣N̂A(N̂A + 2)∣∣Ψ−〉〈

Ψ−
∣∣N̂AN̂B∣∣Ψ−〉 = 〈Ψ−∣∣(N̂A)2∣∣Ψ−〉 . (25)

Using these, the formulas for the threshold visibility read:

vnewcrit >
⟨Ψ−|Π̂AΠ̂B |Ψ−⟩∑3
i=1

∣∣∣ ⟨Ψ−|ŜAi ŜBi |Ψ−⟩∣∣∣ (26)

for normalized Stokes operators and

voldcrit >
⟨Ψ−|N̂AN̂B |Ψ−⟩∑3
i=1

∣∣∣ ⟨Ψ−|Θ̂Ai Θ̂Bi |Ψ−⟩∣∣∣ (27)

for the standard ones. In Supplemental material of [PhD1] the visibilities voldcrit and v
new
crit were compared

as functions of the amplification gain Γ. Normalized Stokes operators turn out to be more efficient. For

very weak amplification gain Γ→ 0 the critical visibility goes to the critical visibility for qubits.
Conditions (19) and (20) and the noise model (21) can be extended to unitary observables [Ref47] for

multiport interferometry and d× d generalized bright squeezed vacuum, see Sup. Mat. in [PhD1].

6 New observables for Bell tests for optical fields

The mapping presented in section 5 can the applied to obtain Bell inequalities for normalized Stokes

operators. As mentioned in section 4, the use of standard Stokes operators in Bell inequalities, as it is

done in e.g. [Ref28] rests on the non-enhancement assumption that the local hidden variable value of total

intensity of detected light does not depend on local settings [Ref30]. This assumption, seemingly intuitive

from a physical perspective, restricts the range of validity of Bell-like inequalities derived with it to a

specific subclass of local realistic models. Measurement stations of Alice and Bob are “black boxes” which

have to obey principles of local realism and nothing more. Also note that after introducing the dependence

on detector efficiency η, as it was done for entanglement witness ŴΘ̂ in section 5, the correlation function

E(a, b) = ⟨Θ̂
A
a Θ̂

B
b ⟩

⟨Θ̂A0 Θ̂B0 ⟩
, is genuinely free of the dependence on η. This obviously leads to wrong conclusions
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even for two photon states as the efficiency loophole is hidden. That is why alternative solutions for the

proper formulation of Bell inequalities based on rates, such as normalized Stokes operators [Ref30] or their

analogues tailored for weak homodyne detection as in [PhD3] were proposed. Technicalities related with

such problems will be discussed in Section 7.1.

In this section new observables for better test of Bell ineqialities for optical fields from [PhD2] are

discussed.

Normalized Stokes operators are not the only correct tool to test local realism for polarisation me-

asurement. In [Ref49, Ref50] pseudo-spin operators are proposed e.g. the z component of pseudo-spin is

(−1)n̂, where n̂ is the total photon number operator in the given optical mode. Their spectrum is ±1
but they are very inefficient with respect to noise or losses. A loss of even one photon flips the value of

pseudospin. In [PhD2] we propose another kind of observables: sign Stokes operators. Their concept is

very intuitive: use Stokes operators and take the sign function of them, i.e.

Ĝ(s) = sign(Θ̂s) = sign(Us(ÎH − ÎV )U†s ) = sign(Îs − Îs⊥), (28)

where Îs denotes the intensity measured with the chosen setting s related with the corresponding polari-

zation basis {s, s⊥}. Symbol Ûs denotes a unitary transformation between linear polarisation basis {H,V }
and an arbitrary polarisation basis {s, s⊥}.
As in previous sections we use the model in which intensity is proportional to the expectation value

of photon number operator. However, formula (28) remains valid for any model of intensity that can

be used for standard Stokes operators. The action of the sign function on Stokes operators is in fact a

binning strategy used in homodyne schemes [Ref51, Ref52, Ref53, Ref54] here applied in the context of

polarization measurements. The data collected for the measurement of Standard and normalized Stokes

operators can be also used for sign Stokes operators.

6.1 Bell inequalities with sign Stokes operators

As the spectrum of sign Stokes operators consist of ±1 and 0, the derivation of a proper CHSH inequality
is straightforward.

For local hidden variables λ and settings a, a′ for Alice and b, b′ for Bob we define the functions

IX(x, λ) and IX(x⊥, λ) where x = a, b and X = A,B that give the predetermined outcomes of the

intensity measurements. The local hidden values for sign operators are given byGX(x, λ) = sign(IX(x, λ)−
IX(x⊥, λ)). These local hidden values are ±1 and 0, thus one can use standard methods to derive CHSH
inequality:

|⟨GA(a, λ)GB(b, λ) +GA(a, λ)GB(b′, λ) +GA(a′, λ)GB(b, λ)

−GA(a′, λ)GB(b′, λ)⟩LHV | ¬ 2.
(29)

As well as in the case of normalized Stokes operators, due to the high probability of the vacuum events

inequality (29) cannot be violated for bright squeezed vacuum. In order to reduce the impact of the

vacuum term on the CHSH inequality we use the Mermin-Garg trick also used in [Ref30] and modify local

hidden values:

ĜX(x)→ ĜX−(x) = ĜX(x)− Π̂ΩX , (30)

17



where Π̂ΩX is the projector on the Fock subspace of states with no photons in the X-th beam. Thus, the

new CHSH inequality reads:

|⟨GA−(a, λ)GB−(b, λ) +GA−(a, λ)GB−(b′, λ)
+GA−(a′, λ)GB−(b, λ)−GA−(a′, λ)GB−(b′, λ)⟩LHV | ¬ 2.

(31)

In [PhD2] we compared the values of CHSH inequalities for sign and normalized Stokes operators in

function of the amplification gain Γ for bright squeezed vacuum. The range of Γ in which the violation of

the respective CHSH inequality occurs is significantly broader for sign Stokes operators than for normalized

ones. Moreover in Suplementary Information in [PhD2] we give a strongly motivated conjecture, based

on numerical analysis, that with sign Stokes operators the violation of CHSH inequality occurs in the

whole range of Γ. Our conjecture results from the character of the action of sign Stokes operators on the

components of bright squeezed vacuum.

Observables (28) need to be modified if one wants to use them in CH inequality. To this end, we

introduce non-negative sign Stokes operators, that are simply the projectors onto the subspace in which

m > n, with m photons in x-th mode and n photons in x⊥-th mode, where again x = a, b:

P̂ (x) =
∑
n>m

|nx,mx⊥⟩ ⟨nx,mx⊥ | . (32)

From the structure of (32) we see that the eigenvalues are 1 when m > n and 0 if n ¬ m. Note that the
expectation value of P̂X(x) is the probability that the observer X will see more photons in the nX mode

i.e. n > m. The quantum joint probability of obtaining the same result, that is n > m, by observers A

and B for the settings a and b is given by ⟨P̂A(a)P̂B(b)⟩. Using this notation CH inequality in quantum
scenario reads:

− 1 ¬ ⟨CHP ⟩ =
〈
P̂A(a)P̂B(b) + P̂A(a)P̂B(b′) + P̂A(a′)P̂B(b)

〉
−
〈
P̂ a(a′)P̂B(b′) + P̂A(a) + P̂B(b)

〉
¬ 0.

(33)

We compare the values of ⟨CHP ⟩ and the CH expression for rates in [Ref30] for the optimized settings
from [Ref30]. Similarly, as in the case of CHSH inequality better results are obtained with non-negative

sign Stokes operators (32).

Sign Stokes operators also are robust for noise and losses. The noise model that we used was introduced

in [PhD1] and it is described in the previous sections. The model of losses is an analogue of the one given

in [Ref31] and it is based on the binomial distribution.

Also Mermin-like inequality is checked for sign Stokes operators and bright GHZ-like radiation form

[Other1]. In this case sign Stokes operatros also are better that normalized ones.

6.2 Sign Stokes observables are not a suitable tool to construct entanglement
witnesses

Sign Stokes operators come in handy for Bell inequalities but are not useful for constructing entanglement

witnesses. Let us introduce sign Stokes vector ⟨ ˆ⃗G⟩. We use the notation from previous sections and assign
subscripts 1, 2, 3 for a triad of mutually unbiased polarisation bases. We have: ⟨ ˆ⃗G⟩ = (⟨G1⟩, ⟨G2⟩, ⟨G3⟩).

18



The norm of standard and normalized Stokes vectors remain invariant with respect to any unitary trans-

formation. This is not the case of ⟨ ˆ⃗G⟩. For a proof consider the state |3H , 0V ⟩ and its rotation by α = π4 i.e.
a rotation of the polarisation of the modes between the bases {H,V } and {D,A}: a†D = cosαa

†
H+sinαa

†
V

and a†A = cosαa
†
V − sinαa

†
H . For such a transformation the norm of ⟨

ˆ⃗
G⟩|3H ,0V ⟩ is not invariant. Moreover,

it exceeds one and according to our calculations it cannot be reasonably bounded.

7 Nonclassicality of single photon

The concepts introduced in previous sections (the mapping and sign Stokes operators) were applied to

the bright squeezed vacuum, which is a standard example of “macroscopic” entanglement. In turn, in this

section based on [PhD3] and [PhD4] non-locality of single photon also called “entanglement with vacuum”

will be discussed. A single photon seems to be most microscopical optical object for which Bell inequalities

can be tested. However, as we shall see many claims concerning this are incorrect.

In [PhD3] and [PhD4] we reconsider gedanken and real experiments concerning violation of Bell ine-

qualities by a single photon excitation of two spatially separated optical modes. The state in question can

be generated by a single photon exciting a balanced beamsplitter. It reads

|ψ⟩ = 1√
2
(|01⟩b1b2 + |10⟩b1b2), (34)

where |01⟩b1b2 stands for “a photon being in the mode b2 and not in the mode b1”. Formula (34) demon-
strates entanglement of optical modes. Revealing nonclassicality of (34) is a complex phenomenon that

addresses various research problems such as mode versus particle entanglement [Ref20] or the entangling

role of a beamsplitter [Ref55] to name a few. These problems have been widely discussed see e.g. 20 first

references from [PhD3]. Various scenarios were proposed. Aharonov and Vaidman, van Enk and Garry,

among the others, considered situations in which a single photon exciting a beamsplitter induces entan-

glement in excitations of atoms placed in spatially separated traps. However, these experiments effectively

boil down to Bell tests for two qubits. Thus, we do not have anything new in such schemes.

Nevertheless, it is possible to reveal single photon nonclassicality using only all-optical setups e.g. via

strong homodyne measurement [Ref56] or displacement operators [Ref57]. Neither of these examples raise

doubts in the scientific community.

We decided to concentrate on the controversial versions of all-optical setups i.e. the experiments in

weak local oscillator regime by what we mean that the mean number of photons of the auxiliary field is

one or less. We analyzed two emblematic single-photon gedankenexperiments of this type proposed by

Tan, Walls, Collett (TWC) [Ref29] and Hardy [Ref58].

Recent progress in the experimental techniques enable the realization of experiments involving schemes

of TWC and Hardy, see [Ref25, Ref26]. Thus, the problem of Bell-nonclassicality of single photon gains

on interest for applied quantum information and quantum communication.

The schemes of TWC and Hardy are shown Fig. 2. The experimental setup consists of three beam-

splitters. A single photon is projected on a balanced beamsplitter BS0 and a homodyne measurement

at spatially separated detection stations j = 1, 2 is performed. Each station is equipped with another

beamsplitter for homodyne detection denoted by UBSj for j = 1, 2 and two detectors related to the
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beamsplitter’s outputs. For TWC and Hardy both local beamsplitters UBSj are balanced. The beam-

splitters inputs are denoted by aj and bj and outputs by cj and dj . The input aj is fed with the local

oscillator |αj⟩ with amplitude α1 and tunable phase θj . The input bj is used for the single photon. Behind
each beamsplitter UBSj at the outputs cj and dj photon number resolving detectors are placed.
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Rysunek 2: Most general schematic representation of the experimental setup for testing single-photon
correlational properties, which we consider here. In the Tan-Walls-Collett scenario we have q = 0, and
|α1| = |α2| = const for all settings in Bell-like experiment. In original Hardy’s scenario q ̸= 0 and |αj | = 0,
or αj = i

(1−j)r
q
√
2
. Here we consider also intermediate cases, including αj ’s of varying absolute values and

beamsplitters UBSj with transmissivity varying from setting to setting.

Despite seemingly similar experimental schemes, TWC and Hardy’s approaches to test nonclassicality

of a single photon differ significantly. First, the preparation of the initial single photon state is different.

Hardy’s initial state is a non-trivial superposition of single photon and vacuum. After passing through a

beamsplitter this state reads: |ψ⟩ = q |00⟩b1b2 +
r√
2
(|01⟩b1b2 + |10⟩b1b2), with q ̸= 0. For the TWC case

we have q = 0. Another difference between these two experiments concerns the auxiliary fields. In TWC

local oscillators are always turned on and set on the same amplitude αj during the whole experiment:

α1 = α2 = α. Only the local phase θj changes. In contrast, Hardy varies the amplitudes: local oscillators

can be turned on or off. With such a setup Hardy defines four complementary situations and proves that

their joint local realistic description is not consistent with quantum predictions. Hardy’s proof remains

impeccable. However TWC experiment raised substantial controversy, see “partial local hidden variable

model” for TWC experiment by Santos [Ref59] and the comment by Peres [Ref60]. TWC claim to violate

local realism but, as we show in [PhD3] and [PhD4] in their paper they calculate a violation of CHSH-

like inequality derived in [Ref28]. Such inequalities do not test local realism for optical fields This was

discussed in previous chapters, but for detailed analysis, see the (next) subsection 7.1. The TWC paper

had significant impact on the research in quantum optics and quantum information and is widely cited.

Despite the controversies, statements about the violation of Bell inequalities with the TWC setup can be

found in textbooks [Ref61, Ref62] and research articles e.g. [Ref63] or [Ref64], for the latter see also our

comment [Other3]. Thus, this problem needed to be clarified.
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7.1 TWC experiment does not reveal Bell nonclassicality

In the TWC scenario the overall input state shared by observers 1 and 2 reads

|Ψ(α)⟩ = 1√
2
|α⟩a1(|01⟩b1b2 + i |10⟩b1b2)|α⟩a2 , (35)

where we have explicitly added the local oscillators |αj⟩.
The local hidden variable model of the intensity are denoted here by Ixj (θj , λ), where x = c, d stands

for the given detector of j = 1, 2 detection station, λ is the hidden variable and θj is the local setting.

The total intensity registered by the detectors cj and dj is given by Ij(λ). The TWC correlation function

in the local realistic description reads:

ET (θ1, θ2) =

∫
dλρ(λ)

∏
j=1,2

(
Icj (θj , λ)− Idj (θj , λ)

)∫
dλρ(λ)I1(λ)I2(λ)

, (36)

where ρ(λ) is λ distribution.

In quantum scenario the correlator ET (θ1, θ2) reads:

ET (θ1, θ2) =
⟨Ψ(α)|(n̂c1 − n̂d1)(n̂c2 − n̂d2)|Ψ(α)⟩
⟨Ψ(α)|(n̂c1 + n̂d1)(n̂c2 + n̂d2)|Ψ(α)⟩

= AT (α) sin(θ1 − θ2) (37)

and the amplitude AT (α) is AT (α) = 1
1+α2 .

Then CHSH-like inequality reads:

|ET (θ1, θ2) + ET (θ′1, θ2) + ET (θ1, θ′2)− ET (θ′1, θ′2)| ¬ 2. (38)

TWC report a violation of (38) for α2 ¬
√
2− 1.

The form of correlator (36) assumes the ”non-enhancement” of intensity which can be formulated

as follows: Îj(λ) = Îcj (λ, θ) + Îdj (λ, θ). Simply a subclass of local hidden variable models is assumed in

which the total local realistic intensity does not depend on θ.

A violation of (36) indicates that :

• either the local realism is violated

• or simply for the total intensity one has ÎX(λ) ̸= ÎcX (λ, θ) + ÎdX (λ, θ).

• or there is no free will i.e. the choice of settings is not random (although this one seems to be very
extreme conclusion)

Thus, there is no proof of violation of local realism. Note that weak local oscillator states have in quantum

optical description undefined number of photons, which takes specific values only when the detection event

happens. Thus, the non-enhacement assumption raises strong doubts..

Also, most importantly this model works only for the TWC configuration. The Hardy approach has

no local realistic model.
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7.2 Rate approach for TWC correlations

We aim to check whether local realism is violated in TWC experiment. As the first step we will formulate

CHSH inequality with rate-based observables that for TWC setup read:

R̂xj = Π̂cjdj
n̂xj

n̂cj + n̂dj
Π̂cjdj , (39)

where xj = cj or dj . We define

Ĥj(θj) = R̂cj − R̂dj = Π̂cjdj
n̂cj − n̂dj
n̂cj + n̂dj

Π̂cjdj , (40)

and analyze the correlation function calculated for TWC experiment:

ER(θ1, θ2) = ⟨Ψ(α)| Ĥ1(θ1)Ĥ2(θ2) |Ψ(α)⟩

= AR (α) sin(θ1 − θ2), (41)

where most importantly AR(α) =
e−2α

2
(eα

2
−1)2

α2 . With (41) we shall use the proper CHSH inequality

|ER(θ1, θ2) + ER(θ′1, θ2) + ER(θ1, θ′2)− ER(θ′1, θ′2)| ¬ 2. (42)

A violation of (42) may the observed if the amplitude from (42) AR > 1/
√
2. However that happens

for AR from (42). This raises doubt whether TWC experiment is indeed a Bell test of local realism. In

[PhD4] the definitive answer is given that it is not.

7.3 Local hidden variable model for TWC experiment

The aim of building LHV models is to reconstruct quantum predictions within a theory consistent with

local realism. Existence of a LHV model rules out the possibility of violation of Bell inequalities for a

given scenario. Thus, a possible application of such a process in device-independent quantum information

protocols is impossible. The detailed LHV model for TWC correlations can be found in [PhD4] and the

description of the outline how the model was created is demonstrated in [Other4].

The joint probability p(x, y|a, b), of outcomes x and y in presence of settings a and b freely and locally
chosen by two observers has a proper LHV model, if it can be reproduced by

p(x, y|a, b) =
∫
dλp(x|a, λ)p(y|b, λ) (43)

where p(x|a, λ) is a local probability of getting outcome x(y) in presence of a(b) and λ and p(y|b, λ) plays
the same role for the second observer.

The quantum probabilities of getting k, l, r or s counts in the xj-th detector, where x = c, d and

j = 1, 2 are given by p(kc1 , ld1 , rc2 , sd2) = | ⟨nc1 , nd1 , nc2 , nd2 |Ψdet⟩ |2 where |Ψ⟩det is (35) after passing
through all beamsplitters. We introduce a more concise notation n = (k, l, r, s) ∈ N4 and omit subscripts
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of xj for x = c, d and j = 1, 2. We have

p(n) = A(α,n)
[
(k−l)2 + (r−s)2 + 2(k−l)(r−s) sin(θ12)

]
, (44)

where A(α,n) is a coefficient depending on n and coherent states’ amplitude α, whereas θ12 denotes

θ1 − θ2.
Our LHV model is a convex combination of submodels for specific classes of events. Formula (44)

shows that we have two main types of events:

• N events: (k, l, r, s) such that k = l or r = s that are not dependent on θ12. These events are covered
by flat probabilities. Within this set we identify a subclass O of events such that either k = l = 0

or r = s = 0.

• Ñ events: (k, l, r, s) such that k > l and r > s that depend θ12. These events will be called interfe-

rometric events.

These two classes of events are modelled by two different submodelsMn:

• Larson-like submodels denoted byMn∈Ñ∪O. These models are inspired by LHV models proposed by
Larson for 2 qubits [Ref65, Ref66] and cover events Ñ and events O. There are two hidden variables:
uniformly distributed continuous λ ∈ [0, 2π] and a coin toss x ∈ {0, 1} that symmetrises the model.
The formulas for LHV structured probabilities for interferometric events for Alice PAn (c, d|θ1, λ, x)
and Bob PBn (c

′, d′|θ2, λ, x) are given in the section 3.1 in [PhD4]. The joint probability is given by:

PABn (c, d, c
′, d′|θ1, θ2) =

1+ Vn sgn ((c−d)(c′−d′)) sin(θ12)
2π

, (45)

where we introduced Vn that we call is the visibility and is a function of n. Concerning O events i.e.:
(0, 0, r, s), (0, 0, s, r), (k, l, 0, 0) and (l, k, 0, 0), the joint probability is flat and reads PABn (c, d, c

′, d′|θ1, θ2) =
1
4 −

1
2π and results directly from the normalisation condition of local probabilities.

• Trivial submodels Mn∈N/O that reproduce probabilities N/O. They predict fixed outcomes for
Alice and Bob, PAn (k, l) = P

B
n (r, s) = 1, which lead to P

AB
n (k, l, r, s) = 1.

The overall model is a convex combination of submodels Mn∈Ñ∪O and Mn∈Ñ/O. Each submodel
enters the combination with the probability P (Mn), that can be obtained from the comparison of
PABn (c, d, c

′, d′|θ1, θ2) with the corresponding quantum probabilities p(n|θ12). These values sum up to
one
∑∞
n=0 P (Mn) = 1, which imposes a certain range of the applicability of the model with respect to the

amplitude of local oscillators α. Our model is valid for α2 ¬
√
2− 1 that is the full range of α for which

TWC reported the violation of local realism. Thus. despite claims TWC experiment is not a proper test

of Bell inequalities.

7.4 Witnessing entanglement of single photon with TWC experiment

In his famous 1964 paper “On the Einstein, Podolski, Rosen Paradox” Bell says that “if [a hidden variable

theory] is local it will not agree with quantum mechanics and if it agrees with quantum mechanics it will

not be local.” Thus, if Bell inequality is violated, the statistics of local measurements of a given quantum
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state cannot be reproduced by a local hidden variable model. The considered quantum state in the TWC

interferometric configuration may not reveal Bell nonclassicality, but still the TWC setup might reveal

entanglement of the two optical modes exiting the initial beamsplitter.

This is so. Below we shall show that the CHSH-like inequality of TWC indeed can be used as an

efficient entanglement witness, and it detects the entanglement induced by the single photon state in

the TWC configuration. To this end we have to check the relation of the additional ”no enhancement”

condition with quantum optical separable states. The additional assumption that results from CHSH-like

inequalities of TWC and [Ref28] implies simply that ntotj (λ) = ncj (θj , λ) + ndj (θj , λ), where nxj (θj , λ)

is the number of detector clicks predicted by an LHV theory in presence of θj and λ. This holds for

probabilistic combinations of quantum product states i.e. separable states (7), while separable states

give per se a possible local hidden variable model. Also, formula (43) could be thought as describing

the factorisation of probabilities for a separable state of the field given by (7). This state is a convex

combination of factorisable states indexed by λ.

In TWC scenario the local probability of registering nxi photons for setting θi for the local state (the

subsystem of the separable state (7)) indexed by λ is

Pr(nx1 |θ1)λ = ⟨δ(nx1 ,n̂x1 (θ1))⟩λ,

where δ(n,k) is the Kroenecker’s delta function. The joint probability goes as follows

Pr(nx1 , nx2 |θ1, θ2)sep

= Tr
[
δ(nx1 ,n̂x1 (θ1))δ(nx2 ,n̂x2 (θ2))ρ

1,2
sep

]
=
∫
dλρλPr(nx1 |θ1)λPr(n2|θ2)λ, (46)

where ρ1,2sep is given by the formula (7).

Now it is enough to notice that the no-enhancement assumption of CHSH-like inequality can be put

as:

⟨n̂toti⟩(λ) = ⟨n̂ci(θi)⟩(λ) + ⟨n̂di(θi)⟩(λ)

that holds for any θi and leads to an operator identity

n̂toti = n̂ci(θi) + n̂di(θi),

that is not in contradiction with the structure of separable states. Thus, TWC inequality holds for all

separable states.

〈
2n̂tot1 n̂tot2 − [δn̂1(θ1)δn̂2(θ2) + δn̂1(θ1)δn̂2(θ′2)

+δn̂1(θ′1)δn̂2(θ2)− δn̂1(θ′1)δn̂2(θ′2)]
〉
sep

­ 0, (47)

where δn̂i(θi) = n̂ci(θi)− n̂di(θi).
Thus, CHSH-like inequality of TWC can be used as an entanglement indicator, although it is not

24



optimal. A tighter separability condition can be proposed. We find it with the help of the general mapping

from [PhD1]. The idea is as follows. We map condition (38) to qubits, improve it and remap again to

the condition for optical fields. Then, let us start with the qubit case. We will use the intuition that an

efficient entanglement witness can be constructed from Bell inequality for qubits when the settings are

fully complementary. We reduce Bloch sphere to a circle and introduce pairs of vectors that represent

complementary settings of Alice {a⃗, a⃗′} and Bob {⃗b, b⃗′}. With these settings the separability condition
reads

⟨
√
2σ01 ⊗ σ02 − [⃗a · σ⃗1 ⊗ (⃗b+ b⃗′) · σ⃗2

+a⃗′ · σ⃗1 ⊗ (⃗b− b⃗′) · σ⃗2]⟩sep ­ 0. (48)

Now we use the mapping and assign σ̂(0)j = Îj , σ̂xj = δn̂j(θj) and σ̂
y
j = δn̂j(θj + π2 ) for j = 1, 2

observers. The separability condition goes as follows

〈√
2n̂tot1 n̂tot2 − [δn̂1(θ1)δn̂2(θ2) + δn̂1(θ1)δn̂2(θ2 + π2 )

+δn̂1(θ1 + π2 )δn̂2(θ2)− δn̂1(θ1 +
π
2 )δn̂2(θ2 +

π
2 )]
〉
sep

­ 0. (49)

For rates we get

〈√
2Π̂1Π̂2 − [δR̂1(θ1)δR̂2(θ2) + δR̂1(θ1 + π2 )δR̂2(θ2)

+δR̂1(θ1)δR̂2(θ2 + π2 )− δR̂1(θ1 +
π
2 )δR̂2(θ2 +

π
2 )]
〉
sep

­ 0, (50)

where δR̂j(θj) = R̂cj (θj)− R̂dj (θj).
We compared (49) and (50) in function of local oscillators amplitude α. Condition (50) for rates detects

entanglement for larger range of α than (49) for intensities.

7.5 Optimal setting for TWC scheme to test Bell nonclassicality

A local hidden variable model exists for the TWC experiment when balanced beamsplitters and weak

local oscillators of fixed amplitudes are used constantly during the whole experiment. This demonstrates

that local realism cannot be violated in such a setup. Contrarily, the reasoning of Hardy remains correct,

so we have an example of all-optical setup demonstrating nonclassicality of single photon. A key difference

between TWC and Hardy’s experiment is that in Hardy’s scheme the strength of the local oscillators vary

and the initial state is a superposition of a single photon and vacuum i.e. c |0⟩ +
√
1− |c|2 |1⟩ for c ̸= 0,

see Fig. 2. Thus, the analyses of TWC and Hardy arise the following questions:

1. What is the role of vacuum component in the superposition of single photon and vacuum that Hardy

uses?

2. What can be modified in TWC scheme so it can reveal nonclassicality of a single photon?
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The use of a signal state being the superposition of a single photon and vacuum is an important

aspect of the original Hardy’s setup because if c → 0 the nonclassicality of the single photon within
Hardy’s scheme cannot be observed. The CH inequality related with Hardy’s paradox is effectively not

violated for c < 0.2.

Our approach to test nonclassicality of single photon was then the following. We decided to combine

TWC and Hardy’s schemes, vary all tunable parameters (transmitivities of beamsplitters, local amplitudes

and phases) and use only a single photon as a signal state. The tunable beamsplitter’s transmitivity

(reduction of intensity upon transmission) will be denoted by χj for observers j = 1, 2.

Yet, even by varying these settings CHSH rate-based inequality is not violated. Thus, perhaps it is

worth to consider CH inequality instead. However, CH and CHSH inequalities remain equivalent for qubits

but they are not equivalent anymore when we use rates. Despite the fact that rates and probabilities share

similar important properties, there is a significant difference. The probabilities sum up to 1 while rates

sum up either to 1 or 0, because of the probability for a vacuum event the rate is set to 0. That is why

CHSH and CH are no longer equivalent for rates.

For the consistency we denote local tunable settings by v⃗j and v⃗′j for j = 1, 2. where v⃗j = (χj , αj , θj)

stands for on setting with beamsplitters tuned to transmitivity χj and the local oscillator’s amplitude is

αj . The primed settings correspond to off situation i.e. local oscillators are turned off and beamsplitters

are removed i.e. v⃗′j = (1, 0, 0).

In the local realistic scenario CH inequality constructed with rates reads:

− 1 ¬
〈
Rd1(v⃗1)Rd2(v⃗2) +Rd1(v⃗1)R

′
d2(v⃗

′
2) +R

′
d1(v⃗

′
1)Rd2(v⃗2)

−R′d1(v⃗
′
1)R

′
d2(v⃗

′
2)−Rd1(v⃗1)−Rd2(v⃗2)

〉
LHV
¬ 0.

(51)

The violation of inequality (51) obtained in [PhD3] reveals true nonclassicality of single photon.

The optical settings correspond to local beamsplitters with transmitivity χ1 = χ2 = 0.79 and the

local oscillator coherent states have mean photon number equal to 1/2. Moreover, with these settings, the

non-classical correlations are detected also in the case of the initial state being one single photon, and not

a superposition of it with vacuum i.e. c = 0. Thus, the presence of the vacuum component is not necessary

to reveal nonclassicality of single photon using inequality (51). Interestingly, for the case of c = 0, and

nearby, the CH inequality is violated on its left-hand-side, while for Hardy’s range of parameters CH is

violated on the right hand side.

It is worth noting that the scenario described above has a unique characteristic. The correlation

functions and local averages rely on the values of the parameters of the overall initial quantum state

(of all four modes involved in the experiment, including the local oscillator ones), denoted as |Ψ(α)⟩ in
equation (35). Now coherent states’ amplitude α vary depending on the setting. This “dependency on the

state” can be eliminated by the description of the measurement in terms of POVMs acting on the single

photon input state |ψ⟩ given in equation (34). For the construction of POVMs see Appendix in [PhD3].
Another method proposed in [PhD4] to test the non-classical behavior of a single photon is to construct

a CH inequality tailored for specific events (specific photon counts). We denote the events as follows A and

A′ for the first observer and B and B′ for the second observer. By primed event A′ we denote a single pho-

ton detected in mode d1 and no-photon in mode c1 when local oscillator is turned on (on setting). By A

we denote also a single photon count at d1 and no count in c1, however with the local beamsplitter removed
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and local oscillator switched off (i.e off setting). Events B and B′ play the same role for Bob. E.g. the

joint probability P (A′, B′) i.e. for both local settings “on” is given by:

P (A′, B′) = |c1,d1,c2,d2 ⟨0, 1, 0, 1|Ψ⟩ |2,

where |Ψ⟩ is given by (35). In such a case CH inequality reads

− 1 ¬ P (A,B) + P (A,B′) + P (A′, B)

− P (A′, B′)− P (A)− P (B) ¬ 0.
(52)

Inequality (52) is violated by quantum prediction. The maximal violation of (52) is obtained for the

following parameters |α|2 = 0.2 and beamsplitters’ transmitivity χ ≈ 0.8 (the values are the same for both
observers). Note that |α|2 + χ ≈ 1. This relation is most probably a general rule for optimal detection of
violation of realism in such tests with on/off settings and for the specific detection events, see a discussion

in [Ref67]. Therein, the authors show that this rule survives even imperfect detection. When working on

[PhD4] we thought that this interesting relation is accidental. What is the physical meaning of this rule

for optimal entanglement detection test is an open question.

The violation of CH only using on/off settings can be considered from more fundamental perspective

i.e. as the demonstration of the wave-particle complementarity of a quantum state using complementary

detection techniques. These techniques consist of a homodyne type (local oscillators on) and a direct

photon number measurement (local oscillators off ). That aspect of nonclassicality of single photon can be

associated with Dirac’s phase vs photon-number uncertainty for quantum optics [Ref68] and points out

that violation of Bell inequalities have fundamental role in understanding of quantum physics.

To conclude our analysis, we have also examined the original Hardy paradox using intensity rate-based

approach. We found that the original Hardy’s setup does not lead to the violation of CH inequality for

rates. This remark of course does not make Hardy’s reasoning invalid, rather shows the different nature

of two approaches.

8 Projects in progress

New technologies allow the experimental realization of the concepts given in [PhD1, PhD2, PhD3, PhD4].

The physical realization of theoretical ideas seems very tempting to me. Such experiments apart from

enabling testing fundamental questions have also a very practical meaning. They can be developed in

context of possible applications in quantum information theory. Results described in this thesis can lead

to the design of secure quantum communication and quantum cryptography.

Still, entanglement conditions based on the mapping from qubits to Stokes operators from [PhD1]

can be modyfied. It is well known that adding a non-linear component might improve given entanglement

witness. One of the ways on doing so is e.g. to introduce the variance of the Stokes vector for the composed

system, see [Other2]. Such a criteria have a straightforward physical interpretation. Specifically, if the range

of data points around the average value of a quantum state is less than the minimum range expected for

separable states, then that quantum state is entangled. Covariances can be also used to construct Bell

inequalities e.g. [Ref69].
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Apart from that, in [Other2] we consider bright squeezed vacuum with introduced non-Gaussianity

that exhibit strong quantum correlations. Using such states allows testing non classical aspects of optical

fields in ”event-ready” experiments and finds potential applications in secure communication and other

quantum technologies. Also, exploring physics of non-gaussian entanglement in quantum protocols is a

problem of growing interest.

Another project in progress related to the mapping from [PhD1] and observables from [PhD2] is about

steering in quantum optics. Steering is an interesting phenomena that lies“between” entanglement and

Bell nonclassicality. According to my knowledge this problem was studied only for states of defined

numbers of particles.
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We show that any multiqudit entanglement witness leads to a nonseparability indicator for quantum optical
fields, which involves intensity correlations. We get, e.g., necessary and sufficient conditions for intensity
or intensity-rate correlations to reveal polarization entanglement. We also derive separability conditions for
experiments involving multiport interferometers, now feasible with integrated optics. We show advantages of
using intensity rates rather than intensities, e.g., a mapping of the Bell inequalities to ones for optical fields. The
results have implication for studies of nonclassicality of “macroscopic” systems of undefined or uncontrollable
number of “particles.”

DOI: 10.1103/PhysRevResearch.1.032041

Nonclassicality due to entanglement initially was studied
using quantum optical multiphoton interferometry, see, e.g.,
Ref. [1]. The experiments were constrained to defined photon
number states, e.g., the two-photon polarization singlet [2].
This includes Greenberger-Horne-Zeilinger (GHZ) [3] in-
spired multiphoton interference, with an interpretation that
each detection event signals one photon. Spurious events of
higher photon number counts contributed to a lower interfer-
ometric contrast. Still, states of undefined photon numbers,
e.g., the squeezed vacuum, can be entangled [4–6].

This form of entanglement of quantum optical fields
served, e.g., to show that a strongly pumped two-mode
(bright) squeezed state allows one to directly refute the ideas
of EPR [7], as it approximates their state, and a form of Bell’s
theorem can be shown for it [4]. The trick was to use displaced
parity observables. Recently, it has been shown that this is also
possible for four-mode bright squeezed vacuum [8], which
can be produced via type II parametric down-conversion,
see, e.g., Refs, [5,6]. In this case, the state approximates a
tensor product of two EPR states, and interestingly can also
be thought of as a polarization “supersinglet” of undefined
photon numbers [9]. The approach of Ref. [8] used (effec-
tively) intensity observables, which are less experimentally
cumbersome.

With the birth of quantum information science and technol-
ogy, entanglement became a resource. We have an extended
literature on detection of entanglement for systems of finite
dimensions, essentially “particles”, see e.g., Ref. [10]. It is

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

well known that not all entangled states violate Bell inequal-
ities. Still there is theory of entanglement indicators, called
usually witnesses, which allow to detect entanglement, even
if a given state for finite-dimensional systems (essentially,
qudits) does not violate any known Bell inequalities. The case
of two-mode entanglement for optical fields was studied in
trailblazing papers [11,12], which discussed “two-party con-
tinuous variable systems,” and with a direct quantum optical
formalism in Ref. [13]. The entanglement conditions reached
in the papers did not involve intensity correlations.

An entanglement condition for four-mode fields, which
was borrowing ideas from two spin-1/2 (two-qubit) corre-
lations, involved correlations Stokes operators and was first
discussed in Ref. [5]. The resulting indicator was used to mea-
sure efficiency of an “entanglement laser.” The output of the
“laser” was bright four-mode vacuum. We shall present here
the most extensive generalization of such an approach, i.e.,
entanglement indicators for optical fields which are deriva-
tives of multiqudit entanglement witnesses involving intensity
correlations. In Ref. [14], we give examples of entanglement
conditions based on such an approach. Some of them are
more tight versions of the entanglement conditions mentioned
above.

As a growing part of the experimental effort is now directed
at nonclassical features of bright (intensive “macroscopic”)
beams of light, e.g., Refs. [15–21] so the time is ripe for a
comprehensive study of such entanglement conditions. All
that may lead to some new schemes in quantum communi-
cation and quantum cryptography, perhaps on the lines of
Ref. [9]. The emergence of integrated optics allows now to
construct stable multiport interferometers [22–29], and is our
motivation of going beyond two times mode case.

We present a theory of mapping multiqudit entanglement
witnesses [10] into entanglement indicators for quantum opti-
cal fields, which employ intensity correlations or correlations
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FIG. 1. The experiments (two parties). Two multimode beams
propagate to two spatially separated measurement stations. Each
station consists of a d input d output tunable multiport beamsplitter-
interferometer (MPBS) and detectors at its outputs. For polarization
measurements put dA = dB = 2, and treat the paths as polarization
modes.

of intensity rates. By intensity rates we mean the ratio of
intensity at a given local detector and the sum of intensities
at all local detectors (in some case the second approach
leads to better entanglement detection). The method may find
applications also in studies of nonclassicality of correlations
in “macroscopic” many-body quantum systems of undefined
or uncontrollable number of constituents, e.g., Bose-Einstein
condensates [30], other specific states of cold atoms [31,32].

The essential ideas are presented for polarization mea-
surements by two observers and the most simple model of
intensity observable: photon number in the observed mode.
Next, we present further generalization of our approach, and
examples employing specific indicators involving intensity
correlations for unbiased multiport interferometers. We dis-
cuss generalizations to multiparty entanglement indicators.
We show that the use of rates leads to a modification of
quantum optical Glauber correlation functions, which gives
a new tool for studying nonclassicality, and that it also gives
a general method of mapping standard Bell inequalities into
ones for optical fields.

We discuss spatially separated stations, X = A, B, . . . with
(passive) interferometers of dX input and output ports, Fig. 1.
In each output, there is a detector which measures inten-
sity. One can assume either a pulsed source, sources acting
synchronously [33,34] or that the measurement is performed
within a short time gate. Each time gate, or pulsed emission, is
treated as a repetition of the experiment building up averages
of observables.

Stokes parameters. For the description of polarization of
light, the standard approach uses Stokes parameters. Using
the photon numbers they read 〈�̂ j〉 = 〈â†

j â j − â†
j⊥ â j⊥〉, where

j, j⊥ denote a pair of orthogonal polarizations of one of
three mutually unbiased polarization bases j = 1, 2, 3, e.g.,
{H,V }, {45◦,−45◦}, {R, L}. The zeroth parameter 〈�̂0〉 is the
total intensity: 〈N̂〉 = 〈â†

j â j + â†
j⊥ â j⊥〉. Alternative normal-

ized Stokes observables were studied by some of us [35–37].
They were first introduced in Ref. [38], however a different
technical approach was used. Following Ref. [35], one can

put 〈Ŝ j〉 = 〈�̂ (â†
j â j−â†

j⊥ â j⊥ )

N̂
�̂〉, and 〈Ŝ0〉 = 〈�̂〉, where �̂ =

1 − |�〉〈�| and |�〉 is the vacuum state for the considered
modes, â j |�〉 = â j⊥|�〉 = 0. Operationally, in the rth run of
an experiment, we register photon numbers in the two exits of
a polarization analyzer, nr

j and nr
j⊥ , and divide their difference

by their sum. If nr
j + nr

j⊥ = 0, the value is put as zero. This
does not require any additional measurements, only the data
are differently processed than in the standard approach. In
Refs. [35–37], examples of the two-party entanglement condi-
tions and Bell inequalities using normalized Stokes operators
were given. Here we present a general approach.

Map from two-qubit entanglement witnesses to entan-
glement indicators for fields involving Stokes parameters.
Pauli operators �σ = (σ̂1, σ̂2, σ̂3) and σ̂0 = 1 form a basis in
the real space of one-qubit observables. Thus any two-qubit
entanglement witness Ŵ has the following expansion: Ŵ =∑

μ,ν wμνσ̂
A
μ ⊗ σ̂ B

ν , where μ, ν = 0, 1, 2, 3 and wμν are real
coefficients. We have 〈Ŵ 〉sep � 0, where 〈·〉sep denotes an
average for a separable state. We will show that with each
witness Ŵ one can associate entanglement indicators for
polarization measurements involving correlations of Stokes
observables for quantum optical fields. The maps are σ̂ A

μ ⊗
σ̂ B

ν → ŜA
μŜB

ν and σ̂ A
μ ⊗ σ̂ B

ν → �̂A
μ�̂B

ν , and they link Ŵ with its

quantum optical analogues ŴS = ∑
μ,ν wμν ŜA

μŜB
ν , and Ŵ� =∑

μ,ν wμν�̂
A
μ�̂B

ν , which fulfill 〈ŴS〉sep � 0 and 〈Ŵ�〉sep � 0.
The proof goes as follows.

Normalized Stokes operators case. It is enough to prove
that for any mixed state � one can find a 4 × 4 density matrix

R̂
AB
� for a pair of qubits, such that

〈ŴS〉�
〈�̂A�̂B〉�

= TrŴ R̂
AB
� . (1)

First, we show that (1) holds for any pure state |ψAB〉.
Let us denote the polarization basis H and V as x̂H =

x̂1 and x̂V = x̂2. Normalized Stokes operators in arbitrary
direction can be put as �m · �SX , where �m is an arbitrary unit

real vector, or in the matrix form
∑

kl �̂X x̂†
k ( �m·�σ )kl x̂l

N̂X �̂X , with

x̂ = â or b̂ depending on the beam X , whereas ŜX
0 reads∑

kl �̂X x̂†
k δkl x̂l

N̂X �̂X . We introduce a set of states

∣∣�AB
km

〉 = âk b̂m
1√

N̂AN̂B
�̂A�̂B|ψAB〉, (2)

where k, m ∈ {1, 2}. This allows us to put

〈ψAB|ŜA
μŜB

ν |ψAB〉 =
2∑

k,l=1

2∑
m,n=1

σ kl
μ σ mn

ν

〈
�AB

km

∣∣�AB
ln

〉
= Trσ̂ A

μ ⊗ σ̂ B
ν R̂AB

ψ , (3)

where the matrix elements of R̂AB
ψ are 〈�AB

km|�AB
ln 〉. As a

Gramian matrix, R̂AB
ψ is positive. Except for |ψAB〉 describ-

ing vacuum at one or both sides, we have 0 < TrR̂AB
ψ =

〈�A�̂B〉 � 1. Thus, R̂
AB
ψ = R̂AB

ψ /〈�̂A�̂B〉 is an admissible
density matrix of two qubits.

For mixed states �, i.e., convex combinations of |ψAB
λ 〉’s

with weights pλ, one gets R̂AB
� = ∑

λ pλR̂AB
λ which is
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positive definite, and its trace is
∑

λ pλTrR̂AB
λ � 1. Thus af-

ter the re-normalization one gets a proper two-qubit density

matrix R̂
AB
� . As purity of a field state |ψAB

λ 〉 does not warrant

that the corresponding R̂AB
λ is a projector, R̂

AB
� does not have to

have the same convex expansion coefficients in terms of pure
two-qubit states, as � in terms of |ψAB

λ 〉’s.
For any separable pure state of two optical beams

|ψAB〉prod, defined as F †
A F †

B |�〉, where F †
X is a polynomial

function of creation operators for beam (modes) X , and |�〉
is the vacuum state of both beams, the matrix R̂AB factor-
izes: R̂AB = R̂AR̂B. Simply, prod〈�AB

km|�AB
ln 〉prod factorizes to

〈�A
k |�A

l 〉〈�B
m|�B

n 〉, where 〈�X
k |�X

l 〉 are elements of matrix R̂X

and |�X
l 〉 = x̂l

1√
N̂X

�̂X F †
X |�〉. As 〈�|FX �̂X F †

X |�〉−1R̂X can be

shown to be a qubit density matrix and 〈Ŵ 〉sep � 0, therefore
for pure separable states of the optical beams 〈ŴS〉prod � 0.
Obviously, 〈ŴS〉sep � 0 also for all mixed separable states.

Standard Stokes operators case. Any standard Stokes oper-
ator can be put as �m · ��X = ∑

kl x̂†
k ( �m · �σ )kl x̂l . We introduce

state vectors |�AB
jk 〉 = â j b̂k|ψAB〉. One has

〈ψAB|�̂A
μ�̂B

ν |ψAB〉 = Trσ̂ A
μ σ̂ B

ν P̂AB, (4)

where the matrix P̂AB has entries 〈�AB
km|�AB

ln 〉, it is positive

definite, and its trace is 〈N̂AN̂B〉. Thus P̂
AB = P̂AB/〈N̂AN̂B〉

is an admissible two-qubit density matrix, and one has

〈Ŵ�〉�/〈N̂AN̂B〉� = TrŴ P̂
AB
� . All that leads to 〈Ŵ�〉sep � 0.

Note that, for a general state R̂
AB
� does not have to be equal to

P̂
AB
� . Still R̂

AB = P̂
AB

for states of defined photon numbers in
both beams.

Reverse map. Any linear separability condition expressible
in terms of correlation functions of normalized Stokes pa-
rameters reads

∑
μν ωμν〈ŜA

μŜB
ν 〉sep � 0. As two-photon states,

with one at A and the other at B, are possible field
states, thus for any separable such state we must have∑

μν ωμν〈ŜA
μŜB

ν 〉sep−2−ph � 0. This is algebraically equivalent
to

∑
μν ωμν〈σ̂μ ⊗ σ̂ν〉sep � 0, for any two-qubit state. We get

an entanglement witness. Therefore, we have an isomorphism.
Similar proof applies to standard Stokes observables.

Examples. In Ref. [14], we show some examples of en-
tanglement indicators which can be derived with the above
method. This includes a necessary and sufficient conditions
for detection of entanglement of two optical beams with
correlations of Stokes parameters of the two considered kinds.

Detection losses. Consider the usual model of losses: a per-
fect detector in front of which is a beamsplitter of transmission
amplitude η, with the reflection channel describing the losses.
Then, 〈�̂A

μ�̂B
ν 〉 scales down as ηAηB (see Sec. II in Ref. [14]),

where ηX for X = A, B is the local detection efficiency. We
have a full resistance of entanglement detection, using any
Ŵ�, with respect to such losses. A different character of
losses may lead to threshold efficiencies.

For the normalized Stokes parameters, it is enough to
consider only pure states, because mixed ones, as convex
combinations of such, cannot introduce anything new in
entanglement conditions linear with respect to the density
matrix. Any pure state is a superposition of Fock states |F 〉 =
|nA

i , nA
i⊥ , nB

j , nB
j⊥〉, where nX

i denotes the number of i polarized

photons in beam X , and ŜA
μŜB

ν are diagonal with respect to
the Fock basis related with them. Thus, the dependence on
efficiencies of the value of an entanglement indicator, in the
case of a pure state, depends on the behavior of its Fock
components. One can show, see Sec. II in Ref. [14], that
〈Fη|ŜA

μŜB
ν |Fη〉 = HF 〈F |ŜA

μŜB
ν |F 〉, where |Fη〉 is the state |F 〉

after the above described losses in both channels, and HF =
〈Fη|ŜA

0 ŜB
0 |Fη〉, which reads

∏
X=A,B[1 − (1 − ηX )mX

], where
mX is the total number of photons in channel X , before the
losses. Expanding |F 〉 in terms of Fock states with respect to
different polarizations than i, i⊥ and j, j⊥, does not change
the values of mX , and thus the formula stays put for any
indices. Again we have a strong resistance of the entangle-
ment indicators with respect to losses. Especially for states
with high photon numbers, the entanglement conditions based
on normalized Stokes parameters, may be more resistant to
losses, because 0 < η < 1, one has η < 1 − (1 − η)n.

Multiparty case. Consider three parties, and the case of
indicators of genuine three-beam entanglement. Any genuine
three-qubit entanglement witness Ŵ (3) has the property that
it is positive for pure product three-qubit states |ξ 〉AB,C =
|ψ〉AB|φ〉C , for similar ones with qubits permuted, and for
all convex combinations of such states. With any pure partial
product state of the optical beams, e.g., |�〉AB,C = F †

ABF †
C |�〉,

where F †
AB is an operator built of creation operators for beams

A and B, etc., one can associate, in a similar way as above, a

partially factorizable three-qubit density matrix R̂
AB
ψ R̂

C
φ . Thus

the homomorphism works. Generalizations are obvious.
General theory. Consider a beam of dA quantum optical

modes propagating toward a measuring station A, and a beam
of dB modes toward station B. We associate with the situation
a dA × dB-dimensional Hilbert Space, CdA ⊗ CdB , which con-
tains pure states of a pair of qudits of dimensions dA and dB.
For X = A, B, let V̂ X

i , with i = 1, . . . , d2
X , be an orthonormal,

i.e., TrV̂ X
i V̂ X

j = δi j , Hermitian basis of the space of Hermitian
operators acting on CdX . Therefore products V̂ A

i ⊗ V̂ B
j form an

orthonormal basis of the space of Hermitian operators acting
on CdA ⊗ CdB . Thus any entanglement witness for the pair of
qudits, Ŵ , can be expanded into

Ŵ =
d2

A∑
j=1

d2
B∑

k=1

w jkV̂
A
j ⊗ V̂ B

k , (5)

with real w jk . The optimal expansion (with the minimal
number of terms) is to use a Schmidt basis for Ŵ .

Each V̂ X
j can be decomposed to a linear combination of

its spectral projections linked with their respective eigen-
bases, |x( j)

l 〉, where x = a or b consistently with X and l =
1, . . . , dX . If one fixes a certain pair of bases in CdA and
CdB as “computational ones,” i.e., starting ones, denoted as
|lx〉, one can always find local unitary matrices U X ( j) such
that U X ( j)|lx〉 = |x( j)

l 〉. The construction of Reck et al. [39]
fixes (phases in) a local multiport interferometer, which per-
forms such a transformation. We shall call such interfer-
ometers U X ( j) ones. In the case of field modes a passive
interferometer performs the following mode transformation:∑

k U X ( j)lk x̂†
k = x̂†

l ( j), where x̂†
l ( j) is the photon creation

operator in the lth exit mode of interferometer U X ( j).
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A two-party entanglement witness ŴR for optical fields,
which uses correlations of intensity rates behind pairs of
U X ( j) interferometers can be constructed as follows. For the
output lx of an interferometer, one defines rate observables
as r̂lx = �̂X n̂lx

N̂X �̂X , where N̂X = ∑dX
lx=1 n̂lx . The witness Ŵ

expanded in terms of the computational basis:

Ŵ =
dA∑

k,m

dB∑
l,n

wklmn|ka, lb〉〈ma, nb|, (6)

allows us to form an entanglement witness for fields:

ŴR =
∑
k,m

∑
l,n

wklmn�̂
A�̂B â†

k b̂†
l âmb̂n

N̂AN̂B
�̂A�̂B. (7)

For any pure state of the quantum beams |�〉

〈�|ŴR|�〉
〈�|�̂A�̂B|�〉 = TrŴ R̂, (8)

where the matrix R̂ has elements rklmn

rklmn = 1

〈�|�̂A�̂B|�〉 〈�|�̂A�̂B â†
k b̂†

l âmb̂n

N̂AN̂B
�̂A�̂B|�〉. (9)

Using a generalization of the earlier derivations, one can show
that R̂ is a two-qudit density matrix, and so on.

The actual measurements, to be correlations of local ones,
should be performed using the sequence of pairs of U X ( j)
interferometers, which enter the expansion of the two-qudit
entanglement witness (5). In the entanglement indicator the
rates at output xl ( j) of the given local interferometer U X ( j)
are multiplied by the respective eigenvalue of V̂ X

j related with

the eigenstate |x( j)
l 〉.

To get an entanglement witness for intensities ŴI we
take Ŵ and replace the computational basis kets and bras by
suitable creation and annihilation operators:

ŴI =
dA∑

k,m

dB∑
l,n

wklmnâ†
k b̂†

l âmb̂n. (10)

For any pure state of the quantum beams |�〉, one has
〈�|ŴI |�〉

〈�|N̂AN̂B|�〉 = TrŴ P̂, where the matrix P̂ has elements
1

〈�|N̂AN̂B|�〉 〈�|â†
k b̂†

l âmb̂n|�〉,and has all properties of a two-
qudit density matrix.

Example showing further extension to unitary operator
bases. Let d be a power of a prime number. Consider dA =
dB = d beams experiment (see Fig. 1), with families of U X (m)
interferometers which link the computational basis of a qudit
with an unbiased basis m, belonging to the full set of d + 1
mutually unbiased ones [40,41]. We introduce a set of unitary
observables for a qudit: q̂k (m) = ∑d

j=1 ω jk| j(m)〉〈 j(m)|,with
| j(m)〉 = U (m)| j〉 and it is the jth member of mth mutually
unbiased basis, and ω = exp(2π i/d ). Operators q̂k (m)/

√
d

with k = 1, . . . , d − 1 and m = 0, . . . , d and q̂0(0)/
√

d form
an orthonormal basis in the Hilbert-Schmidt space of all d × d
matrices (see Sec. III in Ref. [14]). Thus we can expand any

qudit density matrix as

� = 1√
d

[
c0,0q̂0(0) +

d∑
m=0

d−1∑
k=1

cm,kq̂k (m)

]
, (11)

where cm,k = Trq̂†
k (m)�/

√
d, and c0,0 = 1/

√
d . As the basis

observables are unitary the expansion coefficients of an en-
tanglement witness operator in terms of such tensor products
of such bases are in general complex. This is no problem for
theory, but renders useless a direct application in experiments,
as one cannot expect the experimental averages to be real, and
thus one has to introduce modifications. Below we present
one.

The condition Tr�2 � 1 can be put as

1

d
+ 1

d

d∑
m=0

d−1∑
k=1

|Tr�q̂k (m)|2 � 1. (12)

Thus, applying Cauchy-Schwartz estimate, we get immedi-
ately a separability condition for two qudits:

d∑
m=0

d−1∑
k=1

∣∣Tr�AB
sepq̂A

k (m)q̂B†
k (m)

∣∣ � (d − 1). (13)

Our general method defines a Cauchy-Schwartz-like separa-
bility condition homomorphic with (13) as

d∑
m=0

d−1∑
k=1

∣∣〈Q̂A
k (m)Q̂B†

k (m)
〉
sep

∣∣ � (d − 1)〈�̂A�̂B〉sep, (14)

where

Q̂X
k (m) =

d∑
j=1

�̂X
ω jk n̂X

j (m)

N̂X
�̂X . (15)

Here, n̂X
j (m) = x̂†

j (m)x̂ j (m) is a photon number operator for
output mode j of a multiport m, at station X . For generalized
observables based on intensity, one can introduce χ̂k (m) =∑d

j=1 ω jk n̂ j (m) to get the following separability condition:

d∑
m=0

d−1∑
k=1

∣∣〈χ̂A
k (m)χ̂B†

k (m)
〉
sep

∣∣ � (d − 1)〈N̂AN̂B〉sep. (16)

Reference [14] presents other examples.
Implications for optical coherence theory. The approach

can be generalized further. Let us take as an example
Glauber’s correlation functions for optical fields, say G(4) in
the form of 〈ÎA(�x, t )ÎB(�x′, t ′)〉, where the intensity operator
has the usual form of IX (�x, t ) = F̂ †

X (�x, t )F̂X (�x, t ), with normal
ordering requiring that operator F̂X (�x, t ) is built out of local
annihilation operators. The idea of normalized Stokes oper-
ators suggests the following alternative correlation function
�4(�x, t ; �x′, t ′) given by〈

�A�B ÎA(�x, t )ÎB(�x′, t ′)∫
a(A) dσ (�x)ÎA(�x, t )

∫
a(B) dσ (�x′)ÎB(�x′, t ′)

�A�B

〉
,

(17)
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where a(X ) denotes the overall aperture of the detectors in location X . Obviously one has
∫

a(A) dσ (�x)
∫

a(B) dσ (�x′)�4(�x, t ; �x′, t ′) =
〈�A�B〉, and for fixed t and t ′, one can define

�(�x, �y, �x′�y′)t,t ′ = 〈�A�B〉−1

〈
�A�B F̂ †

A (�y, t )F̂A(�x, t )F̂ †
B (�y′, t ′)F̂B(�x′, t ′)∫

a(A) dσ (�x)ÎA(�x, t )
∫

a(B) dσ (�x′)ÎB(�x′, t ′)
�A�B

〉
,

which behaves like a proper two-particle density matrix,
provided one constrains the range of �x, �y, �x′, �y′ to appropriate
sets of apertures. As our earlier considerations use simplified
forms of (17), it is evident that such correlation functions may
help us to unveil nonclassicality in situations in which the
standard ones fail, see, e.g., Ref. [8].

Bell inequalities. The above ideas allow one to introduce
a general mapping of qudit Bell inequalities to the ones for
optical fields. A two-qudit Bell inequality for a final number
of local measurement settings α and β has the following
form:

∑
αβ

dA∑
i=1

dB∑
j=1

Ki j
αβPi j (α, β )

+
dA∑

i=1

∑
α

Ni
αPi(α) +

dB∑
j=1

∑
β

M j
βPj (β ) � LR, (18)

where Pi j (α, β ) denotes the probability of the qudits ending
up respectively at detectors i and j, when the local set-
ting are as indicated, and

∑
j Pi j (α, β ) = Pi(α) and Pj (β ) =∑

i Pi j (α, β ). The coefficient matrices K, N, M are real, and
LR is the maximum value allowed by local realism. The bound
is calculated by putting Pi j (α, β ) = Di(α)D j (β ) and Pi(α) =
Di(α), Pj (β ) = D j (β ), with constraints 0 � Di(α/β ) � 1,

and
∑dA/B

i=1 Di(α/β ) = 1. As for a given run of a quantum
optical experiment local measured photon intensity rates
ri(α) and r j (β ) satisfy exactly the same constraints. We can

replace Pi j (α, β ) → 〈ri(α)r j (β )〉LR, and Pi(α) → 〈ri(α)〉LR,
etc., where 〈.〉LR is an average in the case of local realism. The
bound LR stays put. To get a Bell operator we further replace
the above by rate observables r̂i(α)r̂ j (β ), etc. Thus any (mul-
tiparty) Bell inequality, see, e.g., Ref. [42], can be useful in
quantum optical intensity (rates) correlation experiments. The
presented methods for entanglement indicators and the Bell
inequalities allow also to get steering inequalities for quantum
optics.

Conclusions. We present tools for a construction of entan-
glement indicators for optical fields, inspired by the vast lit-
erature [10] on entanglement witnesses for finite dimensional
quantum systems. The indicators would be handy for more
intense light beams in states of undefined photon numbers,
especially in the emerging field of integrated optics multi-
spatial mode interferometry (see Ref. [14] for examples). One
may expect applications in the case of many-body systems,
e.g., for an analysis of nonclassicality of correlations in Bose-
Einstein condensates, like in the ones reported in Ref. [43].
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Simplified quantum optical Stokes 
observables and Bell’s theorem
Konrad Schlichtholz*, Bianka Woloncewicz* & Marek Żukowski

We discuss a simplified form of Stokes operators for quantum optical fields that involve the known 
concept of binning. Behind polarization analyzer photon numbers (more generally intensities) are 
measured. We have two outputs, say, for horizontal and vertical polarization. If the value obtained 
in horizontal output is greater than in vertical one we put 1. Otherwise, we put − 1. For equal photon 
numbers, we put 0. Such observables do not have all properties of the Stokes operators, but can be 
employed in Bell type measurements, involving polarization analyzers. They are especially handy 
for states of undefined number of photons, e.g. squeezed vacuum and their realisation is intuitive. 
We show that our observables can lead to quite robust violations of associated Bell inequalities. 
We formulate a strongly supported numerically conjecture that one can observe with this approach 
violations of local realism for the four mode squeezed vacuum for all pumping powers (i.e. gain 
values).

The discussion about what is the essence of quantumness started with the first attempts of formulating quantum 
mechanics. With the emblematic paper of Einstein et al.1 the problem of completeness of quantum mechanics 
became a point of discussion among the scientific community. This started with the response by  Bohr2. Many 
years later, after the paper of  Bell3 the challenge of revealing non-classicality, in terms of violation of local real-
ism, has entered the core of contemporary research. All that in the meantime gained in importance with the 
emergence of quantum information and communication.

The ultimate test of non-classicality is the violation of Bell inequalities. This is now also the essence of testing 
of device-independent quantum communication protocols. Formulations of Bell’s theorem for situations of fixed 
numbers of particles have already a vast literature, and well established methods, see e.g.  reviews4–7. However, 
if one moves to situations with undefined numbers of particles, still the situation is quite open. This is of course 
e.g. the case of general quantum optical fields. A lot of approaches are tested.

Polarization entanglement experiments are classic examples of experimental tests of Bell’s inequalities. The 
two photon experiments are a realization of two qubit-entanglement8,9. A deceptively obvious step in the direction 
towards optical fields of undefined photon numbers is to use quantum Stokes observables. The usual definition 
of these runs as follows. If one assumes that the intensity of light is proportional to the photon number, then 
(standard) quantum Stokes observables are given by �̂i = â†i âi − â†i⊥âi⊥ , where â is an annihilation operator. 
Indices i = 1, 2, 3 mark three mutually unbiased (fully complementary) polarization analyzers settings. The 
indexes, i and i⊥ stand for two orthogonal polarizations. E.g., one might choose the i’s to represent horizontal-
vertical, {H ,V} , diagonal-antidiagonal, {45◦,−45◦} , or right-left handed circular, {R, L} , polarization analyzer 
settings. The zeroth Stokes operator is given by the total photon number operator �̂0 = N̂ = â†i âi + â†i⊥âi⊥

10.
If we are interested in the degree of polarisation of light we use 

(

∑

i〈�i〉2
〈�0〉2

)1/2 . Obviously, this parameter is not 
a formal quantum observable (a self-adjoint linear operator). Neither is 〈�i〉

〈�0〉 . This is one of the reasons why 
attempts to build Bell inequalities using such parameters and their correlators for observation stations A and B 
in the form of 

〈�A
i �

B
j 〉

〈�A
0�

B
0 〉

 fail and lead to misleading  conclusions11. This is because such attempts involve additional 
assumptions, beyond the usual ones for Bell inequalities, which limit the range of local hidden variable theories 
for with such Bell inequalities must hold.

Bell inequalities for Stokes parameters can be formulated if one introduces normalized Stokes  observables12–14:

where �̂ = I− |����| , and |�� is the vacuum state (of the optical beam in question).

(1)Ŝj = �̂
n̂j − n̂j⊥
n̂j + n̂j⊥

�̂,
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It has been shown that such operators allow for the construction of stronger entanglement criteria, and they 
are a handy tool for formulation of Bell inequalities. One of their properties, crucial in this case, is the fact that 
these operators have a spectrum bounded by −1 and 1. That is, they have the basic property of observables which 
allows one to derive the CHSH-Bell inequalities. Thus, a derivation of a version of CHSH inequality applicable 
for such Stokes operators is essentially a replacement procedure. With the recent development of measurement 
techniques allowing photon number resolving  detection15,16 the discussion about normalized Stokes parameters 
stops to be only theoretical and its use in experiments is becoming feasible.

Note that what makes Pauli operators so straightforwardly applicable to Bell inequalities is their dichotomic 
nature. One of the attempts to construct field operators of a similar property was the formulation of pseudo-spin 
operators. For example, the z component of pseudo-spin is (−1)n̂ , where n̂ is the total photon number operator in 
the given optical  mode17,18. The spectrum of pseudo-spin operators is the same as the spectrum of Pauli matrices, 
but their use introduces great difficulties from the experimental point of view. Even a loss of one photon (due to 
e.g. detector inefficiency) or a single dark count reverses the result of a measurement.

Here we analyze a simpler approach, which leads to proper Bell inequalities for polarization measurements 
of quantum optical fields. Our aim is to construct a family of operators that would have the usual spectrum for 
Bell experiments and would be robust with respect to experimental noise. We present polarization quantum 
field observables that have spectrum limited to ±1 and 0. Our initial ideas on such binning can be found  in19. 
The approach to binning presented here is concurrent with the method used  in20 in the context of correlation in 
Bose-Einstein condensates. With the observables, we construct Bell inequalities. We test their resilience under 
losses and noise for 2× 2 mode bright squeezed vacuum and bright GHZ radiation. The observables are realiz-
able in the laboratory with standard measurement devices. They are described in the next section.

New operators: sign Stokes operators
It was shown that Bell inequalities constructed with normalized Stokes operators can be violated by macroscopic 
states of light such as 2× 2 (bright) squeezed vacuum (BSV)14 and its GHZ-like generalization (BGHZ)21. How-
ever, for a higher mean number of photons, the violation of Bell inequalities by these states is quickly damped. 
This results in lowering of the threshold values for pumping strength after which violation cannot be observed.

We address those problems by another normalization scheme, based on the so-called binning, which we call 
Sign approach normalization. To obtain new operators, we use the sign function and apply it to Stokes operators:

where s denotes the chosen setting related with the corresponding polarization basis with the eingenstates given 
by s and s⊥ . Subscripts H and V refer to horizontal and vertical polarizations, and the operator Ûs is a unitary 
transformation that transforms the polarization modes H, V into another orthogonal pair of, in general, elliptic 
polarization modes {s, s⊥} . From (2) we see that the eigenstates of G(s) are |jsks⊥� = 1√

j!k!
â
†j
s â

†k
s⊥|��, where â†s  

and â†s⊥ are creation operators related to the respective polarization modes of the given beam. The spectral form 
of (2) is given by:

Formula (3) clearly shows that the new operators are well-defined Hermitian operators and that each Ĝ(i) has 
three eigenvalues ±1 and 0. Although formula (2) implies photon number operators, the basic idea of sign as 
well as standard and normalized Stokes operators is based on differences and sums of intensities. These in turn 
do not need to be modeled with photon counts. Note that formula (3) does not imply any particular model of 
intensity as long as the intensity increases with number of counts (even nonlinearly).

The action of the sign function on Stokes operators can be regarded as some form of the binning strategy 
used in the context of polarization measurements. Binning strategies are e.g. used in homodyne schemes for 
observing non-classicality22–25.

We shall call the new operators sign Stokes operators. Following the usual approach, we shall define a triad of 
sign Stokes operators, related to the three maximally complementary settings of a polarization analyzer. For the 
usual triad of such settings, we denote by Ĝ1 the sign operator the eigenstates of which refer to {s = D, s⊥ = A} 
polarization basis, and by Ĝ2 and Ĝ3 for respectively {R, L} and {H ,V} bases. However, this notation is also 
extended to other triads of maximally complementary settings.

The sign operators share some properties of Stokes and normalized Stokes operators. Importantly, once 
one has a photon-number-resolving detection setup, the data collected in each run allows one to compute the 
obtained values of each of Stokes operators for the given basis i: standard, normalized, and sign ones, as they 
depend solely on the measured photon numbers ni and ni⊥ . As we see, the new approach is in fact just a new form 
of data analysis that turns out to be simple and efficient. Further, in order to measure different sign operators Ĝs′ , 
that is, to move from s to s′ , it is enough to change the polarization analysis basis. Being useful from experimental 
point of view, unfortunately sign Stokes operators do not share all properties of quantum Stokes operators, what 
puts some limitations on their use in entanglement detection.

Stokes‑like vector cannot be formed out of sign Stokes operators. Standard Stokes operators 
form a Stokes vector. We will discuss this property for pure states. However, it works also for mixed ones. We 
have �−̂→� �ψ = (��̂1�ψ , ��̂2�ψ , ��̂3�ψ) where |ψ� is an arbitrary state of the optical field. The Euclidean norm 
of this vector fulfills : ||�−→� �ψ || ≤ ��̂0�ψ . We can construct an analogue vector for normalized Stokes opera-

(2)Ĝ(s) = sign(n̂s − n̂s⊥) = sign(�̂s) = sign(Ûs(n̂H − n̂V )U
†
s ),

(3)Ĝ(s) =
∑

k>j

(

|ks , js⊥��ks , js⊥| − |js, ks⊥��js , ks⊥|
)

.
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tors and ||�Ŝ�ψ || ≤ �Ŝ0�ψ ≤ 113. These norms remain invariant under any unitary transformation between 
two triads of mutually maximally complementary polarization analysers. This transformation can be put as 
a3′ = U11a3 + U12a3⊥ and a3′⊥ = U21a3 + U22a3⊥ , where Uij are elements of a certain two-dimensional unitary 
matrix. Properly defined Stokes vector has its Euclidean norm invariant with respect to such mode transforma-
tions. As a transformation of this kind can also be expressed as a transformation of the state, one can introduce 
|ψ ′� , which is in the following relation with |ψ� . If |ψ� = f (a†3, a

†
3⊥)|�� , then f (a†3′ , a

†
3′⊥

)|�� = |ψ ′� , where f(x, y) 
is a polynomial of both variables. We put this relation as |ψ ′� = Û†

mode|ψ�, as it is obviously a specific unitary 
transformation of the state.

For such mode transformations we have ||�−̂→� �ψ || = ||�−̂→� �ψ ′ || and ||�−̂→S �ψ || = ||�−̂→S �ψ ′ || . The norm of Stokes 
vectors, standard and normalized, is constant under any unitary transformation of the triads polarization analy-
sis bases. These features of Stokes observables play a key role in the construction of entanglement indicators 
involving Stokes operators.

Such properties are not shared by sign operators. Let us construct �−̂→G �ψ = (�Ĝ1�ψ , �Ĝ2�ψ , �Ĝ3�ψ) . It can be 
shown that ||�−→G �ψ || �= ||�−→G �ψ ′ || . It is enough to find one counterexample. Consider the state |ψ� = |3H , 0V � 
i.e. the Fock state with 3 photons polarized horizontally. It can be easily checked that for this state ||�−→G �ψ || = 1 . 
Now let us apply a unitary transformation on optical modes of |ψ� such that the creation operators transform as 
follows: â†H → â†(α) = cosαâ†H + sin αâ†V and â†V → â†⊥(α) = − sin αâ†H + cosαâ†V . Let α = π/8 . One gets: 
||�−→G �ψ ′ || ≈ 1, 5 . Thus, the norm is not an invariant of the unitary transformations, and additionally it is not 
bounded by 1. This fact prohibits one to use methods of construction of entanglement indicators presented 
 in13, which work via a simple replacement of Pauli operators in entanglement conditions for qubits, by Stokes 
operators, standard or normalized. Still, as we shall see, there is no obstacle to using this method in the case of 
construction of Bell inequalities.

Rotational covariance of polarization variables is not a necessary feature required to derive Bell inequalities 
(however,  see26 for the consequences of demanding exactly that). This allows one to construct CHSH and CH 
inequalities for fields with sign Stokes observables.

CHSH inequality. To derive Bell inequalities satisfied by any local realistic description, we start by defining 
local hidden values that predetermine the output of the measurement of sign Stokes operators (2). We denote the 
local hidden variables by � . The functions IX(s, �) and IX(s⊥, �) give the predetermined outcomes of the intensity 
measurements of polarizations s, s⊥ in the local beam for the observer X. We define the local hidden values for 
sign operators as GX(s, �) = sign(IX(s, �)− IX(s⊥, �)) . These local hidden values are ±1 and 0, thus one can use 
standard methods to derive CHSH inequality. The alternative settings will be denoted here by s, s′ for the first 
observer and r, r′ for the second observer. The resulting CHSH inequality reads:

For further reference, we put it as |CHSHG| ≤ 2.
However, this inequality cannot be violated by states with a significant vacuum component, e.g. the (polariza-

tion) four-mode squeezed vacuum state, which will be our working example, see next sections. This situation is 
analogous to the case of normalized Stokes operators,  see14. Following ideas  of14 we modify sign Stokes operators 
as follows:

where �̂�X is the projector on the subspace of the Fock space of states with no photons in the local beam. Such a 
projection allows for reduction of the impact of vacuum term, which often appears with the highest probability. 
Also local hidden values need to be modified:

• GX−(s, �) = sign(IX(s, �)− IX(s⊥, �)) if IX(s, �)+ IX(s⊥, �) �= 0
• GX−(s, �) = −1 if IX(s, �)+ IX(s⊥, �) = 0

As this modification does not change local hidden values GX−(s, �) ∈ {0,±1} we use the following CHSH 
inequality:

Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour. We are going to analyze how 
the use of sign Stokes operators in CHSH inequality helps to reveal the non-classicality of quantum states. Our 
working example is 2× 2 mode squeezed vacuum state (BSV) which is the generalization of EPR singlet. It reads:

where Ŵ is the amplification gain and

(4)|�G1(s, �)G2(r, �)+ G1(s, �)G2(r′, �)+ G1(s′, �)G2(r, �)− G1(s′, �)G2(r′, �)�LHV | ≤ 2.

(5)ĜX(s) → ĜX−(s) = ĜX(s)− �̂�X ,

(6)
|CHSHG−| = |�G1−(s, �)G2−(r, �)+ G1−(s, �)G2−(r′, �)

+ G1−(s′, �)G2−(r, �)− G1−(s′, �)G2−(r′, �)�LHV | ≤ 2.

(7)|ψ−� =
1

cosh2(Ŵ)

∞
∑

n=0

tanhn(Ŵ)

n! (a†Hb
†
V − a†Vb

†
H )

n|�� = 1

cosh2(Ŵ)

∞
∑

n=0

√
n+ 1 tanhn(Ŵ)|ψn�,
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Subscripts H1(2) and V1(2) specify the polarization of each mode and to which of the two optical beams it corre-
sponds. We use the convention that a†s  denotes the creation operator for the photon heading observer A, and b†s  
is the creation operator related to the observer B. The amplification gain determines the intensity of the pumping 
field and thus Ŵ sets the expectation value of the intensity of the BSV state.

Assume that both observers choose to measure only linear polarizations. thus, the angles by which the meas-
urement polarization basis is rotated with respect to {H ,V} basis define the settings. With the notation used in 
“Stokes-like vector cannot be formed out of sign Stokes operators” section for unitary transformation between 
linear polarization modes we chose for the first observer αs = 0 , αs′ = π/4 , and for the second one αr = π/8 
and αr′ = −π/8 . It was shown that these settings are optimal in case of violation of CHSH inequality with nor-
malized Stokes operators for  BSV14.

Figure 1 shows quantum predictions for CHSHG− (6) and the values of CHSH expression for normalized 
Stokes parameters for BSV taken  from14 as a function of the amplification gain Ŵ . Sign Stokes operators give 
|�ψ−|CHSHG−|ψ−�| > 2 for a wider range of an amplification gain that is up to Ŵtr ≈ 2.16 . For normalized 
Stokes operators, this maximal value of amplification gain is significantly lower, i.e. Ŵtr ≈ 0.8866 . Thus, with sign 
Stokes operators it is possible to reveal the non-classicality of BSV for a much higher value of amplification gain.

In Fig. 1 we can see that for Ŵ ≈ 2.1 for sign Stokes operators |CHSHG−| drops down suspiciously suddenly. 
We presume that such behaviour might be a consequence of a cut-off. The expansion of |ψ−� was cut off in the 
numerical calculations at |ψn=150� . This still requires further investigation.

Because of the rotational invariance of |ψ−� , it is a “super-singlet”, the expectation values of the correlators 
entering the Bell inequalities depend, if we measure linear polarizations on both sides, only on relative angle of 
the orientation of the polarization analyzers at the two spatially separated observation stations.

Note that standard, normalized, and sign Stokes operators are composed of functions of photon number 
operators, which do not change the number of photons. Thus, the expression �ψ−|CHSHG−|ψ−� consists of two 
terms: vacuum term, that is CHSH inequality averaged over the vacuum component of BSV and non-vacuum 
term. The vacuum and non-vacuum terms in (6) for our settings are both negative. That is why we can consider 
the CHSH inequality in question as the sum of absolute values of these both terms. The vacuum term can be 
easily calculated:

The non-vacuum term �CHSHG−�nv = �ψ−|CHSHG−|ψ−� − ��|CHSHG−|�� results from the expectation values 
of |ψn� . Note that as Ŵ increases, the role of non-vacuum terms in �ψ−|CHSHG−|ψ−� increases too. For small Ŵ 
the contribution of vacuum term is dominant.

In Fig. 1 the value of the non-vacuum |�CHSHG−�nv| is presented. The calculation is performed for BSV 
state truncated to n = 150 , blue curve, n = 47 , green curve, and n = 15 , red curve. These numbers increase 
approximately as a geometrical sequence by 

√
10 what allows as to analyze the behaviour of �CHSHG−�nv within 

(8)|ψn� = 1√
n+ 1

n
∑

m=0

(−1)m|(n−m)H1
,mV1 ,mH2 , (n−m)V2

�.

(9)|��|CHSHG−|��| = 2

cosh4 Ŵ
.

Figure 1.  (a) The blue curve: the value of the CHSHG− expression based on sign operators, see (6), and the 
green dashed curve: CHSHS− based on normalized Stokes  operators14 in a function of amplification gain Ŵ 
of the BSV state. The numerical results were obtained with a cut-off of the expansion of the BSV state at the 
term |ψn=150� . The maximal values of amplification gain ( Ŵtr ), such that for all Ŵ < Ŵtr CHSH inequalities 
are violated, are Ŵtr ≈ 0.88 for normalized Stokes  operators14 and Ŵtr ≈ 2.16 for sign Stokes operators. Thus, 
with sign Stokes operators, the range of violation with respect to amplification gain is much larger than in the 
case of normalized Stokes operators. (b) The graphs show the non-vacuum term of CHSHG− as a function of 
amplification gain Ŵ for the BSV state, which was computed for cutoffs of 15, 47, 150 photons. This is done to 
illustrate that the descent of the curves for high Ŵ ’s is an artefact of the applied cutoff. The blue curve represents 
calculations with the cutoff at 150 photons,for the green dashed curve it is at 47 photons and for the red dot-
dashed curve at 15 photons. The cutoff seems to be responsible for the decrease of the value in (a) for high Ŵ’s.
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the whole order of magnitude. All curves asymptotically go to 2 (classical bound) up to some point for which 
they both start to decrease. Note that the curves for n = 15 and n = 47 start to decrease for smaller Ŵ than the 
curve for n = 150 . It is highly probable that the decrease is conditioned by not including components with a 
high enough number of photons and the non-vacuum term |�CHSHG−�nv| goes asymptotically to 2 from the left. 
The vacuum term goes asymptotically to 0 from the right, see (9). Thus, our hypothesis is that CHSH inequality 
with sign Stokes operators is violated for BSV for any Ŵ . In Supplementary Discussion A we present a reasoning, 
based on a numerical calculation, supporting this conjecture.

CHSH inequality with losses. One of the crucial aspects of experimental realization of Bell experiments 
is detectors with high efficiency η . Here, we will analyze the critical value of efficiency ηc such that for η < ηc one 
cannot observe a violation of (6). We model inefficient detectors in the standard way: a perfect detector ( η = 1 ) 
with a beamspliter with transmissivity √η in front of it. We denote by k the number of photons that reach the 
beamsplitter. Of these, only κ ≤ k counts are registered due to losses on the beamspliter. The probability of reg-
istration of κ photons is given by the binomial distribution:

In Fig. 2 we can see the minimal value of efficiency ηc for which the violation of CHSH inequality can be observed 
for normalized and sign Stokes operators in function of Ŵ . Note that for small Ŵ (up to Ŵ ≈ 0.3 ) the curves for 
sign and normalized Stokes operators behave almost identically. However, as Ŵ increases, the value of ηc for sign 
Stokes operators grows slower than that for normalized ones. Such a change in rate of growth for a higher Ŵ 
should be expected because, for a high number of photons, loss of one photon matters less in the case of sign 
Stokes operators.

CHSH inequality with noise. In a realistic scenario of a Bell experiment apart from photon losses one 
shall consider also noise. Our noise is modeled in the similar way as “white noise” for qubits. Let us introduce 
four squeezed vacuum states which are related with the Bell state basis for two  qubits27:

and

Our noise model can be defined as follows:

Note that ρnoise is uncorrelated. Let q be the visibility. The noisy state reads:

(10)p(κ|k) =
(

k

κ

)

ηκ(1− η)k−κ .

(11)|�±� = 1

cosh2(Ŵ)

∞
∑

n=0

tanhn(Ŵ)

n! (a†Hb
†
H ± a†Vb

†
V )

n|��,

(12)|�±� = 1

cosh2(Ŵ)

∞
∑

n=0

tanhn(Ŵ)

n! (a†Hb
†
V ± a†Vb

†
H )

n|��.

(13)ρnoise =
1

4
(|φ+��φ+| + |φ−��φ−| + |ψ+��ψ+| + |ψ−��ψ−|).

(14)ρ′ = q|BSV��BSV | + (1− q)ρnoise ,

Figure 2.  (a) Critical efficiency ηc versus Ŵ for the CHSH inequalities for the BSV state. A blue curve represents 
ηc for sign approach and a green dashed curve for normalized Stokes operators. (b) Critical value of q versus Ŵ 
for the BSV state. A blue curve represents qc for sign approach and a green dashed curve for normalized stokes 
operators. Assuming that asymptotic behaviour of violation of CHSH inequality for sing parameters discussed 
in “Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour” section is correct the qc 
for the sign Stokes operators goes to 1 in the limit Ŵ → ∞.
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The value 1− q determines the probability of registering noise. Figure 2 shows the minimal value of visibility 
qc that ensures the violation of CHSH inequality for normalized and Stokes operators. We see that sign Stokes 
operators have a similar advantage over normalized Stokes operators as in the case of losses, i.e. for small Ŵ 
normalized and sign Stokes operators are similarly resistant to noise. As Ŵ increases sign Stokes operators result 
to be significantly more efficient, Moreover from the results shown on Fig. 2 and the reasoning presented in 
“Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour” section we can conclude 
that qc → 1 when Ŵ → ∞.

CH inequality. Going along with the idea of sign operators and rate approach to CH  inequality14 we can 
construct a new CH inequality for quantum optical fields. Let us move directly to the quantum scenario and 
start with the CH operator ( CHR ) for intensity rates.  In14 the rates are defined by R̂+(s) = �̂n̂s/(n̂s + ns⊥)�̂ . 
Note that such an operator is simply the first term of normalized Stokes operator (1). Its eigenvalues are rational 
numbers in (1/2, 1] for photon number states |ns ,ms⊥� where n > m and in [0, 1/2) for states where n < m . If 
m = n the eigenvalue of the rates is 1/2. Combining the idea CH inequality for rates and the concept sign Stokes 
operators we construct operators for CH inequality based binning. We seek for operators of eigenvalues with the 
following properties: we have 1 when m > n and 0 if n ≤ m . Such a dichotomic observable is simply a projector 
onto subspace n > m:

The expectation value of P̂X(s) is equal to the probability that the observer X will see n > m . We shall denote by 
�P̂X(j)P̂Y (k)� the quantum joint probability of obtaining the same result n > m by observers X and Y for their 
respective polarization basis j and k. Had these probabilities in the experiment been classical, and if the assump-
tions of local realism hold Clauser–Horne inequality tailored for the quantum scenario is given by:

Figure 3 shows the expectation value of the CH expression (16) and its rate counterpart for the same settings as 
in the case of CHSH inequality. The ‘sign’ approach gives violation of upper bound of CH expression for all Ŵ 
while the rate approach gives a violation only for Ŵ < 0.8866 which is the same case as for CHSH. Note that this 
CH inequality is not equivalent to CHSH inequality (6) (see Supplementary Discussion A)

Violation of Bell inequalities with sign approach for Bright GHZ state
As another example, let us consider a Bright GHZ state which is a generalization of the two beam squeezed 
vacuum considered above, to three beam emissions.

Such a process for years was thought to be infeasible, but current experimental progress allows one to think 
of such a possibility. The usual parametric approximation of the theoretical description of generation process of 
such states, which describes the pumping field as classical, does not work because of the divergence of perturba-
tion series. Still, with an employment of a version of Padè approximation one can find an approximate parametric 
description, with convergent perturbation series,  see21. The approximation gives a state of the following form:

(15)P̂(s) =
∑

n>m

|ns ,ms⊥��ns ,ms⊥|.

(16)
−1 ≤�CHP� =

〈

P̂1+(θ)P̂
2
+(φ)+ P̂1+(θ)P̂

2
+(φ

′)+ P̂1+(θ
′)P̂2+(φ)− P̂1+(θ

′)P̂2+(φ
′)− P̂1+(θ)− P̂1+(φ)

〉

≤ 0.

Figure 3.  Quantum predictions for expectation value of CH expression for the ‘sign’ approach (blue curve) 
and rate  approach14 (green dashed curve) as a function of the amplification gain Ŵ for BSV state. The numerical 
results were obtained with a cut-off of the expansion of the BSV state at the term |ψn=50� . The upper bound of 
CH inequality for the ‘sign’ approach is violated in the whole range of Ŵ covered in the figure, while the violation 
of the inequality in the case of the normalized Stokes operators is quickly damped and after that CH expression 
goes asymptotically from bellow to the classical bound.
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The method of obtaining the coefficients Cm(Ŵ) can be found  in21, and we base our numerical computations on 
the results established in this reference. The symbols â†p , b̂†p and ĉ†p stand for creation operators in two orthogonal 
polarization modes p = i, i⊥ , of a beam which goes to respectively observers A, B and C. For simplicity, we 
assumed the polarization modes to be H, V, that is, i = 3.

Mermin‑like inequality. Let us consider Mermin-like inequality for quantum optical  fields21:

where SXi (�) are local hidden values corresponding to normalized Stokes operators with polarization bases: 
{45◦,−45◦} , {R, L} , for i = 1, 2 respectively. The observers are now marked by X = 1, 2, 3 . The inequality (18) 
generalizes Mermin inequality for three  qubits28 for three photon beams with two polarisation modes each from 
a parametric source, for details see:21. Of course, in general the settings 1, 2 could be different.

The derivation of this inequality requires only that local hidden values are bounded by ±1 . Because local 
hidden values for sign Stokes operators fulfil this requirement, we can replace SXi (�) by GX

i (�) and obtain a new 
inequality

However, this inequality is not violated by the BGHZ state. We have to again modify sign Stokes operators (as 
well as normalized Stokes operators):

One can easily write modified local hidden values for such operators as in “CHSH inequality” section and obtain 
inequality:

Figure  4 presents quantum values of |�BGHZ|M̂(3)G−|BGHZ�| and of analogous expression, 
|�BGHZ|M̂(3)S−|BGHZ�| , for a Mermin inequality for modified normalized Stokes operators, ŜX−i = ŜXi − �̂�X , 
which is of the form (18) with ŜX−i  replacing ŜXi  . All that is with respect to the amplification gain Ŵ . The range 
of Ŵ for which the inequality is violated by BGHZ state in the case of sign Stokes operators exceeds the range of 
applicability of the method used to approximate the probability amplitudes for BGHZ state. We also stress that 
this result is more robust than in the case of normalized Stokes operators. The graphs in Fig. 4 are discontinued 
at Ŵ = 0.9 because for higher values the approximation of ref.21 breaks down.

Mermin‑like inequality with losses. We use the model of losses due to inefficient detectors as in “CHSH 
inequality with losses” section for the inequality (21). In Fig. 4 critical values of efficiency of detectors ηc , for sign 
and normalized Stokes operators, are compared. We can see that for small Ŵ inequalities exhibit similar resist-
ance to losses. However, with increasing Ŵ difference between the performance of sign and normalized Stokes 
observables increases in favour of the former ones.
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k−m(â†i⊥ b̂
†
i⊥ ĉ
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Figure 4.  (a) Quantum values of |M(3)G−| expression (blue curve) and |M(3)S−| (green dashed curve) as a 
function of the amplification gain Ŵ for BGHZ state. (b) Critical efficiency ηc versus Ŵ for Mermin inequalities 
for the BGHZ state. The blue curve represents ηc for the sign approach and a green dashed curve for normalized 
Stokes operators.
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Conclusions and some open questions
We have proposed, based on a version of the binning  approach19,20, new Stokes-like polarization observables for 
quantum optical fields which have a clear operational meaning. In presented examples, the sign Stokes observa-
bles allow observation of Bell non-classicality of squeezed-vacuum-type states for pumping powers, for which 
normalized Stokes observables fail to do so. Sign Stokes operators are easier in experimental realization than 
normalized ones. Also, they are more resistant to imperfect detection and presence of a noise. One could be 
tempted to use sign Stokes observables to derive entanglement indicators not based on Bell inequalities. How-
ever, such Stokes observables do not possess properties which are commonly used in derivations of bounds for 
separable states. Simply a triad of them does not form a Stokes vector with proper covariance properties. Thus, 
this requires a different approach. Similar questions arise when one thinks of a steering condition involving sign 
Stokes observables.

Another question would be if there is a type of state for which normalized Stokes operators allow for violating 
of some Bell inequality and for which this is impossible using sign Stokes operators.

The presented results give a possible way to search for violations of local realism in situations with undefined 
particle numbers, which are so common in especially quantum optics. The associated Bell inequalities are cor-
rectly defined. That is, the sole assumption is local realism (and tacitly freedom of the choice of the random set-
tings for all observers involved). No additional “reasonable” assumptions are used. As, according to our numerical 
estimates, one can conjecture that the associated inequalities are violated for an arbitrary Ŵ , they may serve as 
tool to reveal Bell non-classicality of bright quantum optical states,  see29. This indicates that such states may find 
an application in, e.g. quantum communication, provided one finds new suitable Bell inequalities which would 
lead to more robust violations of local realism.
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Abstract
We reconsider the all-optical weak homodyne-measurement based experimental schemes aimed at
revealing Bell nonclassicality (‘nonlocality’) of a single photon. We focus on the schemes put
forward by Tan et al (TWC, 1991) and Hardy (1994). In our previous work we show that the TWC
experiment can be described by a local hidden variable model, hence the claimed nonclassicality is
apparent. The nonclassicality proof proposed by Hardy remains impeccable. We investigate which
feature of the Hardy’s approach is crucial to disclose the nonclassicality. There are consequential
differences between TWC and Hardy setups: (i) the initial state of Hardy is a superposition of a
single photon excitation with vacuum in one of the input modes of a 50–50 beamsplitter. In the
TWC case there is no vacuum component. (ii) In the final measurements of Hardy’s proposal the
local settings are specified by the presence or absence of a local oscillator field (on/off). In the
TWC case the auxiliary fields are constant, only phases are varied. We show that in Hardy’s setup
the violation of local realism occurs due to the varying strength of the local oscillators. Still, one
does not need to operate in the fully on/off detection scheme. Thus, the nonclassicality in a
Hardy-like setup cannot be attributed to the single-photon state alone. It is a consequence of its
interference with the photons from auxiliary local fields. Neither can it be attributed to the joint
state of the single photon excitation and the local oscillator modes, as this state is measurement
setting dependent. Despite giving spurious violations of local realism, the TWC scheme can serve
as an entanglement indicator, for the TWC state. Nevertheless an analogue indicator based on
intensity rates rather than just intensities overperforms it.

1. Introduction

The ‘nonlocality of a single photon’, also known as ‘entanglement with vacuum’, has long been a subject of
controversy [1–12]. In its basic form, the problem concerns the nature of the state 1√

2
(|01〉b1b2 + |10〉b1b2 ),

obtained by casting a photon on a balanced beamsplitter. Here, the notation |10〉b1b2 indicates the presence
of a photon in mode b1 and its absence in b2. Although the resulting state can be considered as mode
entangled [13], it can also be interpreted as a mere superposition of mode excitations—the photon being
either here or there. This point of view is supported by writing down the state as â†|00〉b1b2

, where

â† = 1√
2
(b̂†

1 + b̂†
2), and b̂†

j are photon creation operators for modes bj.
Thus, one could question whether it can be used to demonstrate Bell nonclassicality—both on its own,

or with some additional resources like local auxiliary optical fields.
Aharonov and Vaidman [3, 14] observed that the single-photon superposition can induce an entangled

state of two atoms in spatially separated traps. In such a case violation of local realism by the pair of
entangled atoms is easy to prove, and the entanglement is (in theory) easily detectable (see e.g. the

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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discussion in [15, 16]). However, this puts us effectively back to the two-qubit entanglement. Moreover,
note that the atoms used in such schemes should be treated as auxiliary systems. Therefore, such an
approach will not be discussed here. We want to discuss situations which involve only quantum optical
fields, passive optics and photon number resolving (macroscopic) detectors, as there are many open
questions related to observability of violations of local realism in all-optical scenarios.

Many experiments, some feasible, some gedanken, have been proposed to address this fundamental
problem. Let us briefly present their three major types.

The first one originates from a paper by Tan, Walls and Collett (TWC) [1], in which homodyne-based
coincidence intensity measurements with weak coherent light as local auxiliary fields were used to violate
the Bell-like inequality of [17]. However, the Bell-like inequality in [17] does not rest entirely on Bell’s
assumptions. Because of that, one can question whether the TWC scheme can be used to violate local
realism. For instance, Santos [18] provided an ad hoc and incomplete local realistic model for the
correlation functions considered by TWC. Recently, this line of critique has been reinforced in [19] by
presenting a model that reproduces all detection events in the TWC experimental proposal for the range of
local oscillator strengths for which the paper [1] reported ‘nonlocality’ of the single-photon state. In the
section 4.2 of this work we show that optical Bell inequalities [20], which must hold for any local realistic
description, are not violated for the TWC setup. Thus this case is closed. Still, TWC correlations are
interesting in themselves, and variants of this scheme have been realized experimentally in [4, 11]. Recently
one can observe an experimental breakthrough: papers [21, 22] test techniques of weak homodyne
measurements involving photon number resolution—also for the TWC configuration—making a
re-analysis timely.

Another idea was put forward by Hardy [2]. He considered states q|00〉b1b2
+ r√

2
(|01〉b1b2 + |10〉b1b2 ),

with q $= 0 which can be produced by sending a superposition of a vacuum state and a single photon one
on a 50–50 beamsplitter. Hardy investigated four mutually complementary experimental situations and
proved that their joint local realistic description would contradict the quantum predictions. His setup relied
on tunable amplitudes of the auxiliary coherent fields (local oscillators). Its modification with mixed-state
auxiliary states was proposed in [6], and a generalization to multimode initial states in [7]. The question is
whether the vacuum component, q $= 0, or variable local oscillator strengths are crucial for Hardy
configuration. Answering this question may also shed light on other experimental configurations which use
homodyne detection with weak local oscillators to get violation of local realism.

Yet another direction is suggested by Banaszek and Wódkiewicz: a measurement setup implementing the
displacement of the input field in the optical phase space for the single photon superposition (q = 0) [23].
The settings of the Bell experiment they considered were defined by turning the displacements on or off. A
combination of this approach with homodyne measurements was investigated in [12], while an adaptation
to multimode input states was given in [9]. Optical displacement was also used in a scheme for a heralded
distribution of a single-particle entanglement [24]. We shall not analyze the approach of [23] as, first,
their proof of violation of local realism is impeccable, and second, despite the fact that their scheme involves
only all-optical measurements, the employed technique is essentially different from the ones of TWC and
Hardy.

In this work we shall concentrate on homodyne measurements which involve in general arbitrary
beamsplitters, and essentially weak local oscillator fields. By weak local field we mean here the situation in
which the average photon number in the local oscillator is of the same order of magnitude as the mean
photon number in the signal state, that is around one or less. In this regime the local auxiliary fields have to
have a full quantum description, and the performed measurements can be interpreted as revealing
particle-like properties of the quantum fields. This has to be contrasted with the strong-field homodyne
correlation measurements (see e.g. [25]). These can be interpreted to reveal the wave-like properties, as they
lead to quadrature phase measurements. Concerning the transition between weak and strong homodyne
measurement see the current discussion in [22], and their experimental results. Most importantly, reference
[22] clearly shows that current state-of-the-art techniques allow one to experimentally observe the full
range of phenomena which we discuss here.

This includes not only the setups of TWC and Hardy, but also the intermediate cases which have not
been discussed yet. We start by analyzing the mechanism behind the occurrence of the spurious
nonclassicality, manifested by the violation of the inequality of [17] in the TWC setup. Further we shall test
the ability of inequalities [20] to detect violations of local realism in situations which are a kind of a hybrid
of the TWC configuration and the Hardy one. That is, we shall show that the inequalities detect violation of
local realism if one admits varying strengths of the local oscillators for different settings in the Bell
experiment. It turns out that the approach allows to find genuine violations of local realism for the initial
state of the form of TWC (i.e. for q = 0). In the last section we show that the original TWC approach,
although it fails as a test of local realism, still is a realization of an entanglement witness.

2
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2. Detailed aims and analysis

In order to test the potentially nonclassical character of the correlations appearing in the schemes of TWC
and Hardy, we use the intensity rates of optical fields as local observables. They were first introduced as a
proposal of normalized Stokes observables in [26, 27] and rediscovered in the context of Bell’s theorem in
[20], further developed in references [28, 29]. Essentially, by an intensity rate we mean the ratio of
measured intensity in the given local detector to the total intensity measured in all local detectors, in a given
run of the experiment. In contrast to the CHSH Bell-like inequalities of [17] used by TWC, this approach to
analyzing optical correlations does not lead to spurious violations.

The inequalities for intensities of reference [17] involve additional constraints on local hidden variable
description of intensities passing beamsplitters. The additional constraints are a version of no-enhancement
assumption for CH-like inequalities (discussed in [30]), or a fair-sampling one in the case of CHSH-like
inequalities. Therefore the inequalities of reference [17] cannot be used to test Bell nonclassicality, however,
as we show further, they have an interpretation of entanglement indicators. The problematic status of the
additional assumption in the inequalities of [17] in the context of TWC setup has been pointed out by
Hardy [31] and Santos [18]. Nevertheless, because of the seemingly ‘innocent’ naturality of this assumption,
the inequalities of [17] can be found in discussions of Bell’s theorem in some textbooks on quantum optics
e.g. [32]. In this work, we show that Bell inequalities based on rates of intensities [20], which do not invoke
any additional constraints, are not violated. This result is in perfect agreement with the fact that a recently
proposed local hidden variable model [19] reproduces all the probabilities of events considered ‘nonlocal’
by TWC in [1]. It shows that the rate-based inequalities are more reliable than the ones of [17], as they do
not lead to spurious violations of Bell classicality. Interestingly, this is the first found example supporting
that claim. It complements the previous investigations in which the rate-based inequalities were always
more strongly violated in case of genuine nonclassicality [20].

In contrast with the above, our analysis of the Hardy-like proposal using the intensity rates approach
indicates the presence of nonclassical correlations. We have confirmed them in case of the initial state being
just a single photon (q = 0). Thus, the crucial change in the TWC setup introduced by Hardy consists in the
ability to vary the intensities of the coherent local oscillators by turning them on or off.

We have also investigated a transition between the Hardy-like and TWC setups. Our numerical
calculations show that nonclassical correlations can still be obtained when the amplitudes of auxiliary
coherent fields are non-zero for both local measurement settings. This means that turning the auxiliary
oscillators off, as proposed by Hardy, is not necessary. However, their amplitudes must still be different for
the alternative local settings of the Bell-type experiment.

The local oscillators of the homodynes used to detect the violations of local realism induced by the state
1√
2
(|01〉b1b2 + |10〉b1b2 ) must be treated as a part of the local measuring devices. In fact, in such all optical

scenario the local oscillators can be incorporated in the operational definition of the measurements which
are of the positive-operator-value measurement (POVM) class.

3. Experimental setup

Here, we discuss the basic setup of the TWC and Hardy gedankenexperiments and its variations which were
studied in the literature, in greater detail. As depicted in figure 1, the experimental configuration consists of
three spatially separated beamsplitters BSj with j = 0, 1, 2, whose action is in general described by the
unitary transformation:

UBS(χ, θ) =

(
cos χ e−iθ sin χ

−eiθ sin χ cos χ

)
, (1)

where cos2 χ is the transmission coefficient of the beamsplitter and θ is the phase acquired by the reflected
beam. As a beamsplitter is a passive optical device this transformation links the photon annihilation
operators of the incoming beams with annihilation operators of the output beams. We assume that all
photons in the experiment have the same polarization.

An initial state, q|0〉s + r|1〉s, a superposition of vacuum and single-photon excitation in mode s,
impinges on a symmetric beamsplitter BS0 (defined by χ = π

4 and θ = − π
2 ). Such will be our notation, |n〉m

is a Fock state of n photons in (spatial) mode m. If the initial state is a single photon, i.e. q = 0, then it
transforms to:

|ψ〉b1,b2
=

1√
2

[
|01〉b1,b2

+ i|10〉b1,b2

]
, (2)

where b1, b2, are the output modes of beamsplitter BS0.

3
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Figure 1. Most general schematic representation of the experimental setup for testing single-photon correlational properties,
which we consider here. In the Tan–Walls–Collett scenario we have q = 0, and |α1| = |α2| = const. for all settings in Bell-like
experiment. In original Hardy’s scenario q $= 0 and |αj| = 0, or αj = i(1−j)r

q
√

2
. Here we consider also intermediate cases, including

αj’s of varying absolute values and beamsplitters UBSj with transmissivity varying from setting to setting.

In the TWC scheme the quantum state, given in equation (2) is then shared between two parties Alice
and Bob, who perform a homodyne detection. We assume that the homodyne measurement stations
operated by local observers consist of a θj-dependent balanced beamsplitter BSj, realizing the
transformation UBS( π

4 , θj), an auxiliary coherent beam impinging on the remaining input mode of BSj, and
two photo-detectors Dcj and Ddj , placed in front of the output modes of BSj, for j = 1, 2, as shown in
figure 1. The amplitudes of the coherent beams |α〉a1

and |α〉a2
are equal in the case of TWC scheme. For

simplicity we assume that α is real. After all that, the total state at the inputs of the two beamsplitters BS1

and BS2, is:

|Ψ(α)〉 =
1√
2

|α〉a1 (|01〉b1b2 + i |10〉b1b2 )|α〉a2 . (3)

The necessity of introducing auxiliary systems in such measurement schemes is related to the fact that it
is impossible to perform a projection onto a superposition between vacuum and a single photon using only
passive optical devices. This was already pointed out by Peres [33] in a comment to the Hardy’s work.

The photo-detectors Dcj and Ddj monitor output modes ĉj and d̂j of BSj, for j = 1, 2. These modes are

linked with modes âj and b̂j via symmetric beamsplitter transformation UBS( π
4 , θj), that is we have:

ĉj =
1√
2

(âj + e−iθj b̂j),

d̂j =
1√
2

(−eiθj âj + b̂j).

(4)

It is assumed that the detectors measure photon numbers. The phases θ1 and θ2 in the TWC case are
tunable, and define the local settings in the purported Bell experiment.

3.1. Generalizations
In further discussions we will consider also a generalized scheme with arbitrary tunable beamsplitters BS1

and BS2, for which the mode transformation reads:

(
ĉj

d̂j

)
= UBSj (χj, θj)

(
âj

b̂j

)
, (5)

where the unitary matrix is given in equation (1). Such devices have a realization in the form of
Mach–Zehnder interferometers. One can further generalize the scheme, and assume that the local auxiliary
fields may have different amplitudes for both observers, therefore the overall state at the entry ports of the

4
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final beamsplitters takes a more general form:

|Φ(α1,α2)〉 =
1√
2

|α1〉a1 (|01〉b1b2 + i |10〉b1b2 )|α2〉a2 . (6)

In this generalized case the dependence on the real parameters α1 and α2 is local with respect to subsystems
defined by modes {â1, b̂1} and {â2, b̂2}, so they can be also used as local settings together with local phases
θ1 and θ2.

One can further generalize this to initial states of mode s being superpositions of vacuum and single
photon states (i.e. q $= 0). In such case the state behind the first beamsplitter is given by:

|ψ′〉b1,b2
= q|00〉b1,b2

+
r√
2

[
|01〉b1,b2

+ i|10〉b1,b2

]
. (7)

4. Intensities vs intensity rates in analysis of TWC correlations

4.1. Bell inequalities for intensity rate measurements
For the analysis of nonclassicality the authors of [1] used Bell-like inequalities derived in [17]. The
inequalities involved correlation functions of intensities at pairs of spatially separated detectors, one in
Alice’s station one in Bob’s. They are applicable for the following models:

ET(θ1, θ2) =

∫
dλρ(λ)

∏
j=1,2

(
Icj (θj,λ) − Idj (θj,λ)

)

∫
dλρ(λ)I1(λ)I2(λ)

. (8)

In the above formula λ symbolizes a hidden variable, ρ(λ) is its distribution, Ixj (θj,λ) is the hidden variable
model of the local intensity (registered in a detector placed in front of mode x = c, d,) at station j = 1, 2, i.e.
respectively A and B of figure 1, for the local (phase) setting θj. Finally Ij(λ) is the total intensity at station
j = 1, 2. However, the inequalities of [17] cannot be used to refute altogether the possibility of local realistic
description of an experiment, as in addition to local realism and ‘free will’, they rely on an additional
assumption (which holds in classical optics, but not in e.g. stochastic electrodynamics [34]). This
assumption states that the total local intensity of light Ij(λ), for a given values of a hidden variable λ does
not depend on the local setting of the measuring device. Namely, the authors of [17] assumed that:

Ij(λ) = Icj (θj,λ) + Idj (θj,λ), (9)

is independent of the local value of θj. A possible violation of inequalities of [17] indicated a failure of either
local realism, or ‘free will’, or of the assumption (9). However, in an earlier paper [19] we showed an
explicit hidden variable model which reproduces exactly the quantum predictions for the TWC
experiment for the whole range of α for which inequalities of [17] are shown to be violated in [1].
Therefore, the violation reported in [1] cannot be attributed to Bell’s nonclassicality of the state under
consideration.

As mentioned above, the inequalities of [1] lead to drastically wrong conclusions about the
non-existence of local hidden variable description of TWC experiment. To study this type of questions one
must therefore use an alternative approach, which uses Bell’s inequalities for field intensities, since they rest
only on the assumptions of local realism and ‘free will’. The approach given in [20], allows to construct a
class of Bell’s inequalities having this trait. The Bell’s inequalities of [20] involve correlations of functions of
the intensities that we will refer to as intensity rates. They are defined as the ratios of the measured
intensities in a given local mode to the total intensity measured across all local modes:

Rxj (θj,λ) =
Ixj (θj,λ)

Icj (θj,λ) + Idj (θj,λ)
, (10)

where we assume that Rxj (θj,λ) is assigned the value of 0 whenever the total intensity in the denominator is
equal to 0.

The differences of intensity rates (10), when averaged over the probability distribution of the LHV, can
be used to construct the following correlation functions:

ER(θ1, θ2) =

〈
2∏

j=1

(
Rcj (θj,λ) − Rdj (θj,λ)

)〉

HV

, (11)

5
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depending on the value of the local settings defined by the variable θj for j = 1, 2. This correlation function
satisfies the CHSH inequality for rates:

|ER(θ1, θ2) + ER(θ′1, θ2) + ER(θ1, θ′2) − ER(θ′1, θ′2)| ! 2. (12)

Note that the above inequality holds regardless of whether the condition (9) is satisfied or not.

4.2. Homodyne detection with intensity rates vs Bell CHSH inequality for rates
Quantum optical observables that describe the rates can be defined as follows [20]. If one assumes, like in
[1], that the intensity observables of beams are modeled by photon number operators for the given mode,
the rate operator is defined by:

R̂xj = Π̂cjdj

n̂xj

n̂cj + n̂dj

Π̂cjdj , (13)

where n̂xj = x̂†
j x̂j, represents the photon number operator in the xjth mode of the optical field registered in

the detector Dxj . Here, x̂†
j , x̂j are the photon creation and annihilation operators of the local output mode x̂j,

x = c, d, of the beamsplitter for observer j. The operators Π̂cjdj = Icjdj −
∣∣∣Ωcjdj

〉〈
Ωcjdj

∣∣∣ , j = 1, 2, are

projectors onto the subspace spanned by the Fock basis of modes ĉj, d̂j, devoid of the vacuum state. It is

worth mentioning that the two mode vacuum
∣∣∣Ωcjdj

〉
and the operators Π̂cjdj are invariant under the action

of the local mode transformations given in equations (1) and (5). Since the operators R̂xj and

Π̂cjdj
1

n̂cj +n̂dj
Π̂cjdj commute with each other, depending on needs one can put the rate operator also as follows:

R̂xj = n̂xj

1
n̂totj

Π̂cjdj = Π̂cjdj

1
n̂totj

n̂xj = Π̂cjdj

1√
n̂totj

n̂xj

1√
n̂totj

Π̂cjdj , (14)

where n̂totj = n̂cj + n̂dj .
We also define

Ĥj(θj) = R̂cj − R̂dj = Π̂cjdj

n̂cj − n̂dj

n̂cj + n̂dj

Π̂cjdj , (15)

with j = 1, 2, and the implicit θj-dependence is specified via mode transformations (4). With an abuse of
notation, we also call ER(θ1, θ2), the correlation coefficient of the joint homodyne measurement on the
initial state |Ψ(α)〉 (3), performed by both Alice and Bob:

ER(θ1, θ2) = 〈Ψ(α)| Ĥ1(θ1)Ĥ2(θ2) |Ψ(α)〉 = AR (α) sin(θ1 − θ2), (16)

where θ1 and θ2 are the tunable phases of the local beamsplitters. The amplitude AR(α) of the correlation
function reads explicitly:

AR(α) =
e−2α2

(eα
2 − 1)2

α2
. (17)

The correlation function (16) depends on the fixed initial state parameter α denoting the amplitude of the
auxiliary local field. We can express the correlation function (16) as arising from a POVM measurement
performed solely on the initial single-photon superposition (2) in modes b1 and b2:

ER(θ1, θ2) = 〈ψ| M̂b1 (α, θ1)M̂b2 (α, θ2) |ψ〉 . (18)

The POVM operators M̂bj (α, θj) are explicitly constructed in appendix A. We note that a similar analysis of
the homodyne detection in terms of POVM operators has been already performed [35], here we extend
such an approach to homodyne detection with intensity rate operators (15).

Our aim is to check whether the following CHSH inequality for rates, constructed by substituting (16)
into (12), is violated by the quantum state given in (3):

AR(α)| sin(θ1 − θ2) + sin(θ′1 − θ2) + sin(θ1 − θ′2) − sin(θ′1 − θ′2)| ! 2. (19)

The term depending on the phases of the auxiliary coherent states can reach the maximal value of 2
√

2,
hence (19) will be violated if AR(α) >

√
2

2 . The amplitude AR(α) has been plotted in the figure 2, as the

solid red line. The blue dotted straight line depicts the value of
√

2
2 . The position of the solid red line below

the dotted blue straight line, for all values of α shows that the correlation function (16) does not lead to any
violation of the CHSH inequality for rates (19).
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Figure 2. Comparison of the amplitudes of correlation functions ER(θ1, θ2) and ET(θ1, θ2) for different amplitudes α of the
auxiliary coherent field. The solid red line corresponds to the amplitude AR(α) of ER(θ1, θ2), and the dashed green line is for
AT(α). For weak coherent light the amplitude AT(α) exceeds the threshold needed to violate the CHSH inequality.

We compare our results with the ones given in [1], where the following CHSH-like inequality has been
considered:

|ET(θ1, θ2) + ET (θ′1, θ2) + ET (θ1, θ′2) − ET(θ′1, θ′2)| ! 2. (20)

The correlation functions ET(θ1, θ2) have been already defined in equation (8). The quantum
implementation of the correlators ET(θ1, θ2) used in [1] reads as follows:

ET(θ1, θ2) =
〈Ψ(α)|(n̂c1 − n̂d1 )(n̂c2 − n̂d2 )|Ψ(α)〉
〈Ψ(α)|(n̂c1 + n̂d1 )(n̂c2 + n̂d2 )|Ψ(α)〉 = AT(α) sin(θ1 − θ2), (21)

and the amplitude AT(α) reads explicitly:

AT(α) =
1

1 + α2
. (22)

The coefficient AT(α) as a function of the amplitude α of the auxiliary coherent field has been plotted in
figure 2, as the dashed green line. We observe a violation of the inequality (20) for the range
0 < α2 < 0.414. This indication of Bell’s nonclassicality is apparent, since in a recent work [19] we have
shown an LHV model simulating the discussed correlations. The apparent nonclassicality occurs due to the
additional assumption (9). Therefore the inequality (20) is not suitable for Bell-type considerations
concerning the setup. Nevertheless it can be utilised as an entanglement witness, which is discussed in more
details in section 6.

5. Violation of Clauser–Horne inequality based on intensity rates

In the previous section we have shown directly that the Bell-CHSH inequality (12) based on intensity rates
(10) is not violated in the TWC setup. This result is concurrent with the existence of an LHV model for the
TWC scenario proposed by us in a recent work [19]. The crucial feature of the TWC experiment is the fact
that the local oscillators have constant amplitudes. Hence, in order to search for a Bell violation within the
general single-photon setup (figure 1) we need to relax this assumption, as it was done by Hardy [2] in his
version of the single-photon nonlocality test. Contrary to the original Hardy case we do not use the
single-photon-with-vacuum superposition as the initial state and keep just the single photon one. On the
other hand we introduce one more modification with respect to both TWC and Hardy versions, namely the
local beamsplitters BS1 and BS2 in figure 1 have now tunable transmissivities, and are specified by formula
(5). In his work [2] Hardy used Clauser–Horne (CH) inequality [30], as it was better suited to describe his
possibilistic paradox (meaning that the contradiction occurs with a non-zero probability).

5.1. Non-equivalence of CH and CHSH inequalities for optical fields
The CH inequality in its most general form reads as follows [30]:

− 1 ! P(A, B) + P(A, B′) + P(A′, B) − P(A′, B′) − P(A) − P(B) ! 0, (23)

where A, A′ denote fixed outcomes of arbitrary Alice’s measurements, and B, B′ refer to Bob’s ones. In the
case of dichotomic outcomes, namely A, A′, B, B′ = ±1, the CH inequality (23) can be written in four

7
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versions, each corresponding to a definite choice of ±1 values for all the four outcomes A, A′, B, B′.
Interestingly each of these versions is equivalent to the CHSH inequality. This equivalence rests on the
following property of dichotomic measurements: P(−1|θ,λ) + P(+1|θ,λ) = 1.

The equivalence persists even in the case of imperfect detection if one uses the Garg–Mermin trick [36].
The trick simply leaves them with dichotomic outcomes, despite possible three results, detection in channel
+1, in channel −1, or no detection at all. Simply the idea in reference [36] is to ascribe value −1 also for
the non-detection event.

Note that for qubits the upper bound is often thought to be the CH inequality, as it can be elegantly
derived using geometric concepts [37]. This can be done by noticing that S(A, B) = P(A) + P(B) − P(A, B)
is non-negative, S(A, A) = 0, and it satisfies the triangle inequality. The CH inequality is then the
quadrangle inequality.

Any Bell inequality for two, or more qubits can be rewritten into an inequality for intensity rates of
fields, via a replacement:

P(nxi = 1|θi,λ) → Rxi (θi|λ), (24)

where P(nxi = 1|θ,λ) is an LHV probability for the qubit to be registered at xi, while the rates Rxi are
defined in equation (10). This holds due to the fact that rates, just like probabilities, have values between
zero and one. For a detailed presentation and justification of this method see [20, 29]. In the case of the
experimental setup discussed throughout this paper the CH inequality for rates can be written in four
different versions, depending which pair of output modes we choose from the set
{(c1, c2), (c1, d2), (d1, c2), (d1, d2)}. Choosing the pair (d1, d2), which coincides with the choice done in
Hardy’s work [2], we obtain the following form:

− 1 !
〈

Rd1 Rd2 + Rd1 R′
d2

+ R′
d1

Rd2 − R′
d1

R′
d2
− Rd1 − Rd2

〉
HV

! 0, (25)

in which the unprimed rates correspond to first setting, and the primed ones to the second.
It turns out that the CH and CHSH inequalities for rates obtained by application of the procedure (24)

are no longer equivalent. In the classic two qubit scenario of Bell a qubit-particle can hit only one detector:
we have

∑
xi

P(nxi = 1|θ,λ) = 1. However, in the case of states which have non-zero probability of vacuum
events, rates of mutually exclusive detection events, do not have to add up to 1. We have

∑
xi

Rxi (θ,λ) = 1
or 0. This prohibits one to show that the CHSH inequality (12) for rates is equivalent to the CH one for
rates (25). Clearly the same conclusion holds for other choices of pairs of output modes for the CH
inequality for rates.

5.1.1. The surprising case of CH inequalities for rates
In the case of dichotomic outcomes the lower and the upper bound of the CH inequality (23) are
equivalent. Namely by a replacement of P(A) by 1 − P(Ã), where Ã is an event opposite to A, i.e.
P(A) = 1 − P(Ã), and subsequent replacements of the form P(A, B(′)) = P(B(′)) − P(Ã, B(′)), one can
transform the upper bound of the inequality (23) into an inequality of the form of the lower bound, for
events {Ã, A′} for Alice and {B, B′} for Bob.

However by performing an analogous replacement of Rd1 by Rtot1 − Rc1 , where Rtot1 = Rc1 + Rd1 , which
follows the rule (24), utilising the upper bound and transforming it to the lower bound by change of sign of
both sides we obtain the following form of the CH inequality for rates (25):

〈
(Rtot1 − 1)(Rd2 + R′

d2
) − Rtot1

〉
HV

!
〈

Rc1 Rd2 + Rc1 R′
d2

+ R′
d1

R′
d2
− R′

d1
Rd2 − Rc1 − R′

d2

〉
HV

. (26)

The above inequality is also a CH inequality for rates, where in contrast to the original inequality in (25)
the measurement of Alice for the first setting is now performed in mode c1 and the role of primed and
unprimed settings for Bob’s measurement are swapped. A glance at the lower bound shows that for
Rtot1 = 0 the algebraic expression which is averaged there, reads (Rtot1 − 1)(Rd2 + R′

d2
) − Rtot1 =

−Rd2 − R′
d2

and this can reach even the value of −2.
Thus the two sides of the CH inequality lead, via the procedure (24), to two different CH inequalities for

rates. This explains the phenomenon which we shall see further down. In our analysis we get a violation of
only the lower bound of the CH inequality for rates (25). Surprisingly this inequality is a stronger bound on
local realism in the case of rates, than the upper bound.

5.2. CH violation in the extended setup
As already mentioned, in this section we consider measurement settings that generalize the proposed
measurement setup in [1]. Now a single photon (q = 0 in our initial state), impinges on a balanced
beamsplitter, BS0 and then the output modes interact with auxiliary coherent beams |α1〉 and |α2〉 through
additional two SU(2) beamsplitters UBS1 (χ1, θ1) and UBS2 (χ2, θ2), given by the unitary (1). We assume that
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the amplitudes of the local auxiliary fields α1 and α2 are real. Following the idea of Hardy setup we treat
amplitudes of local fields as a part of measurement settings as well, therefore local settings are specified by
vectors:

(v1 = (χ1,α1, θ1),

(v2 = (χ2,α2, θ2).
(27)

The CH inequality for rates specified in the previous section (25) can be expressed in the following
convenient form:

− 1 ! K((v1,(v2) + K((v ′
1,(v2) + K((v1,(v ′

2) − K((v ′
1,(v ′

2) − S1((v1) − S2((v2) ! 0. (28)

The correlators K((v1,(v2) and the local averages Sj((vj) are defined as follows:

K((v1,(v2)〈Rd1 ((v1)Rd2 ((v2)〉HV,

Sj((vj)
〈

Rdj ((vj)
〉

HV
,

(29)

where the rates Rdj ((vj) are defined as in (10), with the only difference that now the hidden local intensities
Idj ((vj,λ) explicitly depend on the new local settings (vj.

To study the Bell nonclassicality in this extended setup, we replace in (28) the quantum-mechanical
expressions for the two-mode correlators and the local terms:

K((v1,(v2) = 〈Φ(α1,α2)| R̂d1 (χ1, θ1)R̂d2 (χ2, θ2) |Φ(α1,α2)〉 ,

Sj((vj) = 〈Φ(α1,α2)| R̂dj (χj, θj) |Φ(α1,α2)〉 ,
(30)

where |Φ(α1,α2)〉 is a generalized initial state specified in (6). Note that we encounter here a peculiar
feature, namely that the correlation functions and local averages depend on the settings via parameters of
the initial state Φ. If we would like to remove this feature of the setup we have to use POVM operators, and
calculate the expressions (30) as follows:

K((v1,(v2) = 〈ψ| M̂b1 ((v1)M̂b2 ((v2) |ψ〉 ,

Sj((vj) = 〈ψ| M̂bj ((vj) |ψ〉 ,
(31)

in which |ψ〉 denotes the initial single photon superposition (2), and the POVM operators M̂bj ((vj) are
explicitly constructed in appendix B.

We choose to detect the transmitted beam Ddj , j = 1, 2, however we stress that any other choice of the
detectors is possible and equivalent conclusions can be addressed. The terms read as follows:

K((v1,(v2) =
e−α2

1 e−α2
2

2

[(
(eα

2
2 − 1)(1 + eα

2
1 (α2

1 − 1))
α2

1
+

(eα
2
1 − 1)(1 + eα

2
2 (α2

2 − 1))
α2

2

)
sin2 χ1 sin2 χ2

+
(eα

2
1 − 1)(eα

2
2 − 1)

α2
2

sin2 χ1 cos2 χ2 +
(eα

2
1 − 1)(eα

2
2 − 1)

|α1|2
cos2 χ1 sin2 χ2

+
(eα

2
1 − 1)(eα

2
2 − 1)

2α1α2
sin 2χ1 sin 2χ2 sin(θ1 − θ2)

]
, (32)

Sj((vj) =
e−α2

j

2

[
sin2 χj

(
(eα

2
j − 1) +

1 + eα
2
j (α2

j − 1)

α2
j

)
+ cos2 χj

eα
2
j − 1
α2

j

]
. (33)

As mentioned we follow the Hardy-like pattern of settings, for which the first setting of each observer
corresponds to zero auxiliary field and local beamsplitter acting as identity:

(v1 = (0, 0, 0)

(v ′
1 = (χ′

1,α′
1, θ′1)

(v2 = (0, 0, 0)

(v ′
2 = (χ′

2,α′
2, θ′2).

(34)
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Figure 3. Violation of the left-hand-side of the CH inequality (28) as a function of amplitudes α,α′ of the auxiliary fields
corresponding to two local settings. The CH-value is sign-flipped for the sake of clarity of the plot. The amplitudes of auxiliary
fields for a given setting (α or α′) are the same for both observers (36), while they are different for the first (α) and second setting
(α′). The black dashed line represents points for which α = α′, whereas the white dashed line is an envelope of the violation
region with the sign-flipped CH value strictly greater than 1. Notice that the black-line points lie strictly outside the violation
region. This means that it is impossible to obtain the CH violation if we just tune the phases of the local oscillators. The
amplitude tuning is necessary for the violation.

We checked by numerical optimization that the double inequality (28) is violated only on the left-hand
side and the minimal achievable quantum value reads −1.0239. The almost optimal settings for the
violation read:

(v ′
1 =

(
χ′

1 =
3π
20

,α′
1 =

√
2

2
, θ′1 = 0

)
,

(v ′
2 =

(
χ′

2 =
3π
20

,α′
2 =

√
2

2
, θ′2 = −π

2

)
,

(35)

which corresponds to local beamsplitters with transmissivity about 79% and local coherent fields with
average photon number equal to 1

2 .
We have also investigated numerically the possibility of violating the CH inequality for rates (28) for the

case when for both local settings the auxiliary field has non-zero amplitude, as opposed to (34). We
assumed arbitrary parameters for both settings, with the constraint that the amplitudes of auxiliary fields
corresponding to a given setting are the same for both observers, which allows for easy graphical
representation:

(v1 = (χ1,α, θ1),

(v ′
1 = (χ′

1,α′, θ′1),

(v2 = (χ2,α, θ2),

(v ′
2 = (χ′

2,α′, θ′2).

(36)

The results of our findings are shown in the figure 3, in which we present a plot of a CH-value as a function
of the amplitudes α,α′ of auxiliary fields corresponding to two settings. The CH-values for each pair of α
and α′ are optimized over all the remaining parameters in (36). It turns out that a CH violation still exists
for sufficiently small but non-zero values of α. On the other hand there is no violation for any value α = α′,
which is consistent with our previous findings that nonclassical correlations cannot be found for
fixed-amplitude auxiliary fields. The situation depicted in the figure 3 shows an intermediate case between
the Hardy setup, in which we have on-off tuning of the auxiliary field’s amplitudes and the TWC case in
which the amplitudes are constant.

To complete our investigation, we have also examined the original Hardy paradox from the point of
view of the intensity rate-based approach. We found that the Hardy setup with intensity rate operators does
not lead to a violation of the CH inequality for rates. Our result does not invalidate the Hardy’s one,
however it indicates a very different nature of the nonclassicality tests based on aggregation of outcomes
(like in rate approach) and the ones based on very specific outcomes (like in Hardy case). All the detailed
considerations on this topic are presented in a forthcoming publication [38].
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6. Bell operators as entanglement witnesses: intensities vs rates

It is well known that Bell operators can be turned into entanglement witnesses. Thus, the question arises if
the inequality in [17], used in the TWC paper, could also serve this purpose. As they are not proper Bell
inequalities the answer requires a careful analysis. Below we show how to understand the additional
condition (9) in this context. Next, we build an optimized entanglement indicator based on the CHSH-like
inequality of [17]. As the method which we employ to build entanglement indicators for fields is also
immediately applicable for Bell operators based on intensity rates, we build an analogous entanglement
indicator for this case.

Since the CHSH-like inequality (20) seems to be more sensitive to the correlations present in the TWC
setup than the CHSH inequality for rates (12), it suggests that the inequality (20) might be a stronger
entanglement indicator than (12). Surprisingly, it turns out the latter inequality leads to an entanglement
witness which is more efficient in the case of TWC correlations. That is, it detects entanglement for a
broader range of values of α.

6.1. The additional assumption (9) in the case of separable states
The original TWC correlations (with |αj| = α = const. for all settings in the experiment) [1], do not violate
local realism, as shown by the local model presented in [19]. The model covers the whole range of values of
α for which TWC obtained violations of the inequality of [17]. As said earlier, the inequality of [17] cannot
be obtained without the additional assumption (9), which states that for the given value of the hidden
variable λ the total local intensity predicted by the local hidden variable model does not vary with the
measurement settings. Let us assume the model of intensity, which was used above and leads to the
predictions of [1]. It is in the form of number of registered photons (in the given run of the experiment). In
such a case the additional assumption transforms into:

• Either
ntoti (λ) = nci (θi,λ) + ndi (θi,λ), (37)

where nxi (θi,λ) is the number of photons predicted by an LHV theory, for the given λ, to be detected
at detector xi, under local setting θi. The total number to be detected, in this case, at both outputs
ntoti (λ) is assumed to be independent of the local setting. Such must be the form of the condition (9),
if we assume the numbers of photons to be detected are predetermined by the model for each value of
λ.

• Or, for stochastic local hidden variable models, the condition (9) has to be put as

〈ntoti〉(λ) = 〈nci (θi)〉(λ) + 〈ndi (θi)〉(λ), (38)

where 〈nxi (θi)〉(λ) =
∑∞

nxi=1nxi P(nxi |θi,λ) for x = c, d.

Note that condition (38) does not imply (37).
We shall show below that in the case of hidden quantum product state model (i.e. for separable states),

which is a subclass of LHV models, the condition of [17] should be understood as (38).

6.1.1. Condition (38) for separable states
As already discussed, assumption (37) imposes an additional constraint on the structure of local hidden
variable model. Still, a local hidden product (quantum) state model is a form of local hidden variable
model, which we get when we consider a separable quantum state as the one that causes the correlations. In
such a case condition (38) definitely holds.

This suggests that the inequality of [17] can be an entanglement witness.
Consider a density matrix describing separable states for optical fields, for the operational scenario

which we consider here. They are always a convex combination of pure ‘product’ states (inverted commas
are for field theories, see below). We shall use now λ as an index related with any such element of the
convex combination, and the weights of the convex combination we shall denote, as earlier, by ρλ. An
arbitrary separable state for the optical fields of the considered experiments reads

ρ1,2
sep =

∫
dλρλf †

λ (â1, b̂1)g†
λ(â2, b̂2) |Ω〉〈Ω| fλ(â1, b̂1)gλ(â2, b̂2), (39)

where f †
λ (â1, b̂1) and g†

λ(â2, b̂2) are polynomial functions of annihilation operators acting on modes âi and b̂i

of ith party. Note that for arbitrary local observables Ôi(âi, â†
i , b̂i, b̂†

i ), and for any of the pure states
f †
λ (â1, b̂1)g†

λ(â2, b̂2) |Ω〉 one has 〈Ô1Ô2〉λ = 〈Ô1〉λ〈Ô2〉λ. Thus, this is a proper description of separability for
optical fields.
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The probability of getting result nx1 for 1st party, with setting θ1 for state indexed by λ is given by:

Pr (nx1 |θ1)λ = Tr
[
δ(nx1 ,̂nx1 (θ1))f

†
λ (â1, b̂1) |Ω〉〈Ω| fλ(â1, b̂1)

]
= 〈δ(nx1 ,̂nx1 (θ1))〉λ, (40)

where δ(n,k) is the Kroenecker’s delta function.
A similar formula holds for 2nd party for results nx2 under setting θ2. Following formula (40) the joint

probability for two parties goes as follows:

Pr (nx1 , nx2 |θ1, θ2)sep = Tr
[
δ(nx1 ,̂nx1 (θ1))δ(nx2 ,̂nx2 (θ2))ρ

1,2
sep

]
=

∫
dλρλ Pr (nx1 |θ1)λ Pr (n2|θ2)λ. (41)

Thus we have a typical structure of a local hidden variable model. Further, assumption (38) is not in
contradiction with the structure of separable states. In fact we have an operator identity:

n̂toti = n̂ci (θi) + n̂di (θi), (42)

which holds for any settings θi and we have

〈n̂toti〉(λ) = 〈n̂ci (θi)〉(λ) + 〈n̂di (θi)〉(λ), (43)

i.e. 〈n̂toti〉λ also does not depend on the settings. Thus indeed the inequality of [17] is an entanglement
indicator.

6.2. Entanglement indicators, a comparison
The inequality of [17] in the TWC version (20) can be put as the following condition for separability

〈δn̂1(θ1)δn̂2(θ2) + δn̂1(θ′1)δn̂2(θ2) + δn̂1(θ1)δn̂2(θ′2) − δn̂1(θ′1)δn̂2(θ′2)〉sep ! 2〈n̂tot1 n̂tot2〉sep, (44)

where we introduced: δn̂i(θi) = n̂ci(θi) − n̂di (θi), and similarly for θ′i. However, the right-hand side of this
condition was derived following the additional assumption on local hidden variable models. For separable
states this can be lowered, as they form a further constrained set of local hidden variable
models.

We have to find its upper bound for separable states. This involves also search for optimal settings. As in
the usual case of two qubits optimal violations of the CHSH inequality take place when Alice and Bob use
fully complementary settings, we shall give the separability conditions for such a case. We are going to use
an isomorphic mapping from entanglement witnesses for qubits, to entanglement indicators for quantum
optical fields [28, 29]. We derive a separability condition based on Bell inequality for qubits and then map it
to optical field operators. As we need only two pairs of settings we reduce the Bloch sphere for qubits to a
circle and using the standard Pauli matrices we denote the operator basis for each of them by (σj = (σx

j ,σz
j ),

j = 1, 2. The optimal separability condition based on the CHSH inequality can be obtained if we choose
Alice’s and Bob’s settings to be fully complementary. With each setting we associate a unit Bloch vector. We
can put: (a = (1, 0), (a′ = (0, 1), (b = 1√

2
(1, 1) and (b′ = 1√

2
(1,−1). In this notation the lhs of the CHSH

inequality for any pure product state of two qubits gives the following:
〈
(a · (σ1 ⊗ ((b +(b′) · (σ2 +(a ′ · (σ1 ⊗ ((b −(b′) · (σ2

〉

prod
!

√
2
(
〈σx

1〉prod〈σ
x
2〉prod + 〈σz

1〉prod〈σ
z
2〉prod

)
!

√
2,

(45)
because 〈σx

j 〉2 + 〈σz
j 〉2 ! 1, where j = 1, 2, for any qubit state. Condition (45) holds as well for all mixed

separable states of two qubits as they are convex combinations of product states. It holds also for arbitrary
orthogonal pairs (a, (a′ and (b, (b′. Its final form as an entanglement witness thus reads:

〈
√

2σ0
1 ⊗ σ0

2 −
[
(a · (σ1 ⊗ ((b +(b′) · (σ2 +(a′ · (σ1 ⊗ ((b −(b′) · (σ2

]
〉sep " 0, (46)

where we have introduced identity matrices σ0.
A method of finding an isomorphic entanglement witness given in [29] is based on replacements

σµ → Ŝµ, where the latter is a quantum Stokes operator of optical field (µ = 0, 1, 2, 3). In the case of the
TWC interferometric configuration Ŝ0 can be replaced by the total intensity impinging on the detectors
behind the local interferometer, here modeled by n̂toti , and Ŝ1 with Ŝ2 by respectively
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Figure 4. Comparison of amplitudes A(α) in function of α for CHSH based entanglement conditions for rates (47) and
intensities (48). If A(α) exceeds 1

2 we observe violation.

δn̂i(θi) = n̂ci (θi) − n̂di (θi) and δn̂i(θi + π
2 ). Thus the quantum optical analog for the separability condition

for two qubits is given, via the isomorphism of [29], in the following form:

〈√
2n̂tot1 n̂tot2 −

[
δn̂1(θ1)δn̂2(θ2) + δn̂1(θ1)δn̂2(θ2 +

π

2
) + δn̂1(θ1 +

π

2
)δn̂2(θ2)

− δn̂1(θ1 +
π

2
)δn̂2(θ2 +

π

2
)
]〉

sep
" 0. (47)

The above condition (47) can be also transformed into the one with rates instead of intensities. This can
be achieved using another isomorphism presented in [29]:

〈√
2Π̂1Π̂2 −

[
δR̂1(θ1)δR̂2(θ2) + δR̂1(θ1 +

π

2
)δR̂2(θ2) + δR̂1(θ1)δR̂2(θ2 +

π

2
)

− δR̂1(θ1 +
π

2
)δR̂2(θ2 +

π

2
)
]〉

sep
" 0, (48)

where δR̂i(θi) = R̂ci (θi) − R̂di (θi), and the intensity rate operators R̂xi (θi) are defined in equation (13).
Witnesses (47) and (48) can reveal mode entanglement of the initial state |Ψ(α)〉 (3) in a certain range

of the coherent field amplitudes α. Analogously to (16) we introduce AEW
R (α) that stands for the amplitude

of the correlation function:

〈Ψ(α)|δR̂1(θ1)δR̂2(θ2)|Ψ(α)〉
〈Ψ(α)|Π̂1Π̂2|Ψ(α)〉

= AEW
R (α) sin(θ1 − θ2), (49)

where the amplitude is given by

AEW
R (α) =

e−α2
(eα

2 − 1)
α2

. (50)

Condition (48) for |Ψ〉 can be put as follows:

AEW
R (α)[sin(θ1 − θ2) + sin(θ′1 − θ2) + sin(θ1 − θ′2) − sin(θ′1 − θ′2)] !

√
2, (51)

and its violation appears if AEW
R (α) " 1

2 . The same holds for (47) with the difference that amplitude
AEW

T (α) ≡ AT(α) = 1
(1+α2) replaces AEW

R (α). We present entanglement detection with (48) and (47) in
terms of values of AEW

R/T(α) in figure 4. The CHSH-based entanglement indicator involving rates (48) is
more effective than the one based on CHSH-like inequalities of [17] involving intensities (47). This may
seem surprising, since the CHSH-like inequalities of [17] show (spurious) violations of local realism for the
TWC configuration, whereas CHSH-Bell inequality involving rates is not violated for any α. This fact shows
the advantage of the rate-based approach over the intensity-based approach: it gives no spurious Bell
violations and nevertheless it is more effective as an entanglement indicator.

Of course the presented entanglement indicators have two interpretations, within the context of TWC
correlations. Either they detect entanglement of the state:

1√
2

|α〉a1 (|01〉b1b2 + i |10〉b1b2 )|α〉a2 (52)
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with von Neumann measurements, or entanglement of

1√
2

(|01〉b1b2 + i |10〉b1b2 ) (53)

with optical homodyne based POVM measurements. In the second case the settings may depend also on
varying moduli of values of local α’s.

7. Discussion and conclusions

In our work we reconsidered two prototypical experimental scenarios aiming at demonstration of a single
photon nonclassicality, namely the proposal of TWC [1], and the one of Hardy [2]. We have shown that if
one applies an intensity-rate-based approach, without using additional assumption (9), the associated
Bell-CHSH inequality for rates is not violated in the case of TWC correlations. This finding is concurrent
with our previous work [19], which shows a failure of TWC setup in demonstrating nonclassicality by
providing a precise local hidden variable model for the setup. Nevertheless, we have shown that the original
TWC analysis can be still used as an entanglement indicator, however a weaker one than the one based on
intensity rate approach. These facts are a strong premise towards treating the intensity rate-based approach
to analysis of correlations of the optical fields as more appropriate from both: Bell-type perspective (as it is
free of any additional assumptions) and an entanglement detection perspective (as it gives rise to more
robust entanglement indicators). As a side discussion we pointed out possible threats concerning the
application of a parametric approximation to a coherent light. Namely if one applies such an approximation
at the same time ignoring the phase uncertainty, spurious increases of the strength of correlations
may arise.

Our intensity rate-based analysis of Hardy-like scenario leads to several conclusions. First, we point out
that in this approach the CH inequality for rates is strictly stronger than the CHSH one (for rates). We have
shown a violation of the CH inequality for rates in Hardy-like scenario, which includes tunable amplitudes
of the coherent local oscillator auxiliary fields, but also (in contrast to the original Hardy analysis) local
beamsplitters with tunable transmissivities. Our approach involves modification of two further features of
the Hardy scheme, namely we use just a single photon initial state as in the TWC approach (q = 0 in the
figure 1) and do not limit the settings specified by the local oscillator strengths to the on/off detection
mode. This indicates that the crucial aspect of the Hardy-like schemes which enables violation of the local
realism is the tunability of the strengths of the local auxiliary fields, which need to differ from setting to
setting.

Let us now discuss the physical interpretation of these observations. First, notice that the Hardy-like
scenario possesses a peculiar feature untypical for Bell tests, namely that the entire initial state of the
interferometric setup is different for different measurement settings. To some extent one can overcome this
interpretational difficulty by treating presence of auxiliary fields as an optical implementation of a POVM.
We show analytical forms of such POVMs in appendices A and B. However even such a treatment does not
dispel doubts whether nonclassical correlations found in Hardy-like scenarios can be attributed solely to the
single photon (excitation) state. Despite several objections discussed earlier majority of works devoted to
this issue states that the sole source of correlations in such experiments is the single photon superposition.
Our reconsideration of the mechanism of the nonclassical correlations in the setup indicates that such a
conclusion is unfounded due to a very subtle issue, which goes beyond the duality between mode and
particle entanglement in interferometric setups (see e.g. discussion in [13]). Namely, the source of observed
correlations is the quantum interference, which occurs if and only if a given detected multiphoton event
could have been realized in two or more genuinely indistinguishable ways. The quantum interference
observed in Hardy-like schemes is based on indistinguishability of processes corresponding to detection of
photons coming from the signal state and the local oscillator fields. At the detection stage due to mentioned
interference all photons must be treated on equal footing, hence the distinction between the input (signal)
photons and the local oscillator ones disappears. Note that such a conclusion can be drawn only for the case
of homodyne measurements with weak local auxiliary fields, since then the local fields have to have a full
quantum description and it is meaningful to consider them as composed of photonic excitations.
Nevertheless we are not aware of any work which would show single photon Bell nonclassicality in the
regime of strong-field homodyne detection.

Based on our findings, we argue that the resource behind observed nonclassical correlations in the
TWC-Hardy experiments is quantum interference due to the indistinguishability of photons originating
from different sources. This means that the ‘nonlocality of a single photon’ shares the same interpretation as
the other profound interferometric nonclassical phenomena, like photonic entanglement swapping [39], or
nonclassical interference for pairs of photons originating from independent sources [40–43].
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Appendix A. Effective POVM operators for CHSH inequality rates

We obtained the correlation coefficient (see equation (16)) for local homodyne-type measurements
performed on the linear superposition of a single photon and vacuum, |ψ〉b1,b2

= 1√
2
(|01〉 + i |10〉)b1,b2 , in

terms of intensity rates in mode ĉj or d̂j in a symmetric beamsplitter transformation UBSj (
π
4 , θj), where an

auxiliary coherent field |α〉aj
, impinges on the remaining input of the beamsplitter for j = 1, 2. In this

section our aim is to figure out the form of the positive operators POVMs acting on the initial state |ψ〉b1,b2
,

which give rise to an equivalent form of the same correlation function (18). Suppose Mbj (α, θj) is the
POVM operator in part of the mode bj, for j = 1, 2, then we obtain the defining condition for the
POVM by demanding equivalence of the two forms of the correlation coefficient (compare equations (16)
and (18)):

〈Ψ(α)| Ĥ1(θ1)Ĥ2(θ2) |Ψ(α)〉 = b1b2
〈ψ|M̂b1 (α, θ1)M̂b2 (α, θ2)|ψ〉b1b2

, (A1)

where the initial state |Ψ(α)〉 is defined in equation (3). Hence, the POVM operator is given by:

M̂bj (α, θj) = aj
〈α|Ĥj(θj)|α〉aj

(A2)

= aj
〈α|Π̂cjdj

n̂cj − n̂dj

n̂cj + n̂dj

Π̂cjdj |α〉aj
(A3)

= aj
〈α|Π̂ajbj

eiθj âjb̂
†
j + e−iθj â†

j b̂j

â†
j âj + b̂†

j b̂j

Π̂ajbj |α〉aj
(A4)

= e−α2
∞∑

n=0

α2n+1

n!

∞∑

m=1

√
m

n + m

(
eiθj |m〉 〈m − 1|bj

+ e−iθj |m − 1〉 〈m|bj

)
. (A5)

Appendix B. Effective POVM operators for CH inequality and tunable exit
beamsplitters

In the previous section, we have calculated the POVM for the balanced beamsplitter and for the homodyne
detectors Ĥj. Here, we will try to obtain the POVM for the correlation coefficients given in equations (30)
and (31) for arbitrary beamsplitters. The construction of the POVM is shown schematically in the
figure 5.

For a beamsplitter with arbitrary transitivity, the output modes are given by (see equation (5)):

ĉj = cos χjâj + sin χj e−iθj b̂j, (B1)

d̂j = − sin χj eiθj âj + cos χjb̂j. (B2)

Now we want to find out POVM elements M̂bj ((vj), j = 1, 2, such that the correlation coefficients and

the local terms from equation (31) read K((v1,(v2) = b1b2
〈ψ|M̂b1 ((v1)M̂b2 ((v2)|ψ〉b1b2

and

Sj((vj) = b1b2
〈ψ|M̂bj ((vj)|ψ〉b1b2

, for j = 1, 2.
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Figure 5. Schematic diagram of the effective POVM operators acting on modes b̂1 and b̂2 to detect the nonclassicality of a single
photon. Average intensity rate 〈R̂xj 〉 detected in detector Dxj , for x = c, d, j = 1, 2, or the correlation 〈R̂x1 R̂x2 〉 detected in
detectors Dx1 and Dx2 for x = c, d on the output modes of the beamsplitters UBSj , j = 1, 2 along with an auxiliary coherent beam,
can be considered as an effective POVM Mbj acting on the modes bj, j = 1, 2. The semicircular shaded region shows that the

beamsplitter UBSj, the coherent field
∣∣αj

〉
, and detection of the Homodyne Ĥj for j = 1, 2 are equivalent to a POVM Mbj (αj, θj),

for j = 1, 2 is given in equation (A5) and the detection of R̂dj , for j = 1, 2 are equivalent to a POVM Mbj ((vj), for j = 1, 2 is given
in equation (B6).

By demanding equivalence of the two forms of correlation coefficients in equations (30) and (31) we
obtain:

Mbj ((vj) = aj
〈αj|R̂dj (χj, θj)

∣∣αj
〉

aj
= aj

〈αj|Π̂cjdj

n̂dj

n̂cj + n̂dj

Π̂cjdj

∣∣αj
〉

aj
(B3)

= aj
〈αj|Π̂ajbj

d̂†
j d̂j

â†
j âj + b̂†

j b̂j

Π̂ajbj

∣∣αj
〉

aj
(B4)

= aj
〈αj|Π̂ajbj

sin2 χjâ
†
j âj + cos2 χjb̂

†
j b̂j

â†
j âj + b̂†

j b̂j

Π̂ajbj

∣∣αj
〉

aj

− 1
2

sin 2χjaj
〈αj|Π̂ajbj

eiθj âjb̂
†
j + e−iθj â†

j b̂j

â†
j âj + b̂†

j b̂j

Π̂ajbj

∣∣αj
〉

aj
(B5)

= e−α2
j

(
cos2 χj

(
Ibj − |0〉 〈0|bj

)
+

∞∑

n=1

α2n
j

n!

sin2 χjn + cos2 χjb
†
j bj

n + b†
j bj

− 1
2

sin 2χj

∞∑

n=0

α2n+1
j

n!

∞∑

m=1

√
m

n + m

(
eiθj |m〉 〈m − 1|bj

+ e−iθj |m − 1〉 〈m|bj

))
. (B6)

If beamsplitters UBS1 and UBS2 have 100% transmissivity, then the above POVM reduces to
Π̂bj = Ibj − |0〉 〈0|bj

, j = 1, 2.
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Abstract
Nowadays photon-number resolving weak-field homodyne measurements allow realization of
emblematic gedankenexperiments revealing correlations of optical fields. This covers experiments
on (a) excitation of a pair of spatial modes by a single photon, and (b) two spatial modes in a
weakly squeezed vacuum state, involving constant local oscillator strengths. Proving Bell
nonclassicality of such correlations demands measurements of complementary observables. We
show that typical arrangement of weak-field homodyne detection with measurement settings
defined by phases of local oscillators of constant strength does not provide enough
complementarity for confirming Bell nonclassicality. In the case of experiment (a) we provide an
exact local hidden variable model restoring all quantum probabilities, whereas in the case of
experiment (b) we show that the claims of its nonclassicality are unfounded. A full
complementarity of wave aspects vs particle (number) can be achieved in a measurement situation
in which respectively the local oscillators are on or off . This is shown to lead to an operational
scenario, in the case of both experiments (a) and (b), which reveals indisputable violations of local
realism. Such schemes may find possible applications in device-independent quantum protocols.

‘The two views of the nature of light are rather to be considered as different attempts at an inter-
pretation of experimental evidence in which the limitation of the classical concepts is expressed in
complementary ways’.

‘Bohr [1]’.

1. Introduction

In one of classic textbooks on quantum optics [2], page 264, one can find the following statement at the end
of the chapter devoted to Bells inequalities in Quantum Optics ‘[. . . ] some of the most striking features of
non-locality in quantum mechanics may be demonstrated using phase-sensitive measurements on the field
produced by a single photon. These effects may not be explained classically using a particle, wave or
hidden-variable theory involving local causality’. The authors meant the operational configuration of
figure 1(a) presented in [3]. A statement of this kind can also be found in the monograph [4], page 606. We
falsify the claim of [3], by providing an explicit local causal hidden variable model, which covers all details
of the quantum predictions for the configuration. We also show arguments suggesting that another
emblematic experiment [5] involving ‘phase-sensitive measurements’, that is homodyne measurements,
figure 1(b), is not a proper Bell experiment. We show that in both cases unquestionable violations of local
realism can be observed if proverbial Alice and Bob use as their alternative local settings complementary

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Experimental configuration proposed by TWC, [3]. A single-photon impinges on a 50–50 beamsplitter via input s.
We have vacuum in the input t. The resulting state |ψ〉b1 ,b2 , propagates to the laboratories of Alice and Bob, performing
homodyne measurements involving weak coherent local oscillator fields (their amplitudes satisfy |α1| = |α2|). Following [10],
detectors D are photon-number resolving. (b) GPY configuration: modes b1 and b2 are fed with radiation in two-mode squeezed
state [5], and the rest of the configuration is as in (a). We show that scheme (a) of TWC in its ideal form has an explicit local
realistic model, and that claims of violation of local realism by GPY scheme (b) are as yet unsubstantiated. The ‘on/off’
measurement scheme, which reveals violations of Bell inequalities requires operational modifications. In the ‘on’ case we replace
the 50–50 beamsplitters with ones which optimally have transmittivity of around 80%. The ‘off’ setting is realized by removing
the beamsplitter and blocking the input port of local detector Dci , e.g. closing a shutter.

measurement settings, which directly reflect the wave–particle duality: one is of the homodyne type, the
other is a direct photon number measurement with the local oscillator off.

Complementarity is according to Bohr the basic feature of quantum mechanics [1]. It is behind
wave–particle duality and is quantified by uncertainty relations. We know that it is also behind violations of
Bell inequalities. Within the quantum theory of light Dirac [6] suggested phase vs photon-number
uncertainty inequality (later formulated rigorously by [7, 8]). Recent trailblazing experiments [9–11],
involving weak-field homodyne detection with photon-number resolution [12],

allow observations of new optical phenomena which exhibit both particle and wave nature of light. Thus
they seem to be the perfect tool for observing the complementarity of Bohr concerning these two aspects of
quantum light. A question emerges: what is the efficient operational utilization of this example of
complementarity in Bell-type experiments, so that we can have unquestionable violations of local realism?

Note that homodyne measurements performed on optical beams (modes) in specific states (which we
would call signal states) by their very nature blur the particle aspect of these states, as local oscillators are in
coherent states, and therefore have inherently undefined number of photons. In other words, homodyning
precludes photon number measurement on the signal beams, even if the final detection is
photon-number-resolving. Thus, if all measurements in a Bell test are of homodyne type, they do not
exploit directly photon-number wave (phase) complementarity, although they can involve mutually
incompatible operational situations. That is, different phase settings defining different local measurements
in Bell test.

The new technique [9–11] allows to realize emblematic gedankenexperiments, involving weak local
oscillators homodyne detection, with local settings defined by the local phases, which were purported as
possible Bell tests [3, 5]. We show that straight-ahead use of the photon-number vs phase complementarity,
which operationally means measurement setting defined by having the local oscillator on (phase dependent
measurement) or off (pure photon number measurement) leads to proper Bell tests. The other trait is that
the homodyning cannot be balanced. Settings defined by phases only, and with constant oscillator strengths,
lead in the case of experiment [3] to a situation, which has an explicit local realistic model. In the case of
experiment [5] there exists a partial model, and there is no evidence for violations of Bell inequalities.

This suggests that such ‘on/off’ modifications of the discussed arrangements could be used for
device-independent implementations of quantum information protocols, e.g., key distribution, or random
number generation. On the contrary, the standard option to define settings by local phases and keeping
local oscillator strength fixed seems out of question for device independent applications. We point out that
in the device-independent version the ‘on/off’ arrangement should be implemented locally. We assume that
an oscillator has always a constant strength α2

j for both observers j = 1, 2. Then the ‘off’ setting is

2
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implemented by removing a beamsplitter BSj and closing a shutter just before the detector Dcj (see figure 1).
In this way the local setting is neither revealed nor governed from the outside of the measurement station.

2. Emblematic gedankenexperiments turned real

The authors of [10] report photon-number resolving weak-field homodyne measurements in the case of the
two emblematic entangled states of two spatial optical modes, namely:

(a) excitation of the modes by a single photon, first discussed in [3] by Tan, Walls and Collett (TWC),

(b) the modes in a squeezed vacuum state, first suggested in [5] by Grangier, Potasek and Yurke (GPY).

The operational schemes of the experiments are shown in figure 1. In [10] the detectors were able to
distinguish photon numbers with a significant probability. State of the art techniques allow now this to up
to 20 photons with approx. 90% efficiency [11].

The essential for our discussion trait of experiments (a) and (b), and their realization in [10] is that they
use at the measurement stage constant local oscillator strengths and 50–50 beamsplitters.

2.1. TWC experiment (a)
TWC [3] considered the state obtained by casting a single photon on a 50–50 beamsplitter,

|ψ〉b1,b2 =
1√
2

(
|01〉b1,b2 + i|10〉b1,b2

)
=

1√
2

(ib†1 + b†2)|00〉b1,b2 , (1)

where e.g., |10〉b1,b2 , indicates one photon in exit mode b1 and vacuum in exit mode b2, see figure 1, and b†i
are photon creation operators related with the beams i. As the experiment does not involve the polarisation
degree of freedom, we assume that all photons are of the same polarisation, and thus this element is
removed from the formal description. TWC suggested Bell non-classicality of |ψ〉b1,b2 can be revealed in
weak-field balanced homodyne measurements involving fixed strengths of the local oscillators.

The first form of |ψ〉b1,b2 in (1) appears to be similar to a two-qubit Bell state. However, from the point
of view of quantum optics, the fundamental theory of light, |ψ〉b1,b2 is intrinsically different. The two states
differ in the number of particles: Bell singlet is a state of two particles, while the superposition in |ψ〉b1,b2 ,
the second form of relation (1) is an eigenstate of the total photon number operator associated with
eigenvalue 1. Bell singlet describes entanglement of two ‘particles’ (qubits, described using ‘first
quantization’), while |ψ〉b1,b2 describes an entanglement of two spatially separated modes of the optical field,
for a discussion see [13]. If one introduces a phase shift of π

2 in beam 1 the state transforms into

|ψS〉b1,b2 =
1√
2

(
|01〉b1,b2 − |10〉b1,b2

)
=

1√
2

(b†2 − b†1)|00〉b1,b2 , (2)

which seems to be an analog of a two-qubit singlet. However for example, a quantum optical polarization
singlet in its simplest form reads

|ψsinglet〉b1,b2 =
1√
2

(
b†1H b†2V − b†1V b†2H

)
|00〉b1,b2 , (3)

where b†iX is a photon creation operator with i = 1, 2 standing for directional (spatial) modes, and X = H, V
for two orthogonal polarization modes. The main feature of the singlet is its rotational invariance with
respect to a pair of identical local SU(2) transformations of the pairs of operators b†iH and b†iV . This is related
to the fact that in quantum electrodynamics a singlet is a state which gives total spin angular momentum
equal to zero (for electrons and also for photons, if one equates helicity with spin). This is not the case of
|ψ〉b1,b2 , since there is no natural interferometric implementation of the single-mode SU(2) transformation.
Such an operation would demand change of the local photon number and cannot be implemented using
passive linear optical devices. This can be seen most easily by noticing that a formal SU(2) acting on a pair
of states |1〉b1 and |0〉b1 would transform them respectively into U11|1〉b1 + U21|0〉b1 = (U11b†1 + U21)|0〉b1

and (U12b†1 + U22)|0〉b1 . These states have different average photon number than the original ones.
Therefore they are impossible with all-optical means involving passive operations only.

2.2. Experimental scheme
The state |ψ〉b1,b2 reaches Alice (controlling the mode b1) and Bob (b2), see figure 1(a). They both perform
local weak-field homodyne measurements. Modes bj, where j = 1, 2, and the auxiliary coherent fields in
state |αj〉aj = |α eiθj〉aj are fed into input ports of 50–50 beamsplitters BSj, and end up in detectors Dcj and
Ddj . The phases θj fully determine the local measurement settings, α is not varied.

3
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3. Results

3.1. Explicit LHV model of TWC correlations
In our analysis we assume that all optical elements and detectors are perfect. We point out that any
imperfections of optics that affect the interference visibility of the correlations, can be easily dealt by
introducing modifications of the hidden variable model which reproduces ideal correlations. Also any
inefficiency of the collection-detection in the scheme, which is assumed to be a random local process, does
not change the model building scheme which we propose below. This is because the model is elastic with
respect to visibilities of the various processes, and non-detection events play a crucial role in it. They occur
also in the ideal case of the TWC experiment.

Quantum predictions for the TWC setup are fully characterized by the probabilities p(n) of events
consisting of registering a specific numbers of photons in the output modes: n = (kc1 , ld1 , rc2 , sd2 ) ∈ N

4 (for
readability, we omit the indices indicating the modes in further parts of this Letter). They read (see
appendix A for the derivation):

p(n) = A(α, n)
[
(k−l)2 + (r−s)2 + 2(k−l)(r−s) sin(θ12)

]
, (4)

where

A(α, n) =
e−2α2

(
α2

2

)k+l+r+s

2α2k! l! r! s!

and θ12 = θ1 − θ2.
Note that, whenever both detectors of Alice or Bob register the same number of photons, the probability

does not depend on θ12. Let us denote the set of these events as N := {n : k = l or r = s}. We cover them
by a family of trivial LHV submodels assigning fixed outcomes to Alice and Bob, see further.

The probabilities that do depend on θ12 are of the form p(n|θ12) = B(α, n)(1 + Vn sin(θ12)), where
B(α, n) = A(α, n)

[
(k−l)2 + (r−s)2

]
and Vn = 2(k−l)(r−s)

(k−l)2+(r−s)2 . To reproduce them, we adapt a model by Larsson
[14, 15], which emulates quantum predictions for the two-qubit singlet state, for detection efficiency lower
than 2/π.

Our model M is a convex combination of submodels Mn, each chosen with probability P(Mn). The
submodels belong to two infinite families: the trivial {Mn}n∈N and Larsson-like one {Mn}n∈Ñ , where
Ñ := {n : k > l and r > s}. We focus on the latter first.

We group the probabilities that depend on the local settings θj with ones corresponding to events of
class O in the case of which (perfect) detectors of either Alice or Bob do not register any photons. Formally
we have O := {n ∈ N : either k = l = 0, or r = s = 0}.

Each Larsson-like submodel {M(k,l,r,s)} is going to predict eight events resulting from applying (or not)
the swaps k ↔ l and r ↔ s to events (0, 0, r, s), (k, l, 0, 0) and (k, l, r, s). Notice that only one of the above
matches the index (k, l, r, s) ∈ Ñ of the model. To construct it, we take a uniformly distributed continuous
hidden variable λ ∈ [0, 2π] and a coin toss one x ∈ {0, 1}.

Specifically, for x = 0 Alice can register the event (c, d) ∈ {(k, l), (l, k)} with probability

PA
n (c, d|θ1,λ, 0) = Rn(c, d|θ1,λ) =

1

π
(1 − Vn) + Vn| sin(θ1 − λ)|H ((c − d) sin(θ1 − λ)) , (5)

where H is the Heaviside function, and for (0, 0) event we put

PA
n (c = 0, d = 0|θ1,λ, 0) = Rn(0, 0|θ1,λ) = 1 −

∑
(e,f )∈{(k,l),(l,k)}

Rn(e, f |θ1,λ). (6)

Note that the sets of possible outcomes depend on the submodel Mn. However, within each submodel the
definitions of local probabilities of one party do not depend on the outcomes of the other, as the visibility
Vn is fixed for a given index n. Bob detects (c′, d′) ∈ {(r, s), (s, r)} with probabilities

PB
n(c′, d′|θ2,λ, 0) = Qn(c′, d′|θ2,λ) = H

(
(c′ − d′) cos(θ2 − λ)

)
. (7)

For x = 1 we put PA
n (c, d|θ1,λ, 1) = Qn(c, d|θ1,λ), and PB

n(c′, d′|θ2,λ, 1) = Rn(c′, d′|θ2,λ). This symmetrizes
the model.

The joint probabilities for each submodel are given by:

PAB
n (c, d, c′, d′|θ1, θ2) =

1

4π

1∑
x=0

∫ 2π

0
dλ PA

n (c, d|θ1,λ, x)PB
n(c′, d′|θ2,λ, x). (8)
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To get the probability that the submodel Mn predicts event n = (k, l, r, s), in the simplest case of
π/2 > θ1 > θ2 > 0, k > l and r > s, is elementary. It reads: 1

2π (1 + Vn sin θ12). Generally, for events
(k, l, r, s), (l, k, r, s), (k, l, s, r) and (l, k, s, r) we get:

PAB
n (c, d, c′, d′|θ1, θ2) =

1+ Vn sgn
(
(c−d)(c′−d′)

)
sin(θ12)

2π
. (9)

In the case of the O-events (0, 0, r, s), (0, 0, s, r), (k, l, 0, 0) and (l, k, 0, 0), the probability is flat and reads
1
4 − 1

2π , which follows directly from the normalisation condition in (6). Comparing (9) with the
corresponding quantum probabilities p(n|θ12), we see that each Larsson-like submodel Mn must appear in
the full model M with probability P(Mn) = 2πB(α, n).

The overall model reproduces all probabilities which reveal interference. However a condicio sine qua non
for consistency of the full model is to properly describe also events O. The construction, due to the
Larsson-like submodels, ascribes probability ( π

2 − 1)B(α, (k, l, c′, d′)) to the event (k, l, 0, 0) and (l, k, 0, 0).
This is so, because for each of the submodels M(k,l,c′,d′), a fraction 1

4 − 1
2π of it covers these events from O,

and the sub-model as a whole appears with probability 2πB(α, n).
The sum of all such contributions cannot be greater than the quantum probability p(k, l, 0, 0). It can be

lower since the difference can be described by trivial models. This gives the following consistency
conditions:

Δ(k,l,0,0) = p(k, l, 0, 0) −
(π

2
− 1

)∑
c′>d′

B(α, (k, l, c′, d′)) � 0, (10)

which must hold for any k �= l. Due to the symmetrization an analogous constraint holds for events of
(0, 0, r, s).

In appendix A.3 we show that the condition in equation (10) is satisfied for any (k, l) and (r, s),
whenever α2 < 0.87. The model can be completed using a family of trivial submodels Mn for events
n ∈ N . They predict fixed outcomes for Alice and Bob, PA

n (k, l) = PB
n(r, s) = 1, which lead to

PAB
n (k, l, r, s) = 1. For events n ∈ N\O, we choose each corresponding trivial model Mn with probability

p(n). Finally, for events n ∈ O we might need to compensate the potential difference Δ(k,l,0,0) > 0 between
the quantum predictions for the O-events and the predictions specified by the Larsson-like models. To this
end, we use an additional trivial submodel for event (k, l, 0, 0), which appears in the full model with
probability P(M(k,l,0,0)) = Δ(k,l,0,0). The case of Δ(0,0,r,s) > 0 is treated the same way.

One can build a version of the model holding for slightly higher values of α. We were not able to find a
model which has an unconstrained validity, and we conjecture that the Larsson-like approach cannot lead
to such. Still, our model fully covers the range of α for which TWC predicted a violation of local realism:
α2 <

√
2 − 1 [3]. Thus, this claim is fully revoked, and this is done for, finer than in TWC proposal,

photon-number resolving measurements. The model works for the intensities of the local oscillators used in
[10], figure 3 there, corresponding to α ≈ 0.55.

3.2. GPY experiment (b)
The setup proposed in [5], and realised in [10] in a weak-field homodyne photon-number resolving
version, is presented in figure 1(b). The source is a parametric down conversion process, in which a
non-linear crystal transforms part of the pumping light into pairs of photons, fed into two output modes,
b1, b2. The photons are sent to two measurement stations which perform weak-field homodyne
measurements. The state is a two mode squeezed vacuum, |σv〉b1b2 =

√
1 − γ2

∑+∞
k=0 γ

k|k, k〉b1 ,b2 , where γ is
for simplicity assumed to be real. As before, Alice and Bob mix |σv〉b1b2 with two weak coherent states in
modes a1 and a2, namely |αj〉aj = |α eiθj〉aj using local beamsplitters.

3.3. Is this a Bell experiment?
We show an explicit model for a subset of correlations appearing in the GPY setup with photon-number
resolution, which is inspired by the model for the TWC correlations. It covers events with maximally one
photon detected on one side, and maximally three on the other one. They depend only on θ12. We call them
class 1 events. We were not able to find an explicit Larsson-model for the class 2 events with two photons
detected on both sides, as they depend also on 2θ12. We show that there is no evidence that such a model
does not exist, showing that CGLMP inequalities [16] cannot be violated by this subset of events. For all
events with altogether up to four detected photons there is no evidence for violation of local realism. As
these events definitely are most frequent, this constitutes a strong argumentation toward showing that the
GPY configuration (with constant local oscillator strengths) does not constitute a proper Bell test. Our
additional partial analysis, not to be presented here, seems to indicate that violation of local realism cannot
be shown also for other events not restricted to altogether up to four photons.
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Class 1 events follow a pattern: one party registers a local event (k, l), k �= l, while the other detects a
single photon. Their probabilities are of the form

p(n) = A(n)
(
α4 + c1(n)γ2 ± c2(n)α2γ cos θ12

)
, (11)

see the appendix B.1 for the exact form of the coefficients. Larrson-like models exist in this case. In each of
them, one party predicts local events (0, 0), (k, l), and (l, k). The last two, denoted ‘+’ and ‘−’ according to
the sign of k − l, occur with probability

R(c1(n), c2(n),±) =
1 − c2α

2γ

π(α4 + c1γ2)
+

c2α
2γ

(α4 + c1γ2)
| cos(θi − λ)|H (± cos(θi − λ)) , (12)

where θi is θ1 for Alice and θ2 for Bob. The remaining probability 1 − R(c1(n), c2(n),+) − R(c1(n),
c2(n),−) is assigned to the event (0, 0). The other party predicts (1, 0) and (0, 1) with probability
H (± cos(θi + λ)).

Submodels are chosen with probability 2πA(n) (α4 + c1(n)γ2). The events whose probabilities do not
depend on local settings are covered by trivial models, with the exception of single-photon events. This is
because the submodels corresponding to class 1 events contribute to their probabilities. Just as in the TWC
case, we need to check if the sum of these contributions does not exceed the quantum probabilities. This
provides a condition for the validity of the model. In the case of γ � α2 it restricts the model to α2 < 0.58,
but this does not characterize its full range, which is broader as shown in appendix B.

Class 2 events with two photons registered on both sides, which we shall denote as (2 & 2), come from
the following term of the expansion of the overall state (PDC modes plus local oscillators),

|ξ2 & 2〉 = Z

(
α2

1α
2
2

4
a†2

1 a†2
2 +γα1α2a†1a†2b†1b†2 +

γ2

2
b†2

1 b†2
2

)
|Ω〉, (13)

where Z is the overall normalization constant of the entire state. The overall probabilistic weight of this

term is thus p(2 & 2) = Z2

4 (α8 + 4γ4 + 4γ2α4). The events in the case of which two photons are registered
on one side and on the other side no photons, denoted by (2 & 0), come from the component

|ξ2 & 0〉 = Z
2

(
α2

1a†2
1 + α2

2a†2
2

)
|Ω〉. Its overall probabilistic weight is p(2 & 0) = Z2α4.

|ξ2 & 2〉, after normalization, is a proper 3 ⊗ 3 dimensional state, and thus predictions for it can be put
into a CGLMP inequality for d � 3 (see appendix C for an explicit form of the inequality). We choose
d = 4 because we want to analyze it together with |ξ2 & 0〉, as such would have been the case had we
managed to construct a Larsson like submodel for this specific set of events. We ascribe the following
numeric values to the results: for Alice and Bob counts 00, 02, 20, 11, are assigned values a, b = 0, 1, 2, 3.
The optimal way of ascribing these values is given below.

The overall probability of events (2 & 2) and (0 & 2) is a convex combination of the two cases:
p(a, b|class 2) = λp(a, b|2 & 2) + (1 − λ)p(a, b|0 & 2), with λ = p(2 & 2)

p(2 & 2)+p(0 & 2) . The CGLMP expression is

linear, thus its value, W[p(·|class 2)], reads λW[p(·|2 & 2)] + (1 − λ)W[p(·|0 & 2)]. The maximal possible
algebraic value of the CGLMP expression is 4. Thus W[p(·|2 & 2)] � 4. As probabilities p(a, b|0 & 2) are
independent of settings, for them settings become irrelevant in the inequality. By looking at the CGLMP
inequality, (see equation (C1)) of appendix C) we notice that the value for W[p(·|0 & 2)] is
2
[
p(a = b|0 & 2) − 1

3 p(a �= b|0 & 2)
]
= 8

3 p(a = b|0 & 2) − 2
3 . We must seek a function relating photon

counts 00, 02, 20, 11 with values a, b, such that the value of W[p(·|0 & 2)] is highest. This is so when e.g., 00
result on Alice’s side is ascribed 0 and 11 on Bob’s side is also 0, and 11 on Alice’s is given 1 and 00 on Bob’s
also 1, see formulas of Methods section. Because then p(a = b|0 & 2) = 1

2 , and W[p(·|0 & 2)] = 2
3 . Thus the

value of the CGLMP expression cannot be higher than W[p(·|S)] = 4λ+ 2
3 (1 − λ) = 10

3 λ+ 2
3 . As the local

realistic bound is W[p(·|S)] � 2, a threshold necessary condition for having a local realistic description for
class 2 is 2 = 10

3 λ+ 2
3 ,, i.e. we must have λ � 2

5 . Thus if α2 = γ, we must have approximately α2 < 0.54.
Since λ(γ2) increases together with γ2, this holds also for all γ < α2 < 0.54. This range is consistent with
the range of the Larsson like models. Still, one definitely must have W[p(·|2 & 2)] much below 4, since the
Tsirelson bound for d = 4 CGLMP inequality is much less than 4. In [17] it is estimated to be around 3.1.
This gives λ � 4

7.3 , and α2 � 0.73.
Thus, there is no evidence in terms of a violation of CGLMP Bell inequality that there is no local realistic

model for experiments of the type [10], and their precursors like [18], for the situation in which up to
altogether four photon counted. We conjecture that this can be extended to more photon events. We have
chosen the CGLMP inequality as it appears in [10] in an argument on Bell nonclassicality of the
correlations. Of course, our claim is not that the model exists, but that there is currently no evidence that it
does not exist, while a partial explicit model does exist. Thus, for GPY experiment with weak
photon-number resolving homodyne measurements of constant strengths of local oscillators seems not to
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lead to indisputable violations of local realism, even in the idealized case. Below we show how to modify the
operational situation to get the violations, in the case of both TWC and GPY schemes.

4. On/off unbalanced homodyne measurements as a solution

The ramifications of the results of the previous section are as follows. TWC experiment involving balanced
homodyne measurements with fixed local oscillator strengths does not lead to violations of local realism.
Showing that an LHV model exists for a specific interference experiment is a no-go theorem for all the
possible experimental realizations of device independent secure quantum communication protocols based
on such an experiment. Such protocols, to be certified, require that every possible classical-like description
is ruled out. Moreover, as the TWC experiment inspired many research articles, e.g. [19–24], and is even
used as a paradigmatic textbook example of violation of local realism [2, 4, 25], this situation had to be
clarified.

Similar ramifications follow from our analysis of the GPY experiment, however we cannot claim that a
consistent LHV model for all detection events exists. Nevertheless, we show that previous claims concerning
violations of local realism with balanced homodyne measurements with fixed oscillator strength are not
substantiated, and additionally the dominant detection events do have a local realistic model. Thus
currently there is no reason to think that the GPY correlations could be useful in device independent secure
communication schemes.

The following question emerges: if we allow the local oscillator strengths to vary between the settings,
does this lead to an unquestionable Bell test? In the case of the single photon experiment, one may think
that the paper of Hardy [19] gives a positive answer. However, the reasoning presented in [19] works only in
the case of a superposition of a single photon state and the vacuum in the input mode of the state preparing
beamsplitter BS0, see figure 1, namely c|0〉s +

√
1 − |c|2|1〉s. And most importantly one can show that if the

amplitude of vacuum satisfies |c| < 0.28 then violation of the Hardy’s condition for local realism is
prohibitively small, from the experimental perspective. Thus Hardy’s reasoning absolutely does not apply in
the case of the single photon input, c = 0.

Below, we shall show that in the case of the experiment (a), if one goes effectively to the extreme in
variation of the local oscillator strength (as in [19]) and additionally necessarily uses unbalanced
beamsplitters at the measurement stations, see the caption of figure 1, then one can observe a violation of
local realism. Interestingly, at each local station we exploit here a form of the wave–particle duality. In the
‘off’ situation, we just collect the photon at a detector—the particle aspect, and in the ‘on’ situation we
detect photons which interfered at the beamsplitter, and the indistinguishability of photons from the local
oscillators and the signal photon is the reason of the interference—the wave aspect involving the bosonic
nature of photons. Interestingly this method also works in the case of the GPY configuration.

We will utilise the simplest Bell inequality based on probabilities of specific events, namely the CH
inequality [26]:

− 1 � P(A, B) + P(A, B′) + P(A′, B) − P(A′, B′) − P(A) − P(B) = CH � 0. (14)

As the events in (14) we shall take specific photon counts at the local detectors, and we will use the on/off
scheme for the settings. The unprimed settings correspond to the off case (local oscillator is turned off) and
the primed ones to the on case (local oscillator is present). By event A′ we denote a single photon detected
in mode d1 and no-photon in mode c1 in the case we have a beamsplitter with an optimized transmittivity
T and the local oscillator field on (‘on’ setting), and by A we denote a single photon count at d1 and no
count at c1 when the local oscillator is off, or detector c1 is blocked (‘off’ setting), and the beamsplitter is
removed. Events B and B′ play the same role for Bob. In our following calculations we have assumed that
the intensity of the local oscillator and the transmittivity of the tunable local beamsplitters are in the case of
the ‘on’ setting the same for both Alice and Bob. An overall optimization certifies that it is fulfilled by the
optimal settings.

The reason behind choosing such a photonic detection event is that for experiment (a) we have
numerically checked that there are no other events which show violation. However, for experiment (b),
there are other events, which show a violation, but the values of the violation are minuscule. For example if
one consider the event of detecting no photon in mode cj and two photons in mode dj for both j = 1, 2,
then the CHmax decreases one more order of magnitude, see appendix E for further clarification. Thus for
the operational situations of figure 1, and the on–off approach, events with just one photon detected only
in path di are optimal.

7
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4.1. Experiment (a)
For the single photon input state impinging on a balanced beamsplitter, the joint probability P(A′, B′), when
both the local oscillators are ‘on’, is given by

P(A′, B′) = |c1,d1,c2,d2〈0, 1, 0, 1|Ψ〉|2 = α2 e−2α2
T(1 − T)(1 + sin(θ1 − θ2)), (15)

where |Ψ〉 = |α eiθ1〉a1 |ψ〉b1,b2 |α eiθ2〉a2 . The probabilities with ‘on’ stetting on one side are

P(A′, B) = P(A, B′) = 1
2α

2 e−α2
(1 − T). One can easily check that when the beamsplitter is absent and the

local oscillator is turned off, then detecting single photon in mode dj, (effectively equivalent with mode bj)
and no photon in mode cj (equivalent to mode aj), for both j = 1, 2 is the only event which has a non-zero
probability. The case of off settings on both sides gives P(A, B) = 0, and P(A) = P(B) = 1

2 , see appendix D
for the derivation. With all that the Clauser–Horne expression CH in (14) reduces to

CH = e−2α2
α2(1 − T)

(
eα

2 − T (1 + sin (θ1 − θ2))
)
− 1. (16)

We have CH < −1 provided eα
2
/(1 + sin (θ1 − θ2)) < T < 1, and the range and the violation is maximal

for θ1 − θ2 =
π
2 . An optimization results in CHmin ≈ −1.010, for α2 ≈ 0.196, T ≈ 0.804, and θ1 − θ2 =

π
2 .

The violation is quite robust as the probabilities for the non-trivial case read only P(A
′
, B) = 0.0157,

P(A′, B′) = 0.0417.

4.2. Experiment (b)
For two mode squeezed vacuum state, when both the observers choose ‘on’ settings, we have
P(A′, B′) = e−2α2

(1 − γ2)(Tγ − α2(1 − T))2, whereas for the on situation on one side and off one the other
one has P(A′, B) = P(A, B′) = e−α2

γ2(1 − γ2)T. In this calculation we have assumed that θ1 = −θ2, as it is
true for optimum violation of CH inequality. Finally P(A, B) = P(A) = P(B) = γ2(1 − γ2). The CH
expression now reads as

CH = e−α2 (
1 − γ2

) (
γ2

(
2T − eα

2
)
− e−α2(

γT − α2(1 − T)
)2
)
. (17)

The sufficient condition for CH > 0 reads as T = α2

γ+α2 > 1
2 eα

2
. Optimization of the CH expression yields

CHmax ≈ 0.0027 for α2 ≈ 0.200, γ ≈ 0.175 and T ≈ 0.799. The violation is quite robust as
P(A, B) ≈ 0.0299, P(A, B

′
) ≈ 0.0196 and P(A′, B′) ≈ 0.0065.

5. Discussion and outlook

The original TWC configuration and most probably the GPY scheme are not proper Bell experiments. We
construct an explicit LHV model for the ideal predictions of experiment (a), and show that the hope for a
violation of local realism in experiment (b), in [5, 10] is not substantiated (a partial LHV model exists,
claims about violation of Bell inequalities are at least premature). On the positive note, we show that
Bell-type experiments on the signal states |ψ〉b1b2 and |σv〉b1b2 with each observer switching the local
oscillator on (setting 1) or off (setting 2), and involving (non 50–50) optimized beamsplitters, do violate a
Bell inequality. Thus, such seems to be the proper operational scenario in this context.

The on/off scheme represents a version of complementarity between measuring wave vs particle aspects
of the state of the modes. It seems that quantum optical Bell tests with weak homodyne measurements must
involve local situations in which photon counting replaces weak-field homodyne measurements. This does
work also when the local oscillator is almost off, see [27] for the TWC case. On/off situation leads to a
violation of local realism in [19, 28], albeit in a slightly different situations: modification of the signal state
in beam s in [19], and a displacement procedure in [28]. Our results suggest that this is not a peculiarity,
but seems to be a rule for Bell tests involving homodyne photon number resolving measurements.

Our exact model closes the long standing dispute on whether the 1991 gedankenexperiment TWC [3]
reveals ‘nonlocality of a single photon’. Moreover, we show that thus far there is no evidence that the 1988
proposal of GPY [5] involving parametric down conversion (an emblematic source of entanglement) and
weak-field homodyning (with constant local oscillator strengths, and 50–50 beamsplitters) constitutes a
valid Bell-type experiment. We conjecture that this claim is unfounded.

5.1. Ramifications concerning the claims on ‘non-locality of a single photon’
The TWC experiment was supposed to imply ‘nonlocality of a single photon’. TWC use the run-of-the-mill
of the time approach to photodetection: the probability of a detector to fire is proportional to the intensity
of the impinging light, e.g. [29]. The joint probability of having a coincidence of firings for detectors Dx1

8
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and Dy2 is put as Pf (x1, y2|θ1, θ2) ≈
〈

Ix1 (θ1)Iy2 (θ2)
〉

, where Ixj (θj) is the intensity at output x = c, d, and the
averaging is done, depending on the context, over local hidden variables (LHVs), or within quantum

formalism. The probability of a single firing is: Pf (xj|θ) ≈
〈

Ixj (θ)
〉

. They model the quantum intensity

observable by the photon number operator.
To show a violation of local realism, TWC use Bell-like inequalities derived in [30], of the well known

CHSH form [31]. The local settings were defined by the local phases θj and θ′j . For (constant) amplitudes of

the local oscillators satisfying α2 <
√

2 − 1 ≈ 0.41, they show a violation of the CHSH-like inequality, and
conclude that the state |ψ〉b1,b2 is ‘nonlocal’. The inequality of [30], rests on an additional assumption: in
LHV models the total intensity for each observer j does not depend on θj: Ij(λ) = Icj (θj,λ) + Idj (θj,λ),
where λ symbolizes the hidden variables. The condition is justified in classical optics, but constrains
possible LHV models, see [32, 33].

In [32] Santos suggested that the correlations of firings Pf(x1, y2|θ1, θ2) in the TWC scheme could be
explainable with LHVs [32] and therefore cannot be used to convincingly demonstrate ‘nonlocality’ of a
single photon. However, his LHV model reproduced only the correlations of firings, and not the full

quantum predictions, failing completely to recover quantum predictions for P(xj|θ) ≈
〈

Ixj (θ)
〉

. Thus, this

was not an LHV model of the quantum predictions, but rather a hint that there is something wrong in the
TWC analysis. Santos suggested that the additional assumption is violated rather than local realism. Santos
did not model photon number resolving detection.

Other works challenge the single-photon nature of the effect [34, 35], or suggest modifications of the
experiment which allow provable violations of local realism [19, 28, 36], while keeping the experiment
all-optical. Thus far, no definite answer was given to the problem whether the TWC effect, which seemingly
violates local realism, admits an exact local realistic model, or not. Papers describing the experimental
realizations of variants of this scheme [18, 21, 22] claim violations of a Bell inequality. However, the claims
are presented with caution, e.g., as in [22] where it is stated that the results are no better than for
conventional Bell tests with the efficiency loophole.

Several proposals [20, 37, 38] show how the single-photon superposition can be used to generate an
entangled state of a couple of two-level systems, e.g. two atoms in a cavity. The reduction to a state of a pair
of entangled atoms straightforwardly leads to a violation of local realism, as discussed in [39–41].
Moreover, exploiting the single-photon superposition to induce entanglement between two different objects
has also been proposed in the context of teleportation protocols, for instance [24]. Anyway all these efforts
reduce to the well known case of the two-qubit entanglement. No conclusion can be drawn about the
violation of local realism by optical fields containing only a single photon with all-optical setups involving
only passive elements. Note that a recent proposal to reveal the violation of local realism with multiple
copies of the single photon state has been put forward in [42].

We show an LHV model which reproduces precisely quantum predictions for the original TWC setup
(a), even in the case of photon number resolving detection. This obviously covers the course-grained
description in terms of the probabilities of firings of detectors whose response is proportional to the
number of impinging photons. Its applicability is limited by the strength of the local oscillators, but covers
the range reported in [3] as revealing the ‘nonlocality of the single-photon’. The result closes the case and
precludes any attempt to implement device-independent protocols using original TWC correlations.

This signals once more that a great care must be taken when claiming Bell non-classicality (for earlier
controversies of this type involving other experiments see e.g. [15, 43–45]).

Finally, let us mention that the paper [23], which seemed to elucidate the question of violations of local
realism in an extended version of the TWC experiment (with local settings defined by beamsplitters of
tunable transmittivity-reflectivity), and thus seemingly was a non-controversial demonstration of
‘non-locality’ of the single photon state behind 50–50 beamsplitter (1), contains an erroneous claim,
formula (20) therein, that the CHSH-Bell inequality is violated. Our detailed analysis of the experiment in
reference [23] shows, that the purported CHSH inequality violation never occurs for the measurement
setup proposed by the authors. This would be explicitly discussed in a forthcoming comment [46].
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Appendix A. Experiment (a): quantum photodetection probabilities

In this section, we calculate the probability of detecting the event n = (kc1 , ld1 , rc2 , sd2 ), of registering specific
numbers of photons in the output modes, of the Tan–Walls–Collett setup (experiment (a) in the main
text).

The initial state in the TWC scheme, obtained by transforming a single photon with a balanced
beamsplitter and adding two coherent states of the local oscillators

|Ψ〉 = 1√
2

∣∣α eiθ1
〉

a1

(
|01〉+ i |10〉

)
b1b2

∣∣α eiθ2
〉

a2
. (A1)

We show how the state (A1) transforms on the following 50–50 beamsplitters which link the output and
input modes via

ĉj =
1√
2

(âj + ib̂j) and d̂j =
1√
2

(iâj + b̂j). (A2)

Applying (A2) to the state (A1) we get

|Ψ〉 = e−α2
∞∑

j=0

(α eiθ1 )j

j!
(â†1)j 1√

2
(ib̂†1 + b̂†2)

∞∑
k=0

(α eiθ2 )k

k!
(â†2)k

= e−α2
∞∑

j,k=0

2−
j+k

2
(α eiθ1 )j

j!

(α eiθ2 )k

k!

(
ĉ†1 + id̂†

1

)j 1

2

(
−ĉ†1 + id̂†

1 + îc†2 + d̂†
2

)(
ĉ†2 + id̂†

2

)k
|Ω〉

= e−α2
∞∑

j,k=0

2−
j+k

2
(α eiθ1 )j

j!

(α eiθ2 )k

k!

j∑
p=0

(
j

p

)
(̂c†1)j−p(id̂†

1)p

× 1

2

(
−ĉ†1 + id̂†

1 + îc†2 + d̂†
2

) k∑
q=0

(
k

q

)
(̂c†2)k−q(id̂†

2)q|Ω〉,

=

∞∑
j,k=0

j∑
p=0

k∑
q=0

f (j, p, k, q)(̂c†1)j−p(d̂†
1)p

(
−ĉ†1 + id̂†

1 + îc†2 + d̂†
2

)
(̂c†2)k−q(d̂†

2)q|Ω〉, (A3)

=

∞∑
j,k=0

j∑
p

k∑
q=0

f (j, p, k, q)
[
−
√

(j − p + 1)!p!(k − q)!q!|j − p + 1〉c1 |p〉d1 |k − q〉c2 |q〉d2

+ i
√

(j − p)!(p + 1)!(k − q)!q!|j − p〉c1 |p + 1〉d1 |k − q〉c2 |q〉d2

+ i
√

(j − p)!p!(k − q + 1)!q!|j − p〉c1 |p〉d1 |k − q + 1〉c2 |q〉d2

+
√

(j − p)!p!(k − q)!(q + 1)!|j − p〉c1 |p〉d1 |k − q〉c2 |q + 1〉d2

]
, (A4)

where

f (j, p, k, q) = e−α2
2−

j+k
2 −1 (α, eiθ1 )j

j!

(α eiθ2 )k

k!

(
j

p

)(
k

q

)
(i)p+q, ∀ p � j, q � k. (A5)

Finally, we obtain the expression for the probability that reads:

p(k, l; r, s) ≡ p(n) = |〈k, l, r, s|Ψ〉|2 =
∣∣∣∣−f (k + l − 1, l, r + s, s) + if (k + l − 1, l − 1, r + s, s)

+ if (k + l, l, r + s − 1, s) + f (k + l, l, r + s − 1, s − 1)

∣∣∣∣
2

k! l! r! s!

=
e−2α2

k! l! r! s!

(
α2

2

)k+l+r+s 1

2α2

[
(k − l)2 + (r − s)2 + 2(k − l)(r − s) sin(θ1 − θ2)

]
. (A6)

10



New J. Phys. 24 (2022) 033017 T Das et al

Figure 2. It is useful to picture local probabilities of Alice and Bob as regions on two plots, (a) and (b). If these plots were
printed on transparencies and overlapped, one could easily obtain the joint probabilities as regions of specific colors. To reflect
the choices of local angles θ1 and θ2, the transparencies should be shifted, (c). In case of imperfect visibility, local probabilities of
Alice need to be modified, (d).

For the case of different intensities of the local oscillator fields, namely when the moduli of the
amplitudes α1 �= α2, the formula for the coincidence probabilities is obtainable via a similar calculation,
and reads

p(k, l; r, s) =
e−(α2

1+α2
2)

k! l! r! s!

α2(k+l−1)
1 α2(r+s−1)

2

2k+l+r+s+1

[
α2

1(k − l)2 + α2
2(r − s)2 + 2α1α2(k − l)(r − s) sin(θ1 − θ2)

]
.

(A7)
As we see we have the same sinusoidal dependence on the difference of phases, and the most important fact,
from the interferometric point of view, is that the visibility is changed. No new interference effects pop up.
This clearly implies that one can repeat the steps for building the LHV model to get one which is a
modification of the construction presented in the main text.

A.1. Experiment (a): local hidden variable models
In this section we illustrate the idea behind the construction of our LHV models, based on the model of
Larsson in [14]. To do that we first consider a simple scenario, in which the photon numbers detected by
Alice and Bob can only be (0, 1), (1, 0) or (0, 0). We label these outcomes −1, +1, and 0 respectively. The
probabilities we want to replicate are of the form

p(−1,−1) = p(+1,+1) = a(1 + sin θ12) (A8)

p(+1,−1) = p(−1,+1) = a(1 − sin θ12) (A9)

p(0,±1) = p(±1, 0) =
1

4
− a (A10)

p(0, 0) = 0, (A11)

where θ12 is the difference of the local parameters θ1 and θ2, controlled by each party. A simple LHV model,
adapted from the one presented by Larsson [14], leads to the same structure of probabilities, see figure 2 for
a pictorial representation.

It assigns probabilities to local events of Alice and Bob via functions PA and PB. The joint probability
reads

PAB(i, j|θ1, θ2) =
1

2π

∫ 2π

0
dλPA(i|θ1,λ)PB(j|θ2,λ), (A12)

where i, j = ±1, 0, and λ is a hidden variable.
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Local probabilities PA are

PA(±1|θ1,λ) = C| sin(θ1 − λ)|h(± sin(θ1 − λ)), (A13)

PA(0|θ1,λ) = 1 − PA(+1|θ1,λ) − PB(−1|θ1,λ), (A14)

where h(x) is the Heaviside function and 0 � A � 1. For Bob’s observations we have

PB(±1|θ2,λ) = h(∓ cos(θ2 − λ)), (A15)

Note that this means that, in contrast to the quantum predictions, Bob sees no 0 events. This issue is fixed
by swapping the roles of Alice and Bob according to a coin toss, i.e. taking the equal mixture of the model
presented above and the one with PA ↔ PB.

To quickly check the predictions of the model it is enough to consider PAB(+1,+1|θ1, θ2) and assume
the simplest case of 2π > θ1 > θ2 > π. Then

PAB(+1,+1|θ1, θ2) =

∫ θ1+2π

θ2+π/2
dλ

C

2π
sin(θ1 − λ) =

C

2π
[1 + sin(θ12)] . (A16)

By performing the integrations for the remaining cases, one can verify that the model yields

PAB(i, j|θ1, θ2) =
C

2π
[1 + ij sin(θ12)], (A17)

PAB(i, 0|θ1, θ2) = PAB(0, i|θ1, θ2) =
1

4
− C

2π
, (A18)

where i, j = ±1. Thus, for C = 2πa we obtain the probabilities given in equation (A8)–(A11), provided that
a � 1

2π , as otherwise the local probabilities in our model are not well-defined.

A.1.1. Extension to imperfect visibility

Now we would like to extend the basic model so that it covers arbitrary visibility of interference, V � 1. In
other words, we want to replicate the following set of probabilities

p(−1,−1) = p(+1,+1) = a(1 + V sin θ12) (A19)

p(+1,−1) = p(−1,+1) = a(1 − V sin θ12) (A20)

p(0,±1) = p(±1, 0) =
1

4
− a (A21)

p(0, 0) = 0. (A22)

To do that, we only need to change the local probabilities PA(±1|θ1,λ) (compare with equation (A13))

PA(±1|θ1,λ) = CV| sin(θ1 − λ)|h(± sin(θ1 − λ)) + C
1 − V
π

. (A23)

Then, the calculation of the joint probability PAB(+1,+1|θ1, θ2) in the case of 2π > θ1 > θ2 > π gives

PAB(+1,+1|θ1, θ2) =

∫ θ2+3π/2

θ2+π/2
dλC

1 − V
2π2

+

∫ θ1+2π

θ2+π/2
dλ

CV
2π

sin(θ1 − λ)

= C
1 − V

2π
+

CV
2π

[1 + sin(θ12)] =
C

2π
(1 + V sin θ12). (A24)

All the other reasoning stays the same as in the basic model.
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A.2. Experiment (a): explicit calculation of the sum of probabilities of all submodels Mn

In this section we prove that the probabilities P(Mn) of choosing specific submodels are properly
normalized. We have

∑
n∈N∩Ñ

P(Mn) =
∑

n∈N\O
B(α,Mn) +

∑
n∈Ñ

2πB(α,Mn) +
∑
n∈O

Δn, (A25)

where

∑
n∈O

Δn =
∑
k �=l

(
p((k, l, 0, 0)) −

(π
2
− 1

)∑
c′>d′

B(α, (k, l, c′, d′))

)

+
∑
r �=s

(
p((0, 0, r, s)) −

(π
2
− 1

)∑
c>d

B(α, (c, d, r, s))

)
(A26)

=
∑
n∈O

B(α,Mn) − 4
(π

2
− 1

) ∑
n∈Ñ

B(α,Mn) =
∑
n∈O

B(α,Mn) − (2π − 4)
∑
n∈Ñ

B(α,Mn). (A27)

Moreover, notice that ∑
n∈Ñ

B(α,Mn) =
1

4

∑
n∈N4

c �=d, c′ �=d′

B(α,Mn). (A28)

Plugging equations (A26) and (A28) into equation (A25) we get

∑
n∈N∩Ñ

P(Mn) =
∑

n∈N\O
B(α,Mn) + 2π

∑
n∈Ñ

B(α,Mn)

+
∑
n∈O

B(α,Mn) − (2π − 4)
∑
n∈Ñ

B(α, n) =
∑
n∈N4

B(α, n) = 1. (A29)

A.3. Experiment (a): threshold intensity of local oscillators for the validity of the LHV model for the
TWC scheme
In this section we prove that if α2 < 0.87, the probabilities of choosing a specific submodel P(Mn) are
non-negative. To do that, we only need to consider n0 ∈ O, for which P(Mn0 ) = Δn0 . Let us fix
n0 = (k, l, 0, 0), k �= l, as the reasoning for n0 = (0, 0, r, s) is fully analogous. We need to check the
conditions in which

Δn0 = B(α, (k, l, 0, 0)) −
(π

2
− 1

)∑
c′>d′

B
(
α, (k, l, c′, d′)� 0. (A30)

We plug the definition of the function B(α, n) from the main text into (A30) and obtain, after some
transformations,

Δn0 =
e−2α2

2−k−l−3
(
α2

)k+l−1
(
−(π − 2)eα

2 (
α2 + (k − l)2

)
+ (π − 2)I0

(
α2

)
(k − l)2 + 4(k − l)2

)
k!l!

.

(A31)
It is easy to see that the condition Δn0 � 0 is equivalent to

− (π − 2)eα
2 (
α2 + (k − l)2

)
+ (π − 2)I0

(
α2

)
(k − l)2 + 4(k − l)2 � 0. (A32)
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As the Bessel function I0 satisfies I0

(
α2

)
� 1, the inequality (A32) can be approximated by a slightly stricter

−(π − 2)eα
2 (
α2 + (k − l)2

)
+ (π − 2)(k − l)2 + 4(k − l)2

=
(

(π − 2)
(
−eα

2
)
+ π + 2

)
(k − l)2 − (π − 2)α2 eα

2 � 0. (A33)

For α < 1, the coefficient
(

(π − 2)
(
−eα

2
)
+ π + 2

)
standing in front of (k − l)2 is positive. This means

that the critical case we need to consider is (k − l)2 = 1. Thus, we arrive at(
(π − 2)

(
−eα

2
)
+ π + 2

)
− (π − 2)α2 eα

2 � 0. (A34)

It can be shown that the inequality (A34) is satisfied for

α2 � W

(
2e + eπ

π − 2

)
− 1 ≈ 0.87, (A35)

where W denotes the Lambert W function (W(z) returns the principal solution for w in z = wew).

Appendix B. Experiment (b): threshold intensity for the validity of the partial LHV
model for the GPY scheme

The presented model definitely reproduces all probabilities of events other than (0, 0, 0, 1), (0, 0, 1, 0),
(0, 1, 0, 0) and (1, 0, 0, 0). We need to check if the probabilities of the single-photon events can also be
recovered. To this end, we need to calculate the sum of all the contributions to these probabilities stemming
from the nontrivial submodels. It cannot be greater than the quantum probability for these event, but can
be lower since the difference can be compensated by the trivial models. This gives the following consistency
condition

Δ(0,0,0,1)(α
2, γ) = p(0, 0, 0, 1) − (π − 2)

∑
relevant submodels

A(α4 + c1γ
2)

=
α2

2
− 1

48
(π − 2)

(
2α8 + 3α6 + 6α4

(
γ2 + 2

)
+ 12α2γ2 + 12γ2

)
� 0. (B1)

Obviously a similar condition could be presented for other single-photon events. However, the one above is
the most strict of them all.

Under the assumption γ = α2, the condition (B1) simplifies to

α2 � 1

24
(π − 2)α4

(
8α4 + 15α2 + 24

)
. (B2)

It is satisfied for approximately α2 < 0.58.
Finally, notice that the value of Δ(0,0,0,1)(α2, γ) given by equation (B1) decreases with the growth of γ.

Thus, the model works for all γ � α2 < 0.58. Of course, this not the full range of the model in the
parameter space of α and γ.

B.1. Experiment (b): quantum probabilities of four-photon events registered in the GPY scheme
In this section, we are going to calculate the probability of detecting of detecting k, l, r, s photons respectively
in modes c1, d1, c2, d2, in the (b) configuration of the experimental setup outlined in the main text. It is
given by:

P(k, l; r, s) = e−(α2
1+α2

2)(1 − γ2)

∣∣∣∣∣∣
k∑

q=0

r∑
p=0

N∑
t=0

(
k

q

)(
l

q′

)(
r

p

)(
s

p′

)
γt(−1)q+pαk+l−t

1 αr+s−t
2 t!√

2klrs
√

k!l!r!s!

∣∣∣∣∣∣
2

, (B3)

where the upper bound in the last sum, N = min(k + l, r + s), is a condition imposed by the expansion of
the twin beam state in the Fock basis.

The table below gives probabilities of the class 1 events reproduced by the LHV model in the main text.
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Events Probabilities divided by P(0, 0,0, 0) = e−2α2
(1 − γ2) {A(n)/P(0, 0, 0, 0), c1(n), c2(n)}

{
(0 1 0 1)
(1 0 1 0)

}
1
4

(
α4 + 2α2γ cos(θ1 + θ2) + γ2

) {
1
4 , 2, 1

}
⎧⎪⎪⎨
⎪⎪⎩

(0 1 0 2)
(0 2 0 1)
(1 0 2 0)
(2 0 1 0)

⎫⎪⎪⎬
⎪⎪⎭

1
16α

2
(
α4 + 4γ

(
α2 cos(θ1 + θ2) + γ

)) {
a2

16 , 4, 4
}

⎧⎪⎪⎨
⎪⎪⎩

(0 1 0 3)
(0 3 0 1)
(1 0 3 0)
(3 0 1 0)

⎫⎪⎪⎬
⎪⎪⎭

1
96α

4
(
α4 + 6α2γ cos(θ1 + θ2) + 9γ2

) {
a4

96 , 6, 9
}

{
(0 1 1 0)
(1 0 0 1)

}
1
4

(
α4 − 2α2γ cos(θ1 + θ2) + γ2

) {
1
4 , −2, 1

}
⎧⎪⎪⎨
⎪⎪⎩

(0 1 1 2)
(1 0 2 1)
(1 2 0 1)
(2 1 1 0)

⎫⎪⎪⎬
⎪⎪⎭

1
32α

4
(
α4 + 2α2γ cos(θ1 + θ2) + γ2

) {
a4

32 , 2, 1
}

⎧⎪⎪⎨
⎪⎪⎩

(0 1 2 0)
(0 2 1 0)
(1 0 0 2)
(2 0 0 1)

⎫⎪⎪⎬
⎪⎪⎭

1
16α

2
(
α4 + 4γ

(
γ − a2 cos(θ1 + θ2)

)) {
a2

16 , −4, 4
}

⎧⎪⎪⎨
⎪⎪⎩

(0 1 2 1)
(1 0 1 2)
(1 2 1 0)
(2 1 0 1)

⎫⎪⎪⎬
⎪⎪⎭

1
32α

4
(
α4 − 2α2γ cos(θ1 + θ2) + γ2

) {
a4

32 , −2, 1
}

⎧⎪⎪⎨
⎪⎪⎩

(0 1 3 0)
(0 3 1 0)
(1 0 0 3)
(3 0 0 1)

⎫⎪⎪⎬
⎪⎪⎭

1
96α

4
(
α4 − 6α2γ cos(θ1 + θ2) + 9γ2

) {
a4

96 , −6, 9
}

The LHV model does not reproduce the following probabilities of events that belong to the (2 & 2)
subspace.

Events Probabilities divided by P(0, 0,0, 0) = e−2α2
(1 − γ2)

⎧⎪⎪⎨
⎪⎪⎩

(0 2 1 1)
(1 1 0 2)
(1 1 2 0)
(2 0 1 1)

⎫⎪⎪⎬
⎪⎪⎭

1
32

(
α8 − 4α4γ2 cos(2(θ1 + θ2)) + 4γ4

)

{
(0 2 0 2)
(2 0 2 0)

}
1

64

(
α8 + 16α4γ2 + 4α4γ2 cos(2(θ1 + θ2)) + 8α2γ

(
α4 + 2γ2

)
cos(θ1 + θ2) + 4γ4

)
{

(0 2 2 0)
(2 0 0 2)

}
1
64

(
α8 + 16α4γ2 + 4α4γ2 cos(2(θ1 + θ2)) − 8α2γ

(
α4 + 2γ2

)
cos(θ1 + θ2) + 4γ4

)
{

(1 1 1 1)
}

1
16

(
α8 + 4α4γ2 cos(2(θ1 + θ2)) + 4γ4

)

Appendix C. CGLMP inequality for four outcomes per observer

The CGLMP inequality (see reference [16]) of the main manuscript) is a Bell inequality for a scenario with
two observers, two settings per observer and arbitrary number of local outcomes. We utilize the case of four
outcomes per observer, for which the inequality reads:

∑
k=0,1

(
1 − 2k

3

)[
p(a = b + k|11) + (a = b − k − 1|21) + p(a = b + k|22)

+ p(a = b − k|12) − p(a = b − k − 1|11) − p(a = b + k|21)

− p(a = b − k − 1|22) − p(a = b + k + 1|12)
]
� 2, (C1)

where the convention is that the local outcomes a and b for Alice and Bob take values a, b = 0, 1, 2, 3, and
the settings are labeled by numbers 1, 2. For example the expression p(a = b + k|11) denotes the probability
that the outcomes of Alice and Bob fulfill a − b = k for the choice of first setting at each side.
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The probabilities for the (2 & 0) and (0 & 2) events (divided by P(0, 0, 0, 0)) are given by:

P(2, 0, 0, 0) = P(0, 2, 0, 0) = P(0, 0, 2, 0) = P(0, 0, 0, 2) =
α4

8
, (C2)

P(1, 1, 0, 0) = P(0, 0, 1, 1) =
α4

4
. (C3)

Appendix D. A simple calculation of CH inequality violation by on/off version of the
TWC experiment (a) for very weak local oscillators

In this section we show the method of the derivation of the probabilities appearing in equation (10) of the
main text. We present this for an approximation in which the coherent local oscillator fields are replaced by
their first two terms. Thus what we present here is just illustrative. We want to avoid unnecessary
technicalities.

For simplicity we take the single photon state as 1√
2
(b†1 + b†2). We have the following initial state:

1√
2

(b†1 + b†2)
1

1 + α2
(1 + α1a†1)(1 + α2a†2)|Ω〉. (D1)

When the state in (D1) impinges on the beamsplitters of transitivity T, and reflectively R, it transforms to

1√
2

(√
Td†

1 + i
√

Rc†1 +
√

Td†
2 + i

√
Rc†2

) 1

1 + α2

[
1 + α1(

√
Tc†1 + i

√
Rd†

1)
] [

1 + α2 (
√

Tc†2 + i
√

Rd†
2)
)]

|Ω〉.
(D2)

The probability P(A′, B′) is related to the amplitude of detecting a photon in both detectors Dd1 and Dd2 ,

namely to the amplitude 1√
2(1+α2)

(√
Ti
√

Rα1 +
√

Ti
√

Rα2

)
. That gives the probability

P(A′, B′) = TR
2

|α1+α2|2
(1+α2)2 .

The event A (B) is defined as the firing of any local detector when the local oscillator is off, that gives the
trivial probabilities P(A) = 1/2 = P(B) and P(A, B) = 0. While, the probability of the event pair P(A, B′) is
related to the final state

1√
2

(
b†1 +

√
Td†

2 + i
√

Rc†2

) 1√
1 + α2

[
1 + α2(

√
Tc†2 + i

√
Rd†

2)
]
|Ω〉. (D3)

The amplitude of b†1d†
2|Ω〉 is i√

2

√
Rα2√
1+α2

. Thus, P(A, B′) = Rα2

2(1+α2) and so is P(A′, B).

We take the left-hand side CH inequality

− 1 � P(A, B) + P(A, B′) + P(A′, B) − P(A′, B′) − P(A) − P(B) = CH � 0, (D4)

and put the values of the probabilities, results: 0 + α2

1+α2 R − 1
2 TR|α1 + α2|2 1

(1+α2)2 − 1/2 − 1/2. We choose
the phases of the coherent states to be identical to get
α2

1+α2 R − 2TRα2 1
(1+α2)2 − 1 = α2

1+α2 R
(

1 − 2T 1
1+α2

)
− 1, which obviously can be less that −1, with a

proper choice of T. The CH inequality will be violated when T > 1+α2

2 > 1
2 .

Note that the situation with balanced beamsplitters, T = 1/2, does not violate the CH inequality.
To get the formulas used in the main text, which are for full coherent states of the local oscillators, only

minor modifications of the above are needed. In situation (b) the calculation follows a similar path.

Appendix E. Comparison of Clauser–Horne inequality for higher number of photon
detection

In this section, we will show that for the two-mode squeezed vacuum state the maximal violation of
Clauser–Horne inequality is substantially low if one considers the photodetection event, in which two
photons have been detected in mode dj and no photon in mode cj.

When both the observers are using the ‘on’ settings, then the joint probability, P(A′, B′), is given by,

P(A′, B′) = |c1,d1,c2,d2〈0, 2, 0, 2|Ψ〉|2 = e−2α2 (
1 − γ2

)(1

2
α4(1 − T)2 − 2α2γ(1 − T)T + γ2T2

)2

, (E1)

where |Ψ〉 = |α eiθ1〉a1 |σv〉b1,b2 |α eiθ2〉a2 . We have assumed that the intensity of the local oscillator and the
transmittivity of the tunable local beamsplitters are the same for both Alice and Bob for the ‘on’ settings,
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Figure 3. Plot of optimal CH violation CHmax as a function of γ, for our proposed measurement settings, given in section 4.2,
for two symmetric events namely (0, 1) and (0, 2). By (0, x), we mean no photon detected in mode cj and x ∈ {1, 2} number of
photon(s) detected in mode dj , for both j = 1, 2.

and θ1 = −θ2. Similarly the other probabilities are P(A, B′) = P(A′, B) = e−α2
γ4

(
1 − γ2

)
T4, and

P(A, B) = P(A) = P(B) = γ4
(
1 − γ2

)
.

An optimization of CH expression, over T and α2, for each γ has been plotted in figure 3 by the orange
solid curve. The blue dashed line is the same optimal CH expression for the other event described in
section 4.2. This two plots show that in order to confirm the non-classical feature of the squeezed vacuum
state one should not consider the other set of photodetection events.
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