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Streszczenie

Wraz z rozwojem kuantowych technologii, technik eksperymentalnych i postepem technologicznym w
ogole splatanie kwantowego $wiatla jest (i najprawdopodobniej bedzie réwniez w przyszlodci) bardzo ak-
tualnym zagadnieniem badawczym. Taka jest rowniez tematyka niniejszej rozprawy doktorskiej, w sktad
ktorej wchodza cztery artykuly naukowe (wymienione w bibliografii PhD Series) opatrzone wstepem.
Wstep zawiera zwiezly opis badan przeprowadzonych w czasie studiéw doktoranckich, ktorych wyniki zo-
staly umieszczone w wyzej wspomnianych publikacjach. Przeprowadzone badania dotycza nieklasycznych
korelacji kwantowych stanéw optycznych o nieustalonej ilosci czastek analizowanych za pomoca pomiaréw
intensywnosci w kontekécie polaryzacji i pomiaru homodynowego. Publikacje sg ze soba powiazane.

Artykut ”General mapping of multiqudit entanglement conditions to nonseparability indicators for
quantum-optical fields” stanowi podstawe cyklu. Praca opisuje ogélna metode tworzenia pewnej okre-
Slonej klasy kwantowo-optycznych indykatorow splatania, ktore wykorzystuja korelacje oparte na inten-
sywno$ciach. Tego typu metody wykrywania splatania sa obecnie eksperymentalnie wykonalne. Nasza
metoda jest oparta na istnieniu odwzorowania pomiedzy wskaznikami splatania i nieréwnosciami Bella
dla quditéw, a analogicznymi indykatorami nieklasycznosci dla pdl optycznych. W sensie operacyjnym
polega to na zamianie prawdopodobienstw koincydencyjnej detekcji czastki w danym koficowym kanale
przez stosunek lokalnie rejestrowanych intensywnosci pola. Matematycznie rzecz ujmujac odwzorowanie
polega na zastapieniu wartosci srednich obserwabli Pauliego, lub ich korelacji, srednimi standardowych
lub znormalizowanych obserwabli Stoksa, lub ich korelacji. W pracy zaznaczone jest, ze w przypadku
nieréwnosci Bella nasza metoda nadaje si¢ jedynie dla obserwabli o spektrum pomiedzy [—1, 1]. Strategia
konstruowania nieréwnosci Bella dla standardowych operatoréw Stokesa musi by¢ diametralnie inna i nie
jest tu dyskutowana. Tak otrzymane identyfikatory nieklasycznosci sa testowane dla czteromodowej jasnej
Sciesnionej prézni (BSV) oraz jej generalizacji na stany o wieckszej ilosci modéw optycznych.

Artykul ”Simplified quantum optical Stokes observables and Bell’s theorem” réwniez przedstawia nowe
narzedzia do wykrywania nieklasycznych korelacji pdl optycznych. Zaproponowalismy tam nowe obserwa-
ble - uproszczone operatory Stokesa - do przeprowadzania eksperymentéw Bellowskich. Koncepcja nowych
obserwabli jest bardzo prosta i polega na na poréwnaniu, w ktérym z lokalnych detektoréw zarejestrowano
wieksza intensitywno$¢ padajacego sSwiatta. W zaleznosci od tego takiemu pomiarowi nadawane sa wartosci
+1. Gdy oba detektory zarejestruja taka sama czestotliwos¢ przypisywane jest 0. Okazuje sie ze uzywajac
naszych obserwabli mozna uzyskac¢ lepsze tamanie nieréwnosci Bella niz w przypadku znormalizowanych
operatorow Stokesa dla jasnej $cie$nionej prézni oraz stanéw otrzymanych w wyniku parametrycznej
konwersji trzeciego rzedu tzw ”makroskopowego stanu GHZ”. Rowniez warto zwrocié uwage, ze zapro-
ponowane obserwable sa realizowalne eksperymentalnie, a ich znaczenie fizyczne jest intuicyjne. Niestety
nasze obserwable nie nadaja sie do konstrukcji swiadkéw splatania.

Prace ”Can single photon excitation of two spatially separated modes lead to a violation of Bell inequ-
ality via weak-field homodyne measurements?” i ” Wave—particle complementarity: detecting violation of
local realism with photon-number resolving weak-field homodyne measurements” dotycza analizy i wery-
fikacji kontrowersyjnych stwierdzen dotyczacych nieklasycznosci pojedynczego fotonu nazywang w litera-
turze ”niekolalnoécia pojedynczego fotonu” wykrywalna przy uzyciu pomiaru homodynowego dla stabych
stanéw koherentynych lokalnych oscylatoréw. Zostaly przeanalizowane dwa emblematyczne eksperymenty

mys$lowe odnosnie tego zagadnienia: eksperyment Tana, Wallsa i Colletta (TWC) oraz tzw. paradoks Har-



dy’ego. Obecnie, w czasach gdy jest mozliwa eksperymentalna realizacja tych eksperymentéw, wyjasnienie
kontrowersji dotyczacych tamania nieréwnosci Bella przez pojedynczy foton nabiera znaczenia nie tylko
w sensie fundamentalnym, ale tez w odniesieniu do rozwoju kwantowych technologii. Eksperyment Har-
dy’ego jest niepodwazalnie poprawny, cho¢ nieoptymalny. Natomiast w przypadku TWC teza okazala sie
by¢ bledna. W ostatnim z przytoczonych artykuléw zostal zawarty opis modelu ukrytych zmiennych dla
do$wiadczenia TWC, co jednoznacznie zamyka mozliwos¢ uzycia schematu TWC do bezwarunkowo bez-
pieczniej kryptografii kwantowej. Ponadto zostaly przedstawione eksperymenty, bedace zmodyfikowanymi
wersjami eksperymentéw TWC i Hardy’iego. Okazuje sig, ze tamanie nieréwnosci Bella przez pojedynczy
foton wystepuje jedynie przy bardzo specyficznych ustawieniach plytek Swiattodzielacych i zmiennych
amplitud stanéw koherentnych uzytych do pomiaru homodynowego.

Wstep do publikacji jest zorganizowany w nastepujacy sposéb. Pierwsze cztery rozdzialy wstepu za-
wieraja ogdlne uwagi na temat jasnej $cie$nionej prézni i obserwabli uzywanych do opisu pola optycznego.
Rozdzialy 5-7 omawiaja ogdlny zarys prowadzonych badan i wnioski zawarte w wyzej wspomnianych pu-
blikacjach. W sekcji 5 zostala przedstawiona metoda otrzymywania indykatoréw nieklasycznosci dla pola
optycznego. Rozdzial 6 omawia uproszczone operatory Stokesa. W rozdziale 7 jest opisana analiza ekspe-
rymentéw (TWC) oraz Hardy’ego. Rowniez zostaly przytoczone zaproponowane przez nas eksperymenty,
pozwalajace na zaobserwowanie prawdziwej nieklasycznosci Bella pojedynczego fotonu.

Ostatnia czes¢ wstepu jest krotkim opisem mozliwej kontynuacji przedstawionych badan.



Abstract

With emerging quantum technologies and the progress in detection schemes it is nowadays of a broad
scientific interest (and most probably it will be so in the future) to investigate the phenomena of entan-
glement of quantum light. This PhD dissertation is a contribution to this endeavour. It comprises of four
papers preceded by an introduction. The papers are listed in PhD Series and contain results to which I
contributed during my PhD studies. The introduction gives a brief description of new concepts proposed
in aforementioned papers. The subject of the research is focused on analyzing nonclassical correlations
of quantum optical states using the intensity measurements in context of polarisation and homodyne
measurements. The papers are related with each other.

The first one ”General mapping of multiqudit entanglement conditions to nonseparability indicators
for quantum-optical fields” opens the series. The paper describes a general method that allows to con-
struct a certain class of quantum-optical nonseparability indicators that use intensity-based correlations.
The method is based on mappings between entanglement witnesses and Bell inequalities for qudits and
analogous nonclassicality indicators for optical fields. The main idea of this concept is to replace the pro-
babilities of the coincidence detection of a particle in a given detection channel by the ratio of intensity of
the optical field registered in analogous channel divided by total local intensity. Mathematically speaking,
the mapping replaces average values of Pauli observables, or of their correlations, by averages of standard
and normalized Stokes observables, or of their correlations. In such a way we obtain methods of quantum-
optical entanglement detection that nowadays are experimentally feasible. Also, it is noted in the paper
that in the case of Bell’s inequality our method is suitable only for normalized observables. The strategy
for constructing Bell’s inequalities for standard Stokes operators must be radically different, and is not
discussed in the dissertation. The nonclassicity identifiers obtained in this way are tested for four-mode
bright squeezed vacuum (BSV) and its generalization to states with a greater number of optical modes.
Results presented in this paper make a significant contribution in the investigation of problems discussed
in the three following papers.

The second paper ”Simplified quantum optical Stokes observables and Bell’s theorem” also presents
new tools for detecting nonclassical correlations of optical fields. We proposed new observables — simplified
Stokes operators — for Bell experiments. The idea of new observables is very simple and consists of on a
comparison in which local detector related e.g. with the measurement of horizontal and vertical polarisation
a higher intensity of light was recorded. Depending on the result, the value of 41 is assigned to such a
measurement. When both local detectors register the same intensity, 0 is assigned. The new observables
turn out to perform better than the normalized Stokes operators in the case of BSV and for the third-
order radiation from parametric source i.e. so called "macroscopic GHZ state”. It is worth noting that the
proposed observables are experimentally realizable and their physical meaning is intuitive. Unfortunately,
our observables are not useful for entanglement witnesses,

Papers ”Can single photon excitation of two spatially separated modes lead to a violation of Bell
inequality via weak-field homodyne measurements?” and ” Wave—particle complementarity: detecting vio-
lation of local realism with photon-number resolving weak-field homodyne measurements” concern the
analysis and verification of statements regarding the nonclassicality of a single photon, aka ”single-photon
non-locality”, using weak field homodyne measurements. We analysed two emblematic thought experi-

ments: one proposed by Tan Walls and Collett (TWC) and the so called Hardy paradox. The general



mapping from the first paper was used to check the validity of TWC and Hardy’s claims. Now, when
such experiments are not only gedanken anymore and turned real, it is relevant to clarify the controversy
concerning the violation of Bell’s inequalities by a single photon Solving this problem once for all has,
apart from fundamental, also practical consequences. Single photon nonclassical properties could be used
in device-independent quantum protocols. Hardy’s experiment is indisputably correct, while in the case
of TWC the hypothesis turned out to be erroneous. We present a model of local hidden variables for the
TWC experiment, which means a no-go statement for unconditionally secure quantum cryptography with
the setup and closes the problem of TWC experiment once for all. Still TWC correlations can be used to
derive entanglement witnesses, that is done using the general mapping from the first paper. Apart from
that, we present schemes enabling witnessing of non-locality of single photon that are modified versions
of the TWC and Hardy experiments. It turns out that the violation of the Bell inequality by a single
photon occurs only with very specific settings of tunable beamsplitters and also tunable amplitudes of the
coherent states of the local oscillators.

The introduction to the papers is organized as follows. First four sections contain general remarks
about observables for optical fields and bright squeezed vacuum. Sections 5-7 summarise new results
from aforementioned publications. In section 5 is about the general mapping betwwen non-separability
indicators for qudits and optical fields. Section 6 discusses simplified Stokes observables. Section 7 analyzes
gedankenexperiments of Tan, Wall and Colett (TWC) and Hardy. Last section contains short description

of possible continuation of the research line presented in this thesis.



1 Entanglement in physics

Quantum mechanics revolutionized our understanding of the universe and has led to the development of
numerous technologies, including transistors, lasers, and superconductors. The term itself was introduced
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in 1924 by Born, who later in his autobiographic notes wrote “we became to be more and more convinced
that a radical change of the foundations of physics was necessary i.e. a new kind of mechanics [...] quantum
mechanics”. A new approach to fundamental phenomena was proposed by some of the greatest minds
of XX-th century. In 1900, Planck proposed the hypothesis of discrete energy emissions of an radiating
system. Five years later Einstein introduced “the light quanta” to describe the photoelectric effect. In 1913
Bohr postulated his model of atom. Later, in 1925 Heisenberg formulated basic ideas of matrix quantum
mechanics and Schrodinger postulated the famous evolution equation. In 1927 Heisenberg introduced the
uncertainty relation. The mathematical formalism of quantum mechanics was coined in terms of matrix
mechanics by Heisenberg, Born, and Jordan and wave mechanics by Schrodinger. These two approaches
turned out to be equivalent “pictures” of the same theory.

During this cascade of new theories the bold concepts of quantum mechanics and its different inter-
pretations were subjects of controversy e.g. the famous Einstein-Bohr debate. In 1935 Einstein, Podolsky,
and Rosen (EPR) presented a thought experiment that questioned the completeness of quantum mecha-
nics [Refl]. The so called EPR paradox is nowadays mainly known in the scenario proposed by Bohm in
which a particle of spin 0 decays into two spin 1/2 particles that are sent faraway in opposite directions
[Ref2]. As expected EPR hypothesis inspired comments, among others the famous Bohr’s reply [Ref3] and

”

Schrodinger’s paper [Ref4] where for the first time the term “entanglement” was introduced to describe
a very particular type of EPR (nonclassical) correlations. Unfortunately, at that time EPR experiment
was very far from being feasible and the debate about the completeness of quantum mechanics remained
inconclusive. Still, most physicists accepted Bohr view.

The nature of quantumness was investigated again by Bell, who in 1964 showed that quantum pheno-
mena cannot fit into a local realistic description [Ref5]. Since then, the study of nonclassical correlations
has slowly entered the core of scientific research [Ref6, Ref7, Ref8, Ref9, Refl0, Refl1].

In 1990’s the concept of a qubit — i.e. quantum bit — heralded the birth of quantum information theory.
A qubit, mathematically associated with a two-dimensional Hilbert space, can be physically implemented
e.g. as a spin 1/2 particle, or photon polarisation. Such systems can be characterized using dichotomic
observables. Such measurements provide binary results, useful to quantum information, quantum algori-
thms, and quantum key distribution [Refl12]. Entanglement started to be considered useful for quantum
information theory. After all, a system composed of two qubits can exhibit nonclassical correlations.

Nowadays the study of non-separability of physical systems have a significant impact not only on
our understanding of Nature but also on the development of modern technology. It underpins quantum
information, quantum communication, and quantum computing [Refl3, Refl4, Refl5, Refl6].

Facing these facts it is not surprising that entanglement of qubits and their generalisations to higher
dimensional objects, have been widely studied. There is a vast literature about classifying nonclassica-
lity in finite dimensional spaces. Let us concentrate on entanglement witnesses. Already a multitude of
entanglement witnesses have been proposed [Refl7, Refl8]. Nevertheless these indicators are only suffi-
cient conditions for entanglement and thus they are specially tailored for only for given classes of states.

Also, most of finite dimensional entanglement witnesses are efficient only for states of defined number of



particles.

When the study of entanglement started to be analyzed experimentally within quantum optics [Ref19,
Ref20] new types of entanglement indicators needed to be considered see e.g. [Ref21]. Nowadays, quan-
tum optical entanglement finds multiple applications in implementing quantum information processing
protocols within the branches of quantum computing [Ref22], quantum metrology [Ref23] and quantum
cryptography in the discrete and continuous variables regime [Ref24]. However, it is worth noticing that
in quantum optics, as a second quantized theory, one can consider states of undefined number of photons.
Thus, the description of entanglement of quantum optical systems compared to entanglement of qudits
poses additional challenges. For photons — bosons — the specifics of Bose-Einstein statistics must be taken
into account, as well as the fact that many measurements are based on observations of intensities. We will
focus on detection of entanglement of photonic states by examining the correlations of intensities with
respect to polarization.

The attribute of polarization allows considering quantum optical phenomena in the discrete variable
regime. Photon’s polarization is an example of a qubit degree of freedom. Also, the conceptual simplicity
of polarisation is worth noticing. It is intuitive and can be experimentally realized and analysed using
standard polarising analyzers. Nevertheless, as we shall see the detection of such entanglement of optical
fields often requires photon number resolving detectors. Fortunately, recent advancements of experimental

techniques make it possible, see the pioneering experiments [Ref25, Ref26].

2 Observables for quantum optical fields involivng intensity me-

asurements

2.1 Standard Stokes operators

To describe the polarisation of a quantum optical field one uses Stokes observables. They are quantum-
optical analogues of the parameters introduced in XIX-th century by George Stokes for the classical

description of a polarisation of light. They are represented by self-adjoint operators denoted here as:

©;i=1I-1;, (1)

where ¢ = 1,2, 3. The operator I; . stands for the light intensity related with an i-th polarisation basis

(1)
{i,i,}. Indices ¢ = 1,2,3 denote three complementary, mutually unbiased bases of a given polarisation

triad. Here the following identifications will be used:
e = 3 for horizontal/vertical basis {H,V},
e i = 2 for diagonal/anti-diagonal basis, {D, A},
e i =1 for right-handed/left-handed circular polarisation basis, {R, L}.

Additionally, Oy describes the total intensity of the light. We do not make any assumptions about the
definition of the intensity of light. If, for simplicity we assume that the intensity of light is proportional
to the photon number, we have fi =n; = d;r&i and Stokes operators take form C:)i = d;rdi — dL_du. The

zeroth operator is simply total photon number operator I= d;r&i + &;.r LG, = N [Ref27].



0.)2\ /2
The degree of polarisation is specified by the parameter p = <Z<6<0>2>> , which takes values 0 <
(6267
(636¢)
b denote local settings chosen by Alice (A) and Bob (B) to test local realism. This approach was used as an

p < 1. Then, it is tempting to introduce the following correlation function: F(a,b) = where a and
attempt to derive Bell inequalities for fields in [Ref28] and then in e.g. [Ref29]. From now on we are going
to call these type of inequalities CHSH-like inequalities because they are not “real” Bell-type inequalities.
Note that the CHSH-like inequalities hold if one imposes an additional assumption of non-enhancement of
intensity on the local hidden variable models tested in a Bell experiment. The form of correlation function
E(a,b) implies that the total intensity of the light variable within this local-realistic approach does not
change with the change of local settings. Thus, the violation of CHSH-like inequality might imply either
the violation of local realism or the violation of the non-enhancement assumption [Ref30]. This problem
will be discussed in further sections.

As below we shall discuss a different approach to quantum optical Stokes parameters, from now on we

call the operators defined above ”standard” Stokes observables.

2.2 Observables based on intensity rates

In order to provide a correct formulation of Bell inequalities based on Stokes parameters for optical fields
one can introduce e.g. new observables based on intensity rates observed in each run of the experiment
[Ref30, Ref31].

In case of two mode optical field they can be put as follows:
73)@ (2)

where I(s) and I (s, ) are the intensities of a light beam in mode s and respectively in an orthogonal mode
5. . The operator IT = 1—|QX€| is a projector that neutralizes the vacuum component |Q2) in a given beam.
The pair {s, s, } refers to any two orthogonal modes, e.g. two exclusive detectors in homodyne detection,
or a measurement of two orthogonal directions of a polarisations. The normalized Stokes operators of
[Ref31] read

SA Z R(i)— R(i,) = I Mis

(2

1. (3)

One defines the zeroth normalized Stokes operator Sy =111t gives the probability of a non-vacuum event.

Note that the above definition is fully analogous to the one for standard Stokes operators (1) with
the only difference that intensities are replaced with intensity rates (2). The spectra of normalized Stokes
operators are all rational numbers between [—1, 1] which makes them suitable for Bell inequalities [Ref30].
Several examples show that normalized Stokes operators enable better entanglement detection see e.g.
[Ref31], [Otherl], although their advantage over the traditional approach depends on the given states.

Sometimes standard Stokes observables are better [Other2].



3 Bright squeezed vacuum

An emblematic example of non-classical light of undefined photon number is 2 x 2 mode bright squeezed
vacuum (BSV) discovered as a “by product” in parametric down conversion (PDC) of type II [Ref32]. Tt is
a non-linear process that underpins most of experiments aiming to demonstrate entanglement of quantum
optical states [Ref33]. It is a robust source of single photons [Ref34], entangled photon pairs [Ref35], three,
four-photon entangled states [Ref36, Ref37, Ref38, Ref39] and so called “bright” entangled states of light
[Ref40, Refd1, Ref42].

Bright squeezed vacuum that we consider here is emitted into two distinct optical beams. Each beam
carries polarisation optical modes (as our working polarisation basis we choose: horizontal-H and vertical-

V). As an expansion in Fock states it reads:

— 1 - n - m
‘\I’ > = D) E tgh r E (_1) |(n_T)AHvrAvvrBHv(n_r)Bv>a (4)
cosh” I’ — =

where I" is the amplification gain. Subscripts A and B stand for two beams that reach two observers A
and B.

Bright squeezed vacuum is sometimes called “

macroscopic singlet” because of its perfect EPR-like
anticorrelations of Stokes observables. Also it has perfect correlations in number of photons between
the beams [Ref43].[Ref44]. Similarly to EPR singlet state BSV is rotationally invariant with respect to
the same rotations of the observers’ polarisation analyzers. Its form remains unchanged in any other

polarization basis {i,7, }.

4 The research presented of this thesis

Given the development of quantum technologies and the continuous progress of experimental techniques,
exploring nonclassical properties of quantum light becomes nowadays of broad scientific interest. The
research undertaken during my PhD studies was focused around nonclassical correlations. It contributed
to the following publications [PhD1, PhD2, PhD3, PhD4], see the list PhD Series. In order to distinguish
between nonclassical correlations revealed by entanglement witnesses and the ones revealed in tests of
Bell inequalities, I will call the correlations revealed with entanglement witnesses — entanglement and
the second ones — Bell-nonclassicality. Still, the considered non-classical correlations occur due to the
entanglement of quantum optical states. Entanglement and Bell nonclassicality have the same root, e.g.
see [Ref45].

In the aforementioned four papers nonclassical aspects of optical fields are described in context of
intensity correlation measurements. These papers are strongly related to each other. In [PhD1] we present
a general approach enabling to construct a class of entanglement indicators for optical fields. The method
is based on the mapping from entanglement conditions and Bell inequalities for qudits to analogous
nonseparability indicators for optical fields. Our method is effortless: take an entanglement condition for
qubits and replace the averages of Pauli operators or of their correlations with the respective averages of
standard and normalized Stokes operators or of their correlations. Also the generalization of the mapping

is given in [PhD1]. Such entanglement conditions are experimentally realisable and thus find applications



in quantum technologies. However, in case of Bell inequalities only normalized Stokes operators fit to the
mapping. Next, in [PhD2, PhD3, PhD4] it is shown how the mapping form [PhD1] can be useful to detect
entanglement of quantum optical states and also to clear up some controversies related to nonclassicality
of single photon detected in weak field homodyne regime.

In [PhD2] another approach to detect entanglement of optical fields is proposed: we introduced new
simplified sign Stokes observables for better tests of nonclassicality. This observables assign a value of +1
accordingly to the fact which of two complementary local detector registered more intensity of light. We
assign 0 when the intensity registered by both detectors are the same. The observables are experimentally
feasible and have intuitive physical meaning. We showed the cases when they are more efficient compared
to normalized Stokes operators. However, sign Stokes operators are not useful for entanglement witnesses.

The papers [PhD3] and [PhD4] investigate the nonclassical behavior of single photons using weak-
field homodyne measurements. They analyze the TWC and Hardy thought experiments. We verified that
Hardy’s experiment is correct although it is optimal. However, TWC’s thesis is erroneous. A hidden
variables model for TWC correlation is presented, which rules out their possible use in secure quantum
cryptography. Still, TWC correlations can be used to derive an entanglement witness. We construct an
entanglement condition using the general mapping from [PhD1]. Also, we show that after modifying TWC
setup the violation of Bell inequality can occur for single photon when specific settings of beamsplitters
and amplitudes of coherent state are used. This kind of research has implications for device-independent
quantum protocols.

The further sections of this introduction are organized as follows. Sections 5-7 give the description of
new results presented in [PhD1, PhD2, PhD3, PhD4] The secton 5 describes results from [PhD1]. Section 6
is dedicated to simplified Stokes operators introduced [PhD2] for better tests of Bell inequalities. Section
7 is dedicated to concepts given in [PhD3, PhD4]. Moreover in sections 5 and 7 the examples of the
straightforward application of the mapping from [PhD1] are given.

5 General mapping from qudit entanglement conditions to non-

separability indicators for optical fields

This section introduces the concepts covered in [PhD1] where the new method to construct entanglement
witnesses and Bell inequalities for optical fields is given. The method is based on the mapping that implies
already derived non-separability indicators for qudits and transform them to respective non-separability
indicators for optical fields. The revers mapping exists as well. Such a mapping comes in handy, especially
that there is plenty of entanglement indicators for qudits, the mapping is straightforward and precise
intensity measurement is nowadays feasible. For quantum-optical entanglement witnesses standard or
normalized Stokes operators can be used. This is not the case of Bell inequalities for which standard
Stokes operators do not have properties required for the mapping, as their spectra are not between 1 and
-1. Still, by using the mapping and normalized Stokes, it is possible to obtain proper Bell inequalities for
fields without the non-enhancement assumption mentioned in the previous sections and discussed further
on (section 6 and 7.1) .

Our mapping applies between the averages of Pauli and Stokes operators. In the following lines the

general intuition will be given.
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Any separable state of two qubits is a convex combination of product i.e. factorizable states:

o =Y pAPA @ 9%, (5)
A

where ) is any index (continuous or discrete), p5 and p2 can be pure, py > 0 and 3 WP =1
An arbitrary entanglement witness for two qubits, as a quantum observable operator, can be expanded

in the following way:
3
=Y w657, (6)
w,v=0

where w,,,, are real coefficients and witness w is defined as an operator, which for every separable state
p;‘gg fulfills the relation: () pas >0 [Ref46].
In the case of quantum four mode optical fields, with two modes propagating to observer A and the

other two to B, the general bipartite separable state of an optical field takes the form:

Pl = ZP,\fl(&» a1 ) g} (b,b1) |XQ fa(a,ar)ga(b,by), (7)
\

where f)(d,a, ) and g>\(lA)7 b 1) are polynomial functions of annihilation operators acting on modes related
with parties A and B respectively. The index A plays the same role as earlier. To put it in a more intuitive
way e.g.: fa(a,a,)|Q) is any pure state of modes a and a , and we have analogous states for B.

Entanglement indicators (witnesses) for intensity correlations will be denoted by W@ and WS depen-
ding on which type of Stokes observables we use. Note that as we assumed here two modes per observer,
essentially the situation can be thought of a representing the problem of detecting polarization entan-
glement of the beams propagating to the two observers. Note further, that all that we show here can be
straightforwardly generalized to many parties, and more than two modes per beam, see the generalizations
in [PhD1].

~A-B

The mapping is the following substitution: 6,6, 5465

— (:)Z‘(:)f for standard Stokes operators and 6,6, —
5‘;‘5‘5 for normalized Stokes operators. We take any entanglement witness for qubits w, replace Pauli
matrices with standard, or normalized Stokes operators and obtain W@ or WS respectively.

For the sake of clarity, before proving of the correctness of the mapping, it is worth to outline the
relation between Stokes (standard and normalized) and Pauli observables. Pauli matrices ¢ = (05,0,,0)
span the space of qubit observables represented by Hermitian 2 x 2 matrices. Stokes operators refer to
2-dimensional polarisation basis and similarly to Pauli matrices, each of the operators is related to one
out of three comg}ementaty settings of polarisation analyzers. Stol_i'es operator averages can be given as
Stokes vectors: (©) = ((01),(0s), (03)) for standard ones and (S) = ((S1),(Ss), (S3)) for normalized
Stokes operators.

Standard Stokes observable corresponding to an arbitrary polarisationL specified by a unit real vector
1 (if one uses Bloch representation), has the following representation: 17 -© = Zi,l:l &L (M- &) kiar, where
k,l € {1,2} represent polarisation directions H and V respectively. The total number of photons is given

) - ot () e o
by N =3, &Lékldl. For normalized Stokes operators we have analogously: m - S = >, HWI‘L

& a} 6011
and Sp reads Y-, —= .
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5.1 Standard Stokes operators and the mapping 6465 — @ﬁ@f

For standard Stokes operators the mapping reads:

3 3
N ~A-B A AAQB
W= E Wy 6,6, — 6 = E w010, (8)
w,v=0 w,rv=0

where coeflicients w,,, stay unchanged. The proof of the correctness of the mapping, which reduces to the
proof that Wé in (8) is indeed an entanglement witness for any bipartite state of the optical field, goes
in two steps. First it is enough to show that for any mixed state p of the four-mode field one can always
find a two-qubit density matrix ‘i?fB such that:

<J§<7);VJ%ZJ>/) =R Y

As mixed states (7) and (5) are convex combinations of pure states we proceed with the proof for
pure states. With any pure state of the optical field ’(bAB > the following set of states can be associated:
{|<I>;;‘£> = &leJk |¢AB>}k7m:1,2. Using the idea to represent Stokes operators in arbitrary direction using

Pauli matrices the expectation value for standard Stokes operators and |¢AB > can be expanded as follows:

2 2
(p*B10:165(p4P) = Z Z okl ot (BB B1P) = Tr o6 B PAP, (10)
k,Jl=1m,n=1

where <‘I>;€4£ |'I>f}LB > are elements of matrix P48, The matrix P48 is a Gram matrix so it is Hermitian. Its
trace is Tr PAB = (NANB>. Thus, PA8 = PAB/<NANB> is a proper two-qubit density matrix. Therefore
‘i3AB always exists for |¢AB > and (10) holds for any pure state. Note that pureness of |¢AB > does not
guarantee pureness of P45,

We need now to show that the separability of the state of the field guarantees the separability of ‘i?;j‘B .
Let us assume that ‘¢AB> is a product state ’¢A3>pmd = ’¢A> |¢B>. Such a structure of ’¢)AB> implies
that (@5 |®AP) = (@7 ®5) (BF|®F) ie. PAB = PAPB s also factorizable. Thus (1) > 0 and
<W@>¢AB > 0.

For the reverse map the reasoning is trivial. As (W@)pmd > 0, this is also true for two-photon separable

;i}AB

state and this is mathematically equivalent with We being an entanglement witness for two qubits.
As mixed separable states are convex combinations of pure states, the proof remains valid also for

mixed states.

5.2 Normalized Stokes operators and 6,5, — S’fgf

The outline of the proof for normalized Stokes operators follows the same lines as the proof for the standard

ones so its description will be more concise. The map reads as follows:

w

(11)

I
(]
S

3

Q>
T

Q>
Nl

1

>
U
\
RS
S
%
>
X



The expectation value <

<’(/JAB’S;1SVB’1/JAB> _ Z Z O,kl mn ‘I’AB|\I’ >

k,J=1m,n=1
= Tro) @6PRAP, (12)

where RAP is Gram matrix which after the normalization R45 = RAB /(ITATIB) becomes a proper density
matrix for two qubits. Again, the separability of the state of the field |¢) warrants the factorisation of
Gram matrix R4B.

In [PhD1] we give several generalizations of the mapping. We demonstrate its applicability for observa-
bles from unitary operator bases for qudits introduced in [Ref47] for multiport interferometry. Moreover,
the mapping remains valid for any general intensity operators. Note, that this allows to reformulate optical
coherence theory, see [PhD1] An application of the mapping is shown in [PhD2], [PhD3]. In [Otherl] we

apply it in multi party case to classify nonclassical correlations of 3 been GHZ-like radiation.

5.3 Robustness with respect to photon losses

Entanglement conditions from the classes of Ws and We are highly resistant to losses. The photon losses
are usually modelled with a unitary transformation U (n) which is operationally equivalent to placing a

beamsplitter of transmission coefficient /7 in front of a perfect detector i.e.

U(n)al = al(n) = ymal + /1 —ne (13)

T

where a; stands for the detection channel and é; for the loss channel related with j-th mode.

Let us start with standard Stokes operators. Inserting the transformation u (n) we get:

(47 (m)e P () = (

)| 4P), (14)

where WAB(U» =U(n) WAB> and We (1) = ut (mM)Well (n). We denote as <wAB‘W@’¢AB> the expecta-
tion value of given component of We not affected by losses.

By analysing the structure of <

n)|¢AB> ie. applyin ( ) to photon number operators
present in the standard Stokes operators, one can show that (© ( YOB(n)) is always proportional to
A, B

nn

(WP We (n) [0P) = n'n” (v 45, (15)

where nX for X = A, B is Alice’s and Bob’s detector efficiency. Thus, we have entanglement detection
with a full resistance with respect to the losses.

For normalized Stokes operators and W the dependence on losses does not cancel out as in the case
of We. Having regard to the structure of separable state (7) it is enough to consider pure product state
in the Fock basis |F) = |nf,n? ;mZ mP ). Stokes operators (standard and normalized) are diagonal in
their eigenbasis and each pure product state ’F AB> can be put as a superposition of eigenstates related
to a given Stokes operator. That is why, the dependence of efficiency nX for X = A, B must be related

with the behaviour of |F AB> in the eingenbasis of given S;?S‘f . Following that intuition it is enough
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to analyse the average value of a rate observable (2) for its eigenstate [F4) = |nf',m{ ) in presence of

efficiency 7. The following dependence of total number of photons in the given beam is obtained
A

= e (= @) = et - @), (16)
i (s

(FAM)|R|FA(n)) = ——

|FAB (1)) is the state |FAB) after introducing the losses in both channels.

Thus, for the expectation value of normalized Stokes operators for Alice and Bob we get

(FAP ()| S{ST|FAP (n)) = Hp (F|S;1S]|F), (17)

where

Hp= [] = =n%)me] = (F)IS3SEIF ()
X=A,B

)

is in fact the joint probability of coincident non-vacuum events in presence of losses and n;\, is the total
number of photons in X-th channel without considering the losses.

This simple but widely accepted model of photon losses and the considerations about the efficiency de-
pendence for standard and normalized Stokes operators have an interesting consequence. As the threshold
detectors’ efficiency becomes irrelevant, an arbitrary number of photons can be lost from the incoming
beam and still entanglement conditions of the type of Ws and We remain applicable. Then if e.g. the
measurement of three mutually complementary Stokes observables is needed, the light beam incoming to
the local detection station can be divided into three beams by cascade beamsplitters. Thus, it is enough to
prepare the whole setup with three settings at once and perform all needed measurements simultaneously.
All statistics can be collected without changing the settings of local analyzers - the idea is depicted in
Fig. 1.

5.4 A separability condition for optical fields based on the mapping — example

Consider the following observable w = 67()4&(])3 + Zizl sk6,‘€4c}}f , where s = £1. For any separable state

p™B the expectation value (1) sep > 0 because (G765 )proa = (614 (6F) and 35 _, (63)% = 1. As s can be

arbitrary, the following entanglement indicator for two qubits emerges

3
D 10K R sep| < (5665 sep- (18)

3
D USSP ) sepl < (TATTP) . (19)
j=1
and
ST HOFOP)upl < (NAKP).,. (20)
j=1

For states for which local correlations vanish condition (18) is straightforwardly derivable from the
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MEASUREMENT STATION OF AN OBSERVER (the second observer has the same setup)

{H,v}
beam that goes
to an observer ILR) 3 different
MPBS measurement
(DA} devices that

measure different
Stokes observables
from the triad
of complementary
polarisations

Rysunek 1: Schematic picture of simultaneous measurement of three complementary Stokes observables
while testing entanglement of optical fields using entanglement conditions Ws and We. At each measu-
rement station the beam of incoming light is divided in three by a multi-port beamsplitter (MPBS) of
three exists. In each of the exits we measure one of three complementary Stokes observables. There is no
need to switch between settings.

family of inequalities which are a consequence of the positive partial transpose conditions of Yu et.al. from
[Refd8] and therefore it is optimal for such states. Bright squeezed vacuum (4) has this property. It is a
consequence of the fact that <\I/_|$‘j-A|\I'_> = (U~ \(:)34|\I/_> = 0 and the same for the observer B.

5.5 Resistance with respect to a distortion noise

We introduce the following noise model:

noise __

= (9 X+ Y| Y|+ |y, 1)

where [U7),|UT) [ |®~),[®T) are 4 bright squeezed vacuum states. They read respectively:

1 2. tgh™(I") .
[9%) = ooy 2 i E b)), (22)
n=0
and
1 o tgh"(D) n
V%) = o 2 (bl b)) (23)
n=0

Our noise shares some similarities with white noise. It is uncorrelated: <S*M5’V> = 0 and <éuéu> =0
for all p and v. Also TrIATIB preise — (U~ |[IATI8|¥ ). One has Tr NANBproise — (g~ |NANB|G~),

because all noise components have the same amplification gain.
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The noisy state reads
QAB = |\Ilf><\117| +(1- U)QnOise, (24)

where 0 < v < 1 is the visibility.
The robustness with respect to noise can be analyzed by comparing the threshold visibilities above
which the separability conditions are violated for the quantum state in question. Thanks to technical

lemmas derived for Stokes operators and BSV we have the following identities:
3 o R 9.
; |(UT|SASP|w ) | = (w1 + HAWHAN/‘}
(o [F|em) = (vt |e)
3
S HET0f07| ) | = (¥ [NANA 4+ 2)[)
i=1
(U INANB|T™) = (U |[(N4)2|u™). (25)

Using these, the formulas for the threshold visibility read:

crit 3 _GA OB B (26)
S5 | (e 1SASE )|
for normalized Stokes operators and
U |NANE|w-
L L L (27)

Y| (w-jefere-)|

old
crit

for the standard ones. In Supplemental material of [PhD1] the visibilities v2/%, and v2%¥ were compared

as functions of the amplification gain I'. Normalized Stokes operators turn out to be more efficient. For

very weak amplification gain I' — 0 the critical visibility goes to the critical visibility for qubits.
Conditions (19) and (20) and the noise model (21) can be extended to unitary observables [Ref47] for

multiport interferometry and d x d generalized bright squeezed vacuum, see Sup. Mat. in [PhD1].

6 New observables for Bell tests for optical fields

The mapping presented in section 5 can the applied to obtain Bell inequalities for normalized Stokes
operators. As mentioned in section 4, the use of standard Stokes operators in Bell inequalities, as it is
done in e.g. [Ref28] rests on the non-enhancement assumption that the local hidden variable value of total
intensity of detected light does not depend on local settings [Ref30]. This assumption, seemingly intuitive
from a physical perspective, restricts the range of validity of Bell-like inequalities derived with it to a
specific subclass of local realistic models. Measurement stations of Alice and Bob are “black boxes” which
have to obey principles of local realism and nothing more. Also note that after introducing the dependence

on detector efficiency 7, as it was done for entanglement witness W@ in section 5, the correlation function

NASHB
E(a,b) = 222‘@%?’ is genuinely free of the dependence on 7. This obviously leads to wrong conclusions
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even for two photon states as the efficiency loophole is hidden. That is why alternative solutions for the
proper formulation of Bell inequalities based on rates, such as normalized Stokes operators [Ref30] or their
analogues tailored for weak homodyne detection as in [PhD3] were proposed. Technicalities related with
such problems will be discussed in Section 7.1.

In this section new observables for better test of Bell ineqialities for optical fields from [PhD2] are
discussed.

Normalized Stokes operators are not the only correct tool to test local realism for polarisation me-
asurement. In [Ref49, Ref50] pseudo-spin operators are proposed e.g. the z component of pseudo-spin is
(—1)", where 7 is the total photon number operator in the given optical mode. Their spectrum is +1
but they are very inefficient with respect to noise or losses. A loss of even one photon flips the value of
pseudospin. In [PhD2] we propose another kind of observables: sign Stokes operators. Their concept is

very intuitive: use Stokes operators and take the sign function of them, i.e.

G(s) = sign(©,) = sign(U,(Ig — Iv)U!) = sign(I, — I, ), (28)

where I, denotes the intensity measured with the chosen setting s related with the corresponding polari-
zation basis {s, s }. Symbol US denotes a unitary transformation between linear polarisation basis {H,V'}
and an arbitrary polarisation basis {s, s }.

As in previous sections we use the model in which intensity is proportional to the expectation value
of photon number operator. However, formula (28) remains valid for any model of intensity that can
be used for standard Stokes operators. The action of the sign function on Stokes operators is in fact a
binning strategy used in homodyne schemes [Ref51, Ref52, Ref53, Ref54] here applied in the context of
polarization measurements. The data collected for the measurement of Standard and normalized Stokes

operators can be also used for sign Stokes operators.

6.1 Bell inequalities with sign Stokes operators

As the spectrum of sign Stokes operators consist of £1 and 0, the derivation of a proper CHSH inequality
is straightforward.

For local hidden variables A and settings a,a’ for Alice and b,b" for Bob we define the functions
IX(z,\) and IX(2,,)\) where * = a,b and X = A, B that give the predetermined outcomes of the
intensity measurements. The local hidden values for sign operators are given by GX (z, \) = sign(1X (2, \)—
IX(x1,A)). These local hidden values are £1 and 0, thus one can use standard methods to derive CHSH

inequality:

(G (a, NGB (b, \) + G a, NGBV, \) + GA(d/, NGB (b, \)

—GA>d NGB N v < 2. (29)

As well as in the case of normalized Stokes operators, due to the high probability of the vacuum events
inequality (29) cannot be violated for bright squeezed vacuum. In order to reduce the impact of the
vacuum term on the CHSH inequality we use the Mermin-Garg trick also used in [Ref30] and modify local

hidden values:
@X(x) — GX_(J:) = GX(x) — ﬂgx, (30)
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where fIQx is the projector on the Fock subspace of states with no photons in the X-th beam. Thus, the
new CHSH inequality reads:

(G2 (a, \)GP~ (b, \) + GA~ (a, NGB (W', \)

+ G2 (d , NGB (b, N) — GA~ (', NGB~ (V' , \)) v ] < 2. (3D

In [PhD2] we compared the values of CHSH inequalities for sign and normalized Stokes operators in
function of the amplification gain I" for bright squeezed vacuum. The range of " in which the violation of
the respective CHSH inequality occurs is significantly broader for sign Stokes operators than for normalized
ones. Moreover in Suplementary Information in [PhD2] we give a strongly motivated conjecture, based
on numerical analysis, that with sign Stokes operators the violation of CHSH inequality occurs in the
whole range of I". Our conjecture results from the character of the action of sign Stokes operators on the
components of bright squeezed vacuum.

Observables (28) need to be modified if one wants to use them in CH inequality. To this end, we
introduce non-negative sign Stokes operators, that are simply the projectors onto the subspace in which

m > n, with m photons in z-th mode and n photons in x -th mode, where again = = a, b:

P(x) = Z Nz, M, ) (s Mg, |- (32)

n>m

From the structure of (32) we see that the eigenvalues are 1 when m > n and 0 if n < m. Note that the
expectation value of PX (x) is the probability that the observer X will see more photons in the nx mode
i.e. n > m. The quantum joint probability of obtaining the same result, that is n > m, by observers A
and B for the settings a and b is given by <}5A(a)]53 (b)). Using this notation CH inequality in quantum
scenario reads:

1< (CHp) = <15A(a)153(b) + PA(a) PB(Y) + PA(a')ﬁB(b)>
- <13“(a’)133(b’) + PAa) + PB(b)> <O0. %)

We compare the values of (CHp) and the CH expression for rates in [Ref30] for the optimized settings
from [Ref30]. Similarly, as in the case of CHSH inequality better results are obtained with non-negative
sign Stokes operators (32).

Sign Stokes operators also are robust for noise and losses. The noise model that we used was introduced
in [PhD1] and it is described in the previous sections. The model of losses is an analogue of the one given
in [Ref31] and it is based on the binomial distribution.

Also Mermin-like inequality is checked for sign Stokes operators and bright GHZ-like radiation form

[Otherl]. In this case sign Stokes operatros also are better that normalized ones.

6.2 Sign Stokes observables are not a suitable tool to construct entanglement

witnesses

Sign Stokes operators come in handy for Bell inequalities but are not useful for constructing entanglement

witnesses. Let us introduce sign Stokes vector (G). We use the notation from previous sections and assign
subscripts 1,2,3 for a triad of mutually unbiased polarisation bases. We have: (G) = ((G1), (Ga), (Gs)).
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The norm of standard and normalized Stokes vectors remain invariant with respect to any unitary trans-

formation. This is not the case of (G). For a proof consider the state |3,0y) and its rotation by oo = 7 i.e.

a rotation of the polarisation of the modes between the bases {H, V'} and {D, A}: a}, = cos aa}l +sin aaI,

and aL = cos aai, —sin aaL. For such a transformation the norm of (G))3,, o) is not invariant. Moreover,

it exceeds one and according to our calculations it cannot be reasonably bounded.

7 Nonclassicality of single photon

The concepts introduced in previous sections (the mapping and sign Stokes operators) were applied to
the bright squeezed vacuum, which is a standard example of “macroscopic” entanglement. In turn, in this
section based on [PhD3] and [PhD4] non-locality of single photon also called “entanglement with vacuum”
will be discussed. A single photon seems to be most microscopical optical object for which Bell inequalities
can be tested. However, as we shall see many claims concerning this are incorrect.

In [PhD3] and [PhD4] we reconsider gedanken and real experiments concerning violation of Bell ine-
qualities by a single photon excitation of two spatially separated optical modes. The state in question can

be generated by a single photon exciting a balanced beamsplitter. It reads

I
V2

where |01), , stands for “a photon being in the mode by and not in the mode b;”. Formula (34) demon-

) ([01)p,5, + [10)p,5, ), (34)

strates entanglement of optical modes. Revealing nonclassicality of (34) is a complex phenomenon that
addresses various research problems such as mode versus particle entanglement [Ref20] or the entangling
role of a beamsplitter [Ref55] to name a few. These problems have been widely discussed see e.g. 20 first
references from [PhD3]. Various scenarios were proposed. Aharonov and Vaidman, van Enk and Garry,
among the others, considered situations in which a single photon exciting a beamsplitter induces entan-
glement in excitations of atoms placed in spatially separated traps. However, these experiments effectively
boil down to Bell tests for two qubits. Thus, we do not have anything new in such schemes.

Nevertheless, it is possible to reveal single photon nonclassicality using only all-optical setups e.g. via
strong homodyne measurement [Ref56] or displacement operators [Ref57]. Neither of these examples raise
doubts in the scientific community.

We decided to concentrate on the controversial versions of all-optical setups i.e. the experiments in
weak local oscillator regime by what we mean that the mean number of photons of the auxiliary field is
one or less. We analyzed two emblematic single-photon gedankenexperiments of this type proposed by
Tan, Walls, Collett (TWC) [Ref29] and Hardy [Ref58].

Recent progress in the experimental techniques enable the realization of experiments involving schemes
of TWC and Hardy, see [Ref25, Ref26]. Thus, the problem of Bell-nonclassicality of single photon gains
on interest for applied quantum information and quantum communication.

The schemes of TWC and Hardy are shown Fig. 2. The experimental setup consists of three beam-
splitters. A single photon is projected on a balanced beamsplitter BSy and a homodyne measurement
at spatially separated detection stations j = 1,2 is performed. Each station is equipped with another
beamsplitter for homodyne detection denoted by UBS; for j = 1,2 and two detectors related to the
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beamsplitter’s outputs. For TWC and Hardy both local beamsplitters UBS; are balanced. The beam-
splitters inputs are denoted by a; and b; and outputs by c; and d;. The input a; is fed with the local
oscillator |o;) with amplitude oy and tunable phase ;. The input b; is used for the single photon. Behind

each beamsplitter UBS; at the outputs ¢; and d; photon number resolving detectors are placed.

|Q) |t a| [az)
S BSO b2 D
d
ql0) + r|1) \ B e
50:50
b,
i

WD, .

Rysunek 2: Most general schematic representation of the experimental setup for testing single-photon
correlational properties, which we consider here. In the Tan-Walls-Collett scenario we have ¢ = 0, and
|a1| = |aa| = const for all settings in Bell-like experiment. In original Hardy’s scenario ¢ # 0 and |a;| = 0,
;(1=3)
V2
beamsplitters Upg; with transmissivity varying from setting to setting.

or o = . Here we consider also intermediate cases, including o;’s of varying absolute values and

Despite seemingly similar experimental schemes, TWC and Hardy’s approaches to test nonclassicality
of a single photon differ significantly. First, the preparation of the initial single photon state is different.
Hardy’s initial state is a non-trivial superposition of single photon and vacuum. After passing through a
beamsplitter this state reads: [¢)) = ¢[00), ,, + %(|01>b1b2 + |10)pp,), with g # 0. For the TWC case
we have ¢ = 0. Another difference between these two experiments concerns the auxiliary fields. In TWC
local oscillators are always turned on and set on the same amplitude «; during the whole experiment:
a1 = ap = . Only the local phase 0; changes. In contrast, Hardy varies the amplitudes: local oscillators
can be turned on or off. With such a setup Hardy defines four complementary situations and proves that
their joint local realistic description is not consistent with quantum predictions. Hardy’s proof remains
impeccable. However TWC experiment raised substantial controversy, see “partial local hidden variable
model” for TWC experiment by Santos [Ref59] and the comment by Peres [Ref60]. TWC claim to violate
local realism but, as we show in [PhD3] and [PhD4] in their paper they calculate a violation of CHSH-
like inequality derived in [Ref28]. Such inequalities do not test local realism for optical fields This was
discussed in previous chapters, but for detailed analysis, see the (next) subsection 7.1. The TWC paper
had significant impact on the research in quantum optics and quantum information and is widely cited.
Despite the controversies, statements about the violation of Bell inequalities with the TWC setup can be
found in textbooks [Ref61, Ref62] and research articles e.g. [Ref63] or [Ref64], for the latter see also our
comment [Other3]. Thus, this problem needed to be clarified.
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7.1 TWC experiment does not reveal Bell nonclassicality

In the TWC scenario the overall input state shared by observers 1 and 2 reads

1 .
W (a)) = 7 @) a; (01)5,5, + 2 [10),0,) [ as (35)
where we have explicitly added the local oscillators |a;).

The local hidden variable model of the intensity are denoted here by I, (0;, \), where x = ¢, d stands
for the given detector of j = 1,2 detection station, A is the hidden variable and 6; is the local setting.
The total intensity registered by the detectors ¢; and d; is given by I;(\). The TWC correlation function
in the local realistic description reads:

S AN Tz (e, (05, 0) = 14, (65, 1))

By, 6) = T VL N0 ’ (36)

where p(A) is A distribution.

In quantum scenario the correlator Er (67, 02) reads:

(W()|(fre, = Pay) (e, — Tra, )| W ()

Er(01,02) = - — -
00 = @) (e, + ) e, + 10, (@)
= Ar(a)sin(f; — 63) (37)
and the amplitude Ar(«) is Ap(a) = ﬁ
Then CHSH-like inequality reads:
‘ET(elv 92) + ET( /la 92) + ET(917 0/2) - ET( iv 9/2)| <2 (38)

TWC report a violation of (38) for a? < v/2 — 1.

The form of correlator (36) assumes the “non-enhancement” of intensity which can be formulated
as follows: I;(\) = fcj()\,ﬁ) + fdj()\, ). Simply a subclass of local hidden variable models is assumed in
which the total local realistic intensity does not depend on 6.

A violation of (36) indicates that :

e either the local realism is violated
e or simply for the total intensity one has Ix (\) # I, (X, 60) + g, (X, 0).

e or there is no free will i.e. the choice of settings is not random (although this one seems to be very

extreme conclusion)

Thus, there is no proof of violation of local realism. Note that weak local oscillator states have in quantum
optical description undefined number of photons, which takes specific values only when the detection event
happens. Thus, the non-enhacement assumption raises strong doubts..

Also, most importantly this model works only for the TWC configuration. The Hardy approach has

no local realistic model.
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7.2 Rate approach for TWC correlations

We aim to check whether local realism is violated in TWC experiment. As the first step we will formulate
CHSH inequality with rate-based observables that for TWC setup read:

. . Ny .

Ry, =1l g —2—Tl. 4., 39
J 33 nc‘) +ndj %73 ( )
where z; = ¢; or d;. We define
. . . N T
Hj (6]) = Rq - Rdj = ch-dj %HC‘jd‘j) (40)
Te; + M

and analyze the correlation function calculated for TWC experiment:

Eg(61,0:) = (¥(a)| Hi(61)Ha(02) [¥(a))
= Ag(a)sin(f, — 02), (41)
C0a2, a2
where most importantly Ar(a) = 62(572_1)2 With (41) we shall use the proper CHSH inequality

|ERr(01, 02) + Er(01, 62) + Er(61, 65) — Er(01, 65)] < 2. (42)

A violation of (42) may the observed if the amplitude from (42) Ar > 1/v/2. However that happens
for Ag from (42). This raises doubt whether TWC experiment is indeed a Bell test of local realism. In
[PhD4] the definitive answer is given that it is not.

7.3 Local hidden variable model for TWC experiment

The aim of building LHV models is to reconstruct quantum predictions within a theory consistent with
local realism. Existence of a LHV model rules out the possibility of violation of Bell inequalities for a
given scenario. Thus, a possible application of such a process in device-independent quantum information
protocols is impossible. The detailed LHV model for TWC correlations can be found in [PhD4] and the
description of the outline how the model was created is demonstrated in [Other4].

The joint probability p(z, y|a,b), of outcomes x and y in presence of settings a and b freely and locally

chosen by two observers has a proper LHV model, if it can be reproduced by

p(z,yla,b) = /dAp(wla, Mp(ylb, A) (43)

where p(z|a, A) is a local probability of getting outcome x(,y in presence of a(,) and X and p(y|b, \) plays
the same role for the second observer.

The quantum probabilities of getting k,l,7 or s counts in the x;-th detector, where x = ¢,d and
j = 1,2 are given by p(ke,,la,,Tess Sdy) = | (Meys My s Mens Ty | Waer) | where |¥), . is (35) after passing

through all beamsplitters. We introduce a more concise notation n = (k,[,r, s) € N* and omit subscripts
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of z; for x = ¢,d and j = 1,2. We have
p(n) = A(a,n) [ (k=12 + (r—s)* + 2(k—1)(r—s) sin(@lg)}, (44)

where A(a,n) is a coefficient depending on n and coherent states’ amplitude «, whereas 615 denotes
0y — 0.
Our LHV model is a convex combination of submodels for specific classes of events. Formula (44)

shows that we have two main types of events:

o N events: (k,l,r,s) such that k = [ or r = s that are not dependent on ;5. These events are covered
by flat probabilities. Within this set we identify a subclass O of events such that either k =1 =0

orr=s=0.

o N events: (k,l,7,s) such that k > [ and r > s that depend ;5. These events will be called interfe-

rometric events.
These two classes of events are modelled by two different submodels My,:

e Larson-like submodels denoted by M, . v - These models are inspired by LHV models proposed by
Larson for 2 qubits [Ref65, Ref66] and cover events A" and events O. There are two hidden variables:
uniformly distributed continuous A € [0, 27] and a coin toss « € {0,1} that symmetrises the model.
The formulas for LHV structured probabilities for interferometric events for Alice P2 (c,d|0;, \, x)

and Bob PE(c/,d'|02, A\, x) are given in the section 3.1 in [PhD4]. The joint probability is given by:

1+ Vnsgn ((c—d)(c'—d')) sin(612)

PAB(c d ', d'0,,05) =
n (Ca ,Cy ‘17 2) o P

(45)

where we introduced V;, that we call is the visibility and is a function of n. Concerning O events i.e.:
(0,0,7,5),(0,0,s,7), (k,1,0,0) and (I, k, 0, 0), the joint probability is flat and reads PAZ(c,d, ', d'|01,02) =

% - % and results directly from the normalisation condition of local probabilities.

e Trivial submodels Mycn /o that reproduce probabilities N'/O. They predict fixed outcomes for
Alice and Bob, P2(k,l) = PE(r,s) = 1, which lead to P2B(k,l,r,s) = 1.

The overall model is a convex combination of submodels M v » and M 10 Each submodel
enters the combination with the probability P(M,), that can be obtained from the comparison of
PAB(c,d,c,d'|f,,02) with the corresponding quantum probabilities p(n|f12). These values sum up to
one Y " P(M,) = 1, which imposes a certain range of the applicability of the model with respect to the
amplitude of local oscillators . Our model is valid for o> < v/2 — 1 that is the full range of o for which
TWC reported the violation of local realism. Thus. despite claims TWC experiment is not a proper test

of Bell inequalities.

7.4 Witnessing entanglement of single photon with TWC experiment

In his famous 1964 paper “On the Einstein, Podolski, Rosen Paradox” Bell says that “if [a hidden variable
theory] is local it will not agree with quantum mechanics and if it agrees with quantum mechanics it will

not be local.” Thus, if Bell inequality is violated, the statistics of local measurements of a given quantum
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state cannot be reproduced by a local hidden variable model. The considered quantum state in the TWC
interferometric configuration may not reveal Bell nonclassicality, but still the TWC setup might reveal
entanglement of the two optical modes exiting the initial beamsplitter.

This is so. Below we shall show that the CHSH-like inequality of TWC indeed can be used as an
efficient entanglement witness, and it detects the entanglement induced by the single photon state in
the TWC configuration. To this end we have to check the relation of the additional "no enhancement”
condition with quantum optical separable states. The additional assumption that results from CHSH-like
inequalities of TWC and [Ref28] implies simply that ns.¢; (A) = ne; (05, X) + na,; (05, X), where ng, (65, \)
is the number of detector clicks predicted by an LHV theory in presence of #; and A. This holds for
probabilistic combinations of quantum product states i.e. separable states (7), while separable states
give per se a possible local hidden variable model. Also, formula (43) could be thought as describing
the factorisation of probabilities for a separable state of the field given by (7). This state is a convex
combination of factorisable states indexed by A.

In TWC scenario the local probability of registering n,, photons for setting 6, for the local state (the
subsystem of the separable state (7)) indexed by A is

Pr(ng, [61)x = (0(ny, na, (01)) )2
where d(,, 1) is the Kroenecker’s delta function. The joint probability goes as follows

Pr(nacl s Ny |017 02)sep

_ 1,2
=Tr 5(%1 Sy (01 ))5(%2 My (02))Psep

= fd)\pAPr(nII|91),\Pr(n2|92)>\, (46)

where p;fp

is given by the formula (7).
Now it is enough to notice that the no-enhancement assumption of CHSH-like inequality can be put

(fitor,)(A) = (fic; (0:)) (X) + (7, (0:)) (N)

that holds for any #; and leads to an operator identity

ﬁtoti = ﬁci (07,) + Ny, (91)7

i

that is not in contradiction with the structure of separable states. Thus, TWC inequality holds for all
separable states.

<2ﬁt0t1ﬁtot2 — [671(01)572(02) + 6111 (61)012(65)
+071(6)072(02) — 0 (67)072(05)]),,.,
>0, (47)

where (STALZ(QZ) = ﬁcl (01) — TAldi (01)
Thus, CHSH-like inequality of TWC can be used as an entanglement indicator, although it is not
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optimal. A tighter separability condition can be proposed. We find it with the help of the general mapping
from [PhD1]. The idea is as follows. We map condition (38) to qubits, improve it and remap again to
the condition for optical fields. Then, let us start with the qubit case. We will use the intuition that an
efficient entanglement witness can be constructed from Bell inequality for qubits when the settings are
fully complementary. We reduce Bloch sphere to a circle and introduce pairs of vectors that represent
complementary settings of Alice {@, @} and Bob {b,5'}. With these settings the separability condition

reads

V20000 @ -3, @ (b+1b) -5
+d G @bV

S
|
S
—
QL
N,
=
'3
)
=
V
o
~—~
N
63
SN~—

Now we use the mapping and assign &](-O) = I;, 67 = 0n;(0;) and 67 = on;(0; + 5) for j = 1,2

observers. The separability condition goes as follows

(V2040 oty — [6701(61)0712(02) + 011 (01)072(02 + T)
+001 (61 + §)002(62) — 5 (61 + 5)5M2(02 + 5)]).,,,
> 0. (49)

For rates we get

(V2 ILy — [8R1(61)6Ro(62) + 5By (61 + T)5R2(62)
+8R1(01)0Rs (02 + ) = SR1 (01 + 5)0R2(02 + 3)]),,
>0, (50)

where 0R;(0;) = R.,(0;) — Ra, (0;).
We compared (49) and (50) in function of local oscillators amplitude . Condition (50) for rates detects

entanglement for larger range of « than (49) for intensities.

7.5 Optimal setting for TWC scheme to test Bell nonclassicality

A local hidden variable model exists for the TWC experiment when balanced beamsplitters and weak
local oscillators of fixed amplitudes are used constantly during the whole experiment. This demonstrates
that local realism cannot be violated in such a setup. Contrarily, the reasoning of Hardy remains correct,
so we have an example of all-optical setup demonstrating nonclassicality of single photon. A key difference
between TWC and Hardy’s experiment is that in Hardy’s scheme the strength of the local oscillators vary
and the initial state is a superposition of a single photon and vacuum i.e. ¢|0) + /1 — [¢[2|1) for ¢ # 0,
see Fig. 2. Thus, the analyses of TWC and Hardy arise the following questions:

1. What is the role of vacuum component in the superposition of single photon and vacuum that Hardy

uses?

2. What can be modified in TWC scheme so it can reveal nonclassicality of a single photon?
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The use of a signal state being the superposition of a single photon and vacuum is an important
aspect of the original Hardy’s setup because if ¢ — 0 the nonclassicality of the single photon within
Hardy’s scheme cannot be observed. The CH inequality related with Hardy’s paradox is effectively not
violated for ¢ < 0.2.

Our approach to test nonclassicality of single photon was then the following. We decided to combine
TWC and Hardy’s schemes, vary all tunable parameters (transmitivities of beamsplitters, local amplitudes
and phases) and use only a single photon as a signal state. The tunable beamsplitter’s transmitivity
(reduction of intensity upon transmission) will be denoted by x; for observers j = 1,2.

Yet, even by varying these settings CHSH rate-based inequality is not violated. Thus, perhaps it is
worth to consider CH inequality instead. However, CH and CHSH inequalities remain equivalent for qubits
but they are not equivalent anymore when we use rates. Despite the fact that rates and probabilities share
similar important properties, there is a significant difference. The probabilities sum up to 1 while rates
sum up either to 1 or 0, because of the probability for a vacuum event the rate is set to 0. That is why
CHSH and CH are no longer equivalent for rates.

For the consistency we denote local tunable settings by ¥; and 17;- for j = 1,2. where ¥; = (x;,a;,0;)
stands for on setting with beamsplitters tuned to transmitivity x; and the local oscillator’s amplitude is
o;j. The primed settings correspond to off situation i.e. local oscillators are turned off and beamsplitters
are removed i.e. 7; = (1,0,0).

In the local realistic scenario CH inequality constructed with rates reads:

— 1 < (R, (01) Ra, (V2) + Ra, (01) Ry, (%) + Ry, (7)) Ra, (72)

) i} (51)
- :il (ﬁ)R:iz (6&) - Rdl (vl) - Rd2 (’UQ)>LHV < 0.

The violation of inequality (51) obtained in [PhD3] reveals true nonclassicality of single photon.

The optical settings correspond to local beamsplitters with transmitivity x1 = x2 = 0.79 and the
local oscillator coherent states have mean photon number equal to 1/2. Moreover, with these settings, the
non-classical correlations are detected also in the case of the initial state being one single photon, and not
a superposition of it with vacuum i.e. ¢ = 0. Thus, the presence of the vacuum component is not necessary
to reveal nonclassicality of single photon using inequality (51). Interestingly, for the case of ¢ = 0, and
nearby, the CH inequality is violated on its left-hand-side, while for Hardy’s range of parameters CH is
violated on the right hand side.

It is worth noting that the scenario described above has a unique characteristic. The correlation
functions and local averages rely on the values of the parameters of the overall initial quantum state
(of all four modes involved in the experiment, including the local oscillator ones), denoted as |¥(«)) in
equation (35). Now coherent states’ amplitude « vary depending on the setting. This “dependency on the
state” can be eliminated by the description of the measurement in terms of POVMs acting on the single
photon input state |¢) given in equation (34). For the construction of POVMs see Appendix in [PhD3].

Another method proposed in [PhD4] to test the non-classical behavior of a single photon is to construct
a CH inequality tailored for specific events (specific photon counts). We denote the events as follows A and
A’ for the first observer and B and B’ for the second observer. By primed event A’ we denote a single pho-

ton detected in mode d; and no-photon in mode ¢; when local oscillator is turned on (on setting). By A

we denote also a single photon count at d; and no count in ¢;, however with the local beamsplitter removed
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and local oscillator switched off (i.e off setting). Events B and B’ play the same role for Bob. E.g. the

joint probability P(A’, B’) i.e. for both local settings “on” is given by:
P(A/7B,) = ‘CladlyCZ;d2 <O’ 1,0, 1|\IJ> |27
where |¥) is given by (35). In such a case CH inequality reads

—~1< P(A,B)+ P(A,B') + P(A', B)

(52)
— P(A',B') - P(A) — P(B) < 0.

Inequality (52) is violated by quantum prediction. The maximal violation of (52) is obtained for the
following parameters |a|? = 0.2 and beamsplitters’ transmitivity x ~ 0.8 (the values are the same for both
observers). Note that |a|? + x ~ 1. This relation is most probably a general rule for optimal detection of
violation of realism in such tests with on/off settings and for the specific detection events, see a discussion
in [Ref67]. Therein, the authors show that this rule survives even imperfect detection. When working on
[PhD4] we thought that this interesting relation is accidental. What is the physical meaning of this rule
for optimal entanglement detection test is an open question.

The violation of CH only using on/off settings can be considered from more fundamental perspective
i.e. as the demonstration of the wave-particle complementarity of a quantum state using complementary
detection techniques. These techniques consist of a homodyne type (local oscillators on) and a direct
photon number measurement (local oscillators off ). That aspect of nonclassicality of single photon can be
associated with Dirac’s phase vs photon-number uncertainty for quantum optics [Ref68] and points out
that violation of Bell inequalities have fundamental role in understanding of quantum physics.

To conclude our analysis, we have also examined the original Hardy paradox using intensity rate-based
approach. We found that the original Hardy’s setup does not lead to the violation of CH inequality for
rates. This remark of course does not make Hardy’s reasoning invalid, rather shows the different nature

of two approaches.

8 Projects in progress

New technologies allow the experimental realization of the concepts given in [PhD1, PhD2, PhD3, PhD4].
The physical realization of theoretical ideas seems very tempting to me. Such experiments apart from
enabling testing fundamental questions have also a very practical meaning. They can be developed in
context of possible applications in quantum information theory. Results described in this thesis can lead
to the design of secure quantum communication and quantum cryptography.

Still, entanglement conditions based on the mapping from qubits to Stokes operators from [PhD1]
can be modyfied. It is well known that adding a non-linear component might improve given entanglement
witness. One of the ways on doing so is e.g. to introduce the variance of the Stokes vector for the composed
system, see [Other2]. Such a criteria have a straightforward physical interpretation. Specifically, if the range
of data points around the average value of a quantum state is less than the minimum range expected for
separable states, then that quantum state is entangled. Covariances can be also used to construct Bell

inequalities e.g. [Ref69].
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Apart from that, in [Other2] we consider bright squeezed vacuum with introduced non-Gaussianity
that exhibit strong quantum correlations. Using such states allows testing non classical aspects of optical
fields in ”event-ready” experiments and finds potential applications in secure communication and other
quantum technologies. Also, exploring physics of non-gaussian entanglement in quantum protocols is a
problem of growing interest.

Another project in progress related to the mapping from [PhD1] and observables from [PhD2] is about
steering in quantum optics. Steering is an interesting phenomena that lies“between” entanglement and
Bell nonclassicality. According to my knowledge this problem was studied only for states of defined

numbers of particles.

PhD Series (the alphabetical order of authors indicates their equal involvement)

[PhD1] Junghee Ryu, Bianka Woloncewicz, Marcin Marciniak, Marcin Wieéniak, and Marek Zukow-
ski. General mapping of multiqudit entanglement conditions to nonseparability indicators for
quantum-optical fields. Phys. Rev. Research, 1:032041, Dec 2019.

[PhD2] Konrad Schlichtholz, Bianka Woloncewicz, and Marek Zukowski. Simplified quantum optical
stokes observables and bell’s theorem. Scientific Reports, 12(1):10101, Jun 2022.

[PhD3] Tamoghna Das, Marcin Karczewski, Antonio Mandarino, Marcin Markiewicz, Bianka Wolonce-
wicz, and Marek Zukowski. Can single photon excitation of two spatially separated modes lead
to a violation of bell inequality via weak-field homodyne measurements? New Journal of Physics,
23(7):073042, jul 2021.

[PhD4] Tamoghna Das, Marcin Karczewski, Antonio Mandarino, Marcin Markiewicz, Bianka Wolonce-
wicz, and Marek Zukowski. Wave-particle complementarity: detecting violation of local realism
with photon-number resolving weak-field homodyne measurements. New Journal of Physics,
24(3):033017, mar 2022.

Other References related to this thesis that I am a co-author

[Other1] Konrad Schlichtholz, Bianka Woloncewicz, and Marek Zukowski. Nonclassicality of bright
greenberger-horne-zeilinger—like radiation of an optical parametric source. Phys. Rev. A,
103:042226, Apr 2021.

[Other2] Bianka Woloncewicz Tamoghna Das and Marek Zukowski. Improved entanglement indicators
for quantum optical fields. arXiv:2205.05641, 2022.

[Other3] Tamoghna Das, Marcin Karczewski, Antonio Mandarino, Marcin Markiewicz, Bianka Wolonce-
wicz, and Marek Zukowski. Comment on ‘single particle nonlocality with completely independent
reference states’. New Journal of Physics, 24(3):038001, mar 2022.

[Other4] Tamoghna Das, Marcin Karczewski, Antonio Mandarino, Marcin Markiewicz, Bianka Wolon-
cewicz, and Marek Zukowski. Remarks about bell-nonclassicality of a single photon. Physics
Letters A, 435:128031, 2022.

28



Other publications that I am a co-author but they are not cited

in this thesis

e Ray Ganardi, Ekta Panwar, Mahasweta Pandit, Bianka Woloncewicz and Tomasz Paterek,Quantitative
non-classicality of mediated interactions, arXiv:2303.12428, 2023

e Marcin Wiesniak, Palash Pandya, Omer Sakarya, Bianka Woloncewicz, Distance between Bound
Entangled States from Unextendible Product Bases and Separable States, Quantum Reports. 2020;
2(1):49-56

Other References

[Refl] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev., 47:777-780, May 1935.

[Ref2] D Bohm. Quantum theory, Prentice Hall Inc., New York,(1951).

[Ref3] N. Bohr. Can quantum-mechanical description of physical reality be considered complete? Phys.
Rev., 48:696-702, Oct 1935.

[Ref4] E. Schrodinger. Discussion of probability relations between separated systems. Mathematical
Proceedings of the Cambridge Philosophical Society, 31(4):555-563, 1935.

[Ref5] J. S. Bell and Alain Aspect. Speakable and Unspeakable in Quantum Mechanics: Collected Papers
on Quantum Philosophy. Cambridge University Press, 2 edition, 2004.

[Ref6] Alain Aspect. Bell’s Theorem: The Naive View of an Experimentalist, pages 119-153. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002.

[Ref7] Daniel Erdosi, Marcus Huber, Beatrix C Hiesmayr, and Yuji Hasegawa. Proving the generation of
genuine multipartite entanglement in a single-neutron interferometer experiment. New Journal of
Physics, 15(2):023033, feb 2013.

[Ref8] Marek Zukowski and Caslav Brukner. Bell’s theorem for general n-qubit states. Phys. Rev. Lett.,
88:210401, May 2002.

[Ref9] Reinhard F. Werner and Michael M. Wolf. Bell inequalities and entanglement. QIC, 1:1-25,
October 2001.

[Ref10] Caslav Brukner and Marek Zukowski. Bell’s Inequalities — Foundations and Quantum

Communication, pages 1413-1450. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[Refl1] Xiao-song Ma, Stefan Zotter, Johannes Kofler, Rupert Ursin, Thomas Jennewein, Caslav Bruk-
ner, and Anton Zeilinger. Experimental delayed-choice entanglement swapping. Nature Physics,
8(6):479-484, 2012.

29



[Ref12] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and
coin tossing. Theoretical Computer Science, 560:7-11, 2014. Theoretical Aspects of Quantum

Cryptography — celebrating 30 years of BB84.

[Ref13] Charles H. Bennett and David P. DiVincenzo. Quantum information and computation. Nature,
404(6775):247-255, Mar 2000.

[Ref14] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography.
Rev. Mod. Phys., 74:145-195, Mar 2002.

[Ref15] John Preskill. Quantum information and physics: Some future directions. Journal of Modern
Optics, 47(2-3):127-137, 2000.

[Ref16] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quantifying entanglement. Phys. Rev.
Lett., 78:2275-2279, Mar 1997.

[Refl7] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, and Karol Horodecki. Quantum entan-
glement. Rev. Mod. Phys., 81:865-942, Jun 20009.

[Ref18] Otfried Giithne and Géza Téth. Entanglement detection. Physics Reports, 474(1):1-75, 2009.

[Ref19] Jian-Wei Pan, Zeng-Bing Chen, Chao-Yang Lu, Harald Weinfurter, Anton Zeilinger, and Marek
Zukowski. Multiphoton entanglement and interferometry. Rev. Mod. Phys., 84:777-838, May 2012.

[Ref20] Rafal Demkowicz-Dobrzanski, Marcin Jarzyna, and Jan Kolodynski. Chapter Four - Quantum

Limits in Optical Interferometry, volume 60 of Progress in Optics. Elsevier, 2015.

[Ref21] Christoph Simon and Dik Bouwmeester. Theory of an entanglement laser. Phys. Rev. Lett.,
91:053601, Aug 2003.

[Ref22] J. Eli Bourassa, Rafael N. Alexander, Michael Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Mat-
suura, Daigin Su, Ben Q. Baragiola, Saikat Guha, Guillaume Dauphinais, Krishna K. Sabapathy,
Nicolas C. Menicucci, and Ish Dhand. Blueprint for a Scalable Photonic Fault-Tolerant Quantum
Computer, 2020. arXiv:2010.02905v2.

[Ref23] Marco Barbieri. Optical quantum metrology. PRX Quantum, 3:010202, Jan 2022.

[Ref24] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Geh-
ring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C.
Usenko, G. Vallone, P. Villoresi, and P. Wallden. Advances in quantum cryptography. Adv. Opt.
Photon., 12(4):1012-1236, Dec 2020.

[Ref25] G. S. Thekkadath, D. S. Phillips, J. F. F. Bulmer, W. R. Clements, A. Eckstein, B. A. Bell, J. Lu-
gani, T. A. W. Wolterink, A. Lita, S. W. Nam, T. Gerrits, C. G. Wade, and I. A. Walmsley. Tuning
between photon-number and quadrature measurements with weak-field homodyne detection. Phys.
Rev. A, 101:031801, Mar 2020.

30



[Ref26] G. Donati, T. Bartley, X-M. Jin, M-D. Vidrighin, A. Datta, Barbieri M., and I. A. Walmsley.
Observing optical coherence across fock layers with weak-field homodyne detectors. Nat. Commun.,
5:5584, 2014.

[Ref27] J. M. Jauch and F. Rohrlich. The Theory of Photons and Electrons: The Relativistic Quantum
Field Theory of Charged Particles with Spin One-half. 1976.

[Ref28] M. D. Reid and D. F. Walls. Violations of classical inequalities in quantum optics. Phys. Rev. A,
34:1260-1276, Aug 1986.

[Ref29] S. M. Tan, D. F. Walls, and M. J. Collett. Nonlocality of a single photon. Phys. Rev. Lett.,
66:252-255, Jan 1991.

[Ref30] Marek Zukowski, Marcin Wieéniak, and Wiestaw Laskowski. Bell inequalities for quantum optical
fields. Phys. Rev. A, 94:020102, Aug 2016.

[Ref31] Marek Zukowski, Wieslaw Laskowski, and Marcin Wiesniak. Normalized Stokes operators for
polarization correlations of entangled optical fields. Phys. Rev. A, 95:042113, Apr 2017.

[Ref32] D.N. Klyshko. Combine epr and two-slit experiments: Interference of advanced waves. Physics
Letters A, 132(6):299-304, 1988.

[Ref33] Ulrik L Andersen, Tobias Gehring, Christoph Marquardt, and Gerd Leuchs. 30 years of squeezed
light generation. Physica Scripta, 91(5):053001, apr 2016.

[Ref34] A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn. Pure single photon generation by type-i
pdc with backward-wave amplification. Opt. Express, 17(5):3441-3446, Mar 2009.

[Ref35] Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, Anton Zeilinger, Alexander V. Sergienko, and
Yanhua Shih. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett.,
75:4337-4341, Dec 1995.

[Ref36] Adan Cabello, David Rodriguez, and Ignacio Villanueva. Necessary and sufficient detection effi-
ciency for the mermin inequalities. Phys. Rev. Lett., 101:120402, Sep 2008.

[Ref37] Jian-Wei Pan, Dik Bouwmeester, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger. Expe-
rimental test of quantum nonlocality in three-photon Greenberger—Horne—Zeilinger entanglement.
Nature, 403(6769):515-519, February 2000.

[Ref38] Harald Weinfurter and Marek Zukowski. Four-photon entanglement from down-conversion. Phys.
Rev. A, 64:010102, Jun 2001.

[Ref39] Dong Ding, Ying-Qiu He, Feng-Li Yan, and Ting Gao. On four-photon entanglement from para-

metric down-conversion process. Quantum Information Processing, 17:1-10, 2018.

[Ref40] M.V. Chekhova, G. Leuchs, and M. Zukowski. Bright squeezed vacuum: Entanglement of macro-
scopic light beams. Optics Communications, 337:27-43, 2015.

31



[Ref4l] Magdalena Stobinska, Falk Téppel, Pavel Sekatski, and Maria Chekhova. Entanglement witnesses
and measures for bright squeezed vacuum. Physical Review A, 86, 05 2012.

[Ref42] Magdalena Stobinska, Falk Téppel, Pavel Sekatski, and Maria V. Chekhova. Entanglement wit-
nesses and measures for bright squeezed vacuum. Phys. Rev. A, 86:022323, Aug 2012.

[Ref43] Timur Sh. Iskhakov, Ivan N. Agafonov, Maria V. Chekhova, and Gerd Leuchs. Polarization-
entangled light pulses of 10° photons. Phys. Rev. Lett., 109:150502, Oct 2012.

[Ref44] Krzysztof Rosolek, Magdalena Stobinska, Marcin Wiesniak, and Marek Zukowski. Two copies
of the Einstein-Podolsky-Rosen state of light lead to refutation of epr ideas. Phys. Rev. Lett.,
114:100402, Mar 2015.

[Refd5] Sixia Yu, Qing Chen, Chengjie Zhang, C. H. Lai, and C. H. Oh. All entangled pure states violate
a single Bell’s inequality. Phys. Rev. Lett., 109:120402, Sep 2012.

[Ref46] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. Separability of mixed states: neces-
sary and sufficient conditions. Physics Letters A, 223(1):1-8, 1996.

[Refd7] Junghee Ryu, Marcin Marciniak, Marcin Wiesniak, and Marek Zukowski. Entanglement condi-
tions for integrated-optics multi-port quantum interferometry experiments. 01 2016.

[Ref48] Sixia Yu, Jian-Wei Pan, Zeng-Bing Chen, and Yong-De Zhang. Comprehensive test of entangle-
ment for two-level systems via the indeterminacy relationship. Phys. Rev. Lett., 91:217903, Nov
2003.

[Ref49] Zeng-Bing Chen, Jian-Wei Pan, Guang Hou, and Yong-De Zhang. Maximal violation of Bell’s
inequalities for continuous variable systems. Phys. Rev. Lett., 88:040406, Jan 2002.

[Ref50] M M Dorantes and J L Lucio M. Generalizations of the pseudospin operator to test the Bell
inequality for the TMSV state. Journal of Physics A: Mathematical and Theoretical, 42(28):285309,
jun 2009.

[Ref51] Melvyn Ho, Olivier Morin, Jean-Daniel Bancal, Nicolas Gisin, Nicolas Sangouard, and Julien
Laurat. Witnessing single-photon entanglement with local homodyne measurements: analytical
bounds and robustness to losses. New Journal of Physics, 16(10):103035, oct 2014.

[Ref52] Su-Yong Lee, Jiyong Park, Jaewan Kim, and Changsuk Noh. Single-photon quantum nonlocality:
Violation of the clauser-horne-shimony-holt inequality using feasible measurement setups. Phys.
Rev. A, 95:012134, Jan 2017.

[Ref53] Antonio Acin, Nicolas J. Cerf, Alessandro Ferraro, and Julien Niset. Tests of multimode quantum

nonlocality with homodyne measurements. Phys. Rev. A, 79:012112, Jan 2009.

[Ref54] W. J. Munro. Optimal states for Bell-inequality violations using quadrature-phase homodyne
measurements. Phys. Rev. A, 59:4197-4201, Jun 1999.

[Ref55] M. S. Kim, W. Son, V. Buzek, and P. L. Knight. Entanglement by a beam splitter: Nonclassicality
as a prerequisite for entanglement. Phys. Rev. A, 65:032323, Feb 2002.

32



[Ref56] W. J. Munro. Optimal states for Bell-inequality violations using quadrature-phase homodyne
measurements. Phys. Rev. A, 59:4197-4201, Jun 1999.

[Ref57] Konrad Banaszek and Krzysztof Wodkiewicz. Testing quantum nonlocality in phase space. Phys.
Rev. Lett., 82:2009-2013, Mar 1999.

[Ref58] Lucien Hardy. Nonlocality of a single photon revisited. Phys. Rev. Lett., 73:2279-2283, Oct 1994.

[Ref59] Emilio Santos. Comment on “nonlocality of a single photon”. Phys. Rev. Lett., 68:894-894, Feb
1992.

[Ref60] Asher Peres. Nonlocal effects in fock space. Phys. Rev. Lett., 74:4571-4571, Jun 1995.

[Ref61] Daniel F Walls and Gerard J Milburn. Quantum optics. Springer Science & Business Media,
2007.

[Ref62] Gennaro Auletta, Mauro Fortunato, and Giorgio Parisi. Quantum Mechanics. Cambridge univer-

sity press, 2012.

[Ref63] Paolo Abiuso, Tamés Krivachy, Emanuel-Cristian Boghiu, Marc-Olivier Renou, Alejandro Pozas-
Kerstjens, and Antonio Acin. Single-photon nonlocality in quantum networks. Phys. Rev. Research,
4:1.012041, Mar 2022.

[Ref64] J J Cooper and J A Dunningham. Single particle nonlocality with completely independent refe-
rence states. New Journal of Physics, 10(11):113024, nov 2008.

[Ref65] Jan Ake Larsson. Modeling the singlet state with local variables. Physics Letters A, 256(4):245
— 252, 1999.

[Ref66] Sven Aerts, Paul Kwiat, J an-Ake Larsson, and Marek Zukowski. Two-photon Franson-type expe-
riments and local realism. Phys. Rev. Lett., 83:2872-2875, Oct 1999.

[Ref67] Tamoghna Das, Marcin Karczewski, Antonio Mandarino, Marcin Markiewicz, and Marek Zukow-
ski. Optimal interferometry for Bell nonclassicality induced by a vacuum-one-photon qubit. Phys.
Rev. Appl., 18:034074, Sep 2022.

[Ref68] Paul Adrien Maurice Dirac. The quantum theory of the emission and absorption of radiation.
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character, 114(767):243-265, 1927.

[Ref69] Victor Pozsgay, Flavien Hirsch, Cyril Branciard, and Nicolas Brunner. Covariance Bell inequali-
ties. Phys. Rev. A, 96:062128, Dec 2017.

33



PHYSICAL REVIEW RESEARCH 1, 032041(R) (2019)

General mapping of multiqudit entanglement conditions to nonseparability
indicators for quantum-optical fields

Junghee Ryu ,! Bianka Woloncewicz,2 Marcin Marciniak ®,> Marcin Wie$niak,>? and Marek Zukowski>
Y Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
2International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland
3Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics,
University of Gdarisk, 80-308 Gdarisk, Poland

M (Received 24 April 2019; published 19 December 2019)

We show that any multiqudit entanglement witness leads to a nonseparability indicator for quantum optical
fields, which involves intensity correlations. We get, e.g., necessary and sufficient conditions for intensity
or intensity-rate correlations to reveal polarization entanglement. We also derive separability conditions for
experiments involving multiport interferometers, now feasible with integrated optics. We show advantages of
using intensity rates rather than intensities, e.g., a mapping of the Bell inequalities to ones for optical fields. The
results have implication for studies of nonclassicality of “macroscopic” systems of undefined or uncontrollable

number of “particles.”

DOI: 10.1103/PhysRevResearch.1.032041

Nonclassicality due to entanglement initially was studied
using quantum optical multiphoton interferometry, see, e.g.,
Ref. [1]. The experiments were constrained to defined photon
number states, e.g., the two-photon polarization singlet [2].
This includes Greenberger-Horne-Zeilinger (GHZ) [3] in-
spired multiphoton interference, with an interpretation that
each detection event signals one photon. Spurious events of
higher photon number counts contributed to a lower interfer-
ometric contrast. Still, states of undefined photon numbers,
e.g., the squeezed vacuum, can be entangled [4-6].

This form of entanglement of quantum optical fields
served, e.g., to show that a strongly pumped two-mode
(bright) squeezed state allows one to directly refute the ideas
of EPR [7], as it approximates their state, and a form of Bell’s
theorem can be shown for it [4]. The trick was to use displaced
parity observables. Recently, it has been shown that this is also
possible for four-mode bright squeezed vacuum [8], which
can be produced via type II parametric down-conversion,
see, e.g., Refs, [5,6]. In this case, the state approximates a
tensor product of two EPR states, and interestingly can also
be thought of as a polarization “supersinglet” of undefined
photon numbers [9]. The approach of Ref. [8] used (effec-
tively) intensity observables, which are less experimentally
cumbersome.

With the birth of quantum information science and technol-
ogy, entanglement became a resource. We have an extended
literature on detection of entanglement for systems of finite
dimensions, essentially “particles”, see e.g., Ref. [10]. It is
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well known that not all entangled states violate Bell inequal-
ities. Still there is theory of entanglement indicators, called
usually witnesses, which allow to detect entanglement, even
if a given state for finite-dimensional systems (essentially,
qudits) does not violate any known Bell inequalities. The case
of two-mode entanglement for optical fields was studied in
trailblazing papers [11,12], which discussed “two-party con-
tinuous variable systems,” and with a direct quantum optical
formalism in Ref. [13]. The entanglement conditions reached
in the papers did not involve intensity correlations.

An entanglement condition for four-mode fields, which
was borrowing ideas from two spin-1/2 (two-qubit) corre-
lations, involved correlations Stokes operators and was first
discussed in Ref. [5]. The resulting indicator was used to mea-
sure efficiency of an “entanglement laser.” The output of the
“laser” was bright four-mode vacuum. We shall present here
the most extensive generalization of such an approach, i.e.,
entanglement indicators for optical fields which are deriva-
tives of multiqudit entanglement witnesses involving intensity
correlations. In Ref. [14], we give examples of entanglement
conditions based on such an approach. Some of them are
more tight versions of the entanglement conditions mentioned
above.

As a growing part of the experimental effort is now directed
at nonclassical features of bright (intensive “macroscopic’)
beams of light, e.g., Refs. [15-21] so the time is ripe for a
comprehensive study of such entanglement conditions. All
that may lead to some new schemes in quantum communi-
cation and quantum cryptography, perhaps on the lines of
Ref. [9]. The emergence of integrated optics allows now to
construct stable multiport interferometers [22-29], and is our
motivation of going beyond two times mode case.

We present a theory of mapping multiqudit entanglement
witnesses [10] into entanglement indicators for quantum opti-
cal fields, which employ intensity correlations or correlations

Published by the American Physical Society
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Intensity
Correlations

FIG. 1. The experiments (two parties). Two multimode beams
propagate to two spatially separated measurement stations. Each
station consists of a d input d output tunable multiport beamsplitter-
interferometer (MPBS) and detectors at its outputs. For polarization
measurements put d4 = dg = 2, and treat the paths as polarization
modes.

of intensity rates. By intensity rates we mean the ratio of
intensity at a given local detector and the sum of intensities
at all local detectors (in some case the second approach
leads to better entanglement detection). The method may find
applications also in studies of nonclassicality of correlations
in “macroscopic” many-body quantum systems of undefined
or uncontrollable number of constituents, e.g., Bose-Einstein
condensates [30], other specific states of cold atoms [31,32].

The essential ideas are presented for polarization mea-
surements by two observers and the most simple model of
intensity observable: photon number in the observed mode.
Next, we present further generalization of our approach, and
examples employing specific indicators involving intensity
correlations for unbiased multiport interferometers. We dis-
cuss generalizations to multiparty entanglement indicators.
We show that the use of rates leads to a modification of
quantum optical Glauber correlation functions, which gives
a new tool for studying nonclassicality, and that it also gives
a general method of mapping standard Bell inequalities into
ones for optical fields.

We discuss spatially separated stations, X = A, B, ... with
(passive) interferometers of dx input and output ports, Fig. 1.
In each output, there is a detector which measures inten-
sity. One can assume either a pulsed source, sources acting
synchronously [33,34] or that the measurement is performed
within a short time gate. Each time gate, or pulsed emission, is
treated as a repetition of the experiment building up averages
of observables.

Stokes parameters. For the description of polarization of
light, the standard approach uses Stokes parameters. Using
the photon numbers they read (C:) i) = (&jﬁ = &L a;, ), where
J»j1L denote a pair of orthogonal polarizations of one of
three mutually unbiased polarization bases j = 1, 2, 3, e.g.,
{H,V},{45°, —45°}, {R, L}. The zeroth parameter () is the
total intensity: (N) = (&j&j + &L& i.). Alternative normal-
ized Stokes observables were studied by some of us [35-37].
They were first introduced in Ref. [38], however a different
technical approach was used. Following Ref. [35], one can

A

put (8;) = (T8 ) and (Sp) = (1), where 1 =
1 —|R2)(R2| and |2) is the vacuum state for the considered
modes, a;|2) = a;, |2) = 0. Operationally, in the rth run of
an experiment, we register photon numbers in the two exits of
a polarization analyzer, n’; and n; , and divide their difference
by their sum. If n’; +n’; =0, the value is put as zero. This
does not require any additional measurements, only the data
are differently processed than in the standard approach. In
Refs. [35-37], examples of the two-party entanglement condi-
tions and Bell inequalities using normalized Stokes operators
were given. Here we present a general approach.

Map from two-qubit entanglement witnesses to entan-
glement indicators for fields involving Stokes parameters.
Pauli operators 6 = (61, 62, 63) and 6y = 1 form a basis in
the real space of one- qublt observables. Thus any two- qublt
entanglement w1tness W has the following expansion: W =
Zu,v wwoﬂ ® (TV , where u,v=20,1,2,3 and w,, are real
coefficients. We have (W)Sep 2> 0, where (-)sp denotes an
average for a separable state. We will show that with each
witness W one can associate entanglement indicators for
polarization measurements involving correlations of Stokes
observables for quantum optical fields. The maps are 6{2 ®
65 — 3488 and 6! ® 6F — © 68, and they link W with its
quantum optical analogues Wy = > L wwS ﬂSV , and We =
> WO O, which fulfill Ws)gep > 0 and (We)sep = 0.
The proof goes as follows.

Normalized Stokes operators case. It is enough to prove
that for any mixed state ¢ one can find a 4 x 4 density matrix

< AB . .
R, for a pair of qubits, such that

Ws),

— = = TTW
(TTAT1B),

ey

S AB
0

First, we show that (1) holds for any pure state |4Z).

Let us denote the polarization basis H and V as Xy =
X1 and Xy = X,. Normalized Stokes operators in arbitrary
direction can be put as 77 - X, where /7 is an arbitrary unit

2 § (-6 ks .
real vector, or in the matrix form ), I1¥ Wﬂx . with
£ =a or b depending on the beam X, whereas S’(’f reads

I
A X 0k B .
> g T 1% We introduce a set of states

1

|Wen) = b — FIAFI8 A5, )
where k, m € {1, 2}. This allows us to put
2 2
(WP ISASEIP) = N oo (win |
k,l=1 m,n=1
= Tra ® GBRAB 3)

where the matrix elements of R?,B are (WB|WB) Ag a
Gramian matrix, R@B is positive. Except for |1/fAB) describ-
ing vacuum at one or both sides, we have 0 < TrI%B =
(TATI%) < 1. Thus, St = RA5/(FIATI8) is an admissible
density matrix of two qubits.

For mixed states o, i.e., convex combinations of |y:8)’s
with weights p,, one gets R)® =3, paR}® which is
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positive definite, and its trace is Y, pATrR}® < 1. Thus af-
ter the re-normalization one gets a proper two-qubit density

. &SAB .
matrix R, . As purity of a field state |8) does not warrant

that the corresponding I?QB is a projector, E)A%QB does not have to
have the same convex expansion coefficients in terms of pure
two-qubit states, as g in terms of WfB )’s.

For any separable pure state of two optical beams
IWAB)prod, defined as FAJr FBT |€2), where F; is a polynomial
function of creation operators for beam (modes) X, and |<2)
is the vacuum state of both beams, the matrix RA® factor-
izes: RAP = RARP. Simply, proa(WAE|WAB) o4 factorizes to
(W) (w8 |\IIB ), where (WX |WY) are elements of matrix R
and | W) _xlf T1R). As (Q|Fx TTXF]|2) 'R can be
shown to be a qubit density matrix and (W)Sep > 0, therefore
for pure separable states of the optical beams (Wg)pmd > 0.
Obviously, (Ws)sep > 0 also for all mixed separable states.

Standard Stokes operators case. Any standard Stokes oper-
ator can be put as 7 - O = duk X (m &) X;. We introduce
state vectors |<I>/;,f ) = a;by|¥*P). One has

(W18 0%y P = Tré/ 6 P42, “)

where the matrix P48 has entries (<I>7<‘,ff|<1> ), it is positive

definite, and its trace is (NyNg). Thus ‘B = PAB/(NANB)
is an admissible two-qubit density matrix, and one has

Weo)o/ (NANE), = TR, All that leads to (We)sep > 0
Note that, for a general state 5%23 does not have to be equal to

07 seitt &'
both beams.
Reverse map. Any linear separability condition expressible
in terms of correlation functions of normalized Stokes pa-
rameters reads Y | @, (S”:S’f )sep = 0. As two-photon states,
with one at A and the other at B, are possible field
states, thus for any separable such state we must have
DI wW(S‘MS‘ )sep—2—ph = 0. This is algebraically equivalent
to > v W {6, ® 6y)sep == 0, for any two-qubit state. We get
an entanglement witness. Therefore, we have an isomorphism.
Similar proof applies to standard Stokes observables.
Examples. In Ref. [14], we show some examples of en-
tanglement indicators which can be derived with the above
method. This includes a necessary and sufficient conditions
for detection of entanglement of two optical beams with
correlations of Stokes parameters of the two considered kinds.
Detection losses. Consider the usual model of losses: a per-
fect detector in front of which is a beamsplitter of transmission
amplitude n, with the reflection channel describing the losses.
Then, (@2@)5) scales down as nn® (see Sec. II in Ref. [14]),

where nX for X = A, B is the local detection efficiency. We
have a full resistance of entanglement detection, using any
W@), with respect to such losses. A different character of
losses may lead to threshold efficiencies.

For the normalized Stokes parameters, it is enough to
consider only pure states, because mixed ones, as convex
combinations of such, cannot introduce anything new in
entanglement conditions linear with respect to the density
matrix. Any pure state is a superposition of Fock states |F) =

4, nB, nf ), where n¥ denotes the number of i polarized

Inf-‘, nj,n

~AB .
=B for states of defined photon numbers in

photons in beam X, and S‘ﬁﬁf are diagonal with respect to
the Fock basis related with them. Thus, the dependence on
efficiencies of the value of an entanglement indicator, in the
case of a pure state, depends on the behavior of its Fock
components. One can show, see Sec. II in Ref. [14], that
(Fy|8488|F,)) = Hp (F|S4858|F), where |F,) is the state |F)
after the above described losses in both channels, and Hrp =
(F, |34 SE|F,), which reads [Ty_, z[1 — (1 — 7)™ ], where
X is the total number of photons in channel X, before the
losses. Expanding |F') in terms of Fock states with respect to
different polarizations than #,i; and j, j;, does not change
the values of m*, and thus the formula stays put for any
indices. Again we have a strong resistance of the entangle-
ment indicators with respect to losses. Especially for states
with high photon numbers, the entanglement conditions based
on normalized Stokes parameters, may be more resistant to
losses, because 0 < n < 1l,onehasn < 1 — (1 —n)".
Multiparty case. Consider three parties, and the case of
indicators of genuine three-beam entanglement. Any genuine
three-qubit entanglement witness W has the property that
it is positive for pure product three-qubit states |£)apc =
[V )agl@)c, for similar ones with qubits permuted, and for
all convex combinations of such states. With any pure partial
product state of the optical beams, e.g., |E)ap.c = F FT|Q),

where F,, is an operator built of creation operators for beams
A and B, etc., one can associate, in a similar way as above, a

partially factorizable three-qubit density matrix 9%239?{;. Thus
the homomorphism works. Generalizations are obvious.

General theory. Consider a beam of d4 quantum optical
modes propagating toward a measuring station A, and a beam
of dg modes toward station B. We associate with the situation
ady x dg-dimensional Hilbert Space, C% ® C%, which con-
tains pure states of a pair of qudits of dimensions d4 and dp.
For X = A, B, let \7iX, withi=1,..., df(, be an orthonormal,
ie., TrVX ij = §;;, Hermitian basis of the space of Hermitian
operators acting on C% . Therefore products \7iA ® ‘7}5 form an
orthonormal basis of the space of Hermitian operators acting
on C% ® C9. Thus any entanglement witness for the pair of
qudits, W, can be expanded into

G 4
W=) > wiV®VP, 5)
j=1 k=1

with real wj. The optimal expansion (with the minimal
number of terms) is to use a Schmidt basis for W.

Each VjX can be decomposed to a linear combination of
its spectral projections linked with their respective eigen-
bases, |xl(/ )), where x = a or b consistently with X and [ =
1,...,dx. If one fixes a certain pair of bases in C4 and
C as “computational ones,” i.e., starting ones, denoted as
Z;), one can always find local unitary matrices UX (j) such
that U¥ (j)|L,) = |x\). The construction of Reck ez al. [39]
fixes (phases in) a local multiport interferometer, which per-
forms such a transformation. We shall call such interfer-
ometers UX(j) ones. In the case of field modes a passive
interferometer performs the following mode transformation:
> Ux(j)Zkfc,I = Xf(j), where )%;(j) is the photon creation
operator in the /th exit mode of interferometer U ().
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A two-party entanglement witness Wy for optical fields,
which uses correlations of intensity rates behind pairs of
UX(j) interferometers can be constructed as follows. For the
output [, of an interferometer, one defines rate observables
as i, = MY 211X, where NX = Y% | ;.. The witness W
expanded in terms of the computational basis:

dy dp

W =2 wimnlka, o) ma, mol, ©)

k.m Ln

allows us to form an entanglement witness for fields:

~ . a b ambn N
WR = Z Z wklmn A Bk]vATHAHB. (7)

k.m In

For any pure state of the quantum beams |W)

W)W W o A

(W We|¥) TWR, ®)
(W|ITAT12| ‘I’)

where the matrix R has elements Tklmn

1 N a b ambn L
Titmn = e (W TP A2 AP ). (9)
(W |TTATIB | W) NB

Using a generalization of the earlier derivations, one can show
that R is a two-qudit density matrix, and so on.

The actual measurements, to be correlations of local ones,
should be performed using the sequence of pairs of U*(j)
interferometers, which enter the expansion of the two-qudit
entanglement witness (5). In the entanglement indicator the
rates at output x;(j) of the given local interferometer UX ()
are multiplied by the respective eigenvalue of V/X related with

the eigenstate |x(1 ).

To get an entanglement witness for intensities WV, we
take W and replace the computational basis kets and bras by
suitable creation and annihilation operators:

dy dp
W= Z Z wklmnazb;‘ambm (10)
k.m Ln

For any pure state of the quantum beams |V), one has

(VW) _ P e P
< W‘NAN o7 _T?KP where the matrix 7 has elements
m(\ﬂmkb b, |¥),and has all properties of a two-

qudit density matrix.

Example showing further extension to unitary operator
bases. Let d be a power of a prime number. Consider d4 =
dp = d beams experiment (see Fig. 1), with families of UX (m)
interferometers which link the computational basis of a qudit
with an unbiased basis m, belonging to the full set of d + 1
mutually unbiased ones [40,41]. We introduce a set of unitary
observables for a qudit: g, (m) = Z‘;:] %) j(m)){(j(m)|,with
|j(m))y = U(m)|j) and it is the jth member of mth mutually
unbiased basis, and w = exp(2i/d). Operators gy (m)/~/d
withk=1,...,d —landm =0, ...,d and §o(0)/+/d form
an orthonormal basis in the Hilbert-Schmidt space of alld x d
matrices (see Sec. III in Ref. [14]). Thus we can expand any

qudit density matrix as

1 d d—1
0= ﬁ[co,oqo(owz cm.kcik(m)}, (1)

m=0 k=1

where ¢, = Trcjz(m)g/\/a, and cp o = 1/\/2. As the basis
observables are unitary the expansion coefficients of an en-
tanglement witness operator in terms of such tensor products
of such bases are in general complex. This is no problem for
theory, but renders useless a direct application in experiments,
as one cannot expect the experimental averages to be real, and
thus one has to introduce modifications. Below we present
one.

The condition Tro? < 1 can be put as

d—1

d
DY I Trogem)l” < 1. (12)
m=0 k=1

+

-
S

Thus, applying Cauchy-Schwartz estimate, we get immedi-
ately a separability condition for two qudits:

d—1

d
DO oS atmgd m)| <

m=0 k=1

d-1). (13)

Our general method defines a Cauchy-Schwartz-like separa-
bility condition homomorphic with (13) as

d d—
ZZ (01 m O (m) | < (@ = D(ITT®) e, (14)

w7} (M) -

Z i A (15)

Of(m) =

Here, ﬁf (m) = fcj(m)fc ;(m) is a photon number operator for
output mode j of a multiport m, at station X. For generalized
observables based on intensity, one can introduce X;(m) =

Z‘;zl w/*7i;(m) to get the following separability condition:

Y

-1

d
2>l emg ), | <

m=0 1

(d — D(N*NB)ep.  (16)

~
Il

Reference [14] presents other examples.

Implications for optical coherence theory. The approach
can be generalized further. Let us take as an example
Glauber’s correlation functions for optical fields, say G* in
the form of ([4(X, 1)Iz(¥, ")), where the intensity operator
has the usual form of Iy (X, t) = F;(ié, $)Fx (%, t), with normal
ordering requiring that operator Fx (¥, t) is built out of local
annihilation operators. The idea of normalized Stokes oper-
ators suggests the following alternative correlation function
4%, t;%, ') given by

- _ @(j‘e,r)ig(f’,ﬂ)q ),
fa(A)da(x)IA(x,t)fa(B) do (XN, 1)
(17)
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where a(X ) denotes the overall aperture of the detectors in location X . Obviously one has fa @) do (X) fa( B) do @&, 1%, 1) =

(TTAT15), and for fixed ¢ and ¢', one can define

ElG, 0OF @, OF 7, 1), 1)

= = =2/ -1
0%, ¥, ¥ ) = (MI*11%) <H*‘HB

which behaves like a proper two-particle density matrix,
provided one constrains the range of X, ¥, X', ¥ to appropriate
sets of apertures. As our earlier considerations use simplified
forms of (17), it is evident that such correlation functions may
help us to unveil nonclassicality in situations in which the
standard ones fail, see, e.g., Ref. [8].

Bell inequalities. The above ideas allow one to introduce
a general mapping of qudit Bell inequalities to the ones for
optical fields. A two-qudit Bell inequality for a final number
of local measurement settings o and B has the following
form:

dy dp

DD A IICH:))

af i=1 j=1
dy dp )
+ DY NP+ Y Y MP(B) < L, (18)
i=l « =1 B

where P;;(a, B) denotes the probability of the qudits ending
up respectively at detectors i and j, when the local set-
ting are as indicated, and Zj Pij(a, B) = Pi(a) and P;j(B) =
Zi P;j(a, B). The coefficient matrices K, N, M are real, and
Lg is the maximum value allowed by local realism. The bound
is calculated by putting P;j(a, B) = D'()D/(B) and Pi(ar) =
Di(a), Pj(B) = D/(B), with constraints 0 < D'(a/B) < 1,
and Zfli/f Di(a/B) = 1. As for a given run of a quantum
optical experiment local measured photon intensity rates
ri(a) and r;(B) satisfy exactly the same constraints. We can

oy do@RE. 1) [ do GO, 1)

nAnB>
[

replace Pjj(a, B) — (ri(a)r;j(B))r, and Pi(a) — (ri(a))Lr,
etc., where (.)r is an average in the case of local realism. The
bound Ly stays put. To get a Bell operator we further replace
the above by rate observables 7;(«)7;(8), etc. Thus any (mul-
tiparty) Bell inequality, see, e.g., Ref. [42], can be useful in
quantum optical intensity (rates) correlation experiments. The
presented methods for entanglement indicators and the Bell
inequalities allow also to get steering inequalities for quantum
optics.

Conclusions. We present tools for a construction of entan-
glement indicators for optical fields, inspired by the vast lit-
erature [10] on entanglement witnesses for finite dimensional
quantum systems. The indicators would be handy for more
intense light beams in states of undefined photon numbers,
especially in the emerging field of integrated optics multi-
spatial mode interferometry (see Ref. [14] for examples). One
may expect applications in the case of many-body systems,
e.g., for an analysis of nonclassicality of correlations in Bose-
Einstein condensates, like in the ones reported in Ref. [43].
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Simplified quantum optical Stokes
observables and Bell’'s theorem

Konrad Schlichtholz™, Bianka Woloncewicz™ & Marek Zukowski

We discuss a simplified form of Stokes operators for quantum optical fields that involve the known
concept of binning. Behind polarization analyzer photon numbers (more generally intensities) are
measured. We have two outputs, say, for horizontal and vertical polarization. If the value obtained
in horizontal output is greater than in vertical one we put 1. Otherwise, we put - 1. For equal photon
numbers, we put 0. Such observables do not have all properties of the Stokes operators, but can be
employed in Bell type measurements, involving polarization analyzers. They are especially handy
for states of undefined number of photons, e.g. squeezed vacuum and their realisation is intuitive.
We show that our observables can lead to quite robust violations of associated Bell inequalities.
We formulate a strongly supported numerically conjecture that one can observe with this approach
violations of local realism for the four mode squeezed vacuum for all pumping powers (i.e. gain
values).

The discussion about what is the essence of quantumness started with the first attempts of formulating quantum
mechanics. With the emblematic paper of Einstein et al.! the problem of completeness of quantum mechanics
became a point of discussion among the scientific community. This started with the response by Bohr?. Many
years later, after the paper of Bell® the challenge of revealing non-classicality, in terms of violation of local real-
ism, has entered the core of contemporary research. All that in the meantime gained in importance with the
emergence of quantum information and communication.

The ultimate test of non-classicality is the violation of Bell inequalities. This is now also the essence of testing
of device-independent quantum communication protocols. Formulations of Bell’s theorem for situations of fixed
numbers of particles have already a vast literature, and well established methods, see e.g. reviews*”. However,
if one moves to situations with undefined numbers of particles, still the situation is quite open. This is of course
e.g. the case of general quantum optical fields. A lot of approaches are tested.

Polarization entanglement experiments are classic examples of experimental tests of Bell’s inequalities. The
two photon experiments are a realization of two qubit-entanglement®®. A deceptively obvious step in the direction
towards optical fields of undefined photon numbers is to use quantum Stokes observables. The usual definition
of these runs as follows. If one assumes that the intensity of hght is proportlonal to the photon number, then
(standard) quantum Stokes observables are given by ©; = at;a ai — aﬂ 1 i, , where a is an annihilation operator.
Indices i = 1,2, 3 mark three mutually unbiased (fully complementary) polarization analyzers settings. The
indexes, i and i | stand for two orthogonal polarizations. E.g., one might choose the i’s to represent horizontal-
vertical, {H, V}, diagonal-antidiagonal, {45°, —45°}, or right-left handed circular, {R, L}, polarization analyzer
settings. The zeroth Stokes operator is given by the total photon number operator Oo =N =a"a; +atia; "

©1)\1/2
E<(§0) ) /
a formal quantum observable (a self-adjoint linear operator). Neither is ;g )
attempts to bulldA l(%)e%l inequalities using such parameters and their correlators for observation stations A and B
(OAOB )
assumptions, beyond the usual ones for Bell inequalities, which limit the range of local hidden variable theories
for with such Bell inequalities must hold.

Bell inequalities for Stokes parameters can be formulated if one introduces normalized Stokes observables

If we are interested in the degree of polarisation of light we use ( Obv1ously, this parameter is not

in the form of

fail and lead to misleading conclusions''. This is because such attempts involve additional

12-14.

§ =121, (1)
nj +nj,

where [T =1 — |€2)(€2], and |€2) is the vacuum state (of the optical beam in question).
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It has been shown that such operators allow for the construction of stronger entanglement criteria, and they
are a handy tool for formulation of Bell inequalities. One of their properties, crucial in this case, is the fact that
these operators have a spectrum bounded by —1 and 1. That is, they have the basic property of observables which
allows one to derive the CHSH-Bell inequalities. Thus, a derivation of a version of CHSH inequality applicable
for such Stokes operators is essentially a replacement procedure. With the recent development of measurement
techniques allowing photon number resolving detection'>!® the discussion about normalized Stokes parameters
stops to be only theoretical and its use in experiments is becoming feasible.

Note that what makes Pauli operators so straightforwardly applicable to Bell inequalities is their dichotomic
nature. One of the attempts to construct field operators of a similar property was the formulation of pseudo-spin
operators. For example, the z component of pseudo-spin is (—1)", where 71 is the total photon number operator in
the given optical mode'”*8. The spectrum of pseudo-spin operators is the same as the spectrum of Pauli matrices,
but their use introduces great difficulties from the experimental point of view. Even a loss of one photon (due to
e.g. detector inefficiency) or a single dark count reverses the result of a measurement.

Here we analyze a simpler approach, which leads to proper Bell inequalities for polarization measurements
of quantum optical fields. Our aim is to construct a family of operators that would have the usual spectrum for
Bell experiments and would be robust with respect to experimental noise. We present polarization quantum
field observables that have spectrum limited to &1 and 0. Our initial ideas on such binning can be found in®.
The approach to binning presented here is concurrent with the method used in? in the context of correlation in
Bose-Einstein condensates. With the observables, we construct Bell inequalities. We test their resilience under
losses and noise for 2 x 2 mode bright squeezed vacuum and bright GHZ radiation. The observables are realiz-
able in the laboratory with standard measurement devices. They are described in the next section.

New operators: sign Stokes operators

It was shown that Bell inequalities constructed with normalized Stokes operators can be violated by macroscopic

states of light such as 2 x 2 (bright) squeezed vacuum (BSV)' and its GHZ-like generalization (BGHZ)?!. How-

ever, for a higher mean number of photons, the violation of Bell inequalities by these states is quickly damped.

This results in lowering of the threshold values for pumping strength after which violation cannot be observed.
We address those problems by another normalization scheme, based on the so-called binning, which we call

Sign approach normalization. To obtain new operators, we use the sign function and apply it to Stokes operators:

G(s) = sign(f; — 5, ) = sign((:)s) = sign(Us(ﬁH — ﬁV)UST), (2)

where s denotes the chosen setting related with the corresponding polarization basis with the eingenstates given
by s and s . Subscripts H and V refer to horizontal and vertical polarizations, and the operator Uy is a unitary
transformation that transforms the polarization modes H, V into another orthogonal pair of, 1n general elliptic

polarization modes {s, s }. From (2) we see that the eigenstates of G(s) are |jsks, ) = lwk' as a |S2) where aT
J:

and ELL are creation operators related to the respective polarization modes of the given beam. The spectral form
of (2) is given by:

G(S) = Z <|ks:jsl)(ks,st| - |]'s:ksL)(]'sa ksL|)« (3)

k>j

Formula (3) clearly shows that the new operators are well-defined Hermitian operators and that each G(i) has
three eigenvalues =1 and 0. Although formula (2) implies photon number operators, the basic idea of sign as
well as standard and normalized Stokes operators is based on differences and sums of intensities. These in turn
do not need to be modeled with photon counts. Note that formula (3) does not imply any particular model of
intensity as long as the intensity increases with number of counts (even nonlinearly).

The action of the sign function on Stokes operators can be regarded as some form of the binning strategy
used in the context of polarization measurements. Binning strategies are e.g. used in homodyne schemes for
observing non-classicality?*=>°.

We shall call the new operators sign Stokes operators. Following the usual approach, we shall define a triad of
sign Stokes operators, related to the three maximally complementary settings of a polarization analyzer. For the
usual triad of such settings, we denote by G the sign operator the eigenstates of which refer to {s = D,s; = A}
polarization basis, and by G, and Gj for respectively {R, L} and {H, V} bases. However, this notation is also
extended to other triads of maximally complementary settings.

The sign operators share some properties of Stokes and normalized Stokes operators. Importantly, once
one has a photon-number-resolving detection setup, the data collected in each run allows one to compute the
obtained values of each of Stokes operators for the given basis i: standard, normalized, and sign ones, as they
depend solely on the measured photon numbers #; and #; 1 . As we see, the new approach is in fact just a new form
of data analysis that turns out to be simple and efficient. Further, in order to measure different sign operators Gy,
that is, to move from s to ¢/, it is enough to change the polarization analysis basis. Being useful from experimental
point of view, unfortunately sign Stokes operators do not share all properties of quantum Stokes operators, what
puts some limitations on their use in entanglement detection.

Stokes-like vector cannot be formed out of sign Stokes operators. Standard Stokes operators
form aStokes vector. We will discuss this property for pure states. However, it works also for mixed ones. We
have (®)y = ((®1> , _2)‘// (O3)¢,) where |1/) is an arbitrary state of the optical field. The Euclidean norm
of this vector fulﬁlls [{®)yll < (©g)y. We can construct an analogue vector for normalized Stokes opera-
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tors and ||(§)¢ [ < (30),/, < 1. These norms remain invariant under any unitary transformation between
two triads of mutually maximally complementary polarization analysers. This transformation can be put as
ay = Unias + Upas, anday | = Uzias + Upas,, where Ujj are elements of a certain two-dimensional unitary
matrix. Properly defined Stokes vector has its Euclidean norm invariant with respect to such mode transforma-
tions. As a transformation of this kind can also be expressed as a transformatlon of the state, one can introduce
|¥'), which is in the following relation with [y). If|y) f(a3, a3| )IQ ), then f(a3,, a3, )|RQ) = |¢'), where fix, y)

is a polynomial of both variables. We put this relation as |1// ) =Une de|1//) as it is 0%v1ously a specific unitary
transformation of the state. Y
For such mode transformations we have||( ® Yull = ||( )y|land| |( Yl = 11{S )y|l. The norm of Stokes

vectors, standard and normalized, is constant under any unitary transformation of the triads polarization analy-
sis bases. These features of Stokes observables play a key role in the construction of entanglement indicators
involving Stokes operators. R R

Such propegles are not_;lared by sign operators. Let us construct ( G Yo = ( (Gl) »{G2)y» (G3)y). It can be
shown that [[{ G )y || # [[{ G )y||. It is enough to find one counterexample. C0n51der the state [y) = |3y, 0y)
i.e. the Fock state with 3 photons polarized horizontally. It can be easily checked that for this state|| (8 Jyll =1
Now let us apply a unitary transformatlon on optical modes of |{) such that the creation operators transform as
follows: a;, — af (@) = cos omH + sin om‘{, and aL — uj_(zx) —sin ota:{[ + cos om{, Let « = /8. One gets:
[1{ G )yIl = 1,5. Thus, the norm is not an invariant of the unitary transformations, and additionally it is not
bounded by 1. This fact prohibits one to use methods of construction of entanglement indicators presented
in'®, which work via a simple replacement of Pauli operators in entanglement conditions for qubits, by Stokes
operators, standard or normalized. Still, as we shall see, there is no obstacle to using this method in the case of
construction of Bell inequalities.

Rotational covariance of polarization variables is not a necessary feature required to derive Bell inequalities
(however, see? for the consequences of demanding exactly that). This allows one to construct CHSH and CH
inequalities for fields with sign Stokes observables.

CHSH inequality. To derive Bell inequalities satisfied by any local realistic description, we start by defining
local hidden values that predetermine the output of the measurement of sign Stokes operators (2). We denote the
local hidden variables by /. The functions I* (s, 2) and I* (s 1, /) give the predetermined outcomes of the intensity
measurements of polarizations s, s in the local beam for the observer X. We define the local hidden values for
sign operators as GX(s,2) = sign(IX (s, 2) — IX(s1, 2)). These local hidden values are -1 and 0, thus one can use
standard methods to derive CHSH inequality. The alternative settings will be denoted here by s, s’ for the first
observer and r, v’ for the second observer. The resulting CHSH inequality reads:

(G'(s, DG (r, 1) + G (s, HG* (', ) + G' (5, G (r, 1) = G1 (s, )G (r', D)y | < 2. (4)

For further reference, we put it as| CHSHg| < 2.

However, this inequality cannot be violated by states with a significant vacuum component, e.g. the (polariza-
tion) four-mode squeezed vacuum state, which will be our working example, see next sections. This situation is
analogous to the case of normalized Stokes operators, see'*. Following ideas of'* we modify sign Stokes operators
as follows:

GX(s) — G5 (s) = GX(s) — Mgy, (5)

where I[1qyx is the projector on the subspace of the Fock space of states with no photons in the local beam. Such a
projection allows for reduction of the impact of vacuum term, which often appears with the highest probability.
Also local hidden values need to be modified:

o GX (5, 2) = sign(IX (s, A) — IX(s 1, ) if IX(s, ) + IX(s1,4) #0
o GX(5,2) = —1if IX(s, ) + IX(s1, ) =0
As this modification does not change local hidden values GX=(s,2) € {0, £1} we use the following CHSH
inequality:

|CHSHG_ | = (G (s, )G*~(r, 1) + G (s, hG* (', }) ©
+G AT () =G (DG D)av] < 2.

Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour. ~'We are going to analyze how
the use of sign Stokes operators in CHSH inequality helps to reveal the non-classicality of quantum states. Our
working example is 2 x 2 mode squeezed vacuum state (BSV) which is the generalization of EPR singlet. It reads:

1 tanh”(I") + Fn
)= Q
Vo) = Ezjo (@l —alb)"IR) =

-~ hz(F) Z«/n—l— tanh"(D)Y"), (7

where I is the amplification gain and
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Figure 1. (a) The blue curve: the value of the CHSH— expression based on sign operators, see (6), and the
green dashed curve: CHSHs_ based on normalized Stokes operators' in a function of amplification gain I"

of the BSV state. The numerical results were obtained with a cut-off of the expansion of the BSV state at the
term |y "=1%%), The maximal values of amplification gain (I'y,), such that for allT" < I';, CHSH inequalities
are violated, are ', ~ 0.88 for normalized Stokes operators'* and I'y, & 2.16 for sign Stokes operators. Thus,
with sign Stokes operators, the range of violation with respect to amplification gain is much larger than in the
case of normalized Stokes operators. (b) The graphs show the non-vacuum term of CHSH— as a function of
amplification gain I for the BSV state, which was computed for cutofts of 15, 47, 150 photons. This is done to
illustrate that the descent of the curves for high I'’s is an artefact of the applied cutoff. The blue curve represents
calculations with the cutoft at 150 photons,for the green dashed curve it is at 47 photons and for the red dot-
dashed curve at 15 photons. The cutoff seems to be responsible for the decrease of the value in (a) for high I'’s.

ly") = > (=D)"(n = m)g,, my,, m,, (n— m)y,). )

1
Jn+1 o

Subscripts Hj , and V1, specify the polarization of each mode and to which of the two optical beams it corre-
sponds. We use the convention that al denotes the creation operator for the photon heading observer A, and b}
is the creation operator related to the observer B. The amplification gain determines the intensity of the pumping
field and thus T sets the expectation value of the intensity of the BSV state.

Assume that both observers choose to measure only linear polarizations. thus, the angles by which the meas-
urement polarization basis is rotated with respect to {H, V} basis define the settings. With the notation used in
“Stokes-like vector cannot be formed out of sign Stokes operators” section for unitary transformation between
linear polarization modes we chose for the first observer a; = 0, gy = /4, and for the second one o, = /8
and oy = —r/8. It was shown that these settings are optimal in case of violation of CHSH inequality with nor-
malized Stokes operators for BSV4,

Figure 1 shows quantum predictions for CHSHg— (6) and the values of CHSH expression for normalized
Stokes parameters for BSV taken from'* as a function of the amplification gain I'. Sign Stokes operators give
[(Y_|CHSHG—|¥—)| > 2 for a wider range of an amplification gain that is up to I', &~ 2.16. For normalized
Stokes operators, this maximal value of amplification gain is significantly lower, i.e. 'y & 0.8866. Thus, with sign
Stokes operators it is possible to reveal the non-classicality of BSV for a much higher value of amplification gain.

In Fig. 1 we can see that for I" ~ 2.1 for sign Stokes operators | CHSH— | drops down suspiciously suddenly.
We presume that such behaviour might be a consequence of a cut-off. The expansion of |{y_) was cut off in the
numerical calculations at|y""=1>%). This still requires further investigation.

Because of the rotational invariance of [1/_), it is a “super-singlet”, the expectation values of the correlators
entering the Bell inequalities depend, if we measure linear polarizations on both sides, only on relative angle of
the orientation of the polarization analyzers at the two spatially separated observation stations.

Note that standard, normalized, and sign Stokes operators are composed of functions of photon number
operators, which do not change the number of photons. Thus, the expression (y_ | CHSHg— |/— ) consists of two
terms: vacuum term, that is CHSH inequality averaged over the vacuum component of BSV and non-vacuum
term. The vacuum and non-vacuum terms in (6) for our settings are both negative. That is why we can consider
the CHSH inequality in question as the sum of absolute values of these both terms. The vacuum term can be
easily calculated:

[{$2|CHSHg-|£2)| oiT 9)
The non-vacuum term (CHSHG—_ )y = (W_|CHSHG—|¥—) — (Q|CHSHg_|2) results from the expectation values
of |¥™). Note that as I increases, the role of non-vacuum terms in (¥ | CHSHg—_ |¥_) increases too. For small "
the contribution of vacuum term is dominant.

In Fig. 1 the value of the non-vacuum [(CHSHG- )4y | is presented. The calculation is performed for BSV
state truncated to n = 150, blue curve, n = 47, green curve, and n = 15, red curve. These numbers increase
approximately as a geometrical sequence by /10 what allows as to analyze the behaviour of (CHSHg_ ), within
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Figure 2. (a) Critical efficiency 1. versus I" for the CHSH inequalities for the BSV state. A blue curve represents
n. for sign approach and a green dashed curve for normalized Stokes operators. (b) Critical value of g versus I'
for the BSV state. A blue curve represents g, for sign approach and a green dashed curve for normalized stokes
operators. Assuming that asymptotic behaviour of violation of CHSH inequality for sing parameters discussed
in “Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour” section is correct the g,
for the sign Stokes operators goes to 1 in the limitI" — oo.

the whole order of magnitude. All curves asymptotically go to 2 (classical bound) up to some point for which
they both start to decrease. Note that the curves for n = 15 and n = 47 start to decrease for smaller I" than the
curve for n = 150. It is highly probable that the decrease is conditioned by not including components with a
high enough number of photons and the non-vacuum term [(CHSHG— ) »| goes asymptotically to 2 from the left.
The vacuum term goes asymptotically to 0 from the right, see (9). Thus, our hypothesis is that CHSH inequality
with sign Stokes operators is violated for BSV for anyI'. In Supplementary Discussion A we present a reasoning,
based on a numerical calculation, supporting this conjecture.

CHSH inequality with losses. One of the crucial aspects of experimental realization of Bell experiments
is detectors with high efficiency . Here, we will analyze the critical value of efficiency . such that forn < 5. one
cannot observe a violation of (6). We model inefficient detectors in the standard way: a perfect detector (n = 1)
with a beamspliter with transmissivity ,/7 in front of it. We denote by k the number of photons that reach the
beamsplitter. Of these, only ¥ < k counts are registered due to losses on the beamspliter. The probability of reg-
istration of x photons is given by the binomial distribution:

k
pliclk) = <K>n”(1 — ke (10)

In Fig. 2 we can see the minimal value of efficiency 7, for which the violation of CHSH inequality can be observed
for normalized and sign Stokes operators in function of I'. Note that for small " (up to I & 0.3) the curves for
sign and normalized Stokes operators behave almost identically. However, as I increases, the value of . for sign
Stokes operators grows slower than that for normalized ones. Such a change in rate of growth for a higher I’
should be expected because, for a high number of photons, loss of one photon matters less in the case of sign
Stokes operators.

CHSH inequality with noise. In a realistic scenario of a Bell experiment apart from photon losses one
shall consider also noise. Our noise is modeled in the similar way as “white noise” for qubits. Let us introduce
four squeezed vacuum states which are related with the Bell state basis for two qubits®”:

1 . tanh™(I")
oF) = (al,bl, + al,bl)"|Q),
|7) cosh?(I") ; ol nby £ ayby)"(€2) (11)
and
1 . tanh™(I")
vy = (al,bl, + al,bl)"|Q).
=) cosh?(I") ;Z:O ] by £ ayby)"1€2) (12)
Our noise model can be defined as follows:
1 L o
Prnoise = Z(|¢+)(¢+| +lo NI+ YW+ [T D. (13)
Note that p,is is uncorrelated. Let g be the visibility. The noisy state reads:
p, = Q\BSVHBSW +0 - Q)pnoise: (14)
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Figure 3. Quantum predictions for expectation value of CH expression for the ‘sign’ approach (blue curve)

and rate approach'* (green dashed curve) as a function of the amplification gain I for BSV state. The numerical
results were obtained with a cut-off of the expansion of the BSV state at the term |"=>°). The upper bound of
CH inequality for the ‘sign’ approach is violated in the whole range of I' covered in the figure, while the violation
of the inequality in the case of the normalized Stokes operators is quickly damped and after that CH expression
goes asymptotically from bellow to the classical bound.

The value 1 — g determines the probability of registering noise. Figure 2 shows the minimal value of visibility
qc that ensures the violation of CHSH inequality for normalized and Stokes operators. We see that sign Stokes
operators have a similar advantage over normalized Stokes operators as in the case of losses, i.e. for small "
normalized and sign Stokes operators are similarly resistant to noise. AsI" increases sign Stokes operators result
to be significantly more efficient, Moreover from the results shown on Fig. 2 and the reasoning presented in
“Violation of Bell inequality for four mode squeezed vacuum—asymptotic behaviour” section we can conclude
thatg. — 1whenT" — oo.

CH inequality. Going along with the idea of sign operators and rate approach to CH inequality'* we can
construct a new CH inequality for quantum optical fields. Let us move directly to the quantum scenario and
start with the CH operator (CHR) for intensity rates. In'* the rates are defined by Ry (s) = I1#is/ (515 + 15, )TL.
Note that such an operator is simply the first term of normalized Stokes operator (1). Its eigenvalues are rational
numbers in (1/2, 1] for photon number states |n;, m;, ) where n > m and in [0, 1/2) for states where n < m. If
m = n the eigenvalue of the rates is 1/2. Combining the idea CH inequality for rates and the concept sign Stokes
operators we construct operators for CH inequality based binning. We seek for operators of eigenvalues with the
following properties: we have 1 when m > nand 0 if n < m. Such a dichotomic observable is simply a projector
onto subspace n > m:

P(s) = Ing,my Y ng mg, |, (15)

n>m

The expectation value of PX(s) is equal to the probability that the observer X will see n > m. We shall denote by
(PX(j)PY (k)) the quantum joint probability of obtaining the same result # > m by observers X and Y for their
respective polarization basis j and k. Had these probabilities in the experiment been classical, and if the assump-
tions of local realism hold Clauser-Horne inequality tailored for the quantum scenario is given by:

1 =(CHp) = (PLOPL@) + PLOPL@) + PLOHPL@) — PLOMPLW) - PLO) - PL@)) <o.
(16)
Figure 3 shows the expectation value of the CH expression (16) and its rate counterpart for the same settings as
in the case of CHSH inequality. The ‘sign’ approach gives violation of upper bound of CH expression for all "

while the rate approach gives a violation only for I' < 0.8866 which is the same case as for CHSH. Note that this
CH inequality is not equivalent to CHSH inequality (6) (see Supplementary Discussion A)

Violation of Bell inequalities with sign approach for Bright GHZ state
As another example, let us consider a Bright GHZ state which is a generalization of the two beam squeezed
vacuum considered above, to three beam emissions.

Such a process for years was thought to be infeasible, but current experimental progress allows one to think
of such a possibility. The usual parametric approximation of the theoretical description of generation process of
such states, which describes the pumping field as classical, does not work because of the divergence of perturba-
tion series. Still, with an employment of a version of Padé approximation one can find an approximate parametric
description, with convergent perturbation series, see?!. The approximation gives a state of the following form:
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Figure 4. (a) Quantum values of |M (3);— | expression (blue curve) and |M(3)s—| (green dashed curve) as a
function of the amplification gain I' for BGHZ state. (b) Critical efficiency . versus I' for Mermin inequalities
for the BGHZ state. The blue curve represents 7, for the sign approach and a green dashed curve for normalized
Stokes operators.

|BGHZ) = Zch m(D)Cr(D) (@] bfehk=m @l b &1 )™ ). (17)
k=0 m=0

The method of obtaining the coefficients C,,(I") can be found i 1n !, and we base our numerical computations on
the results established in this reference. The symbols a; bt and ¢! stand for creation operators in two orthogonal
polarization modes p = i,i, of a beam which goes to respectively observers A, B and C. For simplicity, we
assumed the polarization modes to be H, V, that is, i = 3.

Mermin-like inequality. Let us consider Mermin-like inequality for quantum optical fields?":
IMB)s| = [{SIASTDS] () = SIS DS (D) = DS () = (DS DS (Dhnv] <2, (18)

where SX (1) are local hidden values corresponding to normalized Stokes operators with polarization bases:
{45°, —45°}, {R, L}, for i = 1,2 respectively. The observers are now marked by X = 1,2, 3. The inequality (18)
generalizes Mermin inequality for three qubits®® for three photon beams with two polarisation modes each from
a parametric source, for details see:*'. Of course, in general the settings 1, 2 could be different.

The derivation of this inequality requires only that local hidden values are bounded by +1. Because local
hidden values for sign Stokes operators fulfil this requirement, we can replace StX (4) by G,X (A) and obtain a new
inequality

IMB)l = [(GI(DGHAG () = GIAG DG () = GGG () = GGG (D)rav] < 2.
(19)
However, this inequality is not violated by the BGHZ state. We have to again modify sign Stokes operators (as
well as normalized Stokes operators):

G = 65 = 65 — g, (20)

One can easily write modified local hidden values for such operators as in “CHSH inequality” section and obtain
inequality:

IMB)6-| = HG " (DG~ (DG~ () — GI~ (WG (DG~ (A)

21
-Gy (MG (WG (M) — G (DG (DG (D)av| < 2. =

Figure 4 presents quantum values of [(BGHZ|M (3)g_|BGHZ)| and of analogous expressmn,
|(BGHZ|M (3)s—|BGHZ)|, for a Mermm inequality for modified normalized Stokes operators, SX = S — Igx,
which is of the form (18) with §*~ replacing SX. All that is with respect to the amplification gain T". The range
of I' for which the inequality is violated by BGHZ state in the case of sign Stokes operators exceeds the range of
applicability of the method used to approximate the probability amplitudes for BGHZ state. We also stress that
this result is more robust than in the case of normalized Stokes operators. The graphs in Fig. 4 are discontinued
at[” = 0.9 because for higher values the approximation of ref.?! breaks down.

Mermin-like inequality with losses.  We use the model of losses due to inefficient detectors as in “CHSH
inequality with losses” section for the inequality (21). In Fig. 4 critical values of efficiency of detectors 1, for sign
and normalized Stokes operators, are compared. We can see that for small I" inequalities exhibit similar resist-
ance to losses. However, with increasing I" difference between the performance of sign and normalized Stokes
observables increases in favour of the former ones.
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Conclusions and some open questions

We have proposed, based on a version of the binning approach'?, new Stokes-like polarization observables for
quantum optical fields which have a clear operational meaning. In presented examples, the sign Stokes observa-
bles allow observation of Bell non-classicality of squeezed-vacuum-type states for pumping powers, for which
normalized Stokes observables fail to do so. Sign Stokes operators are easier in experimental realization than
normalized ones. Also, they are more resistant to imperfect detection and presence of a noise. One could be
tempted to use sign Stokes observables to derive entanglement indicators not based on Bell inequalities. How-
ever, such Stokes observables do not possess properties which are commonly used in derivations of bounds for
separable states. Simply a triad of them does not form a Stokes vector with proper covariance properties. Thus,
this requires a different approach. Similar questions arise when one thinks of a steering condition involving sign
Stokes observables.

Another question would be if there is a type of state for which normalized Stokes operators allow for violating
of some Bell inequality and for which this is impossible using sign Stokes operators.

The presented results give a possible way to search for violations of local realism in situations with undefined
particle numbers, which are so common in especially quantum optics. The associated Bell inequalities are cor-
rectly defined. That is, the sole assumption is local realism (and tacitly freedom of the choice of the random set-
tings for all observers involved). No additional “reasonable” assumptions are used. As, according to our numerical
estimates, one can conjecture that the associated inequalities are violated for an arbitrary I', they may serve as
tool to reveal Bell non-classicality of bright quantum optical states, see”. This indicates that such states may find
an application in, e.g. quantum communication, provided one finds new suitable Bell inequalities which would
lead to more robust violations of local realism.
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Abstract

We reconsider the all-optical weak homodyne-measurement based experimental schemes aimed at
revealing Bell nonclassicality (‘nonlocality’) of a single photon. We focus on the schemes put
forward by Tan et al (TWC, 1991) and Hardy (1994). In our previous work we show that the TWC
experiment can be described by a local hidden variable model, hence the claimed nonclassicality is
apparent. The nonclassicality proof proposed by Hardy remains impeccable. We investigate which
feature of the Hardy’s approach is crucial to disclose the nonclassicality. There are consequential
differences between TWC and Hardy setups: (i) the initial state of Hardy is a superposition of a
single photon excitation with vacuum in one of the input modes of a 50-50 beamsplitter. In the
TWC case there is no vacuum component. (ii) In the final measurements of Hardy’s proposal the
local settings are specified by the presence or absence of a local oscillator field (on/off). In the
TWC case the auxiliary fields are constant, only phases are varied. We show that in Hardy’s setup
the violation of local realism occurs due to the varying strength of the local oscillators. Still, one
does not need to operate in the fully on/off detection scheme. Thus, the nonclassicality in a
H